The Ubuntu Packaging Guide

Ubuntu Documentation Project <ubuntu-doc@lists.ubuntu.com>

The Ubuntu Packaging Guide

by Ubuntu Documentation Project <ubuntu-doc@lists.ubuntu.com>
Copyright © 2004, 2005, 2006 Canonical Ltd. and members of the Ubuntu Documentation Project

Abstract

The Ubuntu Packaging Guide is an introduction to packaging programs for Ubuntu and other Debian based
distributions

Creditsand License

The following Ubuntu Documentation Team authors maintain this document:
« Jordan Mantha

The Ubuntu Packaging Guide is a so based on the contributions of:
* Alexandre Vassalotti

« Jonathan Patrick Davies

e Ankur Kotwal

« Raphaél Pinson

» Daniel Chen

e Martin Pitt

Portions of the Ubuntu Packaging Guide are derived from the Debian New Maintainer's Guide and the Debian Policy Manual .
This document is made available under the GNU General Public License (GPL).

Y ou are free to modify, extend, and improve the Ubuntu documentation source code under the terms of this license. All derivative works
must be released under this license.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE AS DESCRIBED IN THE DISCLAIMER.

Copies of the license are available in the appendices section of this book and online at GNU General Public License
[http://www.gnu.org/licenses/gpl .html].

Disclaimer

Every effort has been made to ensure that the information compiled in this publication is accurate and correct. However, this does not
guarantee complete accuracy. Neither Canonical Ltd., the authors, nor translators shall be held liable for possible errors or the consequences
thereof.

Some of the software and hardware descriptions cited in this publication may be registered trademarks and may thus fall under copyright
restrictions and trade protection laws. In no way do the authors make claim to any such names.

THISDOCUMENTATION ISPROVIDED BY THE AUTHORS"ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

Table of Contents

ADOUL TRIS GUITE ...ttt ettt e e et e st e e e s anane e s iv
L. CONVENLIONSuieiiiiiiiiee e e s ettt e e e e e e e et r et e e e e s sa et eeraaaeesssanntsaaeeeeeeessaassnnaneeeaenns v
2. Contributing and FEEADACKooiiiiiiiiiii e Vi
R | 11T [o1 o o RSP RSR 7
L1 WREIE 10 BOOIN .vveieiiee ittt et e e e e s e e e e e e e s s e ar e e e e e e e eaaans 8
2. PrEr@QUISITESeiiiiiiiii ettt ettt a b e e e e et e e e 9
2. GEING SEAMEU ..ottt s 11
1. Binary and SOUrCE PaCKageScoiiiiiiiiiiei ettt e et e e e e 12
2. PacKaging TOOISuueeeiieei it e e e e s e e e e e e e ar e ae s 13
3. The Personal Builder: poUITAENeeiiiiiiiiieiieee e 14
3. BaSIC PACKBOING ..o 16
1. Packaging From SCratChcooiiiiiiiiiiie e 17
2. Packaging With DebREIPEr ... 27
3. Packaging With CDBScoocuiiiieiiiiie et e e 32
4. COMMON MISIAKES ...oiiieeiiieiiiiiie ettt e e e e s e et e e e e e e e s annnnaeeeeaeeeeens 34
o RS (= 1 1 USRS 37
1. Patching Without a PatCh SYyStemovviiiiiie e 38
2. CDBS With SIMPI@ PaICNSYSevviiiiiiiiieeeieee et 41
S APBECH e e s 42
4. Patching other people's PACKAgESeeviiiiiiiiiiiiie e 43
5. UPdating PaCKagEScccoi ittt e e e e e e 44
6. UDUNEU PACKAGING ...eeeiiteieeeiiieii ettt ettt ettt s et e e e e e e s nnnneeeen 46
1. Uploading @nd REVIEWcooiuiiiieiiiiiie et e e 47
2. MEIGES NG SYNCS .reeeiiieeeiiiiiiitie et b ba e e e eaeeessaantraneeeeens 49
3. Packaging for KUDUNLUc.ooiiiiiiiiiiics e e e e e e 53
0 BUGS .. 55
1. BUQ Tracking SYSIEIMSccoiiiiiiieiiiie ettt 56
A =10 o T T = TP UURRU P 57
N o]0 1< 10 [PR 60
1. Additional RESOUICESeeeiiiiiiie e e e ettt et e e s e e e e e e s s et e e e e e e e s s s ssnraaeeaaeeeenans 61
22 © o) (0o =101V o]0 1= o | P 62
3. dh_make eXample filES ... 65
4, List Of debhElPEr SCIIPLS ...vvviiiiiieei i e e e e e e 67
B. GNU General PUDIIC LICENSEuvviiiiieiiieiiiiiit ettt e et e e e e e e s snaaane e e e e e e e ennes 69
T =] o PSPPSR 70
2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION ..ottt ettt e e s st e e e nab b e e e sbb e e e e e aebeeas 71
3. How to Apply These Terms to Your New Programsccceeeevieeeeeiniieeeennieeee s 76

About This Guide

About This Guide

1. Conventions

The following notes will be used throughout the book:

A note presents interesting, sometimes technical, pieces of information related to the
surrounding discussion.

@ A tip offers advice or an easier way of doing something.
A A caution alerts the reader to potential problems and helps avoid them.
O A warning advises the reader of a hazard that may arise in a given scenario.

Crossreference conventionsfor print will be displayed asfollows:

 Linksto other documents or websites will look like this [http://www.ubuntu.com].

PDF, HTML, and XHTML versions of this document will use hyperlinks to handle
cross-referencing.

Type conventions will be displayed asfollows:
» File names or pathsto directories will be shown in nonospace.

e Commands that you type at a Terminal command prompt will be shown as:

conmand to type

» Optionsthat you click, select, or choose in a user interface will look like this.

M enu selections, mouse actions, and keyboard short-cuts:

* A sequence of menu selections will be displayed as follows: File - Open

* Mouse actions shall assume aright-handed mouse configuration. The terms “click” and
“double-click” refer to using the left mouse button. The term “right-click” refersto using the right
mouse button. The term “middle-click” refersto using the middle mouse button, pressing down on
the scroll wheel, or pressing both the left and right buttons simultaneously, based on the design of
your mouse.

» Keyboard shortcut combinations will be displayed as follows. Ctrl-N .Where the conventions for
“Control”, “Shift,” and “ Alternate” keyswill be Ctrl, Shift, and Alt, respectively, and shall mean
the first key isto be held down while pressing the second key.

http://www.ubuntu.com
http://www.ubuntu.com

About This Guide

2. Contributing and Feedback

This book is developed by the Ubuntu Documentation Team
[https://wiki.ubuntu.com/DocumentationTeam)]. You can contribute to this document by sending
ideas or comments to the Ubuntu Documentation Team mailing list. Information about the
team, its mailing lists, projects, etc. can be found on the Ubuntu Documentation Team Website
[https://wiki.ubuntu.com/DocumentationTeam].

If you see a problem with this document, or would like to make a suggestion, you can smply filea
bug report at the Ubuntu Bugtracker [https.//launchpad.net/products/ubuntu-doc/+bugs]. Your help is
vital to the success of our documentation!

Many thanks,

-Y our Ubuntu Documentation Team

Vi

https://wiki.ubuntu.com/DocumentationTeam
https://wiki.ubuntu.com/DocumentationTeam
https://wiki.ubuntu.com/DocumentationTeam
https://wiki.ubuntu.com/DocumentationTeam
https://launchpad.net/products/ubuntu-doc/+bugs
https://launchpad.net/products/ubuntu-doc/+bugs

Chapter 1. Introduction

Welcome to the Ubuntu Packaging Guide! This guideis primarily addressed to those who would like
to make and maintain Ubuntu packages. Although many of the concepts in this guide could be used
to make binary packages for personal use, it is designed for those people wanting to distribute their
packages to and for others. Whileit is also written with the Ubuntu Linux distribution in mind, it
should also be useful for any Debian-based distribution.

There are several reasons you might want to learn how to package for Ubuntu. First, building and
fixing Ubuntu packagesis a great way to contribute to the Ubuntu community. It is also a good way to
learn how Ubuntu and the applications you have installed work. Maybe you want to install a package
that is not in the Ubuntu repositories. Hopefully after you have completed this guide you will have the
tools and knowledge you need to do all of these things.

HTML and PDF versions of the manual are available online at the Ubuntu Documentation website
[http://hel p.ubuntu.com].

Y ou can buy this guide in book form from our Lulu store [http://www.lulu.com/ubuntu-doc]. Y ou
will only pay for the price of printing and postage.

http://help.ubuntu.com
http://help.ubuntu.com
http://www.lulu.com/ubuntu-doc
http://www.lulu.com/ubuntu-doc

Introduction

1. Whereto Begin

If you are completely new to Debian-based packaging then you will want to read this guide
completely through, paying special attention to Section 2, “ Prerequisites’ [p. 9] , Chapter 2,
Getting Sarted [p. 11 , and Chapter 3, Basic Packaging [p. 16 . People who are experienced
with Debian-based packaging will find Chapter 6, Ubuntu Packaging [p. 4p and Chapter 7, Bugs

[p. 5b most helpful.

Introduction

2. Prerequisites

This guide assumes that the reader has a reasonable knowledge of building and installing software
from source on Linux distributions. The guide also uses the Command Line Interface (CLI)
throughout, so you should be comfortable using aterminal. Y ou should be able to at least use the
following:

» make: GNU Makeisavery important software building tool. It is used to transform a complex
compilation task into atrivial one. It isimportant that you know how to use it, because we will
store most of the information about the packaging processin a Makefile. Documentation is
available at the GNU [http://www.gnu.org/software/make/manual/make.html] website.

» JconfigureThisscript isincluded in amost al Linux source, especially for software written in

compiled languages such as C and C++. It is used to generate a Makefile (file used by make) that is
properly configured for your system. Standard Debian packaging tools useit, so it isimportant that

you know what the conf i gur e script does. Information on . / conf i gur e can be found in the make
documentation.

» Apt/Dpkg: Beyond the basic use of installing programs, apt and dpkg have many features that are
useful for packaging.

» apt-cachedump - lists every package in the cache. This command is especially helpful in
combination with a grep pipe such as apt-cache dump | grep foo to search for packages whose
names or dependenciesinclude “foo”.

 apt-cache palicy - lists the repositories (main/restricted/universe/multiverse) in which a package

exists.
* apt-cache show - displaysinformation about a binary package.
» apt-cache showsrc - displaysinformation about a source package.

» apt-cacherdepends - shows reverse dependencies for a package (which packages require the
gueried one.

» dpkg-S - liststhe binary package to which a particular file belongs.

» dpkg-l - listscurrently installed packages. Thisis similar to apt-cache dump but for installed
packages.

» dpkg -c - liststhe contents of a binary package. It is useful for ensuring that files are installed to

the right places.

» dpkg-f - showsthe control file for abinary package. It is useful for ensuring that the
dependencies are correct.

» grep-dctrl - searches for specialized information in packages. It is a specific use of the grep
package (but not installed by default).

« diff and patch: The diff program can be used to compare two files and to make patches. A
typical example might be diff -ruN file.old file.new > file.diff. This command will create a diff
(recursively if directories are used) that shows the changes, or “delta’, between the two files.

9

http://www.gnu.org/software/make/manual/make.html
http://www.gnu.org/software/make/manual/make.html

Introduction

The patch program is used to apply a patch (usually created by diff or another similar program) to a
file or directory. To apply the patch created above, we can invoke patch -p0 < file.diff. The -p tells
patch how much it should strip from the paths for the file namesin the patch. -p0 meansto strip
nothing, or leave the path intact.

10

Chapter 2. Getting Started

11

Getting Started

1. Binary and Sour ce Packages

Most users of a Debian-based distribution such as Ubuntu will never have to deal with the actual
source code that is used to create al of the applications on their computers. Instead, the source code

is compiled into binary packages from the source package that contains both the source code itself

and the rules for making the binary package. Packagers upload the source packages with their changes
to the build systems that then compile the binary packages for each architecture. A separate system
distributes the generated binary .deb files and source changes to the repository mirrors.

12

Getting Started

2. Packaging Tools

There are many tools written specifically for packaging on Debian-based systems. Many of them are
not essential to creating packages but are very helpful and often automate repetitive tasks. Their man
and info pages are good sources of information. However, the following is alist of packagesthat are
deemed necessary to begin packaging:
build-essential
is a metapackage that depends on libc6-dev, gec, g++, make, and dpkg-dev. One package that
you might not be familiar with is dpkg-dev. It contains tools such as dpkg-buildpackage and
dpkg-source that are used to create, unpack, and build source and binary packages.

devscripts
contains many scripts that make the packager's maintenance work much easier. Some of the more
commonly used are debdiff, dch, debuild, and debsign.

debhelper and dh-make
are scripts that automate common packaging tasks. dh-make can be used to do the initial
"debianization" and provides many example files.

diff and patch
are used to create and apply patches, respectively. They are used extensively in packaging
becauseit is easier, cleaner, and more efficient to represent small changes as patches rather than
to have multiple copies of afile.

gnupg
isacomplete and free replacement for PGP used to digitally sign files (including packages).
fakeroot

simulates running a command with root privileges. Thisis useful for creating binary packages as a
regular user.

lintian and linda
dissect Debian packages and report bugs and Policy violations. They contain automated checks
for many aspects of Debian Policy aswell as for common errors.

pbuilder
constructs a chroot system and builds a package inside the chroot. It is an ideal system to useto
check that a package has correct build dependencies and to build clean packages to be tested and
distributed.

