
Book of Vaadin
4th Edition

Book of Vaadin: 4th Edition
Vaadin Ltd
Marko Grönroos

4th Edition 1st Revision Edition
Vaadin Framework 6.7.0

Published: 2012-04-18
Copyright © 2000-2012 Vaadin Ltd

Abstract

Vaadin is a server-side AJAX web application development framework that enables developers to build
high-quality user interfaces with Java. It provides a library of ready-to-use user interface components and
a clean framework for creating your own components.The focus is on ease-of-use, re-usability, extensibility,
and meeting the requirements of large enterprise applications. Vaadin has been used in production since
2001 and it has proven to be suitable for building demanding business applications.
All rights reserved. This work is licensed under the Creative Commons CC-BY-ND License Version 2.0
[http://creativecommons.org/licenses/by-nd/2.0/legalcode].

http://creativecommons.org/licenses/by-nd/2.0/legalcode
http://creativecommons.org/licenses/by-nd/2.0/legalcode

Table of Contents
Preface .. xiii
I. Vaadin Core Framework .. 1

1. Introduction ... 3
1.1. Overview .. 3
1.2. Example Application Walkthrough .. 5
1.3. Support for the Eclipse IDE ... 6
1.4. Goals and Philosophy ... 6
1.5. Background .. 7

2. Getting Started with Vaadin ... 9
2.1. Setting up the Development Environment ... 9

2.1.1. Installing Java SDK .. 10
2.1.2. Installing Eclipse IDE .. 11
2.1.3. Installing Apache Tomcat .. 12
2.1.4. Firefox and Firebug .. 12

2.2. Installing Vaadin .. 13
2.2.1. Vaadin Plugin for Eclipse .. 13
2.2.2. Installing the JAR Package ... 16

2.3. Your First Project with Vaadin ... 16
2.3.1. Creating the Project ... 16
2.3.2. Exploring the Project .. 21
2.3.3. Setting Up and Starting the Web Server .. 22
2.3.4. Running and Debugging ... 24

2.4. Creating a Project with NetBeans ... 25
2.4.1. Regular Web Application Project ... 25
2.4.2. Maven Project from Vaadin Archetype ... 26

2.5. Creating a Project with Maven ... 27

3. Architecture ... 31
3.1. Overview .. 31
3.2. Technological Background ... 34

3.2.1. AJAX ... 34
3.2.2. Google Web Toolkit .. 34
3.2.3. JSON .. 35

3.3. Applications as Java Servlet Sessions .. 35
3.4. Client-Side Engine .. 35
3.5. Events and Listeners ... 37

4. Writing a Web Application .. 39
4.1. Overview .. 39
4.2. Managing the Main Window ... 42
4.3. Sub-Windows ... 43

4.3.1. Opening and Closing a Sub-Window ... 43
4.3.2. Window Positioning .. 45
4.3.3. Scrolling Sub-Window Content .. 45
4.3.4. Modal Windows .. 46

4.4. Handling Events with Listeners .. 46
4.5. Referencing Resources ... 49

4.5.1. Resource Interfaces and Classes .. 49
4.5.2. File Resources ... 50
4.5.3. Class Loader Resources .. 50
4.5.4. Theme Resources .. 50

iiiBook of Vaadin

4.5.5. Stream Resources ... 50
4.6. Shutting Down an Application .. 52

4.6.1. Closing an Application .. 52
4.6.2. Handling the Closing of a Window ... 53

4.7. Handling Errors ... 53
4.7.1. Error Indicator and message ... 53
4.7.2. Notifications ... 54
4.7.3. Customizing System Messages .. 56
4.7.4. Handling Uncaught Exceptions .. 57

4.8. Setting Up the Application Environment .. 58
4.8.1. Creating Deployable WAR in Eclipse ... 59
4.8.2. Web Application Contents ... 59
4.8.3. Deployment Descriptor web.xml .. 59

5. User Interface Components ... 63
5.1. Overview .. 64
5.2. Interfaces and Abstractions ... 65

5.2.1. Component Interface ... 66
5.2.2. AbstractComponent ... 67
5.2.3. Field Components (Field and AbstractField) 67

5.3. Common Component Features .. 70
5.3.1. Caption ... 70
5.3.2. Description and Tooltips .. 71
5.3.3. Enabled ... 72
5.3.4. Icon ... 73
5.3.5. Locale ... 73
5.3.6. Read-Only ... 76
5.3.7. Style Name .. 77
5.3.8. Visible ... 77
5.3.9. Sizing Components .. 78
5.3.10. Managing Input Focus .. 80

5.4. Label ... 80
5.4.1. Content Mode .. 81
5.4.2. Making Use of the XHTML Mode ... 83
5.4.3. Spacing with a Label .. 84
5.4.4. CSS Style Rules .. 84

5.5. Link ... 84
5.6. TextField ... 86

5.6.1. Data Binding .. 87
5.6.2. String Length ... 88
5.6.3. Handling Null Values .. 88
5.6.4. Text Change Events ... 89
5.6.5. CSS Style Rules .. 90

5.7. TextArea .. 91
5.8. PasswordField .. 92
5.9. RichTextArea .. 92
5.10. Date and Time Input with DateField ... 94

5.10.1. PopupDateField .. 95
5.10.2. InlineDateField ... 97
5.10.3. Time Resolution ... 98
5.10.4. DateField Locale .. 99

5.11. Button ... 99
5.12. CheckBox .. 100
5.13. Selecting Items ... 100

iv

Book of Vaadin

5.13.1. Binding Selection Components to Data .. 101
5.13.2. Basic Select Component .. 105
5.13.3. ListSelect ... 107
5.13.4. Native Selection Component NativeSelect 107
5.13.5. Radio Button and Check Box Groups with OptionGroup 108
5.13.6. Twin Column Selection with TwinColSelect 110
5.13.7. Allowing Adding New Items ... 111
5.13.8. Multiple Selection Mode .. 112
5.13.9. Other Common Features .. 113

5.14. Table .. 113
5.14.1. Selecting Items in a Table ... 115
5.14.2. Table Features ... 116
5.14.3. Editing the Values in a Table .. 119
5.14.4. Column Headers and Footers .. 122
5.14.5. Generated Table Columns ... 124
5.14.6. Formatting Table Columns ... 127
5.14.7. CSS Style Rules ... 128

5.15. Tree ... 131
5.16. MenuBar .. 132
5.17. Embedded ... 133

5.17.1. Embedded Objects ... 134
5.17.2. Embedded Images ... 134
5.17.3. Browser Frames ... 135

5.18. Upload ... 135
5.19. Form .. 138

5.19.1. Form as a User Interface Component .. 138
5.19.2. Binding Form to Data .. 140
5.19.3. Validating Form Input .. 143
5.19.4. Buffering Form Data ... 145

5.20. ProgressIndicator ... 146
5.20.1. Doing Heavy Computation .. 146

5.21. Slider ... 147
5.22. LoginForm ... 149

5.22.1. Customizing LoginForm .. 150
5.23. Component Composition with CustomComponent 152

6. Managing Layout ... 155
6.1. Overview .. 156
6.2. Window and Panel Root Layout .. 158
6.3. VerticalLayout and HorizontalLayout ... 158

6.3.1. Sizing Contained Components .. 159
6.4. GridLayout .. 163

6.4.1. Sizing Grid Cells .. 164
6.5. FormLayout ... 166
6.6. Panel ... 168

6.6.1. Scrolling the Panel Content ... 170
6.7. HorizontalSplitPanel and VerticalSplitPanel .. 172
6.8. TabSheet ... 174
6.9. Accordion ... 177
6.10. AbsoluteLayout ... 178
6.11. CssLayout ... 180
6.12. Layout Formatting ... 183

6.12.1. Layout Size .. 183
6.12.2. Layout Cell Alignment ... 184

v

Book of Vaadin

6.12.3. Layout Cell Spacing .. 186
6.12.4. Layout Margins ... 188

6.13. Custom Layouts .. 190

7. Visual User Interface Design with Eclipse .. 193
7.1. Overview .. 193
7.2. Creating a New Composite .. 194
7.3. Using The Visual Designer ... 196

7.3.1. Adding New Components ... 197
7.3.2. Setting Component Properties .. 198
7.3.3. Editing an AbsoluteLayout .. 200

7.4. Structure of a Visually Editable Component .. 202
7.4.1. Sub-Component References ... 202
7.4.2. Sub-Component Builders .. 203
7.4.3. The Constructor ... 203

8. Themes .. 205
8.1. Overview .. 205
8.2. Introduction to Cascading Style Sheets .. 207

8.2.1. Basic CSS Rules .. 207
8.2.2. Matching by Element Class ... 208
8.2.3. Matching by Descendant Relationship ... 209
8.2.4. Notes on Compatibility .. 211

8.3. Creating and Using Themes .. 212
8.3.1. Styling Standard Components ... 212
8.3.2. Built-in Themes .. 214
8.3.3. Using Themes .. 215
8.3.4. Theme Inheritance ... 215

8.4. Creating a Theme in Eclipse .. 216

9. Binding Components to Data ... 219
9.1. Overview .. 219
9.2. Properties .. 221

9.2.1. Property Viewers and Editors .. 222
9.2.2. ObjectProperty Implementation ... 223
9.2.3. Implementing the Property Interface ... 223

