
The Ubuntu Packaging Guide

Ubuntu Documentation Project <ubuntu-doc@lists.ubuntu.com>

The Ubuntu Packaging Guide
by Ubuntu Documentation Project <ubuntu-doc@lists.ubuntu.com>

Copyright © 2004, 2005, 2006 Canonical Ltd. and members of the Ubuntu Documentation Project

Abstract

The Ubuntu Packaging Guide is an introduction to packaging programs for Ubuntu and other Debian based

distributions

Credits and License

The following Ubuntu Documentation Team authors maintain this document:

• Jordan Mantha

The Ubuntu Packaging Guide is also based on the contributions of:

• Alexandre Vassalotti

• Jonathan Patrick Davies

• Ankur Kotwal

• Raphaël Pinson

• Daniel Chen

• Martin Pitt

Portions of the Ubuntu Packaging Guide are derived from the Debian New Maintainer's Guide and the Debian Policy Manual.

This document is made available under the GNU General Public License (GPL).

You are free to modify, extend, and improve the Ubuntu documentation source code under the terms of this license. All derivative works

must be released under this license.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty

of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE AS DESCRIBED IN THE DISCLAIMER.

Copies of the license are available in the appendices section of this book and online at GNU General Public License

[http://www.gnu.org/licenses/gpl.html].

Disclaimer

Every effort has been made to ensure that the information compiled in this publication is accurate and correct. However, this does not

guarantee complete accuracy. Neither Canonical Ltd., the authors, nor translators shall be held liable for possible errors or the consequences

thereof.

Some of the software and hardware descriptions cited in this publication may be registered trademarks and may thus fall under copyright

restrictions and trade protection laws. In no way do the authors make claim to any such names.

THIS DOCUMENTATION IS PROVIDED BY THE AUTHORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

iii

Table of Contents

About This Guide .. iv

1. Conventions ... v

2. Contributing and Feedback ... vi

1. Introduction ... 7

1. Where to Begin .. 8

2. Prerequisites ... 9

2. Getting Started ... 11

1. Binary and Source Packages ... 12

2. Packaging Tools ... 13

3. The Personal Builder: pbuilder .. 14

3. Basic Packaging ... 16

1. Packaging From Scratch ... 17

2. Packaging with Debhelper .. 27

3. Packaging With CDBS ... 32

4. Common Mistakes .. 34

4. Patch Systems .. 37

1. Patching Without a Patch System .. 38

2. CDBS with Simple Patchsys ... 41

3. dpatch .. 42

4. Patching other people's packages ... 43

5. Updating Packages ... 44

6. Ubuntu Packaging .. 46

1. Uploading and Review ... 47

2. Merges and Syncs .. 49

3. Packaging for Kubuntu ... 53

7. Bugs .. 55

1. Bug Tracking Systems .. 56

2. Bug Tips .. 57

A. Appendix .. 60

1. Additional Resources .. 61

2. Chroot Environment ... 62

3. dh_make example files ... 65

4. List of debhelper scripts ... 67

B. GNU General Public License ... 69

1. Preamble .. 70

2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION ... 71

3. How to Apply These Terms to Your New Programs ... 76

iv

About This Guide

About This Guide

v

1. Conventions

The following notes will be used throughout the book:

A note presents interesting, sometimes technical, pieces of information related to the

surrounding discussion.

A tip offers advice or an easier way of doing something.

A caution alerts the reader to potential problems and helps avoid them.

A warning advises the reader of a hazard that may arise in a given scenario.

Cross-reference conventions for print will be displayed as follows:

• Links to other documents or websites will look like this [http://www.ubuntu.com].

PDF, HTML, and XHTML versions of this document will use hyperlinks to handle

cross-referencing.

Type conventions will be displayed as follows:

• File names or paths to directories will be shown in monospace.

• Commands that you type at a Terminal command prompt will be shown as:

command to type

• Options that you click, select, or choose in a user interface will look like this.

Menu selections, mouse actions, and keyboard short-cuts:

• A sequence of menu selections will be displayed as follows: File → Open

• Mouse actions shall assume a right-handed mouse configuration. The terms “click” and

“double-click” refer to using the left mouse button. The term “right-click” refers to using the right

mouse button. The term “middle-click” refers to using the middle mouse button, pressing down on

the scroll wheel, or pressing both the left and right buttons simultaneously, based on the design of

your mouse.

• Keyboard shortcut combinations will be displayed as follows: Ctrl-N .Where the conventions for

“Control”, “Shift,” and “Alternate” keys will be Ctrl, Shift, and Alt, respectively, and shall mean

the first key is to be held down while pressing the second key.

http://www.ubuntu.com
http://www.ubuntu.com

About This Guide

vi

2. Contributing and Feedback

This book is developed by the Ubuntu Documentation Team

[https://wiki.ubuntu.com/DocumentationTeam]. You can contribute to this document by sending

ideas or comments to the Ubuntu Documentation Team mailing list. Information about the

team, its mailing lists, projects, etc. can be found on the Ubuntu Documentation Team Website

[https://wiki.ubuntu.com/DocumentationTeam].

If you see a problem with this document, or would like to make a suggestion, you can simply file a

bug report at the Ubuntu Bugtracker [https://launchpad.net/products/ubuntu-doc/+bugs]. Your help is

vital to the success of our documentation!

Many thanks,

-Your Ubuntu Documentation Team

https://wiki.ubuntu.com/DocumentationTeam
https://wiki.ubuntu.com/DocumentationTeam
https://wiki.ubuntu.com/DocumentationTeam
https://wiki.ubuntu.com/DocumentationTeam
https://launchpad.net/products/ubuntu-doc/+bugs
https://launchpad.net/products/ubuntu-doc/+bugs

7

Chapter 1. Introduction
Welcome to the Ubuntu Packaging Guide! This guide is primarily addressed to those who would like

to make and maintain Ubuntu packages. Although many of the concepts in this guide could be used

to make binary packages for personal use, it is designed for those people wanting to distribute their

packages to and for others. While it is also written with the Ubuntu Linux distribution in mind, it

should also be useful for any Debian-based distribution.

There are several reasons you might want to learn how to package for Ubuntu. First, building and

fixing Ubuntu packages is a great way to contribute to the Ubuntu community. It is also a good way to

learn how Ubuntu and the applications you have installed work. Maybe you want to install a package

that is not in the Ubuntu repositories. Hopefully after you have completed this guide you will have the

tools and knowledge you need to do all of these things.

HTML and PDF versions of the manual are available online at the Ubuntu Documentation website

[http://help.ubuntu.com].

You can buy this guide in book form from our Lulu store [http://www.lulu.com/ubuntu-doc]. You

will only pay for the price of printing and postage.

http://help.ubuntu.com
http://help.ubuntu.com
http://www.lulu.com/ubuntu-doc
http://www.lulu.com/ubuntu-doc

Introduction

8

1. Where to Begin

If you are completely new to Debian-based packaging then you will want to read this guide

completely through, paying special attention to Section 2, “Prerequisites” [p. 9] , Chapter 2,

Getting Started [p. 11] , and Chapter 3, Basic Packaging [p. 16] . People who are experienced

with Debian-based packaging will find Chapter 6, Ubuntu Packaging [p. 46] and Chapter 7, Bugs

[p. 55] most helpful.

Introduction

9

2. Prerequisites

This guide assumes that the reader has a reasonable knowledge of building and installing software

from source on Linux distributions. The guide also uses the Command Line Interface (CLI)

throughout, so you should be comfortable using a terminal. You should be able to at least use the

following:

• make: GNU Make is a very important software building tool. It is used to transform a complex

compilation task into a trivial one. It is important that you know how to use it, because we will

store most of the information about the packaging process in a Makefile. Documentation is

available at the GNU [http://www.gnu.org/software/make/manual/make.html] website.

• ./configure:This script is included in almost all Linux source, especially for software written in

compiled languages such as C and C++. It is used to generate a Makefile (file used by make) that is

properly configured for your system. Standard Debian packaging tools use it, so it is important that

you know what the configure script does. Information on ./configure can be found in the make

documentation.

• Apt/Dpkg: Beyond the basic use of installing programs, apt and dpkg have many features that are

useful for packaging.

• apt-cache dump - lists every package in the cache. This command is especially helpful in

combination with a grep pipe such as apt-cache dump | grep foo to search for packages whose

names or dependencies include “foo”.

• apt-cache policy - lists the repositories (main/restricted/universe/multiverse) in which a package

exists.

• apt-cache show - displays information about a binary package.

• apt-cache showsrc - displays information about a source package.

• apt-cache rdepends - shows reverse dependencies for a package (which packages require the

queried one.

• dpkg -S - lists the binary package to which a particular file belongs.

• dpkg -l - lists currently installed packages. This is similar to apt-cache dump but for installed

packages.

• dpkg -c - lists the contents of a binary package. It is useful for ensuring that files are installed to

the right places.

• dpkg -f - shows the control file for a binary package. It is useful for ensuring that the

dependencies are correct.

• grep-dctrl - searches for specialized information in packages. It is a specific use of the grep

package (but not installed by default).

• diff and patch: The diff program can be used to compare two files and to make patches. A

typical example might be diff -ruN file.old file.new > file.diff. This command will create a diff

(recursively if directories are used) that shows the changes, or “delta”, between the two files.

http://www.gnu.org/software/make/manual/make.html
http://www.gnu.org/software/make/manual/make.html

Introduction

10

The patch program is used to apply a patch (usually created by diff or another similar program) to a

file or directory. To apply the patch created above, we can invoke patch -p0 < file.diff. The -p tells

patch how much it should strip from the paths for the file names in the patch. -p0 means to strip

nothing, or leave the path intact.

11

Chapter 2. Getting Started

Getting Started

12

1. Binary and Source Packages

Most users of a Debian-based distribution such as Ubuntu will never have to deal with the actual

source code that is used to create all of the applications on their computers. Instead, the source code

is compiled into binary packages from the source package that contains both the source code itself

and the rules for making the binary package. Packagers upload the source packages with their changes

to the build systems that then compile the binary packages for each architecture. A separate system

distributes the generated binary .deb files and source changes to the repository mirrors.

Getting Started

13

2. Packaging Tools

There are many tools written specifically for packaging on Debian-based systems. Many of them are

not essential to creating packages but are very helpful and often automate repetitive tasks. Their man

and info pages are good sources of information. However, the following is a list of packages that are

deemed necessary to begin packaging:

build-essential

is a metapackage that depends on libc6-dev, gcc, g++, make, and dpkg-dev. One package that

you might not be familiar with is dpkg-dev. It contains tools such as dpkg-buildpackage and

dpkg-source that are used to create, unpack, and build source and binary packages.

devscripts

contains many scripts that make the packager's maintenance work much easier. Some of the more

commonly used are debdiff, dch, debuild, and debsign.

debhelper and dh-make

are scripts that automate common packaging tasks. dh-make can be used to do the initial

"debianization" and provides many example files.

diff and patch

are used to create and apply patches, respectively. They are used extensively in packaging

because it is easier, cleaner, and more efficient to represent small changes as patches rather than

to have multiple copies of a file.

gnupg

is a complete and free replacement for PGP used to digitally sign files (including packages).

fakeroot

simulates running a command with root privileges. This is useful for creating binary packages as a

regular user.

lintian and linda

dissect Debian packages and report bugs and Policy violations. They contain automated checks

for many aspects of Debian Policy as well as for common errors.

pbuilder

constructs a chroot system and builds a package inside the chroot. It is an ideal system to use to

check that a package has correct build dependencies and to build clean packages to be tested and

distributed.

Getting Started

14

3. The Personal Builder: pbuilder

Using pbuilder as a package builder allows you to build the package from within a chroot

environment. You can build binary packages without using pbuilder, but you must have all the build

dependencies installed on your system first. However, pbuilder allows the packager to check the

build dependencies because the package is built within a minimal Ubuntu installation, and the build

dependencies are downloaded according to the debian/control file.

The following is a brief guide to installing, using, and updating a pbuilder environment, however,

there are many details of pbuilder usage that are outside the realm of this guide. The pbuilder man

page has lots of information and should be consulted if you have problems or need more detailed

information.

3.1. Installing and configuring a pbuilder environment

The first, and perhaps most obvious, thing to do is to install pbuilder. If you want to create a pbuilder

for a release newer than the one you currently have installed, you will need to manually install the

debootstrap .deb (from http://packages.ubuntu.com) from the newer release. To create a pbuilder

execute:

sudo pbuilder create --distribution <distro> \

 --othermirror "deb http://archive.ubuntu.com/ubuntu <distro> universe multiverse"

where <distro> is the release you want (edgy for instance) to create the pbuilder for. If you would

like to create more than one pbuilder environment you can append the --basetgz flag with the desired

location for the compressed pbuilder environment. The default is /var/cache/pbuilder/base.tgz. If

you do choose to use --basetgz you will need to use it with the other pbuilder commands so pbuilder

knows which compressed build environment to use.