13

Getting Started

3. The Personal Builder: pbuilder

Using pbuilder as a package builder allows you to build the package from within a chroot
environment. Y ou can build binary packages without using pbuilder, but you must have all the build
dependenciesinstalled on your system first. However, pbuilder alows the packager to check the
build dependencies because the package is built within a minimal Ubuntu installation, and the build
dependencies are downloaded according to the debi an/ cont rol file.

Thefollowing is a brief guide to installing, using, and updating a pbuilder environment, however,
there are many details of pbuilder usage that are outside the realm of this guide. The pbuilder man
page has lots of information and should be consulted if you have problems or need more detailed
information.

3.1. Installing and configuring a pbuilder environment

The first, and perhaps most obvious, thing to do isto install pbuilder. If you want to create a pbuilder
for arelease newer than the one you currently have installed, you will need to manualy install the
debootstrap .deb (from http://packages.ubuntu.com) from the newer release. To create a pbuilder
execute:

sudo pbuilder create --distribution <distro>\
--othermrror "deb http://archive.ubuntu.com ubuntu <di stro> universe nmultiverse"

where <distro> is the release you want (edgy for instance) to create the pbuilder for. If you would

like to create more than one pbuilder environment you can append the --basetgz flag with the desired
location for the compressed pbuilder environment. The default is/ var / cache/ pbui | der/ base. t gz. If
you do choose to use --basetgz you will need to use it with the other pbuilder commands so pbuilder
knows which compressed build environment to use.

Creating a pbuilder environment will take some time as debootstrap essentialy downloads a
minimal Ubuntu installation.

@ A more flexible way to create a pbuilder (and perhaps multiple pbuilders) isto you a shell
script.

3.2. Using the pbuilder

Now that you have a running pbuilder you can build binary packages from the source package by
invoking:

sudo pbuilder build *.dsc

Thiswill build all the source packagesin the current directory. The resulting .debs and source
packages can be found in/ var/ cache/ pbui | der/ resul t/ (which can be changed with the
--buildresult flag).

14

http://packages.ubuntu.com

Getting Started

3.3. Updating the pbuilder

Y ou should always have a current pbuilder whenever you are testing your source packages, especially
when you are building for a development release that is rapidly changing, to ensure that the
dependencies are properly found. To update your pbuilder, use:

sudo pbuil der update

If you would like to upgrade you pbuilder to a new release you can use pbuilder updatein
combination with the --distribution flag:

sudo pbuil der update --distribution <newdistro> --override-config

3.4. Multiple pbuilders

All of theinformation so far in this section on pbuilder has applied to having a single pbuilder. If

you want to create more than one pbuilder you can create a shell script to handle the configuration
for each pbuilder you want to create. An example of such a shell script can be found in

/ usr/ shar e/ doc/ pbui | der/ exanpl es/ pbui | der - di stri buti on. sh. You can simply copy this
example file somewhere in your path (putting it in ~/ bi n/ and adding this directory to your execution
path is convenient) and then edit it according your needs. Normally you will need to only change
DISTRIBUTION and add --othermirror as above. Y ou can then call this script instead of pbuilder
directly.

15

Chapter 3. Basic Packaging

Two of the problems that many novice packagers face are that there are multiple ways of packaging,
and there is more than one tool to do the job. We will go through three examples with the common
build systems. First, we will use no build helper. This approach is usually the most difficult and is not
often used in practice but gives the most straightforward look at the packaging process. Second, we
will use debhel per, the most common build system in Debian. It helps the packager by automating
repetitive tasks. Third, we will briefly cover the Common Debian Build System (CDBS), amore
streamlined build system that uses debhel per.

@ Package devel opment often requires installing many packages (especially -dev packages
containing headers and other common development files) that are not part of a normal
desktop Ubuntu installation. If you want to avoid installing extra packages or would like to
develop for adifferent Ubuntu rel ease (the development one, for instance) from what you
currently have, the use of a chroot environment is highly recommended. A guide to setting
up achroot [p. 6R can be found in the Appendix.

16

Basic Packaging

1. Packaging From Scratch

@ Requirements: build-essential, automake, gnupg, lintian, fakeroot and pbuilder [p. 14].

In this example we will be using the GNU hello [http://www.gnu.org/software/hello/hello.html]
program as our example. Y ou can download the source tarball from ftp.gnu.org
[http://ftp.gnu.org/gnu/hello/hello-2.1.1.tar.gz]. For the purposes of this example, we will be using the
~/ hel | o/ directory.

nkdir ~/hello
cd ~/hello
wget http://ftp.gnu.org/gnu/hello/hello-2.1.1.tar.gz

We will also compare our package to one that is already packaged in the Ubuntu repository. For now,
we will placeit in the ubunt u directory so we can look at it later. To get the source package, make
sure you have a"deb-src” lineinyour / et ¢/ apt / sour ces. | i st filefor the Main repository. Then,
simply execute:

nkdi r ubuntu

cd ubuntu

apt-get source hello
cd ..

Unlike most apt-get commands, you do not need to have root privileges to get the source
package, because it is downloaded to the current directory. In fact, it is recommended that
you only use apt-get source as aregular user, because then you can edit files in the source

package without needing root privileges.

What the apt-get source command doesis:

1. Download the source package. A source package commonly contains a.dsc file describing the
package and giving mds5sums for the source package, an .orig.tar.gz file containing the source code
from the author(s), and a .diff.gz file containing patches applied against the source code with the
packaging information.

2. Untar the .orig.tar.gz file into the current directory.

3. Apply the gunzipped .diff.gz to the unpacked source directory.

If you manually download the source package (.dsc, .orig.tar.gz, and .diff.gz files), you can unpack
them in the same way apt-get source does by using dpkg-source as follows:

dpkg-source -x *.dsc

Thefirst thing you will need to do is make a copy of the original (sometimes called "upstream")
tarball in the following format: <packagenanme>_<versi on>. ori g. t ar. gz. This step does two things.

17

http://www.gnu.org/software/hello/hello.html
http://www.gnu.org/software/hello/hello.html
http://ftp.gnu.org/gnu/hello/hello-2.1.1.tar.gz
http://ftp.gnu.org/gnu/hello/hello-2.1.1.tar.gz

Basic Packaging

First, it creates two copies of the source code. If you accidentally change or delete the working copy
you can use the one you downloaded. Second, it is considered poor packaging practice to change the
original source tarball unless absolutely necessary. See Section 4, “ Common Mistakes™ [p. 3§ for
reasons.

cp hello-2.1.1.tar.gz hello_2.1.1.orig.tar.gz
tar -xzvf hello_2.1.1.orig.tar.gz

O The underscore, " ", between the package name (hello) and the version (2.1.1), as opposed
to ahyphen, "-", is very important. Y our source package will incorrectly be built as a Debian

native package.

We now have ahel | o- 2. 1. 1 directory containing the source files. Now we need to create the
customary debian directory where all the packaging information is stored, allowing us to separate the
packaging files from the application source files.

nkdir hello-2.1.1/debi an
cd hello-2.1.1/debian/

We now need to create the essential files for any Ubuntu source package: changel og, control ,
copyri ght, andrul es. These are the files needed to create the binary packages (.deb files) from the
original (upstream) source code. Let uslook at each onein turn.

1.1. changelog

Thechangel og fileis, asits name implies, alisting of the changes made in each version. It has
a specific format that gives the package name, version, distribution, changes, and who made the
changes at agiven time. If you have a GPG key, make sure to use the same name and email addressin
changel og asyou have in your key. The following is atemplate changel og:
package (version) distribution; urgency=urgency

* change details

nore change details
* even nore change details

- mai ntai ner name <enai|l address>[two spaces] date

The format (especially of the date) is important. The date should be in RFC822 format, which can be
obtained from the 822-date program.

Here is asample changel og file for hello:

hello (2.1.1-1) edgy; urgency=low

18

Basic Packaging

* New upstreamrel ease with |ots of bug fixes.

- Captain Packager <packager @ool ness.con> Wd, 5 Apr 2006 22:38:49 -0700

Notice that the version has a-1 appended to it, or what is called the Debian revision, which is used so
that the packaging can be updated (to fix bugs for example) with new uploads within the same source
release version.

Ubuntu and Debian have slightly different package versioning schemes to avoid conflicting
- packages with the same source version. If a Debian package has been changed in Ubuntu,

it has ubuntuX (where X is the Ubuntu revision number) appended to the end of the Debian
version. So if the Debian hello package was changed by Ubuntu, the version string would be
2. 1. 1- 1ubunt ul. If apackage for the application does not exist in Debian, then the Debian

revisionisO (e.g., 2. 1. 1- Oubunt ul).

Now look at the changel og for the Ubuntu source package that we downloaded earlier:

less ../../ubuntu/hello-2.1.1/debi an/ changel og

Notice that in this case the distribution is unstable (a Debian branch), because the Debian package has
not been changed by Ubuntu. Remember to set the distribution to your target distribution release.

At this point create achangel og filein the debi an directory where you should still be.
1.2. control

The contral file contains the information that the package manager (such as apt-get, synaptic, and
aptitude) uses, build-time dependencies, maintainer information, and much more.

For the Ubuntu hello package, the control file looks something like:

Source: hello

Section: devel

Priority: optional

Mai nt ai ner: Captain Packager <packager @ool ness. con
St andards-Version: 3.6.1

Package: hello

Architecture: any

Depends: ${shli bs: Depends}

Description: The classic greeting, and a good exanple
The GNU hell o program produces a famliar, friendly greeting. It
al l ows non-programmers to use a classic conputer science tool which
woul d ot herwi se be unavailable to them

Seriously, though: this is an exanple of how to do a Debi an

package.
It is the Debian version of the GNU Project's “hello world" program

19

Basic Packaging

(which is itself an exanple for the GNU Project).

Create cont rol using the information above (making sure to provide your information for the
Maintainer field).

The first paragraph gives information about the source package. Let us go through each line:

Sour ce: Thisisthe name of the source package, in this case, hello.

Section: The apt repositories are split up into sections for ease of browsing and categorization of
software. In this case, hello belongs in the devel section.

Priority: This sets the importance of the package to users. It should be one of the following:

* Required - packages that are essential for the system to work properly. If they are removed it is
highly likely that your system will break in an unrecoverable way.

» Important - minimal set of packages for a usable system. Removing these packages will not
produce an unrecoverabl e breakage of your system, but they are generally considered important
tools without which any Linux installation would be incomplete. Note: This does not include
things like Emacs or even the X Window System.

e Standard - Somewhat self explanatory.

» Optional - in essence this category is for non-required packages, or the bulk of packages.
However, these packages should not conflict with each other.

» Extra - packages that may conflict with packagesin one of the above categories. Also used for
specialized packages that would only be useful to people who aready know the purpose of the
package.

Maintainer: The package maintainer with email address.

Standards-Version: The version of the Debian Palicy [http://www.debian.org/doc/debian-policy/]
to which the package adheres (in this case, version 3.6.1). An easy way to find the current version
is apt-cache show debian-policy | grep Version.

Build-Depends. One of the most important fields and often the source of bugs, thisline lists the
binary packages (with versionsif necessary) that need to be installed in order to create the binary
package(s) from the source package. Packages that are essential are required by build-essential and
do not need to be included in the Build-Depends line. In the case of hello, all the needed packages
are apart of build-essential, so a Build-Depends lineis not needed. The list of build-essential
packages can be found at / usr / shar e/ doc/ bui | d-essential /1i st.

The second paragraph is for the binary package that will be built from the source. If multiple binary
packages are built from the source package, there should be one section for each one. Again, let us go
through each line:

Package: The name for the binary package. Many times for ssmple programs (such as hello), the
source and binary packages names are identical.

Architecture: The architectures for which the binary package(s) will be built. Examples are:

+ all - The source is not architecture-dependent. Programs that use Python or other interpreted
languages would use this. The resulting binary package would end with _al | . deb.

20

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Basic Packaging

 any - The source is architecture-dependent and should compile on all the supported architectures.
There will be a.deb file for each architecture (_i 386. deb for instance)

» A subset of architectures (1386, and64, ppc, etc.) can be listed to indicate that the sourceis
architecture-dependent and does not work for all architectures supported by Ubuntu.