9.3. Holding properties in Items .. 224
9.3.1. The PropertysetItem Implementation ... 225
9.3.2. Wrapping a Bean in a BeanItem ... 225

9.4. Collecting Items in Containers .. 227
9.4.1. BeanContainer ... 228
9.4.2. BeanItemContainer .. 230
9.4.3. Iterating Over a Container ... 231
9.4.4. Filterable Containers ... 232

10. Vaadin SQLContainer ... 235
10.1. Architecture .. 236
10.2. Getting Started with SQLContainer .. 236

10.2.1. Creating a connection pool .. 236
10.2.2. Creating the TableQuery Query Delegate 237
10.2.3. Creating the Container .. 237

10.3. Filtering and Sorting .. 237
10.3.1. Filtering ... 237
10.3.2. Sorting .. 238

10.4. Editing .. 238

vi

Book of Vaadin

10.4.1. Adding items .. 238
10.4.2. Fetching generated row keys ... 238
10.4.3. Version column requirement .. 239
10.4.4. Auto-commit mode ... 239
10.4.5. Modified state .. 239

10.5. Caching, Paging and Refreshing .. 240
10.5.1. Container Size ... 240
10.5.2. Page Length and Cache Size .. 240
10.5.3. Refreshing the Container .. 240
10.5.4. Cache Flush Notification Mechanism ... 241

10.6. Referencing Another SQLContainer .. 241
10.7. Using FreeformQuery and FreeformStatementDelegate 242
10.8. Non-implemented methods of Vaadin container interfaces 243
10.9. Known Issues and Limitations .. 244

11. Developing New Components .. 247
11.1. Overview .. 248
11.2. Doing It the Simple Way in Eclipse ... 249

11.2.1. Creating a Widget ... 249
11.2.2. Recompiling the Widget Set .. 252
11.2.3. Plugin Related Project Settings ... 252

11.3. Google Web Toolkit Widgets ... 254
11.3.1. Extending a Vaadin Widget ... 255
11.3.2. Example: A Color Picker GWT Widget ... 255
11.3.3. Styling GWT Widgets .. 257

11.4. Integrating a GWT Widget .. 258
11.4.1. Deserialization of Component State from Server 259
11.4.2. Serialization of Component State to Server 260
11.4.3. Example: Integrating the Color Picker Widget 262

11.5. Defining a Widget Set .. 263
11.6. Server-Side Components ... 264

11.6.1. Binding to the Client-Side Widget .. 264
11.6.2. Server-Client Serialization ... 265
11.6.3. Client-Server Deserialization ... 265
11.6.4. Example: Color Picker Server-Side Component 266

11.7. Using a Custom Component .. 267
11.7.1. Example: Color Picker Application ... 267
11.7.2. Web Application Deployment ... 268

11.8. GWT Widget Development ... 269
11.8.1. Creating a Widget Project ... 269
11.8.2. Importing GWT Installation Package .. 270
11.8.3. Writing the Code .. 270
11.8.4. Compiling GWT Widget Sets ... 271
11.8.5. Ready to Run ... 274
11.8.6. GWT Development Mode .. 275
11.8.7. Packaging a Widget Set .. 281
11.8.8. Troubleshooting .. 281

12. Advanced Web Application Topics ... 283
12.1. Special Characteristics of AJAX Applications .. 284
12.2. Application-Level Windows .. 284

12.2.1. Creating New Application-Level Windows 285
12.2.2. Creation of Windows When Requested .. 287
12.2.3. Dynamic Multi-Window Applications .. 288

vii

Book of Vaadin

12.2.4. Closing Windows .. 290
12.2.5. Caveats in Using Multiple Windows ... 290

12.3. Embedding Applications in Web Pages ... 292
12.3.1. Embedding Inside a div Element .. 292
12.3.2. Embedding Inside an iframe Element .. 295
12.3.3. Cross-Site Embedding with the Vaadin XS Add-on 296

12.4. Debug and Production Mode .. 297
12.4.1. Debug Mode .. 297
12.4.2. Analyzing Layouts .. 298
12.4.3. Custom Layouts ... 299
12.4.4. Debug Functions for Component Developers 299

12.5. Resources .. 299
12.5.1. URI Handlers ... 300
12.5.2. Parameter Handlers .. 300

12.6. Shortcut Keys ... 302
12.6.1. Click Shortcuts for Default Buttons ... 302
12.6.2. Field Focus Shortcuts ... 303
12.6.3. Generic Shortcut Actions .. 303
12.6.4. Supported Key Codes and Modifier Keys 305

12.7. Printing ... 306
12.8. Google App Engine Integration .. 307
12.9. Common Security Issues ... 308

12.9.1. Sanitizing User Input to Prevent Cross-Site Scripting 308
12.10. URI Fragment and History Management with UriFragmentUtility 308
12.11. Capturing HTTP Requests ... 310

12.11.1. Using Request and Response Objects 311
12.11.2. Managing Cookies .. 311

12.12. Drag and Drop .. 313
12.12.1. Handling Drops .. 313
12.12.2. Dropping Items On a Tree ... 314
12.12.3. Dropping Items On a Table ... 316
12.12.4. Accepting Drops ... 316
12.12.5. Dragging Components .. 319
12.12.6. Dropping on a Component .. 320
12.12.7. Dragging Files from Outside the Browser 321

12.13. Logging .. 321
12.14. Accessing Session-Global Data ... 322

12.14.1. Passing References Around .. 324
12.14.2. Overriding attach() ... 324
12.14.3. ThreadLocal Pattern ... 325

13. Portal Integration ... 329
13.1. Deploying to a Portal ... 330
13.2. Creating a Portal Application Project in Eclipse 330
13.3. Portlet Deployment Descriptors .. 332
13.4. Portlet Hello World .. 337
13.5. Installing Vaadin in Liferay .. 337
13.6. Handling Portlet Requests ... 339
13.7. Handling Portlet Mode Changes ... 340
13.8. Non-Vaadin Portlet Modes ... 342
13.9. Vaadin Control Panel for Liferay .. 344

13.9.1. Installing .. 345
13.9.2. Using the Control Panel .. 345

13.10. Vaadin IPC for Liferay .. 346

viii

Book of Vaadin

13.10.1. Installing the Add-on ... 348
13.10.2. Basic Communication ... 349
13.10.3. Considerations ... 349
13.10.4. Communication Through Session Attributes 350
13.10.5. Serializing and Encoding Data ... 351
13.10.6. Communicating with Non-Vaadin Portlets 352

13.11. Remote Portlets with WSRP ... 353
13.11.1. Installing the Add-on ... 353
13.11.2. Configuring a Remote Portlet .. 354
13.11.3. Producer Configuration ... 354
13.11.4. Consumer Configuration ... 355
13.11.5. Advanced Configuration .. 356

14. Rapid Development Using Vaadin and Roo .. 357
14.1. Overview .. 358
14.2. Setting Up the Environment ... 358

14.2.1. Installing Spring Roo .. 359
14.2.2. Creating the Project .. 359
14.2.3. Installing Vaadin Plugin for Spring Roo ... 359
14.2.4. Setting up the Roo Data Layer .. 360

14.3. Creating the Domain Model ... 360
14.3.1. Domain Model Design .. 360
14.3.2. Creating the Model in Roo .. 361

14.4. Creating Vaadin Application and CRUD Views ... 361
14.4.1. Creating the Application Skeleton .. 362
14.4.2. Generating CRUD Views ... 362
14.4.3. Deploying to Development Server .. 362

14.5. Using Vaadin Add-ons in a Roo project ... 362
14.5.1. Installing Add-ons ... 363
14.5.2. Compiling the Widget Set .. 363
14.5.3. Configuring the Deployment Assembly ... 364

14.6. Customizing Views .. 364
14.6.1. Modifying Roo generated entity form ... 364
14.6.2. Creating a Calendar View for Filling Work Entries 365
14.6.3. Creating a Custom View for Reporting ... 366

14.7. Authentication and Authorization .. 366
14.7.1. Implementing Authentication and Authorization 366

14.8. Internationalization .. 368
14.9. Testing the Application ... 370

14.9.1. Overview of Testing .. 370
14.9.2. Running the Test Server .. 371
14.9.3. Installing TestBench with Maven .. 372
14.9.4. Generating JUnit Tests .. 372
14.9.5. Configuring System Properties .. 372
14.9.6. Notes .. 373

14.10. Exception Handling ... 373
14.10.1. Preventing Stacktraces in the UI .. 373
14.10.2. Where to Catch Exceptions ... 374

14.11. Deploying to Cloud Foundry ... 375
14.11.1. Installing the Cloud Foundry Plug-in in STS 375
14.11.2. Deploying the Application .. 375
14.11.3. Binding to the MySQL Service ... 376

II. Vaadin Add-ons ... 379

ix

Book of Vaadin

15. Using Vaadin Add-ons .. 381
15.1. Overview .. 381
15.2. Downloading Add-ons from Vaadin Directory ... 381
15.3. Compiling Add-on Widget Sets ... 382

15.3.1. Compiling Widget Sets in Eclipse .. 382
15.3.2. Compiling Widget Sets with an Ant Script 383
15.3.3. Troubleshooting .. 383