Creating a pbuilder environment will take some time as debootstrap essentially downloads a

minimal Ubuntu installation.

A more flexible way to create a pbuilder (and perhaps multiple pbuilders) is to you a shell

script.

3.2. Using the pbuilder

Now that you have a running pbuilder you can build binary packages from the source package by

invoking:

sudo pbuilder build *.dsc

This will build all the source packages in the current directory. The resulting .debs and source

packages can be found in /var/cache/pbuilder/result/ (which can be changed with the

--buildresult flag).

http://packages.ubuntu.com

Getting Started

15

3.3. Updating the pbuilder

You should always have a current pbuilder whenever you are testing your source packages, especially

when you are building for a development release that is rapidly changing, to ensure that the

dependencies are properly found. To update your pbuilder, use:

sudo pbuilder update

If you would like to upgrade you pbuilder to a new release you can use pbuilder update in

combination with the --distribution flag:

sudo pbuilder update --distribution <newdistro> --override-config

3.4. Multiple pbuilders

All of the information so far in this section on pbuilder has applied to having a single pbuilder. If

you want to create more than one pbuilder you can create a shell script to handle the configuration

for each pbuilder you want to create. An example of such a shell script can be found in

/usr/share/doc/pbuilder/examples/pbuilder-distribution.sh. You can simply copy this

example file somewhere in your path (putting it in ~/bin/ and adding this directory to your execution

path is convenient) and then edit it according your needs. Normally you will need to only change

DISTRIBUTION and add --othermirror as above. You can then call this script instead of pbuilder

directly.

16

Chapter 3. Basic Packaging
Two of the problems that many novice packagers face are that there are multiple ways of packaging,

and there is more than one tool to do the job. We will go through three examples with the common

build systems. First, we will use no build helper. This approach is usually the most difficult and is not

often used in practice but gives the most straightforward look at the packaging process. Second, we

will use debhelper, the most common build system in Debian. It helps the packager by automating

repetitive tasks. Third, we will briefly cover the Common Debian Build System (CDBS), a more

streamlined build system that uses debhelper.

Package development often requires installing many packages (especially -dev packages

containing headers and other common development files) that are not part of a normal

desktop Ubuntu installation. If you want to avoid installing extra packages or would like to

develop for a different Ubuntu release (the development one, for instance) from what you

currently have, the use of a chroot environment is highly recommended. A guide to setting

up a chroot [p. 62] can be found in the Appendix.

Basic Packaging

17

1. Packaging From Scratch

Requirements: build-essential, automake, gnupg, lintian, fakeroot and pbuilder [p. 14].

In this example we will be using the GNU hello [http://www.gnu.org/software/hello/hello.html]

program as our example. You can download the source tarball from ftp.gnu.org

[http://ftp.gnu.org/gnu/hello/hello-2.1.1.tar.gz]. For the purposes of this example, we will be using the

~/hello/ directory.

mkdir ~/hello

cd ~/hello

wget http://ftp.gnu.org/gnu/hello/hello-2.1.1.tar.gz

We will also compare our package to one that is already packaged in the Ubuntu repository. For now,

we will place it in the ubuntu directory so we can look at it later. To get the source package, make

sure you have a "deb-src" line in your /etc/apt/sources.list file for the Main repository. Then,

simply execute:

mkdir ubuntu

cd ubuntu

apt-get source hello

cd ..

Unlike most apt-get commands, you do not need to have root privileges to get the source

package, because it is downloaded to the current directory. In fact, it is recommended that

you only use apt-get source as a regular user, because then you can edit files in the source

package without needing root privileges.

What the apt-get source command does is:

1. Download the source package. A source package commonly contains a .dsc file describing the

package and giving md5sums for the source package, an .orig.tar.gz file containing the source code

from the author(s), and a .diff.gz file containing patches applied against the source code with the

packaging information.

2. Untar the .orig.tar.gz file into the current directory.

3. Apply the gunzipped .diff.gz to the unpacked source directory.

If you manually download the source package (.dsc, .orig.tar.gz, and .diff.gz files), you can unpack

them in the same way apt-get source does by using dpkg-source as follows:

dpkg-source -x *.dsc

The first thing you will need to do is make a copy of the original (sometimes called "upstream")

tarball in the following format: <packagename>_<version>.orig.tar.gz. This step does two things.

http://www.gnu.org/software/hello/hello.html
http://www.gnu.org/software/hello/hello.html
http://ftp.gnu.org/gnu/hello/hello-2.1.1.tar.gz
http://ftp.gnu.org/gnu/hello/hello-2.1.1.tar.gz

Basic Packaging

18

First, it creates two copies of the source code. If you accidentally change or delete the working copy

you can use the one you downloaded. Second, it is considered poor packaging practice to change the

original source tarball unless absolutely necessary. See Section 4, “Common Mistakes” [p. 34] for

reasons.

cp hello-2.1.1.tar.gz hello_2.1.1.orig.tar.gz

tar -xzvf hello_2.1.1.orig.tar.gz

The underscore, "_", between the package name (hello) and the version (2.1.1), as opposed

to a hyphen, "-", is very important. Your source package will incorrectly be built as a Debian

native package.

We now have a hello-2.1.1 directory containing the source files. Now we need to create the

customary debian directory where all the packaging information is stored, allowing us to separate the

packaging files from the application source files.

mkdir hello-2.1.1/debian

cd hello-2.1.1/debian/

We now need to create the essential files for any Ubuntu source package: changelog, control,

copyright, and rules. These are the files needed to create the binary packages (.deb files) from the

original (upstream) source code. Let us look at each one in turn.

1.1. changelog

The changelog file is, as its name implies, a listing of the changes made in each version. It has

a specific format that gives the package name, version, distribution, changes, and who made the

changes at a given time. If you have a GPG key, make sure to use the same name and email address in

changelog as you have in your key. The following is a template changelog:

package (version) distribution; urgency=urgency

 * change details

 more change details

 * even more change details

-- maintainer name <email address>[two spaces] date

The format (especially of the date) is important. The date should be in RFC822 format, which can be

obtained from the 822-date program.

Here is a sample changelog file for hello:

hello (2.1.1-1) edgy; urgency=low

Basic Packaging

19

 * New upstream release with lots of bug fixes.

-- Captain Packager <packager@coolness.com> Wed, 5 Apr 2006 22:38:49 -0700

Notice that the version has a -1 appended to it, or what is called the Debian revision, which is used so

that the packaging can be updated (to fix bugs for example) with new uploads within the same source

release version.

Ubuntu and Debian have slightly different package versioning schemes to avoid conflicting

packages with the same source version. If a Debian package has been changed in Ubuntu,

it has ubuntuX (where X is the Ubuntu revision number) appended to the end of the Debian

version. So if the Debian hello package was changed by Ubuntu, the version string would be

2.1.1-1ubuntu1. If a package for the application does not exist in Debian, then the Debian

revision is 0 (e.g., 2.1.1-0ubuntu1).

Now look at the changelog for the Ubuntu source package that we downloaded earlier:

less ../../ubuntu/hello-2.1.1/debian/changelog

Notice that in this case the distribution is unstable (a Debian branch), because the Debian package has

not been changed by Ubuntu. Remember to set the distribution to your target distribution release.

At this point create a changelog file in the debian directory where you should still be.

1.2. control

The control file contains the information that the package manager (such as apt-get, synaptic, and

aptitude) uses, build-time dependencies, maintainer information, and much more.

For the Ubuntu hello package, the control file looks something like:

Source: hello

Section: devel

Priority: optional

Maintainer: Captain Packager <packager@coolness.com>

Standards-Version: 3.6.1

Package: hello

Architecture: any

Depends: ${shlibs:Depends}

Description: The classic greeting, and a good example

 The GNU hello program produces a familiar, friendly greeting. It

 allows non-programmers to use a classic computer science tool which

 would otherwise be unavailable to them.

 .

 Seriously, though: this is an example of how to do a Debian

 package.

 It is the Debian version of the GNU Project's `hello world' program

Basic Packaging

20

 (which is itself an example for the GNU Project).

Create control using the information above (making sure to provide your information for the

Maintainer field).

The first paragraph gives information about the source package. Let us go through each line:

• Source: This is the name of the source package, in this case, hello.

• Section: The apt repositories are split up into sections for ease of browsing and categorization of

software. In this case, hello belongs in the devel section.

• Priority: This sets the importance of the package to users. It should be one of the following:

• Required - packages that are essential for the system to work properly. If they are removed it is

highly likely that your system will break in an unrecoverable way.

• Important - minimal set of packages for a usable system. Removing these packages will not

produce an unrecoverable breakage of your system, but they are generally considered important

tools without which any Linux installation would be incomplete. Note: This does not include

things like Emacs or even the X Window System.

• Standard - Somewhat self explanatory.

• Optional - in essence this category is for non-required packages, or the bulk of packages.

However, these packages should not conflict with each other.

• Extra - packages that may conflict with packages in one of the above categories. Also used for

specialized packages that would only be useful to people who already know the purpose of the

package.

• Maintainer: The package maintainer with email address.

• Standards-Version: The version of the Debian Policy [http://www.debian.org/doc/debian-policy/]

to which the package adheres (in this case, version 3.6.1). An easy way to find the current version

is apt-cache show debian-policy | grep Version.

• Build-Depends: One of the most important fields and often the source of bugs, this line lists the

binary packages (with versions if necessary) that need to be installed in order to create the binary

package(s) from the source package. Packages that are essential are required by build-essential and

do not need to be included in the Build-Depends line. In the case of hello, all the needed packages

are a part of build-essential, so a Build-Depends line is not needed. The list of build-essential

packages can be found at /usr/share/doc/build-essential/list.

The second paragraph is for the binary package that will be built from the source. If multiple binary

packages are built from the source package, there should be one section for each one. Again, let us go

through each line:

• Package: The name for the binary package. Many times for simple programs (such as hello), the

source and binary packages' names are identical.

• Architecture: The architectures for which the binary package(s) will be built. Examples are:

• all - The source is not architecture-dependent. Programs that use Python or other interpreted

languages would use this. The resulting binary package would end with _all.deb.

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Basic Packaging

21

• any - The source is architecture-dependent and should compile on all the supported architectures.

There will be a .deb file for each architecture (_i386.deb for instance)

• A subset of architectures (i386, amd64, ppc, etc.) can be listed to indicate that the source is

architecture-dependent and does not work for all architectures supported by Ubuntu.

• Depends: The list of packages that the binary package depends on for functionality. For hello, we

see ${shlibs:Depends}, which is a variable that substitutes in the needed shared libraries. See the

dpkg-source man page for more information.

• Recommends: Used for packages that are highly recommended and usually are installed with the

package. Some package managers, most notably aptitude, automatically install Recommended

packages.

• Suggests: Used for packages that are similar or useful when this package is installed.

• Conflicts: Used for packages that will conflict with this package. Both cannot be installed at the

same time. If one is being installed, the other will be removed.

• Description: Both short and long descriptions are used by package managers. The format is:

Description: <single line synopsis>

 <extended description over several lines>

Note that there is one space at the beginning of each line in the long description.

More information on how to make a good description can be found at

http://people.debian.org/~walters/descriptions.html.

1.3. copyright

This file gives the copyright information. Generally, copyright information is found in the COPYING

file in the program's source directory. This file should include such information as the names of the

author and the packager, the URL from which the source came, a Copyright line with the year and

copyright holder, and the text of the copyright itself. An example template would be:

This package was debianized by {Your Name} <your email address>

{Date}

It was downloaded from: {URL of webpage}

Upstream Author(s): {Name(s) and email address(es) of author(s)}

Copyright:

 Copyright (C) {Year(s)} by {Author(s)} {Email address(es)}

License:

As one can imagine, hello is released under the GPL license. In this case it is easiest to just copy the

copyright file from the Ubuntu package:

cp ../../ubuntu/hello-2.1.1/debian/copyright .

http://people.debian.org/~walters/descriptions.html

Basic Packaging

22

You must include the complete copyright unless it is is GPL, LGPL, BSD, or Artistic License, in

which case you can refer to the corresponding file in the /usr/share/common-licenses/ directory.

Notice that the Ubuntu package's copyright includes a license statement for the manual. It is

important that all the files in the source be covered by a license statement.