» Depends: Thelist of packages that the binary package depends on for functionality. For hello, we
see ${shl i bs: Depends}, which is avariable that substitutes in the needed shared libraries. See the
dpkg- sour ce man page for more information.

» Recommends: Used for packages that are highly recommended and usually are installed with the
package. Some package managers, most notably aptitude, automatically install Recommended
packages.

» Suggests: Used for packages that are similar or useful when this package is installed.

» Conflicts: Used for packages that will conflict with this package. Both cannot be installed at the
sametime. If oneisbeing instaled, the other will be removed.

» Description: Both short and long descriptions are used by package managers. The format is:
Description: <single line synopsis>

<ext ended description over several |ines>
Note that there is one space at the beginning of each line in the long description.

More information on how to make a good description can be found at
http: //people.debian.org/~walter s/descriptions.html.

1.3. copyright

Thisfile gives the copyright information. Generally, copyright information is found in the coPyl NG
filein the program'’s source directory. This file should include such information as the names of the
author and the packager, the URL from which the source came, a Copyright line with the year and
copyright holder, and the text of the copyright itself. An example template would be:

Thi s package was debi ani zed by {Your Nane} <your enmil address>
{ Dat e}

It was downl oaded from {URL of webpage}
Upstream Aut hor (s): {Name(s) and email address(es) of author(s)}

Copyri ght:
Copyright (C {Year(s)} by {Author(s)} {Enmail address(es)}

Li cense:

As one can imagine, hello is released under the GPL license. Inthiscase it is easiest to just copy the
copyri ght filefrom the Ubuntu package:

cp ../../ubuntu/hello-2.1.1/debian/copyright .

21

http://people.debian.org/~walters/descriptions.html

Basic Packaging

Y ou must include the complete copyright unlessitisis GPL, LGPL, BSD, or Artistic License, in
which case you can refer to the corresponding filein the/ usr/ shar e/ common- | i censes/ directory.

Notice that the Ubuntu package's copyri ght includes alicense statement for the manual. Itis
important that all the filesin the source be covered by alicense statement.

1.4. rules

Ther ul es fileis an executable Makefile that has rules for building the binary package from the
source packages. For hello, it will be easier to use the r ul es from the Ubuntu package:

#1/usr/ bi n/ make -f

Sanpl e debian/rules file - for G\U Hell o.

Copyright 1994,1995 by |an Jackson.

I hereby give you perpetual unlinted perm ssion to copy,

nmodi fy and relicense this file, provided that you do not renpve
my nane fromthe file itself. (I assert ny noral right of
paternity under the Copyright, Designs and Patents Act 1988.)
This file may have to be extensively nodified

H OH OB OB H R R

package = hello
docdir = debi an/ tnp/ usr/ shar e/ doc/ $(package)

CC = gcc
CFLAGS = -g -\Wal |
I NSTALL_PROGRAM = install

ifeq (,$(findstring noopt, $(DEB_BU LD OPTIONS)))
CFLAGS += -2

endi f

ifeq (,$(findstring nostrip, $(DEB_BU LD OPTIONS)))
| NSTALL_PROGRAM += -s

endi f
bui | d:
$(checkdir)
./configure --prefix=/usr
$(MAKE) CC="$(CC)" CFLAGS="$(CFLAGS)"
touch build
cl ean:

$(checkdir)

rm-f build

-$(MAKE) -i distclean

rm-rf *~ debian/tnp debi an/*~ debi an/fil es* debi an/ substvars

bi nary-i ndep: checkroot build

$(checkdir)
There are no architecture-independent files to be upl oaded
generated by this package. |f there were any they woul d be
made here.

22

Basic Packaging

bi nary-arch: checkroot build
$(checkdir)
rm-rf debian/tnmp
install -d debian/tnp/DEBI AN $(docdir)
install -m 755 debi an/ posti nst debi an/ prerm debi an/ t np/ DEBI AN
$(MAKE) | NSTALL_PROGRAME" $(| NSTALL_PROGRAM " \
prefi x=$$(pwd) / debi an/ t np/ usr install
cd debian/tnp && nmv usr/info usr/man usr/share
cp -a NEWB debi an/ copyri ght $(docdir)
cp -a debi an/ changel og $(docdi r)/changel og. Debi an
cp -a ChangelLog $(docdir)/changel og
cd $(docdir) && gzip -9 changel og changel og. Debi an
gzip -r9 debi an/tnp/usr/share/ man
gzip -9 debian/tnp/usr/share/infol*
dpkg- shl i bdeps debi an/tnp/usr/bin/hello
dpkg-gencontrol -isp
chown -R root:root debian/tnp
chnod - R u+w, go=r X debi an/tnp
dpkg --build debian/tnmp ..

define checkdir
test -f src/$(package).c -a -f debian/rules
endef

bi nary: binary-indep binary-arch

checkr oot :
$(checkdir)
test $$(id -u) =0

. PHONY: binary binary-arch binary-indep cl ean checkr oot

Let us go through this file in some detail. One of the first parts you will seeisthe declaration of some
variables:

package = hello
docdir = debi an/ t np/ usr/ shar e/ doc/ $(package)

CC = gcc
CFLAGS = -g -\l |
I NSTALL_PROGRAM = i nst al

ifeq (,$(findstring noopt, $(DEB_BUI LD OPTI ONS)))
CFLAGS += -2

endi f

ifeq (,$(findstring nostrip, $(DEB_BU LD OPTIONS)))
| NSTALL_PROGRAM += -s

endi f

This section sets the CFLAGS for the compiler and also handles the noopt and nostri p
DEB_BUILD_OPTIONS for debugging.

Next isthebui | d rule:

23

Basic Packaging

bui | d:
$(checkdir)
./Iconfigure --prefix=/usr
$(MAKE) CC="$(CC)" CFLAGS="$(CFLAGS)"
touch build

Thisrule runs ./configure with the proper prefix, runs make, and creates abui | d filethat isa
timestamp of the build to prevent erroneous multiple compilations.

The next ruleiscl ean, which runs make -i distclean and removes the files that are made during the
package building.

cl ean:
$(checkdir)
rm-f build
-$(MAKE) -i distclean
rm-rf *~ debian/tnp debi an/*~ debi an/files* debi an/ substvars

Next we see an empty bi nar y- i ndep rule, because there are no architecture-independent files created
in this package.

There are, however, many architecture-dependent files, so bi nary- ar ch is used:

bi nary-arch: checkroot build
$(checkdir)
rm-rf debian/tmp
install -d debian/tnp/DEBI AN $(docdir)
install -m 755 debi an/ posti nst debi an/ prerm debi an/ t np/ DEBI AN
$(MAKE) | NSTALL_ PROGRAME" $(| NSTALL_PROGRAM) " \
prefi x=$$(pwd) / debi an/ t np/ usr install
cd debian/tnp && nmv usr/info usr/man usr/share
cp -a NEWB debi an/ copyri ght $(docdir)
cp -a debi an/ changel og $(docdi r)/changel og. Debi an
cp -a ChangelLog $(docdir)/changel og
cd $(docdir) && gzip -9 changel og changel og. Debi an
gzip -r9 debian/tnp/usr/share/ man
gzip -9 debian/tnp/usr/share/infol*
dpkg- shl i bdeps debi an/tnp/usr/bin/hello
dpkg- gencontrol -isp
chown -R root:root debian/tnp
chnmod - R u+w, go=r X debi an/tnp
dpkg --build debian/tnp ..

First, notice that this rule callsthe checkr oot rule to make sure the package is built as

root and calls the bui I d rule to compile the source. Then the debi an/ t np/ DEBI AN and

debi an/ t np/ usr/ shar e/ doc/ hel | o filesare created, and the post i nst and the pr er m> scripts
areinstalled to debi an/ t np/ DEBI AN. Then make install is run with a prefix that installs to the
debi an/ t np/ usr directory. Afterward the documentation files (NEWS, Changelog, and the
debian changelog) are gzipped and installed. dpkg-shlibdeps isinvoked to find the shared library
dependencies of the hello executable, and it storesthelist in the debi an/ subst var s file for the
${ shlibs:Depends} variable in cont r ol . Then dpkg-gencontrol isrun to create a control file for

24

Basic Packaging

the binary package, and it makes the substitutions created by dpkg-shlibdeps. Finally, after the
permissions of the debi an/ t np have been set, dpkg --build is run to build the binary .deb package and
placeit in the parent directory.

1.5. postinst and prerm

Thepostinst and pr er mfiles are examples of maintainer scripts. They are shell scriptsthat are
executed after installation and before removal, respectively, of the package. In the case of the Ubuntu
hello package, they are used to install (and remove) the info file. Go ahead and copy them into the
current debi an directory.

cp ../../ubuntu/hello-2.1.1/debi an/ posti nst
cp ../../ubuntu/hello-2.1.1/debian/prerm.

1.6. Building the Source Package

Now that we have gone through the filesin the debi an directory for hello in detail, we can build the
source (and binary) packages. First let us move into the root of the extracted source:

cd ..
Now we build the source package using dpkg-buildpackage:
dpkg- bui | dpackage -S -rfakeroot

The -Sflag tells dpkg-buildpackage to build a source package, and the -r flag tells it to use fakeroot
to allow usto have fake root privileges when making the package. dpkg-buildpackage will take
the.orig.tar. gz fileand producea. di f f . gz (the difference between the original tarball from
the author and the directory we have created, debi an/ and its contents) and a. dsc file that has

the description and md5sums for the source package. The. dsc and *_sour ce. changes (used for
uploading the source package) files are signed using your GPG key.

O If you do not have agpg key set up you will get an error from debuild. Y ou can either set up
agpg key or use the -us -uc keys with debuild to turn off signing. However, you will not be
able to have your packages uploaded to Ubuntu without signing them.

@ To make sure debuild finds the right gpg key you should set the DEBFULLNAME and
DEBEMAIL environment variables (in your ~/ . bashr ¢ for instance) to the name and email
address you use for your gpg key and in the debi an/ changel og

Some peopl e have reported that they were unable to get debuild to find their gpg key
properly, even after setting the above environment variables. To get around this you can
give debuild the -k<keyid> flag where <keyid> is your gpg key ID.

In addition to the source package, we can also build the binary package with pbuilder:

sudo pbuilder build ../*.dsc

25

Basic Packaging

Using pbuilder to build the binary packages is very important. It ensures that the build dependencies
are correct, because pbuilder provides only aminimal environment, so all the build-time dependencies
are determined by the control file.

We can check the source package for common mistakes using lintian:

cd ..
lintian -i *.dsc

26

Basic Packaging

2. Packaging with Debhelper

@ Requirements: The requirements from Section 1, “ Packaging From Scratch” [p. 17] plus
debhelper and dh-make

As apackager, you will rarely create packages from scratch as we have done in the previous section.
Asyou can imagine, many of the tasks and information in ther ul es file, for instance, are common
to packages. To make packaging easier and more efficient, you can use debhelper to help with

these tasks. Debhelper is a set of Perl scripts (prefixed with dh) that automate the process of
package-building. With these scripts, building a Debian package becomes quite simple.

In this example, we will again build the GNU Hello package, but this time we will be comparing our
work to the Ubuntu hello-debhel per package. Again, create a directory where you will be working:

nkdi r ~/ hel | o- debhel per

cd ~/ hel | o- debhel per

wget http://ftp.gnu.org/ gnu/hello/hello-2.1.1.tar.gz
nkdi r ubuntu

cd ubuntu

Then, get the Ubuntu source package:

apt - get source hel | o-debhel per
cd ..

Like the previous example, the first thing we need to do is unpack the original (upstream) tarball.

tar -xzvf hello-2.1.1.tar.gz

Instead of copying the upstream tarball tohel 1 0_2. 1. 1. ori g. t ar. gz aswedid in the previous
example, we will let dh_make do the work for us. The only thing you have to do is rename the source
folder so it isin the form of <packagename>-<version> where packagename is lowercase. In this
case, just untarring the tarball produces a correctly named source directory so we can moveinto it:

cd hello-2.1.1

To create the initial "debianization™" of the source we will use dh_make.

dh_make -e your. maintai ner@ddress -f ../hello-2.1.1.tar.gz

dh_make will then ask you a series of questions:

Type of package: single binary, nultiple binary, library, kernel npdule or cdbs?
[s/mI/k/b] s

Mai nt ai ner nane : Captain Packager
Enai | - Addr ess : packager @ool ness. com
Dat e : Thu, 6 Apr 2006 10:07:19 -0700

27

Basic Packaging

Package Nane : hello
Ver si on 0 2.1.1
Li cense : bl ank

Type of Package : Single
Ht <enter>to confirm Enter

A Only run dh_make -e once. If you run it again after you do it the first time, it will not work
properly. If you want to change it or made a mistake, remove the source directory and untar
the upstream tarball afresh. Then you can migrate into the source directory and try again.