15.4. Removing Add-ons .. 384
15.5. Using Add-ons in a Maven Project .. 384

15.5.1. Adding a Dependency .. 384
15.5.2. Enabling Widget Set Compilation ... 385
15.5.3. Updating and Compiling the Project Widget Set 387

16. Vaadin Calendar ... 389
16.1. Overview .. 389
16.2. Installing Calendar .. 392
16.3. Basic Use ... 392

16.3.1. Setting the Date Range ... 392
16.3.2. Adding and Managing Events .. 393
16.3.3. Getting Events from a Container .. 393

16.4. Implementing an Event Provider ... 395
16.4.1. Custom Events ... 395
16.4.2. Implementing the Event Provider ... 397

16.5. Configuring the Appearance .. 397
16.5.1. Sizing .. 397
16.5.2. Styling ... 397
16.5.3. Visible Hours and Days ... 399

16.6. Drag and Drop .. 399
16.7. Using the Context Menu .. 400
16.8. Localization and Formatting ... 401

16.8.1. Setting the Locale and Time Zone ... 401
16.8.2. Time and Date Caption Format .. 401

16.9. Customizing the Calendar .. 401
16.9.1. Overview of Handlers ... 401
16.9.2. Creating a Calendar ... 402
16.9.3. Backward and Forward Navigation ... 402
16.9.4. Date Click Handling .. 403
16.9.5. Handling Week Clicks ... 403
16.9.6. Handling Event Clicks ... 404
16.9.7. Event Dragging .. 404
16.9.8. Handling Drag Selection ... 405
16.9.9. Resizing Events ... 406

17. Vaadin Timeline .. 407
17.1. Graph types .. 409
17.2. Interaction Elements .. 409
17.3. Event Markers ... 411
17.4. Efficiency .. 411

18. Vaadin JPAContainer .. 413
18.1. Overview .. 413
18.2. Installing ... 415

18.2.1. Downloading the Package ... 416
18.2.2. Installation Package Content ... 416

x

Book of Vaadin

18.2.3. Downloading with Maven .. 417
18.2.4. Including Libraries in Your Project .. 417
18.2.5. Persistence Configuration ... 418
18.2.6. Troubleshooting .. 420

18.3. Defining a Domain Model ... 420
18.3.1. Persistence Metadata ... 421

18.4. Basic Use of JPAContainer .. 423
18.4.1. Creating JPAContainer with JPAContainerFactory 423
18.4.2. Creating and Accessing Entities .. 425
18.4.3. Nested Properties .. 426
18.4.4. Hierarchical Container .. 427

18.5. Entity Providers ... 428
18.5.1. Built-In Entity Providers ... 428
18.5.2. Using JNDI Entity Providers in JEE6 Environment 430
18.5.3. Entity Providers as Enterprise Beans ... 430

18.6. Filtering JPAContainer .. 431
18.7. Querying with the Criteria API .. 431

18.7.1. Filtering the Query .. 432
18.7.2. Compatibility .. 432

18.8. Automatic Form Generation ... 433
18.8.1. Configuring the Field Factory .. 433
18.8.2. Using the Field Factory ... 433
18.8.3. Master-Detail Editor .. 435

18.9. Using JPAContainer with Hibernate .. 435
18.9.1. Lazy loading .. 435
18.9.2. The EntityManager-Per-Request pattern 436
18.9.3. Joins in Hibernate vs EclipseLink .. 436

19. Mobile Applications with TouchKit ... 437
19.1. Overview .. 437
19.2. Considerations Regarding Mobile Browsing .. 438

19.2.1. Mobile Human Interface .. 438
19.2.2. Bandwidth .. 438
19.2.3. Mobile Features ... 439
19.2.4. Compatibility .. 439

19.3. Creating a Project Targeting Multiple Devices .. 439
19.3.1. Using TouchKit Add-on in a Project .. 439
19.3.2. Application ... 440

19.4. Mobile User Interface Components ... 440
19.4.1. NavigationView ... 440
19.4.2. Toolbar ... 442
19.4.3. NavigationManager .. 442
19.4.4. NavigationButton ... 444
19.4.5. Popover .. 444
19.4.6. Switch .. 446
19.4.7. ComponentGroup ... 446
19.4.8. EmailField .. 446
19.4.9. NumberField ... 447

19.5. Mobile Features .. 447
19.5.1. Geolocation ... 447

19.6. Testing and Debugging on Mobile Devices .. 447
19.6.1. Debugging ... 447

20. Vaadin TestBench ... 449

xi

Book of Vaadin

20.1. Overview .. 449
20.2. TestBench Components ... 450
20.3. Requirements ... 451
20.4. Installing Vaadin TestBench .. 452

20.4.1. Test Development Installation .. 453
20.4.2. A Distributed Test Environment .. 453
20.4.3. Downloading and Unpacking the Installation Package 453
20.4.4. Installing the Recorder .. 454
20.4.5. Quick Setup for Playback on a Workstation 455

20.5. Setting Up the Grid Hub ... 456
20.5.1. Configuring the Hub ... 456
20.5.2. Predefined Target Environments .. 457
20.5.3. Browser Identifiers .. 457
20.5.4. Starting the Hub ... 458

20.6. Setting Up Grid Nodes ... 459
20.6.1. Configuring a Remote Control ... 459
20.6.2. Configuring the Run Script .. 460
20.6.3. Starting the Remote Control .. 460
20.6.4. Running Tests Without a Grid Hub ... 460
20.6.5. Browser settings ... 461
20.6.6. Operating system settings ... 461
20.6.7. Settings for Screenshots ... 461

20.7. Using Vaadin TestBench Recorder .. 462
20.7.1. Starting the Recorder ... 462
20.7.2. Recording .. 463
20.7.3. Playing Back Tests .. 464
20.7.4. Editing Tests .. 464
20.7.5. Saving Tests ... 465
20.7.6. Invalid Tests ... 466

20.8. Test Script Commands ... 466
20.8.1. Taking Screen Captures: screenCapture 466
20.8.2. Recording Tooltips: showTooltip ... 467
20.8.3. Recording Text Assertion: assertText .. 467
20.8.4. Asserting CSS Class: assertCSSClass 467
20.8.5. Asserting CSS Class: assertNotCSSClass 467
20.8.6. Connecting Tests Together: includeTest 467
20.8.7. Handling a Confirmation Box: expectDialog 467
20.8.8. Uploading Files: uploadFile .. 467
20.8.9. Shortcut Keys: keyPressSpecial ... 468

20.9. Compiling and Executing JUnit Tests .. 468
20.9.1. Configuring the Ant Script ... 469
20.9.2. Converting HTML Tests ... 471
20.9.3. Compiling JUnit tests .. 473
20.9.4. Executing JUnit Tests .. 473
20.9.5. Comparing Screenshots ... 475

A. User Interface Definition Language (UIDL) .. 479
A.1. API for Painting Components ... 480
A.2. JSON Rendering .. 481

B. Songs of Vaadin .. 485
Index .. 489

xii

Book of Vaadin

Preface
This book provides an overview of the Vaadin Framework and covers the most important topics
that you might encounter while developing applications with it. A more detailed documentation
of the individual classes, interfaces, and methods is given in the Vaadin API Reference.

Writing this manual is ongoing work and it is rarely completely up-to-date with the quick-evolving
product. This revision represents a snapshot in time while working towards Vaadin 6.8. After the
original 4th Edition, the book has been reorganized in two parts so that the Part I documents the
core framework and the Part II the official add-on components.

You can browse an online version of this book at the Vaadin website at
http://vaadin.com/book. You can also find PDF and EPUB versions of the book there. If
you install the Vaadin Plugin for Eclipse, you can browse the book in Eclipse Help.You may find
the HTML or the Eclipse Help plugin version more easily searchable than this printed book or
the PDF version, but the content is the same.

This edition includes an index, which is not yet complete. Many sections are under work and will
be expanded in future.

Who is This Book For?

This book is intended for software developers who use, or are considering to use, Vaadin to de-
velop web applications.

The book assumes that you have some experience with programming in Java, but if not, it is at
least as easy to begin learning Java with Vaadin as with any other UI framework. No knowledge
of AJAX is needed as it is well hidden from the developer.

You may have used some desktop-oriented user interface frameworks for Java, such as AWT,
Swing, or SWT. Or a library such as Qt for C++. Such knowledge is useful for understanding the
scope of Vaadin, the event-driven programming model, and other common concepts of UI
frameworks, but not necessary.

If you do not have a web graphics designer at hand, knowing the basics of HTML and CSS can
help so that you can develop presentation themes for your application. A brief introduction to
CSS is provided. Knowledge of Google Web Toolkit (GWT) may be useful if you develop or integ-
rate new client-side components.

Organization of This Book

The Book of Vaadin gives an introduction to what Vaadin is and how you use it to develop web
applications.

Part I: Vaadin Core Framework

Chapter 1, Introduction The chapter gives introduction to the application archi-
tecture supported by Vaadin, the core design ideas
behind the framework, and some historical background.

Chapter 2, Getting Started with
Vaadin

This chapter gives practical instructions for installing
Vaadin and the reference toolchain, including the
Vaadin Plugin for Eclipse, how to run and debug the

xiiiBook of Vaadin

demos, and how to create your own application project
in the Eclipse IDE.

Chapter 3, Architecture This chapter gives an introduction to the architecture
of Vaadin and its major technologies, including AJAX,
Google Web Toolkit, JSON, and event-driven program-
ming.