1.4. rules

The rules file is an executable Makefile that has rules for building the binary package from the

source packages. For hello, it will be easier to use the rules from the Ubuntu package:

#!/usr/bin/make -f

Sample debian/rules file - for GNU Hello.

Copyright 1994,1995 by Ian Jackson.

I hereby give you perpetual unlimited permission to copy,

modify and relicense this file, provided that you do not remove

my name from the file itself. (I assert my moral right of

paternity under the Copyright, Designs and Patents Act 1988.)

This file may have to be extensively modified

package = hello

docdir = debian/tmp/usr/share/doc/$(package)

CC = gcc

CFLAGS = -g -Wall

INSTALL_PROGRAM = install

ifeq (,$(findstring noopt,$(DEB_BUILD_OPTIONS)))

 CFLAGS += -O2

endif

ifeq (,$(findstring nostrip,$(DEB_BUILD_OPTIONS)))

 INSTALL_PROGRAM += -s

endif

build:

 $(checkdir)

 ./configure --prefix=/usr

 $(MAKE) CC="$(CC)" CFLAGS="$(CFLAGS)"

 touch build

clean:

 $(checkdir)

 rm -f build

 -$(MAKE) -i distclean

 rm -rf *~ debian/tmp debian/*~ debian/files* debian/substvars

binary-indep: checkroot build

 $(checkdir)

There are no architecture-independent files to be uploaded

generated by this package. If there were any they would be

made here.

Basic Packaging

23

binary-arch: checkroot build

 $(checkdir)

 rm -rf debian/tmp

 install -d debian/tmp/DEBIAN $(docdir)

 install -m 755 debian/postinst debian/prerm debian/tmp/DEBIAN

 $(MAKE) INSTALL_PROGRAM="$(INSTALL_PROGRAM)" \

 prefix=$$(pwd)/debian/tmp/usr install

 cd debian/tmp && mv usr/info usr/man usr/share

 cp -a NEWS debian/copyright $(docdir)

 cp -a debian/changelog $(docdir)/changelog.Debian

 cp -a ChangeLog $(docdir)/changelog

 cd $(docdir) && gzip -9 changelog changelog.Debian

 gzip -r9 debian/tmp/usr/share/man

 gzip -9 debian/tmp/usr/share/info/*

 dpkg-shlibdeps debian/tmp/usr/bin/hello

 dpkg-gencontrol -isp

 chown -R root:root debian/tmp

 chmod -R u+w,go=rX debian/tmp

 dpkg --build debian/tmp ..

define checkdir

 test -f src/$(package).c -a -f debian/rules

endef

binary: binary-indep binary-arch

checkroot:

 $(checkdir)

 test $$(id -u) = 0

.PHONY: binary binary-arch binary-indep clean checkroot

Let us go through this file in some detail. One of the first parts you will see is the declaration of some

variables:

package = hello

docdir = debian/tmp/usr/share/doc/$(package)

CC = gcc

CFLAGS = -g -Wall

INSTALL_PROGRAM = install

ifeq (,$(findstring noopt,$(DEB_BUILD_OPTIONS)))

 CFLAGS += -O2

endif

ifeq (,$(findstring nostrip,$(DEB_BUILD_OPTIONS)))

 INSTALL_PROGRAM += -s

endif

This section sets the CFLAGS for the compiler and also handles the noopt and nostrip

DEB_BUILD_OPTIONS for debugging.

Next is the build rule:

Basic Packaging

24

build:

 $(checkdir)

 ./configure --prefix=/usr

 $(MAKE) CC="$(CC)" CFLAGS="$(CFLAGS)"

 touch build

This rule runs ./configure with the proper prefix, runs make, and creates a build file that is a

timestamp of the build to prevent erroneous multiple compilations.

The next rule is clean, which runs make -i distclean and removes the files that are made during the

package building.

clean:

 $(checkdir)

 rm -f build

 -$(MAKE) -i distclean

 rm -rf *~ debian/tmp debian/*~ debian/files* debian/substvars

Next we see an empty binary-indep rule, because there are no architecture-independent files created

in this package.

There are, however, many architecture-dependent files, so binary-arch is used:

binary-arch: checkroot build

 $(checkdir)

 rm -rf debian/tmp

 install -d debian/tmp/DEBIAN $(docdir)

 install -m 755 debian/postinst debian/prerm debian/tmp/DEBIAN

 $(MAKE) INSTALL_PROGRAM="$(INSTALL_PROGRAM)" \

 prefix=$$(pwd)/debian/tmp/usr install

 cd debian/tmp && mv usr/info usr/man usr/share

 cp -a NEWS debian/copyright $(docdir)

 cp -a debian/changelog $(docdir)/changelog.Debian

 cp -a ChangeLog $(docdir)/changelog

 cd $(docdir) && gzip -9 changelog changelog.Debian

 gzip -r9 debian/tmp/usr/share/man

 gzip -9 debian/tmp/usr/share/info/*

 dpkg-shlibdeps debian/tmp/usr/bin/hello

 dpkg-gencontrol -isp

 chown -R root:root debian/tmp

 chmod -R u+w,go=rX debian/tmp

 dpkg --build debian/tmp ..

First, notice that this rule calls the checkroot rule to make sure the package is built as

root and calls the build rule to compile the source. Then the debian/tmp/DEBIAN and

debian/tmp/usr/share/doc/hello files are created, and the postinst and the prerm> scripts

are installed to debian/tmp/DEBIAN. Then make install is run with a prefix that installs to the

debian/tmp/usr directory. Afterward the documentation files (NEWS, ChangeLog, and the

debian changelog) are gzipped and installed. dpkg-shlibdeps is invoked to find the shared library

dependencies of the hello executable, and it stores the list in the debian/substvars file for the

${shlibs:Depends} variable in control. Then dpkg-gencontrol is run to create a control file for

Basic Packaging

25

the binary package, and it makes the substitutions created by dpkg-shlibdeps. Finally, after the

permissions of the debian/tmp have been set, dpkg --build is run to build the binary .deb package and

place it in the parent directory.

1.5. postinst and prerm

The postinst and prerm files are examples of maintainer scripts. They are shell scripts that are

executed after installation and before removal, respectively, of the package. In the case of the Ubuntu

hello package, they are used to install (and remove) the info file. Go ahead and copy them into the

current debian directory.

cp ../../ubuntu/hello-2.1.1/debian/postinst .

cp ../../ubuntu/hello-2.1.1/debian/prerm .

1.6. Building the Source Package

Now that we have gone through the files in the debian directory for hello in detail, we can build the

source (and binary) packages. First let us move into the root of the extracted source:

cd ..

Now we build the source package using dpkg-buildpackage:

dpkg-buildpackage -S -rfakeroot

The -S flag tells dpkg-buildpackage to build a source package, and the -r flag tells it to use fakeroot

to allow us to have fake root privileges when making the package. dpkg-buildpackage will take

the .orig.tar.gz file and produce a .diff.gz (the difference between the original tarball from

the author and the directory we have created, debian/ and its contents) and a .dsc file that has

the description and md5sums for the source package. The .dsc and *_source.changes (used for

uploading the source package) files are signed using your GPG key.

If you do not have a gpg key set up you will get an error from debuild. You can either set up

a gpg key or use the -us -uc keys with debuild to turn off signing. However, you will not be

able to have your packages uploaded to Ubuntu without signing them.

To make sure debuild finds the right gpg key you should set the DEBFULLNAME and

DEBEMAIL environment variables (in your ~/.bashrc for instance) to the name and email

address you use for your gpg key and in the debian/changelog

Some people have reported that they were unable to get debuild to find their gpg key

properly, even after setting the above environment variables. To get around this you can

give debuild the -k<keyid> flag where <keyid> is your gpg key ID.

In addition to the source package, we can also build the binary package with pbuilder:

sudo pbuilder build ../*.dsc

Basic Packaging

26

Using pbuilder to build the binary packages is very important. It ensures that the build dependencies

are correct, because pbuilder provides only a minimal environment, so all the build-time dependencies

are determined by the control file.

We can check the source package for common mistakes using lintian:

cd ..

lintian -i *.dsc

Basic Packaging

27

2. Packaging with Debhelper

Requirements: The requirements from Section 1, “Packaging From Scratch” [p. 17] plus

debhelper and dh-make

As a packager, you will rarely create packages from scratch as we have done in the previous section.

As you can imagine, many of the tasks and information in the rules file, for instance, are common

to packages. To make packaging easier and more efficient, you can use debhelper to help with

these tasks. Debhelper is a set of Perl scripts (prefixed with dh_) that automate the process of

package-building. With these scripts, building a Debian package becomes quite simple.

In this example, we will again build the GNU Hello package, but this time we will be comparing our

work to the Ubuntu hello-debhelper package. Again, create a directory where you will be working:

mkdir ~/hello-debhelper

cd ~/hello-debhelper

wget http://ftp.gnu.org/gnu/hello/hello-2.1.1.tar.gz

mkdir ubuntu

cd ubuntu

Then, get the Ubuntu source package:

apt-get source hello-debhelper

cd ..

Like the previous example, the first thing we need to do is unpack the original (upstream) tarball.

tar -xzvf hello-2.1.1.tar.gz

Instead of copying the upstream tarball to hello_2.1.1.orig.tar.gz as we did in the previous

example, we will let dh_make do the work for us. The only thing you have to do is rename the source

folder so it is in the form of <packagename>-<version> where packagename is lowercase. In this

case, just untarring the tarball produces a correctly named source directory so we can move into it:

cd hello-2.1.1

To create the initial "debianization" of the source we will use dh_make.

dh_make -e your.maintainer@address -f ../hello-2.1.1.tar.gz

dh_make will then ask you a series of questions:

Type of package: single binary, multiple binary, library, kernel module or cdbs?

[s/m/l/k/b] s

Maintainer name : Captain Packager

Email-Address : packager@coolness.com

Date : Thu, 6 Apr 2006 10:07:19 -0700

Basic Packaging

28

Package Name : hello

Version : 2.1.1

License : blank

Type of Package : Single

Hit <enter> to confirm: Enter

Only run dh_make -e once. If you run it again after you do it the first time, it will not work

properly. If you want to change it or made a mistake, remove the source directory and untar

the upstream tarball afresh. Then you can migrate into the source directory and try again.

Running dh_make -e does two things:

1. Creates the hello_2.1.1.orig.tar.gz file in the parent directory,

2. Creates the basic files needed in debian/ and many template files (.ex) that may be needed.

The Hello program is not very complicated, and as we have seen in Section 1, “Packaging From

Scratch” [p. 17], packaging it does not require much more than the basic files. Therefore, let us

remove the .ex files:

cd debian

rm *.ex *.EX

For hello, you will also not need README.Debian (README file for specific Debian issues, not

the program's README), dirs (used by dh_installdirs to create needed directories), docs (used by

dh_installdocs to install program documentation), or info (used by dh_installinfo to install the info

file) files into the debian directory. For more information on these files, see Section 3, “dh_make

example files” [p. 65] .

At this point, you should have only changelog, compat, control, copyright, and rules files in the

debian directory. From Section 1, “Packaging From Scratch” [p. 17], the only file that is new is

compat, which is a file that contains the debhelper version (in this case 4) that is used.

You will need to adjust the changelog slightly in this case to reflect that this package is named

hello-debhelper rather than just hello:

hello-debhelper (2.1.1-1) edgy; urgency=low

 * Initial release

 -- Captain Packager <packager@coolness.com> Thu, 6 Apr 2006 10:07:19 -0700

By using debhelper, the only things we need to change in control are the name (substituting hello for

hello-debhelper) and adding debhelper (>= 4.0.0) to the Build-Depends field for the source package.

The Ubuntu package for hello-debhelper looks like:

Source: hello-debhelper

Section: devel

Priority: extra

Basic Packaging

29

Maintainer: Capitan Packager <packager@coolness.com>

Standards-Version: 3.6.1

Build-Depends: debhelper (>= 4)

Package: hello-debhelper

Architecture: any

Depends: ${shlibs:Depends}

Conflicts: hello

Provides: hello

Replaces: hello

Description: The classic greeting, and a good example

 The GNU hello program produces a familiar, friendly greeting. It

 allows non-programmers to use a classic computer science tool which

 would otherwise be unavailable to them.

 .

 Seriously, though: this is an example of how to do a Debian package.

 It is the Debian version of the GNU Project's `hello world' program

 (which is itself an example for the GNU Project).

 .

 This is the same as the hello package, except it uses debhelper to

 make the deb. Please see debhelper as to what it is.