Running dh_make -e does two things:
1. Createsthehel 1 0_2.1.1.0rig. tar. gz fileinthe parent directory,

2. Creates the basic files needed in debi an/ and many template files (.ex) that may be needed.

The Hello program is not very complicated, and as we have seen in Section 1, “ Packaging From
Scratch” [p. 17], packaging it does not require much more than the basic files. Therefore, let us
removethe. ex files:

cd debi an
rm*.ex *.EX

For hello, you will also not need READMVE. Debi an (README file for specific Debian issues, not
the program's README), di rs (used by dh_installdirs to create needed directories), docs (used by
dh_installdocs to install program documentation), or i nf o (used by dh_installinfo to install the info
file) filesinto the debi an directory. For more information on these files, see Section 3, “ dh_make
examplefiles’ [p. 6b

At this point, you should have only changel og, conpat , control , copyri ght, and rul es filesin the
debi an directory. From Section 1, “ Packaging From Scratch” [p. 17], the only filethat isnew is
conpat , which isafile that contains the debhel per version (in this case 4) that is used.

Y ou will need to adjust the changel og slightly in this case to reflect that this package is named
hello-debhel per rather than just hello:
hel | o- debhel per (2.1.1-1) edgy; urgency=low
* Initial rel ease
- Captain Packager <packager @ool ness.con> Thu, 6 Apr 2006 10:07:19 -0700

By using debhelper, the only things we need to change in cont r ol are the name (substituting hello for
hell o-debhel per) and adding debhelper (>= 4.0.0) to the Build-Depends field for the source package.
The Ubuntu package for hello-debhel per looks like:

Sour ce: hel | o-debhel per
Section: devel
Priority: extra

28

Basic Packaging

Mai nt ai ner: Capitan Packager <packager @ool ness. conp
St andards- Version: 3.6.1
Bui | d- Depends: debhel per (>= 4)

Package: hel | o-debhel per

Architecture: any

Depends: ${shli bs: Depends}

Conflicts: hello

Provi des: hello

Repl aces: hello

Description: The classic greeting, and a good exanple
The GNU hell o program produces a famliar, friendly greeting. It
al l ows non-programmers to use a classic conputer science tool which
woul d ot herwi se be unavailable to them

Seriously, though: this is an exanple of how to do a Debi an package.
It is the Debian version of the GNU Project's "hello world" program
(which is itself an exanple for the GNU Project).

This is the same as the hell o package, except it uses debhel per to
make the deb. Please see debhel per as to what it is.

We can copy the copyri ght fileand the posti nst and pr er mscripts from the Ubuntu hell o-debhel per
package, as they have not changed since Section 1, “ Packaging From Scratch” [p. 17]. We will also
copy ther ul es file so we can inspect it.

cp ../../ubuntu/ hell o-debhel per-2.1. 1/ debi an/ copyri ght
cp ../../ubuntu/ hell o-debhel per-2.1. 1/ debi an/ posti nst
cp ../../ubuntu/ hell o-debhel per-2.1.1/debian/prerm.
cp ../../ubuntu/ hell o-debhel per-2.1.1/debian/rules .

Thelast filewe need to look at isr ul es, where the power of debhelper scripts can be seen. The
debhelper version of rul es issomewhat smaller (54 lines as opposed to 72 linesin the version from
Section 1.4, “rules’ [p. 22]).

The debhel per version looks like:
#1/usr/ bi n/ make -f
package = hel | o- debhel per

CC = gcc
CFLAGS = -g -\Wal |

ifeq (,$(findstring noopt,$(DEB_BU LD _OPTI ONS)))
CFLAGS += -2

endi f

#export DH_VERBOSE=1

29

Basic Packaging

cl ean:
dh_testdir
dh_cl ean
rm-f build
-$(MAKE) -i distclean
install: build
dh_cl ean
dh_installdirs
$(MAKE) prefix=$(CURDI R)/ debi an/ $(package)/ usr \
mandi r =$(CURDI R) / debi an/ $(package) / usr/ shar e/ man \
i nf odi r =$(CURDI R) / debi an/ $(package)/usr/share/info \
install
bui | d:

./Iconfigure --prefix=/usr
$(MAKE) CC="$(CC)" CFLAGS="$(CFLAGS)"
touch build

bi nary-indep: install

There are no architecture-independent files to be upl oaded
generated by this package. |f there were any they woul d be
made here.

bi nary-arch: install
dh_testdir -a
dh_testroot -a
dh_instal | docs -a NEWS
dh_i nst al | changel ogs -a Changelog
dh_strip -a
dh_conpress -a
dh_fixperns -a
dh_installdeb -a
dh_shl i bdeps -a
dh_gencontrol -a
dh_md5suns -a
dh_bui | ddeb -a

bi nary: binary-indep binary-arch

. PHONY: binary binary-arch binary-indep cl ean checkr oot

Notice that tasks like testing if you arein the right directory (dh_testdir), making sure you are
building the package with root privileges (dh_testroot), installing documentation (dh_installdocs

and dh_installchangel ogs), and cleaning up after the build (dh_clean) are handled automatically.
Many packages much more complicated than hello haver ul es files no bigger because the debhel per
scripts handle most of the tasks. For a complete list of debhelper scripts, please see Section 4, “ List

of debhelper scripts’ [p. 6F . They are aso well documented in their respective man pages. It isa
useful exercise to read the man page (they are well written and not lengthy) for each helper script used
in the aboverul es file.

30

Basic Packaging

2.1. Building the Source Package

Now that we have gone through the filesin the debi an directory for hello-debhel per, we can build the
source (and binary) packages. First, let us move back into the source directory:

cd ..

Now we build the source package using debuild, a wrapper script for dpkg-buildpackage:
debuild -S

the binary package, using pbuilder:

sudo pbuilder build ../*.dsc

and finally check the source package for common mistakes using lintian:

cd ..
lintian -i *.dsc

31

Basic Packaging

3. Packaging With CDBS

CDBSisatool that uses debhelper to make building and maintaining Debian packages even easier. It
has many advantages:

* It produces a short, readable, and efficient debi an/ r ul es
* It automates debhel per and autotools for you, so you do not have to worry about repetitive tasks

* It helps you focus on more important packaging problems, because it helps without limiting
customization

* |tsclasses have been well tested, so you can avoid dirty hacks to solve common problems
» Switching to CDBSis easy

e |tisextensible

3.1. Using CDBS in packages

Using CDBS for Ubuntu packagesis very easy. After adding cdbs to the Build-Dependsin
debi an/ control , abasic debi an/ r ul es fileusing CDBS canfitin 2 lines. For asimple C/C++
application with no extrarules, such as hello, debi an/ rul es can look like this:

#! [usr/ bi n/ make -f

i ncl ude /usr/share/cdbs/ 1/ rul es/ debhel per. nk
i ncl ude /usr/sharel/ cdbs/ 1/ cl ass/ aut ot ool s. nk

That isal you need to build the program! CDBS handles installing and cleaning. Y ou can then use
the.install and.info filesto tune your package with the usual debhelper functionsin the various
sectionsfor debi an/ rul es.

O Do not use DEB_AUTO_UPDATE_DEBIAN_CONTROL :=yes to automatically change
debi an/ cont rol . It can cause bad things, and Debian considers it areason to reject a
package from entering the archives. See http://ftp-master.debian.org/REJECT-FAQ.html
[http://ftp-master.debian.org/REJECT-FAQ.html] for more information.

Asyou can see, CDBS mostly works by including . mk Makefilesin debi an/ r ul es. The cdbs package
provides such filesin/ usr/ shar e/ cdbs/ 1/ that allow you to do quite alot of packaging tasks. Other
packages, such as quilt, add modules to CDBS and can be used as Build-Depends. Note that you can
also use your own CDBS rules and include them in the package. The most useful modules included
with the cdbs package are:

* rul es/ debhel per. nk: Calls debhelper in all required sections

* rul es/ dpat ch. mk: Allows you to use dpatch to ease patching the source

* rul es/ si npl e- pat chsys. nk: Provides avery easy way to patch the source

* rules/tarball.nk: Allowsyou to build packages using the compressed tarball in the package

* cl ass/ aut ot ool s. nk: Callsautotoolsin all required sections

32

http://ftp-master.debian.org/REJECT-FAQ.html
http://ftp-master.debian.org/REJECT-FAQ.html

Basic Packaging

* cl ass/ gnone. nk: Builds GNOME programs (requires the proper Build-Dependsin

debi an/ control)
 cl ass/ kde. nk: Builds KDE programs (requires the proper Build-Dependsin debi an/ cont rol)

* class/python-distutils. nk: Facilitates packaging Python programs

3.2. Moreinformation on CDBS

For more information on CDBS, see Marc Dequeénes's guide at
https://per so.duckcor p.or g/duck/cdbs-doc/cdbs-doc.xhtml .

33

https://perso.duckcorp.org/duck/cdbs-doc/cdbs-doc.xhtml

Basic Packaging

4. Common Mistakes

4.1. dn_make Example Files

When you use dh_make to create theinitial "debianization", example files for various tasks are
created in the debi an/ directory. The templates have a.ex extension. If you want to use one, rename it
to remove the extension. If you do not need it, remove it to keep the debi an/ directory clean.

4.2. Changing the Origina Tarball

There are two types of source packages, native and non-native. A native package is onethat is
specific to Ubuntu/Debian. It has the debian/ directory containing the packaging information and
any changesto the source included in the tarball (usually <packagename>_<version>.tar.gz).
Non-native packages are more common. A non-native package splits the source package into a
<packagename>_<version>.orig.tar.gz tarball that isidentical (hopefully including md5sum) to
the source tarball downloaded from the project's homepage and a .diff.gz file that contains all the
differences (debi an/ directory and patches) from the original source tarball.

Hereisalist of potential problemsthat can occur if you change the origina tarball:

1. Reproducibility

If you take just the .diff.gz and .dsc, you or someone else has no means to reproduce the changesin
the original tarball.

2. Upgradesbility

It is much easier to upgrade to a new upstream (from the author) version if the .orig.tar.gz is
preserved and there is a clear separation between the upstream source and the changes made to
produce the Ubuntu source package.

3. Debian to Ubuntu Synchronization

Changing original tarballs makesit hard to automatically sync from Debian to Ubuntu. Normally,
only the .diff.gz and .dsc files change within the same upstream version, since the .orig.tar.gz file
is shared by all the Debian or Ubuntu revisions. It is much more difficult to sync if the md5sums of
the .orig.tar.gz files are not the same.

4. Usage of Revision Control for Debian package

If you use svn (svn-buildpackage) to handle your Debian package, you usually don't store the
original tarball inside. If someone else does a checkout, he'll need to get the original tarball
separately. Other revision control systems can be used to track only the packaging files (debi an/ ,
etc.) and not the whole source. However, if the .orig.tar.gz is not the same, then obviously
problems can occur.

5. Security tracking

Basic Packaging

Consider a situation where someone wants to introduce a backdoor/rootkit or other evil stuff. If

the original tarball isintact, it can be scanned easily through the .diff.gz to see if the person who
modified the package tried to do something evil. If the tarball has changed, however, you also need
to check the differences between the tarball and the original source.

You still have to trust the authors of the software not to do anything evil, but that is the
- case regardless of whether the original is changed.

6. The .diff.gz

The option to use the .diff.gz to reflect changes to the original tarball already exists, so it is easy to
make changes without touching the original tarball.

It isacceptable to changetheoriginal tarball if one or more of the following hold true:

* It contains non-free parts that cannot be redistributed. Remove those parts, and noteit in the
packaging. Often such packages use "dfsg" (which stands for Debian Free Software Guidelines) in
the package name and/or versioning to indicate that non-free parts have been removed.

» The authors only provide bzip2'ed source.

 Just bunzip2 the .tar.bz2 and gzip -9 the resulting tar.

» The mdb5sums of the .tar you provide and the original .tar must match!

» Eventually provide a get-orig-source rule in debian/rules that does this conversion automatically.
* Directly imported from SVN

 Provide get-orig-source in debian/rules.

Thefollowing are not reasons to change the original tarball:

* Wrong Directory Layout

e dpkg-source is quite flexible and manages to produce the correct directory layout even if:
) » Thedirectory inside the tarball is not named <upstream>-<version>.
» Thereisno subdirectory inside the tarball.

* Files need to be removed to keep the .diff.gz small (e.g., files created by autotools). Everything that
needs to be deleted should be removed in the clean rule. Since the .diff.gz is created with diff -u,
you will not see removed filesin the .diff.gz.

* Files need to be modified. Files that need to be modified should to go into .diff.gz. That isits
purpose!

» Wrong permissions on files. Y ou can use debi an/ r ul es to do this.
@ What do | do with an .orig.tar.gz that already includes adebi an/ dir?

Do not repackage it. Y ou can ask the author(s) to delete the debian/ dir and provide a diff.gz
instead. This makesit easier to review their work, and it separates packaging from program
source.