Chapter 4, Writing a Web Applic-
ation

This chapter gives all the practical knowledge required
for creating applications with Vaadin, such as window
management, application lifecycle, deployment in a
servlet container, and handling events, errors, and re-
sources.

Chapter 5, User Interface Com-
ponents

This chapter essentially gives the reference document-
ation for all the core user interface components in
Vaadin and their most significant features. The text
gives examples for using each of the components.

Chapter 6, Managing Layout This chapter describes the layout components, which
are used for managing the layout of the user interface,
just like in any desktop application frameworks.

Chapter 7, Visual User Interface
Design with Eclipse

This chapter gives instructions for using the visual editor
for Eclipse, which is included in the Vaadin Plugin for
the Eclipse IDE.

Chapter 8, Themes This chapter gives an introduction to Cascading Style
Sheets (CSS) and explains how you can use them to
build custom visual themes for your application.

Chapter 9, Binding Components
to Data

This chapter gives an overview of the built-in data
model of Vaadin, consisting of properties, items, and
containers.

Chapter 10, Vaadin SQLContain-
er

This chapter gives documentation for the SQLContain-
er, which allows binding Vaadin components to SQL
queries.

Chapter 11, Developing New
Components

This chapter describes the process of creating new
client-side widgets with Google Web Toolkit (GWT) and
integrating them with server-side counterparts. The
chapter also gives practical instructions for creating
widget projects in Eclipse, and using the GWT Devel-
opment Mode to debug widgets.

Chapter 12, Advanced Web Ap-
plication Topics

This chapter provides many special topics that are
commonly needed in applications, such as opening
new browser windows, embedding applications in reg-
ular web pages, low-level management of resources,
shortcut keys, debugging, etc.

Chapter 13, Portal Integration This chapter is describes the development of Vaadin
applications as portlets which you can deploy to any
portal supporting Java Portlet API 2.0 (JSR-286). The

Organization of This Bookxiv

Preface

chapter also describes the special support for Liferay
and the Control Panel, IPC, and WSRP add-ons.

Chapter 14, Rapid Development
Using Vaadin and Roo

This chapter is a tutorial for rapid development of
Vaadin applications with Spring Roo and the Vaadin
Plugin for Eclipse. The tutorial includes aspects such
as internationalization, testing, and database binding
with the JPAContainer add-on.

Part II: Vaadin Add-ons

Chapter 15, Using Vaadin Add-
ons

This chapter gives a instructions for downloading and
installing add-on components from the Vaadin Directory.

Chapter 16, Vaadin Calendar This chapter gives developer documentation for the
Calendar add-on component.

Chapter 17, Vaadin Timeline This chapter gives an introduction to the Timeline add-
on component. The full documentation is included in
the product manual.

Chapter 18, Vaadin JPAContainer This chapter gives documentation for the JPAContainer
add-on, which allows binding Vaadin components dir-
ectly to relational and other databases using Java
Persistence API (JPA).

Chapter 19, Mobile Applications
with TouchKit

This chapter gives examples and reference document-
ation for using the Vaadin TouchKit add-on for develop-
ing mobile applications.

Chapter 20, Vaadin TestBench This chapter gives the complete documentation for us-
ing the Vaadin TestBench tool for recording and execut-
ing user interface regression tests for Vaadin applica-
tions.

Appendix A, User Interface
Definition Language (UIDL)

This appendix gives an outline of the low-level UIDL
messaging language, normally hidden from the de-
veloper. The chapter includes the description of the
serialization API needed for synchronizing the compon-
ent state between the client-side and server-side com-
ponents.

Appendix B, Songs of Vaadin Mythological background of the name Vaadin.

Supplementary Material

The Vaadin websites offer plenty of material that can help you understand what Vaadin is, what
you can do with it, and how you can do it.

Demo Applications The most important demo application for Vaadin is the
Sampler, which demonstrates the use of all basic compon-
ents and features.You can run it on-line at http://demo.vaad-
in.com/ or download it as a WAR from the Vaadin download
page [http://vaadin.com/download/].

xvSupplementary Material

Preface

http://demo.vaadin.com/
http://demo.vaadin.com/
http://vaadin.com/download/
http://vaadin.com/download/
http://vaadin.com/download/

Most of the code examples in this book and many others
can be found online at http://demo.vaadin.com/book-ex-
amples/book/.

Cheat Sheet The two-page cheat sheet illustrates the basic relationship
hierarchy of the user interface and data binding classes
and interfaces. You can download it at http://dev.vaad-
in.com/browser/doc/trunk/cheatsheet/vaadin-cheatsheet-
duplex.pdf.

Refcard The six-page DZone Refcard gives an overview to applica-
tion development with Vaadin. It includes a diagram of the
user interface and data binding classes and interfaces.You
can find more information about it at https://vaadin.com/re-
fcard.

Address Book Tutorial The Address Book is a sample application accompanied
with a tutorial that gives detailed step-by-step instructions
for creating a real-life web application with Vaadin.You can
find the tutorial from the product website.

Developer's Website Vaadin Developer's Site at http://dev.vaadin.com/ provides
various online resources, such as the ticket system, a de-
velopment wiki, source repositories, activity timeline, devel-
opment milestones, and so on.

The wiki provides instructions for developers, especially for
those who wish to check-out and compile Vaadin itself from
the source repository.The technical articles deal with integ-
ration of Vaadin applications with various systems, such as
JSP, Maven, Spring, Hibernate, and portals. The wiki also
provides answers to Frequently Asked Questions.

Online Documentation You can read this book online at http://vaadin.com/book.
Lots of additional material, including technical HOWTOs,
answers to Frequently Asked Questions and other docu-
mentation is also available on Vaadin web-site
[http://dev.vaadin.com/].

Support

Stuck with a problem? No need to lose your hair over it, the Vaadin Framework developer com-
munity and the Vaadin company offer support for all of your needs.

Community Support Forum You can find the user and developer community forum
for Vaadin at http://vaadin.com/forum. Please use the
forum to discuss any problems you might encounter,
wishes for features, and so on. The answer for your
problems may already lie in the forum archives, so
searching the discussions is always the best way to be-
gin.

Report Bugs If you have found a possible bug in Vaadin, the demo
applications, or the documentation, please report it by
filing a ticket at the Vaadin developer's site at ht-

Supportxvi

Preface

http://demo.vaadin.com/book-examples/book/
http://demo.vaadin.com/book-examples/book/
http://dev.vaadin.com/browser/doc/trunk/cheatsheet/vaadin-cheatsheet-duplex.pdf
http://dev.vaadin.com/browser/doc/trunk/cheatsheet/vaadin-cheatsheet-duplex.pdf
http://dev.vaadin.com/browser/doc/trunk/cheatsheet/vaadin-cheatsheet-duplex.pdf
https://vaadin.com/refcard
https://vaadin.com/refcard
http://dev.vaadin.com/
http://vaadin.com/book
http://dev.vaadin.com/
http://dev.vaadin.com/
http://vaadin.com/forum
http://dev.vaadin.com/

tp://dev.vaadin.com/.You may want to check the existing
tickets before filing a new one. You can make a ticket to
make a request for a new feature as well, or to suggest
modifications to an existing feature.

Commercial Support Vaadin offers full commercial support and training ser-
vices for the Vaadin Framework and related products.
Read more about the commercial products at http://vaad-
in.com/pro for details.

About the Author

Marko Grönroos is a professional writer and software developer working at Vaadin Ltd in Turku,
Finland. He has been involved in web application development since 1994 and has worked on
several application development frameworks in C, C++, and Java. He has been active in many
open source software projects and holds an M.Sc. degree in Computer Science from the University
of Turku.

Acknowledgements

Much of the book is the result of close work within the development team at Vaadin Ltd. Joonas
Lehtinen, CEO of Vaadin Ltd, wrote the first outline of the book, which became the basis for the
first two chapters. Since then, Marko Grönroos has become the primary author and editor. The
development team has contributed several passages, answered numerous technical questions,
reviewed the manual, and made many corrections.

The contributors are (in rough chronological order):

Joonas Lehtinen
Jani Laakso
Marko Grönroos
Jouni Koivuviita
Matti Tahvonen
Artur Signell
Marc Englund
Henri Sara
Jonatan Kronqvist
Mikael Grankvist (TestBench)
Teppo Kurki (SQLContainer)
Tomi Virtanen (Calendar)
Risto Yrjänä (Calendar)
John Ahlroos (Timeline)
Petter Holmström (JPAContainer)

About Vaadin Ltd

Vaadin Ltd is a Finnish software company specializing in the design and development of Rich
Internet Applications. The company offers planning, implementation, and support services for
the software projects of its customers, as well as sub-contract software development. Vaadin
Framework, previously known as IT Mill Toolkit, is the flagship open source product of the com-
pany, for which it provides commercial development and support services.

xviiAbout the Author

Preface

http://dev.vaadin.com/
http://vaadin.com/pro
http://vaadin.com/pro

xviii

Part I. Vaadin Core Framework

Chapter 1

Introduction

1.1. Overview .. 3
1.2. Example Application Walkthrough ... 5
1.3. Support for the Eclipse IDE ... 6
1.4. Goals and Philosophy .. 6
1.5. Background .. 7

This chapter gives a brief introduction to software development with Vaadin. We also try to give
some insight about the design philosophy behind Vaadin and its history.