We can copy the copyright file and the postinst and prerm scripts from the Ubuntu hello-debhelper

package, as they have not changed since Section 1, “Packaging From Scratch” [p. 17]. We will also

copy the rules file so we can inspect it.

cp ../../ubuntu/hello-debhelper-2.1.1/debian/copyright .

cp ../../ubuntu/hello-debhelper-2.1.1/debian/postinst .

cp ../../ubuntu/hello-debhelper-2.1.1/debian/prerm .

cp ../../ubuntu/hello-debhelper-2.1.1/debian/rules .

The last file we need to look at is rules, where the power of debhelper scripts can be seen. The

debhelper version of rules is somewhat smaller (54 lines as opposed to 72 lines in the version from

Section 1.4, “rules” [p. 22]).

The debhelper version looks like:

 #!/usr/bin/make -f

package = hello-debhelper

CC = gcc

CFLAGS = -g -Wall

ifeq (,$(findstring noopt,$(DEB_BUILD_OPTIONS)))

 CFLAGS += -O2

endif

#export DH_VERBOSE=1

Basic Packaging

30

clean:

 dh_testdir

 dh_clean

 rm -f build

 -$(MAKE) -i distclean

install: build

 dh_clean

 dh_installdirs

 $(MAKE) prefix=$(CURDIR)/debian/$(package)/usr \

 mandir=$(CURDIR)/debian/$(package)/usr/share/man \

 infodir=$(CURDIR)/debian/$(package)/usr/share/info \

 install

build:

 ./configure --prefix=/usr

 $(MAKE) CC="$(CC)" CFLAGS="$(CFLAGS)"

 touch build

binary-indep: install

There are no architecture-independent files to be uploaded

generated by this package. If there were any they would be

made here.

binary-arch: install

 dh_testdir -a

 dh_testroot -a

 dh_installdocs -a NEWS

 dh_installchangelogs -a ChangeLog

 dh_strip -a

 dh_compress -a

 dh_fixperms -a

 dh_installdeb -a

 dh_shlibdeps -a

 dh_gencontrol -a

 dh_md5sums -a

 dh_builddeb -a

binary: binary-indep binary-arch

.PHONY: binary binary-arch binary-indep clean checkroot

Notice that tasks like testing if you are in the right directory (dh_testdir), making sure you are

building the package with root privileges (dh_testroot), installing documentation (dh_installdocs

and dh_installchangelogs), and cleaning up after the build (dh_clean) are handled automatically.

Many packages much more complicated than hello have rules files no bigger because the debhelper

scripts handle most of the tasks. For a complete list of debhelper scripts, please see Section 4, “List

of debhelper scripts” [p. 67] . They are also well documented in their respective man pages. It is a

useful exercise to read the man page (they are well written and not lengthy) for each helper script used

in the above rules file.

Basic Packaging

31

2.1. Building the Source Package

Now that we have gone through the files in the debian directory for hello-debhelper, we can build the

source (and binary) packages. First, let us move back into the source directory:

cd ..

Now we build the source package using debuild, a wrapper script for dpkg-buildpackage:

debuild -S

the binary package, using pbuilder:

sudo pbuilder build ../*.dsc

and finally check the source package for common mistakes using lintian:

cd ..

lintian -i *.dsc

Basic Packaging

32

3. Packaging With CDBS

CDBS is a tool that uses debhelper to make building and maintaining Debian packages even easier. It

has many advantages:

• It produces a short, readable, and efficient debian/rules

• It automates debhelper and autotools for you, so you do not have to worry about repetitive tasks

• It helps you focus on more important packaging problems, because it helps without limiting

customization

• Its classes have been well tested, so you can avoid dirty hacks to solve common problems

• Switching to CDBS is easy

• It is extensible

3.1. Using CDBS in packages

Using CDBS for Ubuntu packages is very easy. After adding cdbs to the Build-Depends in

debian/control, a basic debian/rules file using CDBS can fit in 2 lines. For a simple C/C++

application with no extra rules, such as hello, debian/rules can look like this :

#!/usr/bin/make -f

include /usr/share/cdbs/1/rules/debhelper.mk

include /usr/share/cdbs/1/class/autotools.mk

That is all you need to build the program! CDBS handles installing and cleaning. You can then use

the .install and .info files to tune your package with the usual debhelper functions in the various

sections for debian/rules.

Do not use DEB_AUTO_UPDATE_DEBIAN_CONTROL:=yes to automatically change

debian/control. It can cause bad things, and Debian considers it a reason to reject a

package from entering the archives. See http://ftp-master.debian.org/REJECT-FAQ.html

[http://ftp-master.debian.org/REJECT-FAQ.html] for more information.

As you can see, CDBS mostly works by including .mk Makefiles in debian/rules. The cdbs package

provides such files in /usr/share/cdbs/1/ that allow you to do quite a lot of packaging tasks. Other

packages, such as quilt, add modules to CDBS and can be used as Build-Depends. Note that you can

also use your own CDBS rules and include them in the package. The most useful modules included

with the cdbs package are:

• rules/debhelper.mk: Calls debhelper in all required sections

• rules/dpatch.mk: Allows you to use dpatch to ease patching the source

• rules/simple-patchsys.mk: Provides a very easy way to patch the source

• rules/tarball.mk: Allows you to build packages using the compressed tarball in the package

• class/autotools.mk: Calls autotools in all required sections

http://ftp-master.debian.org/REJECT-FAQ.html
http://ftp-master.debian.org/REJECT-FAQ.html

Basic Packaging

33

• class/gnome.mk: Builds GNOME programs (requires the proper Build-Depends in

debian/control)

• class/kde.mk: Builds KDE programs (requires the proper Build-Depends in debian/control)

• class/python-distutils.mk: Facilitates packaging Python programs

3.2. More information on CDBS

For more information on CDBS, see Marc Dequènes's guide at

https://perso.duckcorp.org/duck/cdbs-doc/cdbs-doc.xhtml.

https://perso.duckcorp.org/duck/cdbs-doc/cdbs-doc.xhtml

Basic Packaging

34

4. Common Mistakes

4.1. dh_make Example Files

When you use dh_make to create the initial "debianization", example files for various tasks are

created in the debian/ directory. The templates have a .ex extension. If you want to use one, rename it

to remove the extension. If you do not need it, remove it to keep the debian/ directory clean.

4.2. Changing the Original Tarball

There are two types of source packages, native and non-native. A native package is one that is

specific to Ubuntu/Debian. It has the debian/ directory containing the packaging information and

any changes to the source included in the tarball (usually <packagename>_<version>.tar.gz).

Non-native packages are more common. A non-native package splits the source package into a

<packagename>_<version>.orig.tar.gz tarball that is identical (hopefully including md5sum) to

the source tarball downloaded from the project's homepage and a .diff.gz file that contains all the

differences (debian/ directory and patches) from the original source tarball.

Here is a list of potential problems that can occur if you change the original tarball:

1. Reproducibility

If you take just the .diff.gz and .dsc, you or someone else has no means to reproduce the changes in

the original tarball.

2. Upgradeability

It is much easier to upgrade to a new upstream (from the author) version if the .orig.tar.gz is

preserved and there is a clear separation between the upstream source and the changes made to

produce the Ubuntu source package.

3. Debian to Ubuntu Synchronization

Changing original tarballs makes it hard to automatically sync from Debian to Ubuntu. Normally,

only the .diff.gz and .dsc files change within the same upstream version, since the .orig.tar.gz file

is shared by all the Debian or Ubuntu revisions. It is much more difficult to sync if the md5sums of

the .orig.tar.gz files are not the same.

4. Usage of Revision Control for Debian package

If you use svn (svn-buildpackage) to handle your Debian package, you usually don't store the

original tarball inside. If someone else does a checkout, he'll need to get the original tarball

separately. Other revision control systems can be used to track only the packaging files (debian/,

etc.) and not the whole source. However, if the .orig.tar.gz is not the same, then obviously

problems can occur.

5. Security tracking

Basic Packaging

35

Consider a situation where someone wants to introduce a backdoor/rootkit or other evil stuff. If

the original tarball is intact, it can be scanned easily through the .diff.gz to see if the person who

modified the package tried to do something evil. If the tarball has changed, however, you also need

to check the differences between the tarball and the original source.

You still have to trust the authors of the software not to do anything evil, but that is the

case regardless of whether the original is changed.

6. The .diff.gz

The option to use the .diff.gz to reflect changes to the original tarball already exists, so it is easy to

make changes without touching the original tarball.

It is acceptable to change the original tarball if one or more of the following hold true:

• It contains non-free parts that cannot be redistributed. Remove those parts, and note it in the

packaging. Often such packages use "dfsg" (which stands for Debian Free Software Guidelines) in

the package name and/or versioning to indicate that non-free parts have been removed.

• The authors only provide bzip2'ed source.

• Just bunzip2 the .tar.bz2 and gzip -9 the resulting tar.

• The md5sums of the .tar you provide and the original .tar must match!

• Eventually provide a get-orig-source rule in debian/rules that does this conversion automatically.

• Directly imported from SVN

• Provide get-orig-source in debian/rules.

The following are not reasons to change the original tarball:

• Wrong Directory Layout

dpkg-source is quite flexible and manages to produce the correct directory layout even if:

• The directory inside the tarball is not named <upstream>-<version>.

• There is no subdirectory inside the tarball.

• Files need to be removed to keep the .diff.gz small (e.g., files created by autotools). Everything that

needs to be deleted should be removed in the clean rule. Since the .diff.gz is created with diff -u,

you will not see removed files in the .diff.gz.

• Files need to be modified. Files that need to be modified should to go into .diff.gz. That is its

purpose!

• Wrong permissions on files. You can use debian/rules to do this.

What do I do with an .orig.tar.gz that already includes a debian/ dir?

Do not repackage it. You can ask the author(s) to delete the debian/ dir and provide a diff.gz

instead. This makes it easier to review their work, and it separates packaging from program

source.

Basic Packaging

36

It is always a good idea to contact the program's author(s) and ask if you may correct

autoconf issues, directory layout, an outdated Free Software Foundation address in

COPYRIGHT files, or other things that are not specific to the packaging but would be

convenient for you so you do not need to "patch" the source in .diff.gz.

4.3. Copyright Information

The debian/copyright file should contain:

• The licensing information for all files in the source. Sometimes author(s) put a license in COPYING

but have different licensing information for some files in the source.

• The copyright holder(s) and year(s).

• The entire license unless it is one of the licenses found in /usr/share/common-licenses, in which

case you should just include the preamble.

37

Chapter 4. Patch Systems
Quite often it turns out that the upstream source needs to be patched, either to adjust the program to

work with Ubuntu or to fix bugs in the source before they are fixed upstream. But how should we

reperesent these changes? We could simply make the changes in the unpacked source package, in

which case the patch would be expressed in the .diff.gz file. However, this is not ideal. If there is

more than one patch you loose the ability to seperate the patches as you just see one big diff that also

contains the packaging files (in debian/. This can make it more difficult when you want to send the

patches upstream. It is also very convenient to seperate the author's source from the changes made for

Ubuntu. The best place to put this information is in the debian/ that is already used for the packaging

files. For the rest of this chapter we will be looking at the various ways to set up patches in this way.

Patch Systems

38

1. Patching Without a Patch System

As was mentioned above, one can patch the original source by simply making the changes in the

unpacked source directory. A real-life example of this is cron. If you grab cron's source package and

look at the .diff.gz you will see that several of the original source's files were changed.

apt-get source cron

zgrep +++ cron*.diff.gz

But as we mentioned before this is not really the best way to represent patches. One better way is to

create individual patch files, but them in debian/patches/ and apply the patches (using patch) in

debian/rules. This is what is done for udev:

apt-get source udev

zgrep +++ udev*.diff.gz

ls udev*/debian/patches/

less udev*/debian/rules

The rules file has the following rules for applying and unapplying the patches:

Apply patches to the package

patch: patch-stamp

patch-stamp:

 dh_testdir

 @patches=debian/patches/*.patch; for patch in $$patches; do \

 test -f $$patch || continue; \

 echo "Applying $$patch"; \

 patch -stuN -p1 < $$patch || exit 1; \

 done

 touch $@

Remove patches from the package

unpatch:

 dh_testdir

 @if test -f patch-stamp; then \

 patches=debian/patches/*.patch; \

 for patch in $$patches; do \

 reversepatches="$$patch $$reversepatches"; \

 done; \

 for patch in $$reversepatches; do \

 test -f $$patch || continue; \

 echo "Reversing $$patch"; \

 patch -suRf -p1 < $$patch || exit 1; \

 done; \

 rm -f patch-stamp; \

 fi

That is all very nice, but how do we create new patches for udev using this scheme? The general

approach is:

Patch Systems

39

1. copy the clean source tree to a temporary directory

2. apply all patches up to the one you want to edit; if you want to create a new patch, apply all

existing ones (this is necessary since in general patches depend on previous patches)

if you want, you can use debian/rules for this: remove the patches that come *after* the one you

want to edit, and call 'debian/rules patch'. The actual name for the patch target varies, I have seen

the following ones so far: patch setup apply-patches unpack patch-stamp. You have to look in

debian/rules how it is called.