35

Basic Packaging

It isalways a good ideato contact the program'’s author(s) and ask if you may correct
autoconf issues, directory layout, an outdated Free Software Foundation addressin
COPYRIGHT files, or other things that are not specific to the packaging but would be
convenient for you so you do not need to "patch” the source in .diff.gz.

4.3. Copyright | nformation

The debi an/ copyri ght file should contain:

» Thelicensing information for all filesin the source. Sometimes author(s) put alicense in CoPYI NG
but have different licensing information for some files in the source.

» The copyright holder(s) and year(s).
e Theentirelicense unlessit is one of the licenses found in/ usr/ shar e/ common- | i censes, in which
case you should just include the preamble.

36

Chapter 4. Patch Systems

Quite often it turns out that the upstream source needs to be patched, either to adjust the program to
work with Ubuntu or to fix bugs in the source before they are fixed upstream. But how should we
reperesent these changes? We could simply make the changes in the unpacked source package, in
which case the patch would be expressed in the . di f f . gz file. However, thisisnot ideal. If thereis
more than one patch you loose the ability to seperate the patches as you just see one big diff that also
contains the packaging files (in debi an/ . This can make it more difficult when you want to send the
patches upstream. It is also very convenient to seperate the author's source from the changes made for
Ubuntu. The best place to put thisinformation isin the debi an/ that is already used for the packaging
files. For the rest of this chapter we will be looking at the various ways to set up patches in thisway.

37

Patch Systems

1. Patching Without a Patch System

As was mentioned above, one can patch the original source by simply making the changesin the
unpacked source directory. A real-life example of thisis cron. If you grab cron's source package and
look at the. di ff. gz you will seethat several of the original source's files were changed.

apt-get source cron
zgrep +++ cron*.diff.gz

But as we mentioned before thisis not really the best way to represent patches. One better way isto
create individual patch files, but them in debi an/ pat ches/ and apply the patches (using patch) in
debi an/ rul es. Thisiswhat is done for udev:

apt-get source udev

zgrep +++ udev*.diff.gz
I s udev*/ debi an/ pat ches/
| ess udev*/debi an/rul es

Ther ul es file has the following rules for applying and unapplying the patches:

Apply patches to the package
patch: patch-stanp
pat ch- st anp:
dh_testdir
@at ches=debi an/ pat ches/ *. patch; for patch in $$patches; do \
test -f $$patch || continue; \
echo "Appl yi ng $$patch"; \
patch -stuN -pl < $$patch || exit 1; \
done
touch $@

Renove patches fromthe package
unpat ch:
dh_testdir
@f test -f patch-stanp; then \
pat ches=debi an/ pat ches/ *. pat ch; \
for patch in $$patches; do \
rever sepat ches="$$pat ch $$reversepat ches"; \
done; \
for patch in $$reversepatches; do \
test -f $$patch || continue; \
echo "Reversing $$patch”; \
patch -suRf -pl < $$patch || exit 1; \
done; \
rm-f patch-stanmp; \
fi

That isall very nice, but how do we create new patches for udev using this scheme? The general
approachis:

38

Patch Systems

1. copy the clean source tree to atemporary directory

2. apply al patches up to the one you want to edit; if you want to create a new patch, apply all
existing ones (thisis necessary sincein general patches depend on previous patches)

if you want, you can use debian/rules for this: remove the patches that come * after* the one you
want to edit, and call 'debian/rules patch'. The actual name for the patch target varies, | have seen
the following ones so far: patch setup apply-patches unpack patch-stamp. Y ou have to look in
debi an/ rul es how it iscalled.

3. copy the whole source tree again:

cp -a /tnmp/old /tnp/ new
4. go into /tmp/new, do your modifications

5. go back into your original source tree, generate the patch with:

diff -Nurp /tnp/old /tnp/ new > nypat chnane. pat ch

1.1. Example 1.

Let us make a new patch for udev called 90_pengui ns. pat ch which replaces Linux with Penguin in
the udev README fil€e:

cd udev*/

cp -a . /tnmp/old

pushd /tnp/old

debi an/ rul es patch

cp -a . /tnmp/new, cd ../ new

sed -i 's/Linux/Penguin/g" READVE

cd ..

diff -Nurp old new > 90 _pengui ns. pat ch
popd

mv /tnp/ 90_pengui ns. pat ch debi an/ pat ches
rm-rf /tnp/old /tnp/new

1.2. Example 2.

What happensif we want to edit an existing patch? We can us asimilar procedure as Example 1 but
we will apply the patch to be edited first:

cp -a . /tnp/old

pushd /tnp/old

cp -a . /tnmp/new, cd ../new

patch -pl < debi an/ pat ches/ 10- sel i nux-i ncl ude-udev- h. patch

sed -i '1 s/$/***** HELLO WORLD ****/' wudev_selinux.c
cd ..
diff -Nurp old new > 10-sel i nux-incl ude-udev-h. patch
popd

mv /tnp/ 10-sel i nux-i ncl ude-udev- h. pat ch debi an/ pat ches

39

Patch Systems

rm-rf /tnp/old /tnp/new

So thisway of patching the source, while technically fine, can become very complicated and
unmanageable. To make patching easier and more straightforward patch systems were developed. We
will take alook at couple popular ones.

40

Patch Systems

2. CDBS with Simple Patchsys

The CDBS build helper system (see Section 3, “ Packaging With CDBS’ [p. 32]) hasavery simple
patch system built in. You simply need to add an include for simple-patchsys.mk in debi an/ r ul es. An
example is pmount. Itsentirer ul es lookslike:

#1/usr/ bi n/ make -f

i ncl ude /usr/share/ cdbs/ 1/ rul es/ debhel per. nk

i nclude /usr/share/cdbs/ 1/ cl ass/ aut ot ool s. nk
include /usr/share/ cdbs/ 1/ rul es/sinpl e- pat chsys. nk

common- post - bui | d-arch::
CGenerate a POT file
cd po; intltool-update -p --verbose

Simple patchsys a so has a patch editor built in called cdbs-edit-patch. Y ou can give cdbs-edit-patch
either the name of an existing patch to edit or a new patch to create. It will apply the existing patch,
if it exists, and put you in anew shell. Y ou can then make any changes you want added to the

patch and finally type Ctrl-D to exit the shell and create the new patch. The patches are stored in
debi an/ pat ches/

41

Patch Systems

3. dpatch

A popular patch system is dpatch. It has a dpatch-edit-patch script like cdbs has but stores the patches
alittle differently. It uses afile named debi an/ pat ches/ 001 i st to find the name and order of patches
to apply. This means you can order your patches in whichever way you want and can disable a patch
without removing it altogether. However, it also mean you need to update ool i st if you add a patch.
If dpatch-edit-patch is called with two arguments it will edit/create the the patch named by the first
argument relative to the patch named by the second argument. In other words:

dpat ch-edi t-patch new dpatch ol d. dpat ch

will apply patches up to ol d. dpat ch and then create new. dpat ch. Note that dpatch patches usually
have a .dpatch suffix. Thisis because dpatch stores the patchesin a slightly different format then a
normal patch that adds a specia header.

A real-life example of dpatch usageisthe xterm package.

42

Patch Systems

4. Patching other peopl€e's packages

The most important thing to keep in mind when patching packages maintained by other peopleisto
keep the patch system (or lack thereof) that the maintainer has set up. Thiswill ensure consistency
and make the package maintainer more likely to accept your patch.

It isalso agood idea to separate patches logically rather than creating one giant patch. If the upstream
authors apply one of your changes but not another it is much easier to just drop a patch then edit a
monolithic patch to update it.

43

Chapter 5. Updating Packages

If you have been around Linux distributions for any amount of time, you have realized that there are
sometimes bugs in programs. In the Debian and Ubuntu distributions, bugs are often fixed through
the packaging by patching the source code. Sometimes there are bugs in the packaging itself that can
cause difficulties.

To patch the program's source code, you could simply download the current Ubuntu source

package (with apt-get source) and make the needed changes. Y ou can then add a new entry to

the debi an/ changel og using dch -i or dch -v <version>-<revision> to specify the new revision.
When you run debuild -S from the source directory you will have a new source package with a new

. di ff. gz inthe parent directory that contains your changes. A problem with this approach is that the
distinction between source and patches is unclear.

A solution to this prablem is to separate the changes to the source code into individual patches
stored in the debi an directory. One such patch system is called dpatch. The patches are stored in the
debi an/ pat ches/ directory and have a special format.

To create adpatch, perform the following steps sequentially.

Create atemporary work space and two copies of the current source directory:

nkdir tnp
cd tnp

cp -a ../<package>-<version> .
cp -a <package>- <versi on> <package>- <version>.orig

Make the changes in the <package>- <ver si on> directory.

Create apatch file using diff and place it in the debi an/ pat ches directory:

diff -Nru <package>-<version>. orig <package>-<version> > patch-file

Create the dpatch using dpatch patch-template and afile named 0ol i st that lists the dpatches:

dpatch patch-tenplate -p "01_patchnanme" "patch-file description" \
< patch-file > 01_patchnane. dpat ch
echo 01_pat chnare. dpatch >00Ii st

Y ou can now place 01_pat chnane. dpat ch and 001 i st in the debi an/ pat ches directory of your
source package:

nkdi r ../ <package>-<versi on>/ debi an/ pat ches
cp 01_patchnane. dpatch 00list ../<package>-<version>/debi an/ pat ches
cd ..

Updating Packages

rm-rf tnp

Y ou can aso edit a pre-existing patch using dpatch-edit-patch.

Once al the changes have been made, a changelog entry added, and dpatch added to the
debi an/ control file (if needed), then you can rebuild the source package with debuild -S.

To get your fixed source package uploaded to the Ubuntu repositories, you will need to get your
source package sponsored by a person who has upload rights. See Section 1, “ Uploading and Review”
[p. 4¥ for more details. Sometimes, rather than giving the entire source package (.diff.gz, .dsc,
and .orig.tar.gz), it is easier and more efficient to just give the difference between the source package
that is currently in the repositories and your fixed source package. A tool has been created to do just
that called debdiff. Using debdiff is similar to using diff but is made specifically for packaging. Y ou
can debdiff the source package by:

debdi ff <ol dpackage>. dsc <newpackage>. dsc > package. debdi ff

or the binary package by:

debdi ff <ol dpackage>. deb <newpackage>. deb > package. debdi f f

Debdiffs are great to attach to bug reports and have ready for a sponsor to upload.

45

Chapter 6. Ubuntu Packaging

46

Ubuntu Packaging

1. Uploading and Review

Once you have created a source package (either a completely new package or just an update/bugfix),
you will want to distribute your package so that other people can enjoy your hard work. The most
effective way to do that for Ubuntu isto contribute your package to the Universe repository. The
community devel opers who are responsible for the Universe repository are known as Masters of the
Universe (MOTU [https://wiki.ubuntu.com/MOTU]). REVU [http://revu.tauware.de] is aweb-based
tool that gives people a place to upload their source packages for other peopleto look at and for
MOTUsto review in a structured manner.

1.1. Contributing as an Uploader

First, you will need to have your GPG Key [https.//wiki.ubuntu.com/GPGK ey] added to the REVU
keyring. This step ensures that your packages really come from you and helps track uploads.

REVU uses your Launchpad [https://launchpad.net] account to look up your gpg

key so make sure you have a Launchpad account and you have put your gpg key

in your user profile there. Once thisis one you can join the Universe Contributors
[https://launchpad.net/peopl e/ubuntu-universe-contributors] team and then email

admin@tiber .tauware.de [mailto:admin@tiber.tauware.de] asking for your gpg key to be updated on
REVU. When thisis done you will be able to upload your packages. Y ou don't#need a password to
upload packages, only to log in to the website and to reply to comments.

It is not necessary to have your key signed by others to upload to REVU, but it isagood
ideato haveit done at some point.

1.1.1. Uploading your packages

Uploading to REV U uses dput. The Ubuntu version of dput already knows about REVU so you

do not need to change any configuration files. Only upload signed packages, and unlike other
repositories, you should always include the original tarball, otherwise reviewers will not be ableto
look at your extracted source package. In order to do so, use the options "-S -sa" with debuild or
dpkg-buildpackage to build only the source package and to include the original source in the upload.

After the source package is built, you can use dput with the above config file changes to upload it by
specifying just the _sour ce. changes file that was created:

dput revu *_source. changes
If you are reuploading a changed package (after receiving reviews), you may get an error
- like this:

Upl oad package to host revu
Al ready upl oaded to tauware.de
Doi ng not hi ng for myapp_source. changes

47

https://wiki.ubuntu.com/MOTU
https://wiki.ubuntu.com/MOTU
http://revu.tauware.de
http://revu.tauware.de
https://wiki.ubuntu.com/GPGKey
https://wiki.ubuntu.com/GPGKey
https://launchpad.net
https://launchpad.net
https://launchpad.net/people/ubuntu-universe-contributors
https://launchpad.net/people/ubuntu-universe-contributors
mailto:admin@tiber.tauware.de
mailto:admin@tiber.tauware.de

Ubuntu Packaging

To fix, add the -f option to dput to force the upload or remove the . upl oad file that was
created by dput.