1.1. Overview

The core piece of the Vaadin Framework is the Java library that is designed to make creation
and maintenance of high quality web-based user interfaces easy. The key idea in the server-
driven programming model of Vaadin is that it lets you forget the web and program user interfaces
much like you would program any Java desktop application with conventional toolkits such as
AWT, Swing, or SWT. But easier.

While traditional web programming is a fun way to spend your time learning new web technologies,
you probably want to be productive and concentrate on the application logic. With the server-
driven programming model, Vaadin takes care of managing the user interface in the browser and
AJAX communications between the browser and the server. With the Vaadin approach, you do
not need to learn and debug browser technologies, such as HTML or JavaScript.

3Book of Vaadin

Figure 1.1. General Architecture of Vaadin

Figure 1.1, “General Architecture of Vaadin” illustrates the basic architecture of web applications
made with Vaadin. Vaadin consists of the server-side framework and a client-side engine that
runs in the browser as a JavaScript program, rendering the user interface and delivering user
interaction to the server. The application runs as a Java Servlet session in a Java application
server.

Because HTML, JavaScript, and other browser technologies are essentially invisible to the ap-
plication logic, you can think of the web browser as only a thin client platform. A thin client displays
the user interface and communicates user events to the server at a low level. The control logic
of the user interface runs on a Java-based web server, together with your business logic. By
contrast, a normal client-server architecture with a dedicated client application would include a
lot of application specific communications between the client and the server. Essentially removing
the user interface tier from the application architecture makes our approach a very effective one.

As the Client-Side Engine is executed as JavaScript in the browser, no browser plugins are
needed for using applications made with Vaadin. This gives it a sharp edge over frameworks
based on Flash, Java Applets, or other plugins. Vaadin relies on the support of GWT for a wide
range of browsers, so that the developer doesn't need to worry about browser support.

Behind the server-driven development model, Vaadin makes the best use of AJAX (Asynchronous
JavaScript and XML) techniques that make it possible to create Rich Internet Applications (RIA)
that are as responsive and interactive as desktop applications. If you're a newcomer to AJAX,
see Section 3.2.1, “AJAX” to find out what it is and how AJAX applications differ from traditional
web applications.

Hidden well under the hood, Vaadin uses GWT, the Google Web Toolkit, for rendering the user
interface in the browser. GWT programs are written in Java, but compiled into JavaScript, thus
freeing the developer from learning JavaScript and other browser technologies. GWT is ideal for
implementing advanced user interface components (or widgets in GWT terminology) and interaction
logic in the browser, while Vaadin handles the actual application logic in the server. Vaadin is
designed to be extensible, and you can indeed use any 3rd-party GWT components easily, in
addition to the component repertoire offered in Vaadin. The use of GWT also means that all the
code you need to write is pure Java.

Overview4

Introduction

Vaadin Framework defines a clear separation between user
interface presentation and logic and allows you to develop
them separately. Our approach to this is themes, which dictate
the visual appearance of applications. Themes control the ap-
pearance of the user interfaces using CSS and (optional) HTML
page templates. As Vaadin provides excellent default themes,
you do not usually need to make much customization, but you
can if you need to. For more about themes, see Chapter 8,
Themes.

We hope that this is enough about the basic architecture and
features of Vaadin for now. You can read more about it later
in Chapter 3, Architecture, or jump straight to more practical
things in Chapter 4, Writing a Web Application.

1.2. Example Application Walkthrough

Let us follow the long tradition of first saying "Hello World!" when learning a new programming
environment.

Example 1.1. HelloWorld.java

import com.vaadin.ui.*;

public class HelloWorld extends com.vaadin.Application {

 public void init() {
 Window main = new Window("Hello window");
 setMainWindow(main);
 main.addComponent(new Label("Hello World!"));
 }
}

The first thing to note is that every Vaadin application extends the com.vaadin.Application
class. Instances of the Application are essentially user sessions, and one is created for each
user who uses the application. In the context of our HelloWorld application, it is sufficient to know
that the application object is created when the user first accesses it and at that time init()
method is invoked.

Initialization of the application first creates a new window object and sets "Hello window" as its
caption. The "window" refers to the browser window or tab, although window objects are also
used when embedding Vaadin applications to HTML pages.The window is set as the main window
of the application; an application can actually have many windows (or tabs or embeddings). This
means that when a user opens the application in a browser, the contents of the "main window"
are shown to the user in the web page.The caption is shown as the title of the (browser) window.

The example creates a new Label user interface component, which can show simple text, and
sets the text to "Hello World!". Finally, the label is added to the main window. So, when the ap-
plication is opened in a browser, the page shows the text "Hello World!".

The result of the Hello World application is shown in Figure 1.2, “Hello World Application”.

5Example Application Walkthrough

Introduction

Figure 1.2. Hello World Application

Note that this example source code is complete and does not need any additional declaratively
defined template files to be run.To run the program, you can just package it as a web application
and deploy it to a server, as explained in Section 4.8, “Setting Up the Application Environment”.

1.3. Support for the Eclipse IDE

While Vaadin is not bound to any specific IDE, and you can in fact easily use it without any IDE
altogether, we provide special support for the Eclipse IDE, which has become the most used
environment for Java development. The support is provided in the Vaadin Plugin for Eclipse,
which allows you to:

• Create new Vaadin projects

• Create custom themes

• Create custom widgets

• Create composite components with a visual designer

• Easily upgrade to a newer version of the Vaadin library

The Vaadin Plugin for Eclipse is our recommended way of installing Vaadin for development.
Using just the JAR or loading Vaadin from a Maven repository is also possible.

Installing and updating the Eclipse plugin is covered in Section 2.2.1, “Vaadin Plugin for Eclipse”
and the creation of a new Vaadin project using the plugin in Section 2.3.1, “Creating the Project”.
See Section 8.4, “Creating a Theme in Eclipse”, Section 11.2, “Doing It the Simple Way in Eclipse”,
and Chapter 7, Visual User Interface Design with Eclipse for instructions on using the different
features of the plugin.

1.4. Goals and Philosophy

Simply put, Vaadin's ambition is to be the best possible tool when it comes to creating web user
interfaces for business applications. It is easy to adopt, as it is designed to support both entry-
level and advanced programmers, as well as usability experts and graphical designers.

When designing Vaadin, we have followed the philosophy inscribed in the following rules.

Support for the Eclipse IDE6

Introduction

Right tool for the right purpose

Because our goals are high, the focus must be clear. This toolkit is designed for creating web
applications. It is not designed for creating websites or advertisements demos. For such purposes,
you might find (for instance) JSP/JSF or Flash more suitable.

Simplicity and maintainability

We have chosen to emphasize robustness, simplicity, and maintainability. This involves following
the well-established best practices in user interface frameworks and ensuring that our implement-
ation represents an ideal solution for its purpose without clutter or bloat.

XML is not designed for programming

The Web is inherently document-centered and very much bound to the declarative presentation
of user interfaces. The Vaadin framework frees the programmer from these limitations. It is far
more natural to create user interfaces by programming them than by defining them in declarative
templates, which are not flexible enough for complex and dynamic user interaction.

Tools should not limit your work

There should not be any limits on what you can do with the framework: if for some reason the
user interface components do not support what you need to achieve, it must be easy to add new
ones to your application. When you need to create new components, the role of the framework
is critical: it makes it easy to create re-usable components that are easy to maintain.

1.5. Background

The Vaadin Framework was not written overnight. After working with web user interfaces since
the beginning of the Web, a group of developers got together in 2000 to form IT Mill. The team
had a desire to develop a new programming paradigm that would support the creation of real
user interfaces for real applications using a real programming language.

The library was originally called Millstone Library.The first version was used in a large production
application that IT Mill designed and implemented for an international pharmaceutical company.
IT Mill made the application already in the year 2001 and it is still in use. Since then, the company
has produced dozens of large business applications with the library and it has proven its ability
to solve hard problems easily.

The next generation of the library, IT Mill Toolkit Release 4, was released in 2006. It introduced
an entirely new AJAX-based presentation engine. This allowed the development of AJAX applic-
ations without the need to worry about communications between the client and the server.

Release 5 Into the Open

IT Mill Toolkit 5, released initially at the end of 2007, took a significant step further into AJAX.
The client-side rendering of the user interface was completely rewritten using GWT, the Google
Web Toolkit.

IT Mill Toolkit 5 introduced many significant improvements both in the server-side API and in the
functionality. Rewriting the Client-Side Engine with GWT allowed the use of Java both on the
client and the server-side. The transition from JavaScript to GWT made the development and
integration of custom components and customization of existing components much easier than

7Right tool for the right purpose

Introduction

before, and it also allows easy integration of existing GWT components. The adoption of GWT
on the client-side did not, by itself, cause any changes in the server-side API, because GWT is
a browser technology that is hidden well behind the API. Also themeing was completely revised
in IT Mill Toolkit 5.

The Release 5 was published under the Apache License 2, an unrestrictive open source license,
to create faster expansion of the user base and make the formation of a developer community
possible.

Birth of Vaadin Release 6

IT Mill Toolkit was renamed as Vaadin Framework, or Vaadin in short, in spring 2009. Later IT
Mill, the company, was also renamed as Vaadin Ltd.Vaadin means an adult female semi-domest-
icated mountain reindeer in Finnish.