3. copy the whole source tree again:

cp -a /tmp/old /tmp/new

4. go into /tmp/new, do your modifications

5. go back into your original source tree, generate the patch with:

diff -Nurp /tmp/old /tmp/new > mypatchname.patch

1.1. Example 1.

Let us make a new patch for udev called 90_penguins.patch which replaces Linux with Penguin in

the udev README file:

cd udev*/

cp -a . /tmp/old

pushd /tmp/old

debian/rules patch

cp -a . /tmp/new; cd ../new

sed -i 's/Linux/Penguin/g' README

cd ..

diff -Nurp old new > 90_penguins.patch

popd

mv /tmp/90_penguins.patch debian/patches

rm -rf /tmp/old /tmp/new

1.2. Example 2.

What happens if we want to edit an existing patch? We can us a similar procedure as Example 1 but

we will apply the patch to be edited first:

cp -a . /tmp/old

pushd /tmp/old

cp -a . /tmp/new; cd ../new

patch -p1 < debian/patches/10-selinux-include-udev-h.patch

sed -i '1 s/$/***** HELLO WORLD ****/' udev_selinux.c

cd ..

diff -Nurp old new > 10-selinux-include-udev-h.patch

popd

mv /tmp/10-selinux-include-udev-h.patch debian/patches

Patch Systems

40

rm -rf /tmp/old /tmp/new

So this way of patching the source, while technically fine, can become very complicated and

unmanageable. To make patching easier and more straightforward patch systems were developed. We

will take a look at couple popular ones.

Patch Systems

41

2. CDBS with Simple Patchsys

The CDBS build helper system (see Section 3, “Packaging With CDBS” [p. 32]) has a very simple

patch system built in. You simply need to add an include for simple-patchsys.mk in debian/rules. An

example is pmount. Its entire rules looks like:

#!/usr/bin/make -f

include /usr/share/cdbs/1/rules/debhelper.mk

include /usr/share/cdbs/1/class/autotools.mk

include /usr/share/cdbs/1/rules/simple-patchsys.mk

common-post-build-arch::

 # Generate a POT file

 cd po; intltool-update -p --verbose

Simple patchsys also has a patch editor built in called cdbs-edit-patch. You can give cdbs-edit-patch

either the name of an existing patch to edit or a new patch to create. It will apply the existing patch,

if it exists, and put you in a new shell. You can then make any changes you want added to the

patch and finally type Ctrl-D to exit the shell and create the new patch. The patches are stored in

debian/patches/

Patch Systems

42

3. dpatch

A popular patch system is dpatch. It has a dpatch-edit-patch script like cdbs has but stores the patches

a little differently. It uses a file named debian/patches/00list to find the name and order of patches

to apply. This means you can order your patches in whichever way you want and can disable a patch

without removing it altogether. However, it also mean you need to update 00list if you add a patch.

If dpatch-edit-patch is called with two arguments it will edit/create the the patch named by the first

argument relative to the patch named by the second argument. In other words:

dpatch-edit-patch new.dpatch old.dpatch

will apply patches up to old.dpatch and then create new.dpatch. Note that dpatch patches usually

have a .dpatch suffix. This is because dpatch stores the patches in a slightly different format then a

normal patch that adds a special header.

A real-life example of dpatch usage is the xterm package.

Patch Systems

43

4. Patching other people's packages

The most important thing to keep in mind when patching packages maintained by other people is to

keep the patch system (or lack thereof) that the maintainer has set up. This will ensure consistency

and make the package maintainer more likely to accept your patch.

It is also a good idea to separate patches logically rather than creating one giant patch. If the upstream

authors apply one of your changes but not another it is much easier to just drop a patch then edit a

monolithic patch to update it.

44

Chapter 5. Updating Packages
If you have been around Linux distributions for any amount of time, you have realized that there are

sometimes bugs in programs. In the Debian and Ubuntu distributions, bugs are often fixed through

the packaging by patching the source code. Sometimes there are bugs in the packaging itself that can

cause difficulties.

To patch the program's source code, you could simply download the current Ubuntu source

package (with apt-get source) and make the needed changes. You can then add a new entry to

the debian/changelog using dch -i or dch -v <version>-<revision> to specify the new revision.

When you run debuild -S from the source directory you will have a new source package with a new

.diff.gz in the parent directory that contains your changes. A problem with this approach is that the

distinction between source and patches is unclear.

A solution to this problem is to separate the changes to the source code into individual patches

stored in the debian directory. One such patch system is called dpatch. The patches are stored in the

debian/patches/ directory and have a special format.

To create a dpatch, perform the following steps sequentially.

Create a temporary work space and two copies of the current source directory:

mkdir tmp

cd tmp

cp -a ../<package>-<version> .

cp -a <package>-<version> <package>-<version>.orig

Make the changes in the <package>-<version> directory.

Create a patch file using diff and place it in the debian/patches directory:

diff -Nru <package>-<version>.orig <package>-<version> > patch-file

Create the dpatch using dpatch patch-template and a file named 00list that lists the dpatches:

dpatch patch-template -p "01_patchname" "patch-file description" \

 < patch-file > 01_patchname.dpatch

echo 01_patchname.dpatch >00list

You can now place 01_patchname.dpatch and 00list in the debian/patches directory of your

source package:

mkdir ../<package>-<version>/debian/patches

cp 01_patchname.dpatch 00list ../<package>-<version>/debian/patches

cd ..

Updating Packages

45

rm -rf tmp

You can also edit a pre-existing patch using dpatch-edit-patch.

Once all the changes have been made, a changelog entry added, and dpatch added to the

debian/control file (if needed), then you can rebuild the source package with debuild -S.

To get your fixed source package uploaded to the Ubuntu repositories, you will need to get your

source package sponsored by a person who has upload rights. See Section 1, “Uploading and Review”

[p. 47] for more details. Sometimes, rather than giving the entire source package (.diff.gz, .dsc,

and .orig.tar.gz), it is easier and more efficient to just give the difference between the source package

that is currently in the repositories and your fixed source package. A tool has been created to do just

that called debdiff. Using debdiff is similar to using diff but is made specifically for packaging. You

can debdiff the source package by:

debdiff <oldpackage>.dsc <newpackage>.dsc > package.debdiff

or the binary package by:

debdiff <oldpackage>.deb <newpackage>.deb > package.debdiff

Debdiffs are great to attach to bug reports and have ready for a sponsor to upload.

46

Chapter 6. Ubuntu Packaging

Ubuntu Packaging

47

1. Uploading and Review

Once you have created a source package (either a completely new package or just an update/bugfix),

you will want to distribute your package so that other people can enjoy your hard work. The most

effective way to do that for Ubuntu is to contribute your package to the Universe repository. The

community developers who are responsible for the Universe repository are known as Masters of the

Universe (MOTU [https://wiki.ubuntu.com/MOTU]). REVU [http://revu.tauware.de] is a web-based

tool that gives people a place to upload their source packages for other people to look at and for

MOTUs to review in a structured manner.

1.1. Contributing as an Uploader

First, you will need to have your GPG Key [https://wiki.ubuntu.com/GPGKey] added to the REVU

keyring. This step ensures that your packages really come from you and helps track uploads.

REVU uses your Launchpad [https://launchpad.net] account to look up your gpg

key so make sure you have a Launchpad account and you have put your gpg key

in your user profile there. Once this is one you can join the Universe Contributors

[https://launchpad.net/people/ubuntu-universe-contributors] team and then email

admin@tiber.tauware.de [mailto:admin@tiber.tauware.de] asking for your gpg key to be updated on

REVU. When this is done you will be able to upload your packages. You don't#need a password to

upload packages, only to log in to the website and to reply to comments.

It is not necessary to have your key signed by others to upload to REVU, but it is a good

idea to have it done at some point.

1.1.1. Uploading your packages

Uploading to REVU uses dput. The Ubuntu version of dput already knows about REVU so you

do not need to change any configuration files. Only upload signed packages, and unlike other

repositories, you should always include the original tarball, otherwise reviewers will not be able to

look at your extracted source package. In order to do so, use the options "-S -sa" with debuild or

dpkg-buildpackage to build only the source package and to include the original source in the upload.

After the source package is built, you can use dput with the above config file changes to upload it by

specifying just the _source.changes file that was created:

dput revu *_source.changes

If you are reuploading a changed package (after receiving reviews), you may get an error

like this:

Upload package to host revu

Already uploaded to tauware.de

Doing nothing for myapp_source.changes

https://wiki.ubuntu.com/MOTU
https://wiki.ubuntu.com/MOTU
http://revu.tauware.de
http://revu.tauware.de
https://wiki.ubuntu.com/GPGKey
https://wiki.ubuntu.com/GPGKey
https://launchpad.net
https://launchpad.net
https://launchpad.net/people/ubuntu-universe-contributors
https://launchpad.net/people/ubuntu-universe-contributors
mailto:admin@tiber.tauware.de
mailto:admin@tiber.tauware.de

Ubuntu Packaging

48

To fix, add the -f option to dput to force the upload or remove the .upload file that was

created by dput.

Processing of uploads is done every five minutes, so if your upload does not show up, please contact

the REVU administrators by email, or join the Freenode IRC channel #ubuntu-motu.

1.1.2. How to login to REVU

After your first upload, you are registered automatically in the database and assigned a random

password. On the REVU [http://revu.tauware.de] website, use the email address you used in the

changelog file of your upload as the login and click the 'recover password' link. You will be taken to a

page that has your encrypted password with instructions for decrypting it.

1.1.3. View and comment uploads

Packages uploaded to REVU are public. You can browse them without logging in to the system.

However, commenting on uploads is available only to registered users. As an uploader, you can only

comment on your own uploads. This can be useful to give reviewers some info on the changes you

have made between two uploads of your packages.

1.1.4. Additional rules

• You must have reviewed the package for known security vulnerabilities and must provide patches

for them.

• The package can be refused on the grounds of known security problems.

• You must have included a copyright and license file, and those must allow inclusion of the package

in the Universe component and redistribution via Ubuntu mirrors.

• The package must be known to build on top of the main component of the current Ubuntu stable

release. It is permissible to require other packages already in Universe.

1.1.5. Getting Help

If you need assistance on these steps, or if you have questions about REVU, you can ask in

#ubuntu-motu on the Freenode IRC network.

http://revu.tauware.de
http://revu.tauware.de

Ubuntu Packaging

49

2. Merges and Syncs

Requirements: build-essential, automake, gnupg, lintian, fakeroot, patchutils, debhelper

and pbuilder [p. 14].

Ubuntu is based on the Debian Linux distribution and uses the same package management system

(APT). At the beginning of each Ubuntu development cycle, the packages in Ubuntu are updated

to those in the Debian unstable branch. However, because Ubuntu is not the same as Debian, some

of the packages need to be modified to work in Ubuntu. There might also be bug fixes that Ubuntu

developers have introduced into the packages. You can determine whether this has taken place

by noting the package version. If the package version includes ubuntu in it (an example would be

gimp-2.2.9-3ubuntu2), then the Ubuntu developers have made changes, and it is no longer the same as

the Debian package. There are more than 1000 such modified packages in the Universe repository.

At the start of each Ubuntu development cycle, a decision is made regarding these Ubuntu versioned

packages. Of course if the Debian version hasn't changed since the last Ubuntu release, then nothing

needs to be changed. However, if there is a newer version of the package in Debian, then one of two

things should happen. If all of the reasons for Ubuntu modifications (bug fixes, dependencies, etc.) are

fixed in the new Debian package, then we can just take the Debian package directly. This decision is

called a sync. However, if the new Debian version has the same issues that caused the Ubuntu version

to be made, then those changes need to be applied to the new Debian version, too. This decision is

called merging.

2.1. Merging Tutorial

The merging process involves looking at the changes to both the Debian and Ubuntu source packages

and determining what has changed and which changes are Ubuntu-specific. Let us now look at an

example, a popular CD creation program called xcdroast.