Processing of uploadsis done every five minutes, so if your upload does not show up, please contact
the REVU administrators by email, or join the Freenode |RC channel #ubuntu-motu.

1.1.2. How to login to REVU

After your first upload, you are registered automatically in the database and assigned a random
password. On the REVU [http://revu.tauware.de] website, use the email address you used in the
changelog file of your upload as the login and click the 'recover password' link. Y ou will be taken to a
page that has your encrypted password with instructions for decrypting it.

1.1.3. View and comment uploads

Packages uploaded to REVU are public. You can browse them without logging in to the system.
However, commenting on uploads is available only to registered users. As an uploader, you can only
comment on your own uploads. This can be useful to give reviewers some info on the changes you
have made between two uploads of your packages.

1.1.4. Additional rules

* You must have reviewed the package for known security vulnerabilities and must provide patches
for them.

» The package can be refused on the grounds of known security problems.

» You must have included a copyright and license file, and those must allow inclusion of the package
in the Universe component and redistribution via Ubuntu mirrors.

» The package must be known to build on top of the main component of the current Ubuntu stable
release. It is permissible to require other packages already in Universe.

1.1.5. Getting Help

If you need assistance on these steps, or if you have questions about REV U, you can ask in
#ubuntu-motu on the Freenode IRC network.

48

http://revu.tauware.de
http://revu.tauware.de

Ubuntu Packaging

2. Mergesand Syncs

@ Requirements: build-essential, automake, gnupg, lintian, fakeroot, patchutils, debhelper
and pbuilder [p. 14].

Ubuntu is based on the Debian Linux distribution and uses the same package management system
(APT). At the beginning of each Ubuntu devel opment cycle, the packages in Ubuntu are updated

to those in the Debian unstable branch. However, because Ubuntu is not the same as Debian, some

of the packages need to be modified to work in Ubuntu. There might also be bug fixes that Ubuntu
devel opers have introduced into the packages. Y ou can determine whether this has taken place

by noting the package version. If the package version includes ubuntu in it (an example would be
gimp-2.2.9-3ubuntu2), then the Ubuntu devel opers have made changes, and it is no longer the same as
the Debian package. There are more than 1000 such modified packages in the Universe repository.

At the start of each Ubuntu development cycle, a decision is made regarding these Ubuntu versioned
packages. Of courseif the Debian version hasn't changed since the last Ubuntu release, then nothing
needs to be changed. However, if thereis a newer version of the package in Debian, then one of two
things should happen. If al of the reasons for Ubuntu modifications (bug fixes, dependencies, etc.) are
fixed in the new Debian package, then we can just take the Debian package directly. This decisionis
called async. However, if the new Debian version has the same issues that caused the Ubuntu version
to be made, then those changes need to be applied to the new Debian version, too. This decisionis
called merging.

2.1. Merging Tutorial

The merging process involves looking at the changes to both the Debian and Ubuntu source packages
and determining what has changed and which changes are Ubuntu-specific. Let us now look at an
example, a popular CD creation program called xcdroast.

To start, make afolder to hold our project, then navigate there:

nkdi r ~/ xcdr oast
cd ~/ xcdroast

Now download all of the source packagesinvolved into this directory:
» The xcdroast source tarball that is used by all versions:

» xcdroast_0.98+0alphal5.orig.tar.gz
[http://snapshot.debian.net/archive/2006/01/16/debian/pool /mai n/x/xcdroast/
xcdroast_0.98+0al phalb.orig.tar.gz]

» The Ubuntu Breezy source package files:

e Xcdroast_0.98+0alphal5-1.1ubuntul.dsc
[http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0al phal5-1.lubuntul.dsc]

49

http://snapshot.debian.net/archive/2006/01/16/debian/pool/main/x/xcdroast/xcdroast_0.98+0alpha15.orig.tar.gz
http://snapshot.debian.net/archive/2006/01/16/debian/pool/main/x/xcdroast/xcdroast_0.98+0alpha15.orig.tar.gz
http://snapshot.debian.net/archive/2006/01/16/debian/pool/main/x/xcdroast/xcdroast_0.98+0alpha15.orig.tar.gz
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1ubuntu1.dsc
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1ubuntu1.dsc

Ubuntu Packaging

» Xcdroast_0.98+0alphal5-1.1ubuntul.diff.gz
[http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0al phal5-1.lubuntul.diff.gz]

» The Debian source package files that the Breezy packages are derived from:

e Xcdroast_0.98+0alphal5-1.1.diff.gz
[http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0al phal5-1.1.diff.gz]

e Xcdroast_0.98+0alphal5-1.1.dsc
[http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0al phal5-1.1.dsc]

» The new Debian source package files that the Dapper packages will be derived from:

» Xcdroast_0.98+0alphal5-3.dsc
[http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0al phal5-3.dsc]

» Xcdroast_0.98+0alphal5-3.diff.gz
[http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0al phal5-3.diff.gz]

These steps can also be done by searching for the Debian packages at packages.debian.org
and the Ubuntu packages at packages.ubuntu.com.

@ A very useful package to have installed when doing merges (or any Ubuntu packaging) is
devscripts. If you do not have that already installed, install it before proceeding.

By looking at the Ubuntu changel og you should be able to see

which differences to expect between the Ubuntu package and the

Debian package from which it was derived. For xcdroast, the Ubuntu

changelog can befound at changel ogs.ubuntu.com

[http://changel ogs.ubuntu.com/changel ogs/pool/universe/x/xcdroast/xcdroast_0.98+0al phals-
1.1ubuntul/changelog]. It saysthat a .desktop file was fixed and properly installed to close a bug
reported in Malone [https://launchpad.net/mal one/bugs/2698].

Now inspect the actual changes in the source packages:

debdi ff xcdroast _0. 98+0al phal5-1. 1. dsc xcdroast_0. 98+0al phal5- 1. lubuntul.dsc | \
ubuntu. debdi ff | | ess ubuntu. debdiff

Thelinesthat start with - have been removed from the Debian package, and those that start with +
have been added to the Ubuntu package.

The following is what we see:

* Indebian/rulesinstall is being used instead of cp to install the xcdroast icon. Also, thereis a new
lineinstalling the .desktop file.

* In debian/changel og the changes made are added to the changel og entry.
* In debian/dirs usr/share/applications has been added for the install lines above to work properly.
 Xcdroast.desktop is added

50

http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1ubuntu1.diff.gz
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1ubuntu1.diff.gz
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1.diff.gz
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1.diff.gz
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1.dsc
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-1.1.dsc
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-3.dsc
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-3.dsc
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-3.diff.gz
http://doc.ubuntu.com/files/packagingguide/xcdroast_0.98+0alpha15-3.diff.gz
packages.debian.org
packages.ubuntu.com
http://changelogs.ubuntu.com/changelogs/pool/universe/x/xcdroast/xcdroast_0.98+0alpha15-1.1ubuntu1/changelog
http://changelogs.ubuntu.com/changelogs/pool/universe/x/xcdroast/xcdroast_0.98+0alpha15-1.1ubuntu1/changelog
http://changelogs.ubuntu.com/changelogs/pool/universe/x/xcdroast/xcdroast_0.98+0alpha15-1.1ubuntu1/changelog
https://launchpad.net/malone/bugs/2698
https://launchpad.net/malone/bugs/2698

Ubuntu Packaging

Now we know how the Ubuntu source was changed. Now we need to see what has changed in the
Debian sources.

debdi ff xcdroast _0.98+0al phal5-1. 1. dsc xcdroast_0. 98+0al phal5-3. dsc > debi an. debdi f f
| ess debi an. debdi f f

Thereisalot morein this debdiff than in the last one. One way we can get a better idea of what has
changed is to see what files were changed in the debdiff:

grep diff debian. debdiff

Thisindicates that debian/postinst, debian/rules, debian/changel og, debian/doc-base.manual,
debian/control, and debian/menu were changed in the new Debian version.

Thus we can see that we need to check debian/rules to seeif the Ubuntu changes were made. We can
also see that debian/dirs was not changed from the old Debian version. Let us now look at the files.
We can unpack the source package by using dpkg-source:

dpkg- source -x xcdroast_0.98+0al phal5- 3. dsc

Thiswill decompress the xcdroast_0.98+0al phal5.orig.tar.gz file, create a xcdroast-0.98+0a phal5
directory, and apply the changes found in xcdroast_0.98+0alphal5-3.diff.gz.

Now navigate to the debian directory:

cd xcdroast - 0. 98+0al phal5/ debi an

Onecan seeinrul es that changes made by Ubuntu were not applied to the new Debian version. This
means that:

cp debi an/ xcdroast. xpm ~pwd / debi an/ $(PACKAGE) / usr/ shar e/ pi xmaps

...should be changed to:

#cp debi an/ xcdroast. xpm * pwd® / debi an/ $(PACKAGE) / usr/ shar e/ pi xmaps

#install desktop and icon

install -D -m 644 $(CURDI R)/ debi an/ xcdr oast . deskt op \

$(CURDI R) / debi an/ xcdr oast / usr/ shar e/ appl i cati ons/ xcdr oast . deskt op
install -D -m 644 $(CURDI R)/ debi an/ xcdr oast . xpm \

$(CURDI R) / debi an/ xcdr oast / usr/ shar e/ pi xmaps/ xcdr oast . xpm

Now indi rs, the following line needs to be added for the .desktop file to be installed:

usr/ share/ applications

Now we need the actual .desktop file (saved as debian/xcdroast.desktop). From the ubuntu.debdiff (or
the Ubuntu source package), we seethat it is:

[Desktop Entry]

51

Ubuntu Packaging

Encodi ng=UTF- 8

Name=X- CD- Roast

Comrent =Create a CD

Exec=xcdr oast

| con=xcdr oast . xpm
Type=Application

Cat egori es=Appl i cati on; Audi oVi deo

The last change that heedsto be madeisin changel og. Not only do we need to add what we have just
done (merge with Debian), but we should also add in the previous Ubuntu changelog entries. To do
this, run dch -i -D dapper and put something to the effect of:

xcdroast (0.98+0al phal5-3ubuntul) dapper; urgency=Il ow
* Resynchroni se with Debian

Make sure to change the version number to the correct Ubuntu version. Also add:

xcdroast (0.98+0al phal5-1. lubuntul) breezy; urgency=l ow
* Fix and install existing .desktop file. (C oses Ml one #2698)
- Captain Packager <packager @ool ness.con> Sat, 1 Oct 2005 19:39:04 -0400
between the 0.98+0alphal5-1.1 and 0.98+0al phal5-2 log entries.

Now you can build and test the new source packages. There are different ways to do this, but one
exampleis:

cd ..

debuild -S

cd ..

sudo pbuil der build xcdroast_0.98+0al phal5- 3ubuntul. dsc

Thiswill recreate the source package, sign it with your default GPG key, and build the packagein a
pbuilder environment to make sure it builds correctly. Make sure to always test your packages before
submitting patches. The last step isto make a debdiff that can be attached to an existing bug report or
given to the MOTUs in the #ubuntu-motu IRC channel. To do this, we get the difference between the
Debian unstable source package and the new Ubuntu version:

debdi ff xcdroast _0. 98+0al phal5- 3. dsc xcdroast _0. 98+0al phal5- 3ubunt ul. dsc > \
xcdr oast _0. 98+0al phal5- 3ubunt ul. debdi f f

52

Ubuntu Packaging

3. Packaging for Kubuntu

As one might imagine, the main packaging issues specific to Kubuntu are with KDE and Qt.

3.1. Build Dependencies

Kubuntu programs are mostly KDE ones. Therefore, they need to Build-Depend on kdel i bs4- dev.
Since KDE'sfocusis to have programs interacting, some programs might also need to Build-Depend
on other parts of KDE, such askdepi m dev. Be sure to get the list of necessary dependencies for your
program.

3.2. Desktop Files

KDE has some specific paths. Most settings for KDE are installed in either / et c/ kde3/ or

/ usr/ shar e/ apps/ . It isimportant to note that the general desktop files for KDE should go to
/usr/share/ appli cations/ kde/ . Theinstall path for the desktop files should be fixed if they do not
use this (except for desktop files like service menus).

KDE desktop files also need specific entries to fit in the KMenu. A minimal desktop file for aKDE
program could be something like this:

[Desktop Entry]

Encodi ng=UTF- 8

Name=Kf oo

Narre[xx] =Kf oo

Generi cNane=Bar description
Exec=kf oo

| con=kf oo

Term nal =f al se

Cat egories=Qt ; KDE;, Utility;

Note that the Categories field must begin with Qt;KDE;. There are specific desktop file entries for
KDE programs and modules that allow su to declare the given programs as KCModules or autostart
them when logging in.