Together with the Vaadin 6 was released the Vaadin Plugin for Eclipse. The initially experimental
version of the visual editor, which was included with the plugin, has since then grown into to
stable development tool.

With Vaadin 6, the number of developers using the framework really exploded. The introduction
of Vaadin Directory in early 2010 gave it a further boost, as the number of available components
multiplied almost overnight. Many of the originally experimental components have since then
matured and are now used by thousands of developers. In 2012, we are seeing tremendous
growth in the ecosystem around Vaadin. The size of the user community, at least if measured
by forum activity, has already gone past the competing server-side frameworks and even GWT.
Whether Vaadin is already past the tipping point can be seen soon.

More technical details about the history of Vaadin can be found from the Release Notes of each
version.

Birth of Vaadin Release 68

Introduction

Chapter 2

Getting Started
with Vaadin

2.1. Setting up the Development Environment ... 9
2.2. Installing Vaadin ... 13
2.3. Your First Project with Vaadin .. 16
2.4. Creating a Project with NetBeans .. 25
2.5. Creating a Project with Maven ... 27

This chapter gives practical instructions for installing the recommended toolchain and either the
Vaadin Plugin for Eclipse or, if you use another IDE or no IDE at all, the Vaadin JAR.

2.1. Setting up the Development Environment

This section gives a step-by-step guide for setting up a development environment.Vaadin supports
a wide variety of tools, so you can use any IDE for writing the code, most web browsers for
viewing the results, any operating system or processor supported by the Java 1.5 platform, and
almost any Java web server for deploying the application.

In this example, we use the following toolchain:

• Windows XP [http://www.microsoft.com/windowsxp/], Linux, or Mac OS X

• Sun Java 2 Standard Edition 6.0 [http://java.sun.com/javase/downloads/index.jsp] (Java
1.5 or newer is required)

9Book of Vaadin

http://www.microsoft.com/windowsxp/
http://www.microsoft.com/windowsxp/
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp

• Eclipse IDE for Java EE Developers [http://www.eclipse.org/downloads/]

• Apache Tomcat 7.0 (Core) or newer [http://tomcat.apache.org/]

• Mozilla Firefox [http://www.getfirefox.com/] browser

• Firebug [http://www.getfirebug.com/] debug tool (optional)

• Vaadin Framework [http://vaadin.com/download/]

The above reference toolchain is a good choice of tools, but you can use almost any tools you
are comfortable with.

Figure 2.1. Development Toolchain and Process

Figure 2.1, “Development Toolchain and Process” illustrates the development environment and
process.You develop your application as an Eclipse project.The project must include, in addition
to your source code, the Vaadin Library. It can also include project-specific themes.

You must compile and deploy a project to a web container before you can use use it. You can
deploy a project through the Web Tools Platform for Eclipse, which allows automatic deployment
of web applications from Eclipse. You can deploy a project also manually, by creating a web
application archive (WAR) and deploying it through the web container's interface.

2.1.1. Installing Java SDK

Java SDK is required by Vaadin and also by the Eclipse IDE. Vaadin is compatible with Java 1.5
and later editions.

Installing Java SDK10

Getting Started with Vaadin

http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.getfirefox.com/
http://www.getfirefox.com/
http://www.getfirebug.com/
http://www.getfirebug.com/
http://vaadin.com/download/
http://vaadin.com/download/

Windows

1. Download Sun Java 2 Standard Edition 6.0 from http://java.sun.com/javase/downloads/in-
dex.jsp [http://java.sun.com/javase/downloads/index.jsp]

2. Install the Java SDK by running the installer. The default options are fine.

Linux / UNIX

1. Download Sun Java 2 Standard Edition 6.0 from http://java.sun.com/javase/downloads/in-
dex.jsp [http://java.sun.com/javase/downloads/index.jsp]

2. Decompress it under a suitable base directory, such as /opt. For example, for Java
SDK, enter (either as root or with sudo in Linux):

cd /opt
sh (path-to-installation-package)/jdk-6u1-linux-i586.bin

and follow the instructions in the installer.

2.1.2. Installing Eclipse IDE

Windows

Eclipse is now installed in C:\dev\eclipse and can be started from there (by double clicking
eclipse.exe).

1. Download Eclipse IDE for Java EE Developers (Ganymede version) from http://www.ec-
lipse.org/downloads/ [http://www.eclipse.org/downloads/]

2. Decompress the Eclipse IDE package to a suitable directory.You are free to select any
directory and to use any ZIP decompressor, but in this example we decompress the
ZIP file by just double-clicking it and selecting "Extract all files" task from Windows
compressed folder task. In our installation example, we use C:\dev as the target dir-
ectory.

Linux / UNIX

You have two basic options for installing Eclipse in Linux and UNIX: you can either install it using
the package manager of your operating system or by downloading and installing the packages
manually. The manual installation method is recommended, because the latest versions of the
packages available in a Linux package repository may be incompatible with Eclipse plugins that
are not installed using the package manager.

1. Download Download Eclipse IDE for Java EE Developers (Ganymede version) from
http://www.eclipse.org/downloads/ [http://www.eclipse.org/downloads/]

2. Decompress the Eclipse package into a suitable base directory. It is important to make
sure that there is no old Eclipse installation in the target directory. Installing a new version
on top of an old one probably renders Eclipse unusable.

3. Eclipse should normally be installed as a regular user, as this makes installation of
plugins easier. Eclipse also stores some user settings in the installation directory. To
install the package, enter:

$ tar zxf (path-to-installation-package)/eclipse-jee-ganymede-SR2-linux-gtk.tar.gz

11Installing Eclipse IDE

Getting Started with Vaadin

http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/

This will extract the package to a subdirectory with the name eclipse.

4. You may wish to add the Eclipse installation directory and the bin subdirectory in the
installation directory of Java SDK to your system or user PATH.

An alternative to the above procedure is to use the package management system of your operating
system. For example, in Ubuntu Linux, which includes Sun Java SDK and Eclipse in its APT re-
pository, you can install the programs from a package manager GUI or from command-line with
a command such as:

$ sudo apt-get install sun-java6-jdk eclipse

This is, however, not recommended, because the Eclipse package may not include all the neces-
sary Java EE tools, most importantly the Web Standard Tools, and it may cause incompatibilities
with some components that are not installed with the package management system of your op-
erating system.

2.1.3. Installing Apache Tomcat

Apache Tomcat is a lightweight Java web server suitable for both development and production.
There are many ways to install it, but here we simply decompress the installation package.

Apache Tomcat should be installed with user permissions. During development, you will be running
Eclipse or some other IDE with user permissions, but deploying web applications to a Tomcat
server that is installed system-wide requires administrator or root permissions.

1. Download the installation package:

Apache Tomcat 7.0 (Core Binary Distribution) from http://tomcat.apache.org/

2. Decompress Apache Tomcat package to a suitable target directory, such as C:\dev
(Windows) or /opt (Linux or Mac OS X). The Apache Tomcat home directory will be
C:\dev\apache-tomcat-7.0.x or /opt/apache-tomcat-7.0.x, respectively.

2.1.4. Firefox and Firebug

Vaadin supports many web browsers and you can use any of them for development. If you plan
to create a custom theme, customized layouts, or create new components, we recommend that
you use Firefox together with Firebug.

If you do not have Firefox installed already, go to www.getfirefox.com [http://www.getfirefox.com/]
and download and run the installer. In Linux, you can install it also with a package manager.

Optional. After installing Firefox, use it to open http://www.getfirebug.com/
[http://www.getfirebug.com/]. Follow the instructions on the site to install the latest stable version
of Firebug available for the browser. You might need to tell Firefox to allow the installation by
clicking the yellow warning bar at the top of the browser-window.

When Firebug is installed, it can be enabled at any time from the bottom right corner of the Firefox
window. Figure 2.2, “Firebug Debugger for Firefox” shows an example of what Firebug looks like.

Installing Apache Tomcat12

Getting Started with Vaadin

http://www.getfirefox.com/
http://www.getfirefox.com/
http://www.getfirebug.com/
http://www.getfirebug.com/

Figure 2.2. Firebug Debugger for Firefox

Now that you have installed the development environment, you can proceed to creating your first
application.

2.2. Installing Vaadin

This section gives instructions for installing Vaadin in your development environment. You have
two basic options for installing:

1. If you use Eclipse, we recommend that you can install the Vaadin Plugin for Eclipse, as
described in Section 2.2.1, “Vaadin Plugin for Eclipse”

2. Otherwise, download and install the JAR package, as described in Section 2.2.2, “In-
stalling the JAR Package”.

These options are explained in detail in the following sections.

2.2.1. Vaadin Plugin for Eclipse

If you are using the Eclipse IDE, using the Vaadin plugin should help greatly.The plugin includes:

• An integration plugin with wizards for creating new Vaadin-based projects, themes, and
client-side widgets and widget sets.

• A visual editor for editing custom composite user interface components in a WYSIWYG
fashion. With full round-trip support from source code to visual model and back, the ed-
itor integrates seamlessly with your development process.

13Installing Vaadin

Getting Started with Vaadin

• A version of Book of Vaadin that you can browse in the Eclipse Help system.