To start, make a folder to hold our project, then navigate there:

mkdir ~/xcdroast

cd ~/xcdroast

Now download all of the source packages involved into this directory:

• The xcdroast source tarball that is used by all versions:

• xcdroast_0.98+0alpha15.orig.tar.gz

[http://snapshot.debian.net/archive/2006/01/16/debian/pool/main/x/xcdroast/

xcdroast_0.98+0alpha15.orig.tar.gz]

• The Ubuntu Breezy source package files:

• xcdroast_0.98+0alpha15-1.1ubuntu1.dsc

[http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1ubuntu1.dsc]

http://snapshot.debian.net/archive/2006/01/16/debian/pool/main/x/xcdroast/xcdroast_0.98+0alpha15.orig.tar.gz
http://snapshot.debian.net/archive/2006/01/16/debian/pool/main/x/xcdroast/xcdroast_0.98+0alpha15.orig.tar.gz
http://snapshot.debian.net/archive/2006/01/16/debian/pool/main/x/xcdroast/xcdroast_0.98+0alpha15.orig.tar.gz
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1ubuntu1.dsc
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1ubuntu1.dsc

Ubuntu Packaging

50

• xcdroast_0.98+0alpha15-1.1ubuntu1.diff.gz

[http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1ubuntu1.diff.gz]

• The Debian source package files that the Breezy packages are derived from:

• xcdroast_0.98+0alpha15-1.1.diff.gz

[http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1.diff.gz]

• xcdroast_0.98+0alpha15-1.1.dsc

[http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1.dsc]

• The new Debian source package files that the Dapper packages will be derived from:

• xcdroast_0.98+0alpha15-3.dsc

[http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-3.dsc]

• xcdroast_0.98+0alpha15-3.diff.gz

[http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-3.diff.gz]

These steps can also be done by searching for the Debian packages at packages.debian.org

and the Ubuntu packages at packages.ubuntu.com.

A very useful package to have installed when doing merges (or any Ubuntu packaging) is

devscripts. If you do not have that already installed, install it before proceeding.

By looking at the Ubuntu changelog you should be able to see

which differences to expect between the Ubuntu package and the

Debian package from which it was derived. For xcdroast, the Ubuntu

changelog can be found at changelogs.ubuntu.com

[http://changelogs.ubuntu.com/changelogs/pool/universe/x/xcdroast/xcdroast_0.98+0alpha15-

1.1ubuntu1/changelog]. It says that a .desktop file was fixed and properly installed to close a bug

reported in Malone [https://launchpad.net/malone/bugs/2698].

Now inspect the actual changes in the source packages:

debdiff xcdroast_0.98+0alpha15-1.1.dsc xcdroast_0.98+0alpha15-1.1ubuntu1.dsc | \

 ubuntu.debdiff | less ubuntu.debdiff

The lines that start with - have been removed from the Debian package, and those that start with +

have been added to the Ubuntu package.

The following is what we see:

• In debian/rules install is being used instead of cp to install the xcdroast icon. Also, there is a new

line installing the .desktop file.

• In debian/changelog the changes made are added to the changelog entry.

• In debian/dirs usr/share/applications has been added for the install lines above to work properly.

• xcdroast.desktop is added

http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1ubuntu1.diff.gz
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1ubuntu1.diff.gz
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1.diff.gz
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1.diff.gz
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1.dsc
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1.dsc
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-3.dsc
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-3.dsc
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-3.diff.gz
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-3.diff.gz
packages.debian.org
packages.ubuntu.com
http://changelogs.ubuntu.com/changelogs/pool/universe/x/xcdroast/xcdroast_0.98+0alpha15-1.1ubuntu1/changelog
http://changelogs.ubuntu.com/changelogs/pool/universe/x/xcdroast/xcdroast_0.98+0alpha15-1.1ubuntu1/changelog
http://changelogs.ubuntu.com/changelogs/pool/universe/x/xcdroast/xcdroast_0.98+0alpha15-1.1ubuntu1/changelog
https://launchpad.net/malone/bugs/2698
https://launchpad.net/malone/bugs/2698

Ubuntu Packaging

51

Now we know how the Ubuntu source was changed. Now we need to see what has changed in the

Debian sources.

debdiff xcdroast_0.98+0alpha15-1.1.dsc xcdroast_0.98+0alpha15-3.dsc > debian.debdiff

less debian.debdiff

There is a lot more in this debdiff than in the last one. One way we can get a better idea of what has

changed is to see what files were changed in the debdiff:

grep diff debian.debdiff

This indicates that debian/postinst, debian/rules, debian/changelog, debian/doc-base.manual,

debian/control, and debian/menu were changed in the new Debian version.

Thus we can see that we need to check debian/rules to see if the Ubuntu changes were made. We can

also see that debian/dirs was not changed from the old Debian version. Let us now look at the files.

We can unpack the source package by using dpkg-source:

dpkg-source -x xcdroast_0.98+0alpha15-3.dsc

This will decompress the xcdroast_0.98+0alpha15.orig.tar.gz file, create a xcdroast-0.98+0alpha15

directory, and apply the changes found in xcdroast_0.98+0alpha15-3.diff.gz.

Now navigate to the debian directory:

cd xcdroast-0.98+0alpha15/debian

One can see in rules that changes made by Ubuntu were not applied to the new Debian version. This

means that:

cp debian/xcdroast.xpm `pwd`/debian/$(PACKAGE)/usr/share/pixmaps

...should be changed to:

#cp debian/xcdroast.xpm `pwd`/debian/$(PACKAGE)/usr/share/pixmaps

#install desktop and icon

install -D -m 644 $(CURDIR)/debian/xcdroast.desktop \

 $(CURDIR)/debian/xcdroast/usr/share/applications/xcdroast.desktop

install -D -m 644 $(CURDIR)/debian/xcdroast.xpm \

 $(CURDIR)/debian/xcdroast/usr/share/pixmaps/xcdroast.xpm

Now in dirs, the following line needs to be added for the .desktop file to be installed:

usr/share/applications

Now we need the actual .desktop file (saved as debian/xcdroast.desktop). From the ubuntu.debdiff (or

the Ubuntu source package), we see that it is:

[Desktop Entry]

Ubuntu Packaging

52

Encoding=UTF-8

Name=X-CD-Roast

Comment=Create a CD

Exec=xcdroast

Icon=xcdroast.xpm

Type=Application

Categories=Application;AudioVideo;

The last change that needs to be made is in changelog. Not only do we need to add what we have just

done (merge with Debian), but we should also add in the previous Ubuntu changelog entries. To do

this, run dch -i -D dapper and put something to the effect of:

xcdroast (0.98+0alpha15-3ubuntu1) dapper; urgency=low

 * Resynchronise with Debian.

Make sure to change the version number to the correct Ubuntu version. Also add:

xcdroast (0.98+0alpha15-1.1ubuntu1) breezy; urgency=low

 * Fix and install existing .desktop file. (Closes Malone #2698)

 -- Captain Packager <packager@coolness.com> Sat, 1 Oct 2005 19:39:04 -0400

between the 0.98+0alpha15-1.1 and 0.98+0alpha15-2 log entries.

Now you can build and test the new source packages. There are different ways to do this, but one

example is:

cd ..

debuild -S

cd ..

sudo pbuilder build xcdroast_0.98+0alpha15-3ubuntu1.dsc

This will recreate the source package, sign it with your default GPG key, and build the package in a

pbuilder environment to make sure it builds correctly. Make sure to always test your packages before

submitting patches. The last step is to make a debdiff that can be attached to an existing bug report or

given to the MOTUs in the #ubuntu-motu IRC channel. To do this, we get the difference between the

Debian unstable source package and the new Ubuntu version:

debdiff xcdroast_0.98+0alpha15-3.dsc xcdroast_0.98+0alpha15-3ubuntu1.dsc > \

 xcdroast_0.98+0alpha15-3ubuntu1.debdiff

Ubuntu Packaging

53

3. Packaging for Kubuntu

As one might imagine, the main packaging issues specific to Kubuntu are with KDE and Qt.

3.1. Build Dependencies

Kubuntu programs are mostly KDE ones. Therefore, they need to Build-Depend on kdelibs4-dev.

Since KDE's focus is to have programs interacting, some programs might also need to Build-Depend

on other parts of KDE, such as kdepim-dev. Be sure to get the list of necessary dependencies for your

program.

3.2. Desktop Files

KDE has some specific paths. Most settings for KDE are installed in either /etc/kde3/ or

/usr/share/apps/. It is important to note that the general desktop files for KDE should go to

/usr/share/applications/kde/. The install path for the desktop files should be fixed if they do not

use this (except for desktop files like service menus).

KDE desktop files also need specific entries to fit in the KMenu. A minimal desktop file for a KDE

program could be something like this:

[Desktop Entry]

Encoding=UTF-8

Name=Kfoo

Name[xx]=Kfoo

GenericName=Bar description

Exec=kfoo

Icon=kfoo

Terminal=false

Categories=Qt;KDE;Utility;

Note that the Categories field must begin with Qt;KDE;. There are specific desktop file entries for

KDE programs and modules that allow su to declare the given programs as KCModules or autostart

them when logging in.

3.3. Generating .pot Files

The Ubuntu translation website, Rosetta [https://launchpad.net/rosetta/], now supports KDE, which

means KDE packages need to support Rosetta by generating .pot template files for translators. If

you use cdbs in edgy, your package should now automatically build and check for a .pot file in po/

directory.

You will need the kdepot patch [../files/kubuntu_01_kdepot.diff] (or similar; it may not apply cleanly

depending on the age of the admin directory).

If your package uses debhelper or cdbs and includes its own kde.mk file, you need to add the rules

yourself.

https://launchpad.net/rosetta/
https://launchpad.net/rosetta/
../files/kubuntu_01_kdepot.diff
../files/kubuntu_01_kdepot.diff

Ubuntu Packaging

54

For cdbs, add these lines to debian/rules:

common-post-build-arch::

 mkdir -p po

 XGETTEXT=/usr/bin/kde-xgettext sh admin/cvs.sh extract-messages

clean::

 rm -rf po

For debhelper, add the following to the end of the install rule:

mkdir -p po

XGETTEXT=/usr/bin/kde-xgettext sh admin/cvs.sh extract-messages

Also for debhelper, add the following to the clean rule:

rm -f po/*.pot

55

Chapter 7. Bugs
One thing that you will almost certainly face as a packager is a bug in the software itself or in your

packaging. Packaging bugs are often fairly easy and straightforward to fix. However, as packagers

often act as the initial contact for software bugs for the users of their distribution(s), they also

implement temporary fixes and are responsible for forwarding bug reports and fixes to the original

(upstream) authors.

The Ubuntu Bug Squad [https://wiki.ubuntu.com/BugSquad] is the Quality Assurance (QA) team

for Ubuntu. The people in the team work tirelessly to make Ubuntu a better place. They keep track

of all the bugs in the Ubuntu Distribution and make sure that major bugs don't go unnoticed by

the developers. Anyone can join the Bug Squad and it is a great entry point for people wanting

to contribute to Ubuntu. The Bug Squad can be found on the #ubuntu-bugs IRC channel on

irc.ubuntu.com

https://wiki.ubuntu.com/BugSquad
https://wiki.ubuntu.com/BugSquad

Bugs

56

1. Bug Tracking Systems

In order to track bugs (both software and packaging), many distributions have developed bug tracking

systems to manage bug reports and to notify the package maintainers and reporters of changes. The

table below shows some of the Debian and Ubuntu tools for tracking bugs.

Bug Tracking Systems (BTS)

Debian : http://bugs.debian.org

Ubuntu : http://launchpad.net/malone/distros/ubuntu

Bugs for Specific Packages

Debian : http://bugs.debian.org/<packagename>

Ubuntu : use search at Ubuntu BTS

Bugs for Source Packages

Debian : http://bugs.debian.org/src:<packagename>

Ubuntu : https://launchpad.net/distros/ubuntu/+source/<packagename>/+bugs

Package Information

Debian : http://packages.debian.org or http://packages.qa.debian.org/<packagename>

Ubuntu : http://packages.ubuntu.com or

https://launchpad.net/distros/ubuntu/+source/<packagename> for source packages

http://bugs.debian.org
http://launchpad.net/malone/distros/ubuntu
http://packages.debian.org
http://packages.ubuntu.com

Bugs

57

2. Bug Tips

2.1. Proper source package

Assigning bugs to packages helps direct bug reports to the developer(s) most likely to be able to

help. By ensuring that this information is accurate, you increase the chances of the bug being fixed

promptly. Often, it is unclear which package contains the bug, and in these cases it is appropriate to

file the bug in Ubuntu. If a bug is assigned to a package which is clearly not correct, and you don't

know the correct package, change it to Ubuntu.