3.3. Generating .pot Files

The Ubuntu translation website, Rosetta [https://launchpad.net/rosettal], now supports KDE, which
means KDE packages need to support Rosetta by generating .pot template files for trandators. If
you use cdbs in edgy, your package should now automatically build and check for a.pot filein po/
directory.

Y ou will need the kdepot patch [../files/kubuntu_01 kdepot.diff] (or similar; it may not apply cleanly
depending on the age of the admin directory).

If your package uses debhelper or cdbs and includes its own kde.mk file, you need to add the rules
yourself.

53

https://launchpad.net/rosetta/
https://launchpad.net/rosetta/
../files/kubuntu_01_kdepot.diff
../files/kubuntu_01_kdepot.diff

Ubuntu Packaging

For cdbs, add these lines to debian/rules:

common- post - bui | d-arch: :
nkdir -p po
XCGETTEXT=/ usr/ bi n/ kde- xgettext sh admi n/cvs.sh extract-nmessages

cl ean::
rm-rf po

For debhelper, add the following to the end of the install rule:
nkdir -p po
XGETTEXT=/ usr/ bi n/ kde- xgettext sh adm n/cvs.sh extract-nmessages

Also for debhelper, add the following to the clean rule:

rm-f po/*.pot

Chapter 7. Bugs

One thing that you will ailmost certainly face as a packager is a bug in the software itself or in your
packaging. Packaging bugs are often fairly easy and straightforward to fix. However, as packagers
often act astheinitial contact for software bugs for the users of their distribution(s), they also
implement temporary fixes and are responsible for forwarding bug reports and fixes to the original
(upstream) authors.

The Ubuntu Bug Sguad [https://wiki.ubuntu.com/BugSquad] is the Quality Assurance (QA) team
for Ubuntu. The people in the team work tirelessly to make Ubuntu a better place. They keep track
of al the bugs in the Ubuntu Distribution and make sure that major bugs don't go unnoticed by
the developers. Anyone can join the Bug Squad and it is agreat entry point for people wanting

to contribute to Ubuntu. The Bug Squad can be found on the #ubuntu-bugs IRC channel on
irc.ubuntu.com

55

https://wiki.ubuntu.com/BugSquad
https://wiki.ubuntu.com/BugSquad

Bugs

1. Bug Tracking Systems

In order to track bugs (both software and packaging), many distributions have devel oped bug tracking
systems to manage bug reports and to notify the package maintainers and reporters of changes. The
table below shows some of the Debian and Ubuntu tools for tracking bugs.

Bug Tracking Systems (BTS)

Debian : http://bugs.debian.org

Ubuntu : http://launchpad.net/mal one/distros/ubuntu

Bugsfor Specific Packages

Debian : http://bugs.debian.org/< packagename>

Ubuntu : use search at Ubuntu BTS

Bugsfor Source Packages

Debian : http://bugs.debian.org/src.< packagename>

Ubuntu : https://launchpad.net/distros/ubuntu/+source/< packagename>/+bugs
Package Information

Debian : http://packages.debian.org or http://packages.qa.debian.org/< packagename>

Ubuntu : http://packages.ubuntu.com or
https://launchpad.net/di stros/ubuntu/+source/< packagename> for source packages

56

http://bugs.debian.org
http://launchpad.net/malone/distros/ubuntu
http://packages.debian.org
http://packages.ubuntu.com

Bugs

2.Bug Tips

2.1. Proper source package

Assigning bugs to packages helps direct bug reports to the devel oper(s) most likely to be able to
help. By ensuring that this information is accurate, you increase the chances of the bug being fixed
promptly. Often, it is unclear which package contains the bug, and in these casesit is appropriate to
file the bug in Ubuntu. If abug is assigned to a package which is clearly not correct, and you don't
know the correct package, change it to Ubuntu.

The correct package for bugs in the Linux kernel islinux, regardless of which particular packageisin
use (there are many packages which contain Linux kernels).

2.2. Confirming problems

If abug is marked as Unconfirmed, it is helpful for you to try to reproduce the problem and record the
resultsin Malone. If you are able to confirm the problem, you may change the status to Confirmed.

If you are unable to confirm the problem, that is also useful information that should be recorded in a
comment.

Forwar ding bugs upstream

Y ou can forward bugs to the authors of the software (upstream), if
» you made sure that the bug doesn't occur because of Ubuntu related changes

* the changeistoo hard to be fixed by yourself or anyone else on the team

If you do this, be sure to include all the necessary information, such as

* how to reproduce the bug

» which version is used (which version of dependent libraries, if the bug indicates problems there)
» who reported it

» where the whole conversation can be found

Make sure to also create a bug watch in Malone for this bug.

2.3. How to Deal with Feature Requests

If you feel that the bug reported is afeature request disguised as a bug report, please introduce the
reporter gently to the specification process we have. Be sure to mention the following specification
resources. FeatureSpecifications, SpecSpec, SpecTemplate, and http://launchpad.net/specs

2.4. How to deal with Support Requests

If you feel that the bug reported is a support request disguised as a bug report, please introduce the
reporter gently to the Support Tracker we have. Be sure to mention http://launchpad.net/support.

57

http://launchpad.net/specs
http://launchpad.net/support

Bugs

2.5. How to deal with suggestions for changing defaults

If you feel that the bug reported is a suggestion for changing defaults disguised as a bug report,
please kindly reroute the discussion to an appropriate mailing list or discussion forum. If this change
has already been discussed and rejected, explain the reasons to the user and direct him or her to the
relevant discussion for further suggestions/comments.

2.6. Finding Duplicates

Finding duplicates of bugsis a very valuable contribution in the Bug community. Users sometimes
don't know how to check if the same bug has already been filed, and sometimes they don't care.
Weeding out simple ME TOO messages and aggregating information is crucial to the process of
fixing a bug.

There are quite a few measures you can take to assist with this aspect. One isto search for bugs filed
for the same component. Also try to rephrase your search, and concentrate on actions and words that
describe the itemsinvolved to reproduce the bug.

Examples:

» Easy ones: DAAP support [https://launchpad.net/malone/bugs/24932] is a duplicate of please
enable daap [https://launchpad.net/mal one/bugs/24860] .

» Moredifficult ones: plug: spdif on emul0k1 gone after breezy upgrade
[https://launchpad.net/mal one/bugs/24011] is a duplicate of Muted sound after dist-upgrade from
Hoary to Breezy [https://launchpad.net/mal one/bugs/21804].

If you can't find it in the list of open bugs, you could try to find it in the list of closed ones. Don't feel
discouraged if you don't find duplicates quickly in the beginning. After sometime, you will recognize
the usual suspects and will be able to identify them more easily.

e If you encounter abug that has aterrible/unintelligible title, rephrase it so people find it
- more quickly.

2.7. #Reminder of the Code of Conduct

Note that the Code of Conduct appliesto conversations in bug reports too. If you
observe people being disrespectful, please direct them to the Ubuntu Code of Conduct
[http://www.ubuntu.com/community/conduct].

2.8. Managing Status

Asabug triager or developer bug status an important tool to categorize bugs and have a good
overview of the state of packages and software.

Here's a brief list and explanation of the various statuses:

58

https://launchpad.net/malone/bugs/24932
https://launchpad.net/malone/bugs/24932
https://launchpad.net/malone/bugs/24860
https://launchpad.net/malone/bugs/24860
https://launchpad.net/malone/bugs/24860
https://launchpad.net/malone/bugs/24011
https://launchpad.net/malone/bugs/24011
https://launchpad.net/malone/bugs/21804
https://launchpad.net/malone/bugs/21804
https://launchpad.net/malone/bugs/21804
http://www.ubuntu.com/community/conduct
http://www.ubuntu.com/community/conduct

Bugs

Unconfirmed: Bugs start with this status. Bugs marked Unconfirmed sometimes lack information,
are not ready, or are not confirmed yet. Most of them have not yet been triaged.

Needs Info: If you have to ask the reporter questions, please set this bug to "Needs Info". A regular
task for Needs Info bugsisto ask back. If there are no answers after a reasonabl e period, close them
saying "If you have more information on this bug, please reopen.”

Rejected: Bugs marked as Rejected are closed. Be sure to triple-check a bug before you reject it.
Confirmed: Confirmed bugs require somebody else to confirm. Please don't confirm your own
bugs.

In Progress: If you start working on a bug, set it to In Progress so people know someoneis
working on the bug.

Fix Committed: For upstream projects this meansthe fix isin CVS/SVN/bzr or committed
somewhere. For package maintainers it means that the changes are pending and to be uploaded
soon (it iswhat PENDINGUPLOAD isin Bugzilla)

Fix Released: For upstream projects this means that a release tarball was announced and is publicly
available. For package maintainers this means that a fix was uploaded. Please don't be hesitant to
add a changelog as a comment, so people know which changes affect their bug(s).

2.9. Managing I mportance

Launchpad uses the following guidelines for assigning importance:

Untriaged: the bug report has not be triaged yet. Thisis the default importance for new bugs.

Wishlist: arequest to add a new feature to one of the programsin Ubuntu. Use this for bugs which
aren't really bugs but ideas for new features which do not yet exist.

L ow: bugs that affect functionality, but to alesser extent than most bugs
Mediam: afunctionality bug of the standard variety. Most bugs are of "Medium" severity.

High: abug that has a severe impact on a small portion of Ubuntu users (estimated) or has a
moderate impact on alarge portion of Ubuntu users (estimated)

Critical: abug which has a severe impact on alarge portion of Ubuntu users

59

Appendix A. Appendix

60

Appendix

1. Additional Resour ces

Debian Resour ces

Debian New Maintainers Guide [http://www.debian.org/doc/manual smaint-guide/] - Good
resource for learning to package.

Debian Policy [http://www.debian.org/doc/debian-policy/] - The essentia Policy manual for
Debian and Debian-based distros.

Debian Developer's Reference [http://www.debian.org/doc/manual s/devel opers-reference] -
Specific information for Debian Devel opers but has some items of interest for packagers.
Library Packaging Guide

[http://mww.netfort.gr.j p/~dancer/column/libpkg-guide/libpkg-guide.html] - Guide for packaging
libraries.

Debian Women Packaging Tutorial
[http://women.alioth.debian.org/wiki/index.php/English/PackagingT utorial] - Another good
introduction to Debian packaging.

Other Resources

IBM Packaging Tutorial [http://www-106.ibm.com/devel operworks/linux/library/I-debpkg.htmi]
Duckcorp CDBS Documentation [https://perso.duckcorp.org/duck/cdbs-doc/cdbs-doc.xhtml]
Ubuntu MOTU Documentation [https://wiki.ubuntu.com/M OTU/Documentation]

Kubuntu Packaging Guide [https.//wiki.ubuntu.com/K ubuntuPackagingGuide]

61

http://www.debian.org/doc/manuals/maint-guide/
http://www.debian.org/doc/manuals/maint-guide/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/manuals/developers-reference/
http://www.debian.org/doc/manuals/developers-reference/
http://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html
http://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html
http://women.alioth.debian.org/wiki/index.php/English/PackagingTutorial
http://women.alioth.debian.org/wiki/index.php/English/PackagingTutorial
http://www-106.ibm.com/developerworks/linux/library/l-debpkg.html
http://www-106.ibm.com/developerworks/linux/library/l-debpkg.html
https://perso.duckcorp.org/duck/cdbs-doc/cdbs-doc.xhtml
https://perso.duckcorp.org/duck/cdbs-doc/cdbs-doc.xhtml
https://wiki.ubuntu.com/MOTU/Documentation
https://wiki.ubuntu.com/MOTU/Documentation
https://wiki.ubuntu.com/KubuntuPackagingGuide
https://wiki.ubuntu.com/KubuntuPackagingGuide

Appendix

2. Chroot Environment

A chroot environment is commonly used for devel opment-related work and is basically an install

of build-related software. It is always a good idea to do devel opment work in a chroot environment,
as it often requires the installation of development packages (whose main purposeisfor building
packages). An example is when a certain application requires the headers and development version

of alibrary to build (e.g. libabc-dev). A normal user would not require the development version of
libabc. Thusit is better to install such development packages in a chroot, leaving the normal operating
environment clean and uncluttered. First, install the required packages:

sudo apt-get install dchroot debootstrap

@ Make suretoinstall at least the version of debootstrap that is from the Ubuntu release
for which you are trying to create the chroot. Y ou may have to download it from
packages.ubuntu.com [http://packages.ubuntu.com] and manually install it with dpkg -i.