You can install the plugin as follows:

1. Start Eclipse.

2. Select Help Software Updates....

3. Select the Available Software tab.

4. Add the Vaadin plugin update site by clicking Add Site....

Enter the URL of the Vaadin Update Site: http://vaadin.com/eclipse and click OK. The
Vaadin site should now appear in the Software Updates window.

5. Select all the Vaadin plugins in the tree.

Finally, click Install.

Detailed and up-to-date installation instructions for the Eclipse plugin can be found at http://vaad-
in.com/eclipse.

Updating the Vaadin Plugin

If you have automatic updates enabled in Eclipse (see Window Preferences Install/Update
 Automatic Updates), the Vaadin plugin will be updated automatically along with other plugins.
Otherwise, you can update the Vaadin plugin (there are actually multiple plugins) manually as
follows:

1. Select Help Software Updates..., the Software Updates and Add-ons window will
open.

2. Select the Installed Software tab.

Vaadin Plugin for Eclipse14

Getting Started with Vaadin

http://vaadin.com/eclipse
http://vaadin.com/eclipse
http://vaadin.com/eclipse

3. If you want to update only the Vaadin plugins, select them in the list by clicking the plugins
and holding the Ctrl key pressed for all but the first.

4. Click Update.

Notice that updating the Vaadin plugin updates only the plugin and not the Vaadin library, which
is project specific. See below for instructions for updating the library.

Updating the Vaadin Library

Updating the Vaadin plugin does not update Vaadin library. The library is project specific, as a
different version might be required for different projects, so you have to update it separately for
each project. To change the library to a newer (or some other) version, do as follows:

1. Select the project in the Project Explorer and select Project Preferences or press
Alt+Enter.

2. In the project preferences window that opens, select Vaadin Vaadin Version.

3. If the version that you want to use is not included in the Vaadin version drop-down list,
click Download to open the download window.

15Vaadin Plugin for Eclipse

Getting Started with Vaadin

If you want to use a development version, select Show pre-release versions and
nightly builds. Select the version that you want to download and click OK.

4. Select the version that you want to use from the Vaadin version down-down list and
click Apply.

You can observe that the new library appears in the WebContent/WEB-INF/lib folder.

2.2.2. Installing the JAR Package

You can install the Vaadin JAR package in a few simple steps:

1. Download the newest Vaadin JAR package from the download page at http://vaad-
in.com/download/.

2. Put the JAR in the WEB-APP/lib web library folder in the project.

The location of the WEB-APP/lib folder depends on the project organization.

• In Eclipse projects: WebContent/WEB-INF/lib.

• In Maven projects: src/main/webapp/WEB-INF/lib.

2.3.Your First Project with Vaadin

This section gives instructions for creating a new Eclipse project using the Vaadin Plugin. The
task will include the following steps:

1. Create a new project

2. Write the source code

3. Configure and start Tomcat (or some other web server)

4. Open a web browser to use the web application

We also show how you can debug the application in the debug mode in Eclipse.

This walkthrough assumes that you have already installed the Vaadin Plugin and set up your
development environment, as instructed in Section 2.2.2, “Installing the JAR Package” and
Section 2.1, “Setting up the Development Environment”.

2.3.1. Creating the Project

Let us create the first application project with the tools installed in the previous section. First,
launch Eclipse and follow the following steps:

1. Start creating a new project by selecting from the menu File New Project....

Installing the JAR Package16

Getting Started with Vaadin

http://vaadin.com/download/
http://vaadin.com/download/

2. In the New Project window that opens, select Web Vaadin Project and click Next.

3. In the Vaadin Project step, you need to set the basic web project settings. You need
to give at least the project name and the runtime; the default values should be good for
the other settings.

Project name Give the project a name. The name should be a
valid identifier usable cross-platform as a filename
and inside a URL, so using only lower-case alphanu-
merics, underscore, and minus sign is recommen-
ded.

Use default Defines the directory under which the project is cre-
ated. You should normally leave it as it is. You may
need to set the directory, for example, if you are
creating an Eclipse project on top of a version-con-
trolled source tree.

17Creating the Project

Getting Started with Vaadin

Target runtime Defines the application server to use for deploying
the application. The server that you have installed,
for example Apache Tomcat, should be selected
automatically. If not, click New to configure a new
server under Eclipse.

Configuration Select the configuration to use; you should normally
use the default configuration for the application
server. If you need to modify the project facets, click
Modify.

Deployment configuration This setting defines the environment to which the
application will be deployed, to generate the appro-
priate project directory layout and configuration files.
The choises are:

• Servlet (default)

• Google App Engine Servlet

• Generic Portlet (Portlet 2.0)

• Old Portlet (Portlet 1.0)

The further steps in the New Project Wizard depend
on the selected deployment configuration; the steps
listed in this section are for the default servlet config-
uration. See Section 12.8, “Google App Engine In-
tegration” and Chapter 13, Portal Integration for in-
structions regarding the use of Vaadin in the altern-
ative environments.

Vaadin version Select the Vaadin version to use.The drop-down list
shows, by default, the latest available version of
Vaadin. If you want to use another version, click
Download. The dialog that opens lists all official re-
leases of Vaadin.

If you want to use a pre-release version or a nightly
development build, select Show pre-release ver-

Creating the Project18

Getting Started with Vaadin

sions and nightly builds. Select a version and click
Ok to download it. It will appear as a choise in the
drop-down list.

If you want to change the project to use another
version of Vaadin, for example to upgrade to a
newer one, you can go to project settings and
download and select the other version.

You can click Finish here to use the defaults for the rest of the settings, or click Next.

4. The settings in the Web Module step define the basic servlet-related settings and the
structure of the web application project. All the settings are pre-filled, and you should
normally accept them as they are.

Context Root The context root (of the application) identifies the
application in the URL used for accessing it. For ex-
ample, if the server runs in the apps context and the
application has myproject context, the URL would
be http://example.com/app/url. The wizard
will suggest myproject for the context name.

Content Directory The directory containing all the content to be included
in the servlet and served by the web server. The
directory is relative to the root directory of the project.

Java Source Directory The default source directory containing the applica-
tion sources.The src directory is suggested; anoth-
er convention common in web applications is to use
WebContent/WEB-INF/src, in which case the
sources are included in the servlet (but not served
in HTTP requests).

Generate deployment
descriptor

Should the wizard generate the web.xml deploy-
ment descriptor required for running the servlet in
the WebContent/WEB-INF directory. Strongly re-
commended. See Section 4.8.3, “Deployment
Descriptor web.xml” for more details.

19Creating the Project

Getting Started with Vaadin

T h i s w i l l b e t h e s u b - p a t h i n t h e U R L , fo r ex a m p l e
http://localhost:8080/myproject. The default for the application root will be /
(root).

You can just accept the defaults and click Next.

5. The Vaadin project step page has various Vaadin-specific application settings. If you
are trying Vaadin out for the first time, you should not need to change anything. You
can set most of the settings afterwards, except the creation of the portlet configuration.

Create project template Make the wizard create an application class stub.

Application Name The name of the application appears in the browser
window title.

Base package name The name of the Java package under which the ap-
plication class is to be placed.

Application class name Name of the Vaadin application class.

Create portlet configuration When this option is selected, the wizard will create
the files needed for running the application in a
portal. See Chapter 13, Portal Integration for more
information on portlets.

Finally, click Finish to create the project.

6. Eclipse may ask to switch to J2EE perspective. A Dynamic Web Project uses an external
web server and the J2EE perspective provides tools to control the server and manage
application deployment. Click Yes.

Creating the Project20

Getting Started with Vaadin

2.3.2. Exploring the Project

After the New Project wizard exists, it has done all the work for us: Vaadin libraries are installed
in the WebContent/WEB-INF/lib directory, an application class skeleton has been written to
src directory, and WebContent/WEB-INF/web.xml already contains a deployment descriptor.

Figure 2.3. A New Dynamic Web Project

The application class created by the plugin contains the following code:

package com.example.myproject;

import com.vaadin.Application;
import com.vaadin.ui.*;
public class MyprojectApplication extends Application
{
 @Override
 public void init() {
 Window mainWindow =
 new Window("Myproject Application");
 Label label = new Label("Hello Vaadin user");
 mainWindow.addComponent(label);
 setMainWindow(mainWindow);
 }
}

Let us add a button to the application to make it a bit more interesting. The resulting init()
method could look something like:

public void init() {
 final Window mainWindow =
 new Window("Myproject Application");

 Label label = new Label("Hello Vaadin user");
 mainWindow.addComponent(label);

 mainWindow.addComponent(

21Exploring the Project

Getting Started with Vaadin

 new Button("What is the time?",
 new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 mainWindow.showNotification(
 "The time is " + new Date());
 }
 }));

 setMainWindow(mainWindow);
}

The deployment descriptor WebContent/WEB-INF/web.xml defines Vaadin framework servlet,
the application class, and servlet mapping:

Example 2.1. Web.xml Deployment Descriptor for our project

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 id="WebApp_ID" version="2.5">

 <display-name>myproject</display-name>

 <context-param>
 <description>Vaadin production mode</description>
 <param-name>productionMode</param-name>
 <param-value>false</param-value>
 </context-param>

 <servlet>
 <servlet-name>Myproject Application</servlet-name>
 <servlet-class>
 com.vaadin.terminal.gwt.server.ApplicationServlet
 </servlet-class>
 <init-param>
 <description>Vaadin application class to start</description>
 <param-name>application</param-name>
 <param-value>
 com.example.myproject.MyprojectApplication
 </param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>Myproject Application</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

For a more detailed treatment of the web.xml file, see Section 4.8.3, “Deployment Descriptor
web.xml”.