The correct package for bugs in the Linux kernel is linux, regardless of which particular package is in

use (there are many packages which contain Linux kernels).

2.2. Confirming problems

If a bug is marked as Unconfirmed, it is helpful for you to try to reproduce the problem and record the

results in Malone. If you are able to confirm the problem, you may change the status to Confirmed.

If you are unable to confirm the problem, that is also useful information that should be recorded in a

comment.

Forwarding bugs upstream

You can forward bugs to the authors of the software (upstream), if

• you made sure that the bug doesn't occur because of Ubuntu related changes

• the change is too hard to be fixed by yourself or anyone else on the team

If you do this, be sure to include all the necessary information, such as

• how to reproduce the bug

• which version is used (which version of dependent libraries, if the bug indicates problems there)

• who reported it

• where the whole conversation can be found

Make sure to also create a bug watch in Malone for this bug.

2.3. How to Deal with Feature Requests

If you feel that the bug reported is a feature request disguised as a bug report, please introduce the

reporter gently to the specification process we have. Be sure to mention the following specification

resources: FeatureSpecifications, SpecSpec, SpecTemplate, and http://launchpad.net/specs

2.4. How to deal with Support Requests

If you feel that the bug reported is a support request disguised as a bug report, please introduce the

reporter gently to the Support Tracker we have. Be sure to mention http://launchpad.net/support.

http://launchpad.net/specs
http://launchpad.net/support

Bugs

58

2.5. How to deal with suggestions for changing defaults

If you feel that the bug reported is a suggestion for changing defaults disguised as a bug report,

please kindly reroute the discussion to an appropriate mailing list or discussion forum. If this change

has already been discussed and rejected, explain the reasons to the user and direct him or her to the

relevant discussion for further suggestions/comments.

2.6. Finding Duplicates

Finding duplicates of bugs is a very valuable contribution in the Bug community. Users sometimes

don't know how to check if the same bug has already been filed, and sometimes they don't care.

Weeding out simple ME TOO messages and aggregating information is crucial to the process of

fixing a bug.

There are quite a few measures you can take to assist with this aspect. One is to search for bugs filed

for the same component. Also try to rephrase your search, and concentrate on actions and words that

describe the items involved to reproduce the bug.

Examples:

• Easy ones: DAAP support [https://launchpad.net/malone/bugs/24932] is a duplicate of please

enable daap [https://launchpad.net/malone/bugs/24860].

• More difficult ones: plug:spdif on emu10k1 gone after breezy upgrade

[https://launchpad.net/malone/bugs/24011] is a duplicate of Muted sound after dist-upgrade from

Hoary to Breezy [https://launchpad.net/malone/bugs/21804].

If you can't find it in the list of open bugs, you could try to find it in the list of closed ones. Don't feel

discouraged if you don't find duplicates quickly in the beginning. After some time, you will recognize

the usual suspects and will be able to identify them more easily.

If you encounter a bug that has a terrible/unintelligible title, rephrase it so people find it

more quickly.

2.7. #Reminder of the Code of Conduct

Note that the Code of Conduct applies to conversations in bug reports too. If you

observe people being disrespectful, please direct them to the Ubuntu Code of Conduct

[http://www.ubuntu.com/community/conduct].

2.8. Managing Status

As a bug triager or developer bug status an important tool to categorize bugs and have a good

overview of the state of packages and software.

Here's a brief list and explanation of the various statuses:

https://launchpad.net/malone/bugs/24932
https://launchpad.net/malone/bugs/24932
https://launchpad.net/malone/bugs/24860
https://launchpad.net/malone/bugs/24860
https://launchpad.net/malone/bugs/24860
https://launchpad.net/malone/bugs/24011
https://launchpad.net/malone/bugs/24011
https://launchpad.net/malone/bugs/21804
https://launchpad.net/malone/bugs/21804
https://launchpad.net/malone/bugs/21804
http://www.ubuntu.com/community/conduct
http://www.ubuntu.com/community/conduct

Bugs

59

• Unconfirmed: Bugs start with this status. Bugs marked Unconfirmed sometimes lack information,

are not ready, or are not confirmed yet. Most of them have not yet been triaged.

• Needs Info: If you have to ask the reporter questions, please set this bug to "Needs Info". A regular

task for Needs Info bugs is to ask back. If there are no answers after a reasonable period, close them

saying "If you have more information on this bug, please reopen."

• Rejected: Bugs marked as Rejected are closed. Be sure to triple-check a bug before you reject it.

• Confirmed: Confirmed bugs require somebody else to confirm. Please don't confirm your own

bugs.

• In Progress: If you start working on a bug, set it to In Progress so people know someone is

working on the bug.

• Fix Committed: For upstream projects this means the fix is in CVS/SVN/bzr or committed

somewhere. For package maintainers it means that the changes are pending and to be uploaded

soon (it is what PENDINGUPLOAD is in Bugzilla)

• Fix Released: For upstream projects this means that a release tarball was announced and is publicly

available. For package maintainers this means that a fix was uploaded. Please don't be hesitant to

add a changelog as a comment, so people know which changes affect their bug(s).

2.9. Managing Importance

Launchpad uses the following guidelines for assigning importance:

• Untriaged: the bug report has not be triaged yet. This is the default importance for new bugs.

• Wishlist: a request to add a new feature to one of the programs in Ubuntu. Use this for bugs which

aren't really bugs but ideas for new features which do not yet exist.

• Low: bugs that affect functionality, but to a lesser extent than most bugs

• Mediam: a functionality bug of the standard variety. Most bugs are of "Medium" severity.

• High: a bug that has a severe impact on a small portion of Ubuntu users (estimated) or has a

moderate impact on a large portion of Ubuntu users (estimated)

• Critical: a bug which has a severe impact on a large portion of Ubuntu users

60

Appendix A. Appendix

Appendix

61

1. Additional Resources

Debian Resources

• Debian New Maintainers Guide [http://www.debian.org/doc/manuals/maint-guide/] - Good

resource for learning to package.

• Debian Policy [http://www.debian.org/doc/debian-policy/] - The essential Policy manual for

Debian and Debian-based distros.

• Debian Developer's Reference [http://www.debian.org/doc/manuals/developers-reference/] -

Specific information for Debian Developers but has some items of interest for packagers.

• Library Packaging Guide

[http://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html] - Guide for packaging

libraries.

• Debian Women Packaging Tutorial

[http://women.alioth.debian.org/wiki/index.php/English/PackagingTutorial] - Another good

introduction to Debian packaging.

Other Resources

• IBM Packaging Tutorial [http://www-106.ibm.com/developerworks/linux/library/l-debpkg.html]

• Duckcorp CDBS Documentation [https://perso.duckcorp.org/duck/cdbs-doc/cdbs-doc.xhtml]

• Ubuntu MOTU Documentation [https://wiki.ubuntu.com/MOTU/Documentation]

• Kubuntu Packaging Guide [https://wiki.ubuntu.com/KubuntuPackagingGuide]

http://www.debian.org/doc/manuals/maint-guide/
http://www.debian.org/doc/manuals/maint-guide/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/manuals/developers-reference/
http://www.debian.org/doc/manuals/developers-reference/
http://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html
http://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html
http://women.alioth.debian.org/wiki/index.php/English/PackagingTutorial
http://women.alioth.debian.org/wiki/index.php/English/PackagingTutorial
http://www-106.ibm.com/developerworks/linux/library/l-debpkg.html
http://www-106.ibm.com/developerworks/linux/library/l-debpkg.html
https://perso.duckcorp.org/duck/cdbs-doc/cdbs-doc.xhtml
https://perso.duckcorp.org/duck/cdbs-doc/cdbs-doc.xhtml
https://wiki.ubuntu.com/MOTU/Documentation
https://wiki.ubuntu.com/MOTU/Documentation
https://wiki.ubuntu.com/KubuntuPackagingGuide
https://wiki.ubuntu.com/KubuntuPackagingGuide

Appendix

62

2. Chroot Environment

A chroot environment is commonly used for development-related work and is basically an install

of build-related software. It is always a good idea to do development work in a chroot environment,

as it often requires the installation of development packages (whose main purpose is for building

packages). An example is when a certain application requires the headers and development version

of a library to build (e.g. libabc-dev). A normal user would not require the development version of

libabc. Thus it is better to install such development packages in a chroot, leaving the normal operating

environment clean and uncluttered. First, install the required packages:

sudo apt-get install dchroot debootstrap

Make sure to install at least the version of debootstrap that is from the Ubuntu release

for which you are trying to create the chroot. You may have to download it from

packages.ubuntu.com [http://packages.ubuntu.com] and manually install it with dpkg -i.

The next steps are to create, configure, and enter the chroot environment.

sudo mkdir /var/chroot

echo "mychroot /var/chroot" | sudo tee -a /etc/dchroot.conf

sudo debootstrap --variant=buildd edgy /var/chroot/ http://archive.ubuntu.com/ubuntu/

Creating a chroot environment will take some time as debootstrap downloads and configures

a minimal Ubuntu installation.

sudo cp /etc/resolv.conf /var/chroot/etc/resolv.conf

sudo cp /etc/apt/sources.list /var/chroot/etc/apt/

sudo chroot /var/chroot/

In order to be able to use apt in the chroot, add Ubuntu sources to the chroot's apt sources. For the

moment, ignore any warnings about package authentication:

echo "deb http://archive.ubuntu.com/ubuntu edgy main restricted \

 universe multiverse" > /etc/apt/sources.list

echo "deb-src http://archive.ubuntu.com/ubuntu edgy main restricted \

 universe multiverse" >> /etc/apt/sources.list

apt-get update

apt-get install build-essential dh-make automake pbuilder gnupg lintian \

 wget debconf devscripts gnupg sudo

apt-get update

exit

Run the following command to configure locales:

sudo chroot /var/chroot/

apt-get install dialog language-pack-en

exit

http://packages.ubuntu.com
http://packages.ubuntu.com

Appendix

63

If you want support for a language other than English replace en in language-pack-en with

the appropriate language code.

Next, fix the user and root passwords for the chroot environment. The last line below is to avoid sudo

warnings when resolving in the chroot environment:

sudo cp /etc/passwd /var/chroot/etc/

sudo sed 's/\([^:]*\):[^:]*:/\1:*:/' /etc/shadow | sudo tee /var/chroot/etc/shadow

sudo cp /etc/group /var/chroot/etc/

sudo cp /etc/hosts /var/chroot/etc/

To enable sudo, set up your root password and the first sudo user in the admin group (for the chroot

environment). In the following commands, substitute "<user>" with the username that will be used in

the chroot environment:

sudo cp /etc/sudoers /var/chroot/etc/

sudo chroot /var/chroot/

dpkg-reconfigure passwd

passwd <user>

exit

The system fstab needs to be modified so that the chroot environment will have access to the system

home directories, temp directory, etc. Note that the actual system home directory is used in the chroot

environment.

sudo editor /etc/fstab

Add these lines:

/home /var/chroot/home none bind 0 0

/tmp /var/chroot/tmp none bind 0 0

proc-chroot /var/chroot/proc proc defaults 0 0

devpts-chroot /var/chroot/dev/pts devpts defaults 0 0

Mount the new fstab entries

sudo mount -a

The default bash profile includes chroot information in the prompt. To make this visible:

sudo chroot /var/chroot/

echo mychroot > /etc/debian_chroot

exit

Now use your chroot (you may omit the -c mychroot if there's only one or you just want the first

one in /etc/dchroot.conf). The -d parameter means that your environment will be preserved. This

parameter is generally useful if you want chrooted applications to seamlessly use your X server, your

session manager, etc.