The next steps are to create, configure, and enter the chroot environment.

sudo nkdir /var/chroot
echo "nychroot /var/chroot" | sudo tee -a /etc/dchroot.conf
sudo debootstrap --variant=buildd edgy /var/chroot/ http://archive. ubuntu. coni ubuntu/

Creating a chroot environment will take some time as debootstrap downloads and configures
aminimal Ubuntu installation.

sudo cp /etc/resolv.conf /var/chroot/etc/resolv.conf
sudo cp /etc/apt/sources.list /var/chroot/etc/apt/
sudo chroot /var/chroot/

In order to be able to use apt in the chroot, add Ubuntu sources to the chroot's apt sources. For the
moment, ignore any warnings about package authentication:

echo "deb http://archive. ubuntu. conmfubuntu edgy main restricted \
universe nultiverse" > /etc/apt/sources.|ist

echo "deb-src http://archive. ubuntu. confubuntu edgy main restricted \

uni verse nultiverse" >> [etc/apt/sources.|ist

apt-get update

apt-get install build-essential dh-make autonake pbuilder gnupg lintian \
wget debconf devscripts gnupg sudo

apt - get update

exit

Run the following command to configure locales:

sudo chroot /var/chroot/
apt-get install dialog | anguage-pack-en
exit

62

http://packages.ubuntu.com
http://packages.ubuntu.com

Appendix

If you want support for alanguage other than English replace en in language-pack-en with
the appropriate language code.

Next, fix the user and root passwords for the chroot environment. The last line below is to avoid sudo
warnings when resolving in the chroot environment:

sudo cp /etc/passwd /var/chroot/etc/
sudo sed "s/\([M:]*\): [~]*:/\1:*: /" Jetc/shadow | sudo tee /var/chroot/etc/shadow
sudo cp /etc/group /var/chroot/etc/
sudo cp /etc/hosts /var/chroot/etc/

To enable sudo, set up your root password and the first sudo user in the admin group (for the chroot
environment). In the following commands, substitute "<user>" with the username that will be used in
the chroot environment:

sudo cp /etc/sudoers /var/chroot/etc/
sudo chroot /var/chroot/
dpkg-reconfigure passwd

passwd <user>

exit

The system fstab needs to be modified so that the chroot environment will have access to the system
home directories, temp directory, etc. Note that the actual system home directory is used in the chroot
environment.

sudo editor /etc/fstab

Add these lines:

/ home /var/ chroot/hone none bi nd 0 0
/tmp /var/chroot/tnmp none bi nd 0 0
proc- chr oot /var/ chroot/ proc proc defaults 0 0
devpt s-chr oot /var/chroot/dev/pts devpts defaults 0 0

Mount the new fstab entries

sudo nount -a

The default bash profile includes chroot information in the prompt. To make thisvisible:

sudo chroot /var/chroot/
echo nychroot > /etc/debian_chroot
exit

Now use your chroot (you may omit the -c mychroot if there's only one or you just want the first
onein/etc/ dchroot . conf). The -d parameter means that your environment will be preserved. This
parameter is generally useful if you want chrooted applications to seamlessly use your X server, your
$Eession manager, etc.

63

Appendix

dchroot -c nychroot -d

Appendix

3. dh_make examplefiles

Readme.Debian
Thisfile is used to document changes that you have made to the original upstream source that
other people might need to know or information specific to Debian or Ubuntu.

conffiles.ex
If the package installs a configuration file, when the package is upgraded dpkg can prompt a user
whether to keep his or her version if modified or install the new version. Such configuration files
should belisted inconffi | es (one per ling). Do not list configuration files that are only modified
by the package or have to be set up by the user to work.

cron.d.ex
If your package requires regularly scheduled tasks to operate properly, you can use thisfile to
configureit. If you use thisfile, renameit tocron. d.

dirs
Thisfile specifies the directories that are needed but the normal installation procedure (make
installapplication) somehow doesn't create.

docs
Thisfile specifies the filenames of documentation files that dh_installdocs will install into the
temporary directory.

emacsen-*.ex
Thisfile specifies Emacs files that will be bytecompiled at install time. They are installed into the
temporary directory by dh_installemacsen.

init.d.ex
If your package is a daemon that needs to be run at system startup rename thisfiletoinit. d and
adjust it to your needs.

manpage.1.ex and manpage.sgml.ex
These files are templates for man pages if the package does not already have one.

menu.ex
Thisfileis used to add your package to the Debian menu. Ubuntu does not use Debian
menu files but uses the freedesktop.org [http://www.freedesktop.org] standard .desktop
[http://standards.freedesktop.org/desktop-entry-spec/l atest/] files.

watch.ex
The package maintainer can use the uscan program and awat ch file to check for a new upstream
source tarball.

ex.package.doc-base
Thisfileis used to register your package's documentation (other than man and info pages) with
doc-base.

postinst.ex, preinst.ex, postrm.ex, and prerm.ex
These maintainer scripts are run by dpkg when the package is installed, upgraded, or removed.

65

http://www.freedesktop.org
http://www.freedesktop.org
http://standards.freedesktop.org/desktop-entry-spec/latest/
http://standards.freedesktop.org/desktop-entry-spec/latest/

Appendix

@ For more details refer to the Debian New Maintainer's Guide
[http://mww.debian.org/doc/maint-guide/ch-dother.en.html].

66

http://www.debian.org/doc/maint-guide/ch-dother.en.html
http://www.debian.org/doc/maint-guide/ch-dother.en.html

Appendix

4. List of debhelper scripts

dh_builddeb
dh_clean
dh_compress
dh_desktop
dh_fixperms
dh_gconf
dh_gencontrol
dh_iconcache
dh_install
dh_installcatalogs
dh_installchangelogs
dh_installcron
dh_installdeb
dh_installdebconf
dh_installdefoma
dh_installdirs
dh_installdocs
dh_installemacsen
dh_installexamples
dh_instalinfo
dh_installinit
dh_installlogcheck
dh_installlogrotate
dh_installman
dh_installmenu
dh_installmime
dh_installmodules
dh_installpam
dh_installppp
dh_installtexfonts
dh_installwm
dh_installxfonts
dh_installxmlcatalogs
dh_link

67

Appendix

dh_listpackages
dh_makeshlibs
dh_md5sums
dh_perl
dh_python
dh_scrollkeeper
dh_shlibdeps
dh_strip
dh_testdir
dh_testroot

dh_usrlocal

68

Appendix B. GNU General Public License

Version 2, June 1991
Copyright © 1989, 1991 Free Software Foundation, Inc.

Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301
USA

Everyoneis permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.
Version 2, June 1991

69

GNU General Public License

1. Preamble

The licenses for most software are designed to take away your freedom to share and changeit. By
contrast, the GNU General Public License isintended to guarantee your freedom to share and change
free software - to make sure the software is free for all its users. This General Public License applies
to most of the Free Software Foundation's software and to any other program whaose authors commit
to using it. (Some other Free Software Foundation software is covered by the GNU Library General
Public License instead.) Y ou can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for this service if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs; and that you know you can do these
things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for afee, you must give the
recipients all the rights that you have. Y ou must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps:
1. copyright the software, and

2. offer you this license which gives you legal permission to copy, distribute and/or modify the
software.

Also, for each author's protection and ours, we want to make certain that everyone understands that
thereis no warranty for this free software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original, so that any problems introduced
by otherswill not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of afree program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

70

GNU General Public License

2. TERMSAND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

2.1. Section 0

This License appliesto any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”,
below, refersto any such program or work, and a“work based on the Program” means either the
Program or any derivative work under copyright law: that isto say, awork containing the Program
or aportion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, trandation is included without limitation in the term “modification”.) Each licenseeis
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been made
by running the Program). Whether that is true depends on what the Program does.

2.2. Section 1

Y ou may copy and distribute verbatim copies of the Program'’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact al the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

Y ou may charge afee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for afee.

2.3. Section 2

Y ou may modify your copy or copies of the Program or any portion of it, thus forming awork based
on the Program, and copy and distribute such modifications or work under the terms of Section 1
above, provided that you also meet al of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part containsor is
derived from the Program or any part thereof, to be licensed as awhole at ho charge to al third
parties under the terms of this License.

c. If themodified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide awarranty) and that users may redistribute the program under these

71

GNU General Public License

conditions, and telling the user how to view a copy of this License. (Exception: If the Program
itself isinteractive but does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as awhole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate worksin
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of awhole which is awork based
on the Program, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent isto exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

2.4. Section 3

Y ou may copy and distribute the Program (or awork based on it, under Section 2 in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a. Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b. Accompany it with awritten offer, valid for at least three years, to give any third party, for
a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding source
code. (This aternativeis allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for awork means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for al modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of
the executable. However, as a specia exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

72

GNU General Public License

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source along
with the object code.

2.5. Section 4

Y ou may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

2.6. Section 5

You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions

are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and al itsterms and conditions for copying, distributing or modifying the Program or works based on
it.

2.7. Section 6

Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives alicense from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. Y ou may not impose any further restrictions on the recipients
exercise of the rights granted herein. Y ou are not responsible for enforcing compliance by third
parties to this License.

2.8. Section 7

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under

this License and any other pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit royalty-free redistribution of the
Program by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section isintended to apply and the section as awhole isintended to apply in other
circumstances.

73

GNU General Public License

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which isimplemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or sheis
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

2.9. Section 8

If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

2.10. Section 9

The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which appliesto it and “any later version”, you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

2.11. Section 10

If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

2.12. NO WARRANTY Section 11

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE ISNO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM “AS IS’ WITHOUT WARRANTY OF ANY KIND,

74

GNU General Public License

EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK ASTO THE QUALITY AND PERFORMANCE OF THE PROGRAM 1S
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

2.13. Section 12

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HASBEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

75

GNU General Public License

3. How to Apply These Termsto Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best
way to achieve thisisto make it free software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name
of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Seethe GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
USA

Also add information on how to contact you by electronic and paper mail.

If the program isinteractive, make it output a short notice like thiswhen it startsin an interactive
mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with
ABSOLUTELY NO WARRANTY: for details type “show w”. Thisis free software, and you are
welcome to redistribute it under certain conditions; type “show ¢” for details.

The hypothetical commands “show w” and “show ¢” should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than “show w” and
“show c”; they could even be mouse-clicks or menu items--whatever suits your program.

Y ou should also get your employer (if you work as a programmer) or your schoal, if any, to signa
“copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Y oyodyne, Inc., hereby disclaims all copyright interest in the program “Gnomovision” (which makes
passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

76

GNU General Public License

This General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary

applications with the library. If thisiswhat you want to do, use the GNU Library General Public
Licenseinstead of this License.

77

	The Ubuntu Packaging Guide
	Table of Contents
	About This Guide
	1. Conventions
	2. Contributing and Feedback

	Chapter 1. Introduction
	1. Where to Begin
	2. Prerequisites

	Chapter 2. Getting Started
	1. Binary and Source Packages
	2. Packaging Tools
	3. The Personal Builder: pbuilder
	3.1. Installing and configuring a pbuilder environment
	3.2. Using the pbuilder
	3.3. Updating the pbuilder
	3.4. Multiple pbuilders

	Chapter 3. Basic Packaging
	1. Packaging From Scratch
	1.1. changelog
	1.2. control
	1.3. copyright
	1.4. rules
	1.5. postinst and prerm
	1.6. Building the Source Package

	2. Packaging with Debhelper
	2.1. Building the Source Package

	3. Packaging With CDBS
	3.1. Using CDBS in packages
	3.2. More information on CDBS

	4. Common Mistakes
	4.1. dh_make Example Files
	4.2. Changing the Original Tarball
	4.3. Copyright Information

	Chapter 4. Patch Systems
	1. Patching Without a Patch System
	1.1. Example 1.
	1.2. Example 2.

	2. CDBS with Simple Patchsys
	3. dpatch
	4. Patching other people's packages

	Chapter 5. Updating Packages
	Chapter 6. Ubuntu Packaging
	1. Uploading and Review
	1.1. Contributing as an Uploader
	1.1.1. Uploading your packages
	1.1.2. How to login to REVU
	1.1.3. View and comment uploads
	1.1.4. Additional rules
	1.1.5. Getting Help

	2. Merges and Syncs
	2.1. Merging Tutorial

	3. Packaging for Kubuntu
	3.1. Build Dependencies
	3.2. Desktop Files
	3.3. Generating .pot Files

	Chapter 7. Bugs
	1. Bug Tracking Systems
	2. Bug Tips
	2.1. Proper source package
	2.2. Confirming problems
	2.3. How to Deal with Feature Requests
	2.4. How to deal with Support Requests
	2.5. How to deal with suggestions for changing defaults
	2.6. Finding Duplicates
	2.7. Reminder of the Code of Conduct
	2.8. Managing Status
	2.9. Managing Importance

	Appendix A. Appendix
	1. Additional Resources
	2. Chroot Environment
	3. dh_make example files
	4. List of debhelper scripts

	Appendix B. GNU General Public License
	1. Preamble
	2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	2.1. Section 0
	2.2. Section 1
	2.3. Section 2
	2.4. Section 3
	2.5. Section 4
	2.6. Section 5
	2.7. Section 6
	2.8. Section 7
	2.9. Section 8
	2.10. Section 9
	2.11. Section 10
	2.12. NO WARRANTY Section 11
	2.13. Section 12

	3. How to Apply These Terms to Your New Programs