Appendix

64

dchroot -c mychroot -d

Appendix

65

3. dh_make example files

Readme.Debian

This file is used to document changes that you have made to the original upstream source that

other people might need to know or information specific to Debian or Ubuntu.

conffiles.ex

If the package installs a configuration file, when the package is upgraded dpkg can prompt a user

whether to keep his or her version if modified or install the new version. Such configuration files

should be listed in conffiles (one per line). Do not list configuration files that are only modified

by the package or have to be set up by the user to work.

cron.d.ex

If your package requires regularly scheduled tasks to operate properly, you can use this file to

configure it. If you use this file, rename it to cron.d.

dirs

This file specifies the directories that are needed but the normal installation procedure (make

installapplication) somehow doesn't create.

docs

This file specifies the filenames of documentation files that dh_installdocs will install into the

temporary directory.

emacsen-*.ex

This file specifies Emacs files that will be bytecompiled at install time. They are installed into the

temporary directory by dh_installemacsen.

init.d.ex

If your package is a daemon that needs to be run at system startup rename this file to init.d and

adjust it to your needs.

manpage.1.ex and manpage.sgml.ex

These files are templates for man pages if the package does not already have one.

menu.ex

This file is used to add your package to the Debian menu. Ubuntu does not use Debian

menu files but uses the freedesktop.org [http://www.freedesktop.org] standard .desktop

[http://standards.freedesktop.org/desktop-entry-spec/latest/] files.

watch.ex

The package maintainer can use the uscan program and a watch file to check for a new upstream

source tarball.

ex.package.doc-base

This file is used to register your package's documentation (other than man and info pages) with

doc-base.

postinst.ex, preinst.ex, postrm.ex, and prerm.ex

These maintainer scripts are run by dpkg when the package is installed, upgraded, or removed.

http://www.freedesktop.org
http://www.freedesktop.org
http://standards.freedesktop.org/desktop-entry-spec/latest/
http://standards.freedesktop.org/desktop-entry-spec/latest/

Appendix

66

For more details refer to the Debian New Maintainer's Guide

[http://www.debian.org/doc/maint-guide/ch-dother.en.html].

http://www.debian.org/doc/maint-guide/ch-dother.en.html
http://www.debian.org/doc/maint-guide/ch-dother.en.html

Appendix

67

4. List of debhelper scripts
• dh_builddeb

• dh_clean

• dh_compress

• dh_desktop

• dh_fixperms

• dh_gconf

• dh_gencontrol

• dh_iconcache

• dh_install

• dh_installcatalogs

• dh_installchangelogs

• dh_installcron

• dh_installdeb

• dh_installdebconf

• dh_installdefoma

• dh_installdirs

• dh_installdocs

• dh_installemacsen

• dh_installexamples

• dh_installinfo

• dh_installinit

• dh_installlogcheck

• dh_installlogrotate

• dh_installman

• dh_installmenu

• dh_installmime

• dh_installmodules

• dh_installpam

• dh_installppp

• dh_installtexfonts

• dh_installwm

• dh_installxfonts

• dh_installxmlcatalogs

• dh_link

Appendix

68

• dh_listpackages

• dh_makeshlibs

• dh_md5sums

• dh_perl

• dh_python

• dh_scrollkeeper

• dh_shlibdeps

• dh_strip

• dh_testdir

• dh_testroot

• dh_usrlocal

69

Appendix B. GNU General Public License
Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.

Free Software Foundation, Inc.

 51 Franklin Street, Fifth Floor,

 Boston, MA 02110-1301

 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it

is not allowed.

Version 2, June 1991

GNU General Public License

70

1. Preamble

The licenses for most software are designed to take away your freedom to share and change it. By

contrast, the GNU General Public License is intended to guarantee your freedom to share and change

free software - to make sure the software is free for all its users. This General Public License applies

to most of the Free Software Foundation's software and to any other program whose authors commit

to using it. (Some other Free Software Foundation software is covered by the GNU Library General

Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses

are designed to make sure that you have the freedom to distribute copies of free software (and charge

for this service if you wish), that you receive source code or can get it if you want it, that you can

change the software or use pieces of it in new free programs; and that you know you can do these

things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to

ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you

distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the

recipients all the rights that you have. You must make sure that they, too, receive or can get the source

code. And you must show them these terms so they know their rights.

We protect your rights with two steps:

1. copyright the software, and

2. offer you this license which gives you legal permission to copy, distribute and/or modify the

software.

Also, for each author's protection and ours, we want to make certain that everyone understands that

there is no warranty for this free software. If the software is modified by someone else and passed on,

we want its recipients to know that what they have is not the original, so that any problems introduced

by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger

that redistributors of a free program will individually obtain patent licenses, in effect making the

program proprietary. To prevent this, we have made it clear that any patent must be licensed for

everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU General Public License

71

2. TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION

2.1. Section 0

This License applies to any program or other work which contains a notice placed by the copyright

holder saying it may be distributed under the terms of this General Public License. The “Program”,

below, refers to any such program or work, and a “work based on the Program” means either the

Program or any derivative work under copyright law: that is to say, a work containing the Program

or a portion of it, either verbatim or with modifications and/or translated into another language.

(Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is

addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are

outside its scope. The act of running the Program is not restricted, and the output from the Program is

covered only if its contents constitute a work based on the Program (independent of having been made

by running the Program). Whether that is true depends on what the Program does.

2.2. Section 1

You may copy and distribute verbatim copies of the Program's source code as you receive it, in any

medium, provided that you conspicuously and appropriately publish on each copy an appropriate

copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and

to the absence of any warranty; and give any other recipients of the Program a copy of this License

along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer

warranty protection in exchange for a fee.

2.3. Section 2

You may modify your copy or copies of the Program or any portion of it, thus forming a work based

on the Program, and copy and distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the files and

the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or is

derived from the Program or any part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause it,

when started running for such interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a notice that there is no warranty (or

else, saying that you provide a warranty) and that users may redistribute the program under these

GNU General Public License

72

conditions, and telling the user how to view a copy of this License. (Exception: If the Program

itself is interactive but does not normally print such an announcement, your work based on the

Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are

not derived from the Program, and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those sections when you distribute them

as separate works. But when you distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of this License, whose permissions

for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote

it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely

by you; rather, the intent is to exercise the right to control the distribution of derivative or collective

works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a

work based on the Program) on a volume of a storage or distribution medium does not bring the other

work under the scope of this License.

2.4. Section 3

You may copy and distribute the Program (or a work based on it, under Section 2 in object code

or executable form under the terms of Sections 1 and 2 above provided that you also do one of the

following:

a. Accompany it with the complete corresponding machine-readable source code, which must be

distributed under the terms of Sections 1 and 2 above on a medium customarily used for software

interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for

a charge no more than your cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be distributed under the terms of

Sections 1 and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding source

code. (This alternative is allowed only for noncommercial distribution and only if you received the

program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For

an executable work, complete source code means all the source code for all modules it contains, plus

any associated interface definition files, plus the scripts used to control compilation and installation of

the executable. However, as a special exception, the source code distributed need not include anything

that is normally distributed (in either source or binary form) with the major components (compiler,

kernel, and so on) of the operating system on which the executable runs, unless that component itself

accompanies the executable.

GNU General Public License

73

If distribution of executable or object code is made by offering access to copy from a designated

place, then offering equivalent access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not compelled to copy the source along

with the object code.

2.5. Section 4

You may not copy, modify, sublicense, or distribute the Program except as expressly provided under

this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,

and will automatically terminate your rights under this License. However, parties who have received

copies, or rights, from you under this License will not have their licenses terminated so long as such

parties remain in full compliance.

2.6. Section 5

You are not required to accept this License, since you have not signed it. However, nothing else

grants you permission to modify or distribute the Program or its derivative works. These actions

are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the

Program (or any work based on the Program), you indicate your acceptance of this License to do so,

and all its terms and conditions for copying, distributing or modifying the Program or works based on

it.

2.7. Section 6

Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the Program

subject to these terms and conditions. You may not impose any further restrictions on the recipients'

exercise of the rights granted herein. You are not responsible for enforcing compliance by third

parties to this License.

2.8. Section 7

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason

(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not excuse you from the conditions

of this License. If you cannot distribute so as to satisfy simultaneously your obligations under

this License and any other pertinent obligations, then as a consequence you may not distribute the

Program at all. For example, if a patent license would not permit royalty-free redistribution of the

Program by all those who receive copies directly or indirectly through you, then the only way you

could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the

balance of the section is intended to apply and the section as a whole is intended to apply in other

circumstances.

GNU General Public License

74

It is not the purpose of this section to induce you to infringe any patents or other property right claims

or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of

the free software distribution system, which is implemented by public license practices. Many people

have made generous contributions to the wide range of software distributed through that system in

reliance on consistent application of that system; it is up to the author/donor to decide if he or she is

willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of

this License.

2.9. Section 8

If the distribution and/or use of the Program is restricted in certain countries either by patents or by

copyrighted interfaces, the original copyright holder who places the Program under this License may

add an explicit geographical distribution limitation excluding those countries, so that distribution is

permitted only in or among countries not thus excluded. In such case, this License incorporates the

limitation as if written in the body of this License.

2.10. Section 9

The Free Software Foundation may publish revised and/or new versions of the General Public License

from time to time. Such new versions will be similar in spirit to the present version, but may differ in

detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number

of this License which applies to it and “any later version”, you have the option of following the

terms and conditions either of that version or of any later version published by the Free Software

Foundation. If the Program does not specify a version number of this License, you may choose any

version ever published by the Free Software Foundation.

2.11. Section 10

If you wish to incorporate parts of the Program into other free programs whose distribution conditions

are different, write to the author to ask for permission. For software which is copyrighted by the Free

Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.

Our decision will be guided by the two goals of preserving the free status of all derivatives of our free

software and of promoting the sharing and reuse of software generally.

2.12. NO WARRANTY Section 11

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT

WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND,

GNU General Public License

75

EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS

WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

2.13. Section 12

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR

DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM

(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED

INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF

THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER

OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU General Public License

76

3. How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best

way to achieve this is to make it free software which everyone can redistribute and change under these

terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each

source file to most effectively convey the exclusion of warranty; and each file should have at least the

“copyright” line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name

of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation; either version 2 of the License,

or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,

write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301

USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive

mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with

ABSOLUTELY NO WARRANTY; for details type “show w”. This is free software, and you are

welcome to redistribute it under certain conditions; type “show c” for details.

The hypothetical commands “show w” and “show c” should show the appropriate parts of the General

Public License. Of course, the commands you use may be called something other than “show w” and

“show c”; they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a

“copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program “Gnomovision” (which makes

passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

GNU General Public License

77

This General Public License does not permit incorporating your program into proprietary programs.

If your program is a subroutine library, you may consider it more useful to permit linking proprietary

applications with the library. If this is what you want to do, use the GNU Library General Public

License instead of this License.

	The Ubuntu Packaging Guide
	Table of Contents
	About This Guide
	1. Conventions
	2. Contributing and Feedback

	Chapter 1. Introduction
	1. Where to Begin
	2. Prerequisites

	Chapter 2. Getting Started
	1. Binary and Source Packages
	2. Packaging Tools
	3. The Personal Builder: pbuilder
	3.1. Installing and configuring a pbuilder environment
	3.2. Using the pbuilder
	3.3. Updating the pbuilder
	3.4. Multiple pbuilders

	Chapter 3. Basic Packaging
	1. Packaging From Scratch
	1.1. changelog
	1.2. control
	1.3. copyright
	1.4. rules
	1.5. postinst and prerm
	1.6. Building the Source Package

	2. Packaging with Debhelper
	2.1. Building the Source Package

	3. Packaging With CDBS
	3.1. Using CDBS in packages
	3.2. More information on CDBS

	4. Common Mistakes
	4.1. dh_make Example Files
	4.2. Changing the Original Tarball
	4.3. Copyright Information

	Chapter 4. Patch Systems
	1. Patching Without a Patch System
	1.1. Example 1.
	1.2. Example 2.

	2. CDBS with Simple Patchsys
	3. dpatch
	4. Patching other people's packages

	Chapter 5. Updating Packages
	Chapter 6. Ubuntu Packaging
	1. Uploading and Review
	1.1. Contributing as an Uploader
	1.1.1. Uploading your packages
	1.1.2. How to login to REVU
	1.1.3. View and comment uploads
	1.1.4. Additional rules
	1.1.5. Getting Help

	2. Merges and Syncs
	2.1. Merging Tutorial

	3. Packaging for Kubuntu
	3.1. Build Dependencies
	3.2. Desktop Files
	3.3. Generating .pot Files

	Chapter 7. Bugs
	1. Bug Tracking Systems
	2. Bug Tips
	2.1. Proper source package
	2.2. Confirming problems
	2.3. How to Deal with Feature Requests
	2.4. How to deal with Support Requests
	2.5. How to deal with suggestions for changing defaults
	2.6. Finding Duplicates
	2.7. Reminder of the Code of Conduct
	2.8. Managing Status
	2.9. Managing Importance

	Appendix A. Appendix
	1. Additional Resources
	2. Chroot Environment
	3. dh_make example files
	4. List of debhelper scripts

	Appendix B. GNU General Public License
	1. Preamble
	2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	2.1. Section 0
	2.2. Section 1
	2.3. Section 2
	2.4. Section 3
	2.5. Section 4
	2.6. Section 5
	2.7. Section 6
	2.8. Section 7
	2.9. Section 8
	2.10. Section 9
	2.11. Section 10
	2.12. NO WARRANTY Section 11
	2.13. Section 12

	3. How to Apply These Terms to Your New Programs