2.3.3. Setting Up and Starting the Web Server

Eclipse IDE for Java EE Developers has the Web Standard Tools package installed, which sup-
ports control of various web servers and automatic deployment of web content to the server when
changes are made to a project.

Make sure that Tomcat was installed with user permissions. Configuration of the web server in
Eclipse will fail if the user does not have write permissions to the configuration and deployment
directories under the Tomcat installation directory.

Setting Up and Starting the Web Server22

Getting Started with Vaadin

Follow the following steps.

1. Switch to the Servers tab in the lower panel in Eclipse. List of servers should be empty
after Eclipse is installed. Right-click on the empty area in the panel and select New
Server.

2. Select Apache Tomcat v7.0 Server and set Server's host name as localhost,
which should be the default. If you have only one Tomcat installed, Server runtime has
only one choice. Click Next.

3. Add your project to the server by selecting it on the left and clicking Add to add it to the
configured projects on the right. Click Finish.

4. The server and the project are now installed in Eclipse and are shown in the Servers
tab. To start the server, right-click on the server and select Debug. To start the server
in non-debug mode, select Start.

23Setting Up and Starting the Web Server

Getting Started with Vaadin

5. The server starts and the WebContent directory of the project is published to the server
on http://localhost:8080/myproject/.

2.3.4. Running and Debugging

Starting your application is as easy as selecting myproject from the Project Explorer and then
Run Debug As Debug on Server. Eclipse then opens the application in built-in web browser.

Figure 2.4. Running a Vaadin Application

You can insert break points in the Java code by double-clicking on the left margin bar of the
source code window. For example, if you insert a breakpoint in the buttonClick() method
and click the What is the time? button, Eclipse will ask to switch to the Debug perspective. Debug
perspective will show where the execution stopped at the breakpoint. You can examine and
change the state of the application. To continue execution, select Resume from Run menu.

Running and Debugging24

Getting Started with Vaadin

Figure 2.5. Debugging a Vaadin Application

The procedure described above allows debugging the server-side application. For more inform-
ation on debugging client-side widgets, see Section 11.8.6, “GWT Development Mode”.

Restarting Application Session

When you open the URL for the application, it creates a new user session. The
session is preserved even if you reload the page. Moreover, as Eclipse likes to do
hot deployment to Tomcat, and Tomcat likes to persist sessions on server shutdown,
you may experience a problem that the application doesn't return to its initial state
after modifying code or even restarting the server.

Adding the ?restartApplication parameter in the URL tells the Vaadin servlet
to create a new Application instance when reloading the page.

2.4. Creating a Project with NetBeans

Vaadin has no official plugin for NetBeans at the moment, so the tasks have to be done more
manually than with Eclipse.

You have two choices to create a Vaadin project in NetBeans: as a regular web application project
or as a Maven project. We cover these both ways in the following sections.

2.4.1. Regular Web Application Project

This section describes the basic way of creating a Vaadin application project in NetBeans. This
approach is useful if you do not wish to use Maven, but requires more manual work.

1. Open File New Project.

2. Select Java Web Web Application and click Next.

25Creating a Project with NetBeans

Getting Started with Vaadin

3. Give a project name, such as myproject. As the project name is by default also used
as the context path, it should contain only alphanumerics, underscore and minus sign.
Click Next.

4. Select a server.The reference toolchain recommends Apache Tomcat, as many instruc-
tions in this book are given specifically for Tomcat, but any other server should work
just as fine. Click Next.

5. Click Finish.

The project is created. However, it is a simple skeleton for a JSP-based web application project.
To make it a proper Vaadin project, you need to include the Vaadin library, create the application
class, and define the web.xml deployment descriptor.

2.4.2. Maven Project from Vaadin Archetype

Creating a Maven project with the Vaadin archetype is simpler than as a normal web application
project in NetBeans. It creates an application skeleton, defines the web.xml deployment
descriptor, and also retrieves the latest Vaadin library automatically.

1. Select File New Project.

2. Select Maven Project from Archetype and click Next.

3. Select an archetype from a repository:

• If you have used Vaadin with Maven before, you might already have the archetype
in local repository - select Archetypes from Local Repository.

• Add a new archetype by clicking Add. For Group Id, given com.vaadin. For Artifact
Id, give vaadin-archetype-clean for a normal project,
vaadin-archetype-widget for a custom GWT widget project, or
vaadin-archetype-sample for a more advanced application skeleton. For Version,
give LATEST or a specific version number. Then, click OK.

Figure 2.6. Adding a New Maven Archetype in NetBeans

Then select the Custom archetype - vaadin-archetype-clean (LATEST) from the
selection tree.

Click Next.

4. In the Name and Location step, enter Project Name, which is recommended to be
only lower-case alphabetics, as it is used also as a suggestion for the Java package
name of the project. Modify the other parameters for your project and click Finish.

Maven Project from Vaadin Archetype26

Getting Started with Vaadin

Figure 2.7. Adding a New Maven Project in NetBeans

Creating the project can take a while as Maven loads all the needed dependencies. Once created,
you can run it by right-clicking on the project in the Projects view and selecting Run. In the Select
deployment server window that opens, select Apache Tomcat and click OK. If all goes well,
NetBeans starts the server and launches the default browser to display the web application.

2.5. Creating a Project with Maven

The Vaadin core library and all Vaadin add-ons are available through a Maven repository and
can thereby be easily used with Apache Maven. You can use a Maven with a front-end from
Eclipse or NetBeans, or by using the command-line as described in this section.

You can create a new Maven project with the following command:

$ mvn archetype:generate
 -DarchetypeGroupId=com.vaadin
 -DarchetypeArtifactId=vaadin-archetype-clean
 -DarchetypeVersion=LATEST
 -DgroupId=your.company
 -DartifactId=project-name
 -Dversion=1.0
 -Dpackaging=war

The parameters are as follows:

archetypeGroupId The group ID of the archetype is com.vaadin for Vaadin ar-
chetypes.

archetypeArtifactId The archetype ID. Vaadin currently supports the following ar-
chetypes:

• vaadin-archetype-clean is a new project with a bare-
bone skeleton for a regular Vaadin application. The
pom.xml includes out-commented definitions for additional
widgets.

• vaadin-archetype-widget is a skeleton for a project
with custom widgets.

27Creating a Project with Maven

Getting Started with Vaadin

• vaadin-archetype-sample is also for project with cus-
tom widgets, but the skeleton includes the Color Picker ex-
ample used in Chapter 11, Developing New Components.

• vaadin-archetype-addon is for Vaadin add-on projects.
It packages the add-on so that it can be published in Vaadin
Directory. The archetype is for server-side add-ons and
does not include definitions needed for building a widget
set. If your add-on includes or requires other than the wid-
gets in the Vaadin core library, you need to copy the required
definitions from a POM of a vaadin-archetype-clean
project.

• vaadin-archetype-touchkit is for projects using
Vaadin TouchKit, described in Chapter 19, Mobile Applica-
tions with TouchKit. Notice that this archetype uses the
AGPL-licensed version of TouchKit, which requires that your
project must also be licensed under the AGPL license.

archetypeVersion Version of the archetype to use. This should normally be
LATEST.

groupId A Maven group ID for your project. It is used for the Java
package name and should normally be your domain name
reversed, such as com.example.myproject.The group ID
is used also for the Java source package name of your project,
so it should be Java compatible - only alphanumerics and an
underscore.

artifactId Identifier of the artifact, that is, your project.The identifier may
contain alphanumerics, minus, and underscore.

version Initial version number of your application. The number must
obey the Maven version numbering format.

packaging How will the project be packaged. It is normally war.

Creating a project can take a while as Maven fetches all the dependencies. The created project
structure is shown in Figure 2.8, “A New Vaadin Project with vaadin-archetype-clean”.

Figure 2.8. A New Vaadin Project with vaadin-archetype-clean

Creating a Project with Maven28

Getting Started with Vaadin

Compiling and Running the Application

Before the application can be deployed, it must be compiled and packaged as a WAR package.
You can do this with the package goal as follows:

$ mvn package

The location of the resulting WAR package should be displayed in the command output.You can
then deploy it to your favorite application server.

The easiest way to run Vaadin applications with Maven is to use the light-weight Jetty web
server. After compiling the package, all you need to do is type:

$ mvn jetty:run

The special goal starts the Jetty server in port 8080 and deploys the application. You can then
open it in a web browser at http://localhost:8080/project-name.

Using Add-ons and Custom Widget Sets

If you use Vaadin add-ons that include a widget set or make your custom widgets, you need to
enable widget set compilation in the POM.The required configuration is described in Section 15.5,
“Using Add-ons in a Maven Project”.

29Compiling and Running the Application

Getting Started with Vaadin

30

Chapter 3

Architecture

3.1. Overview .. 31
3.2. Technological Background ... 34
3.3. Applications as Java Servlet Sessions .. 35
3.4. Client-Side Engine ... 35
3.5. Events and Listeners ... 37

This chapter provides an introduction to the architecture of Vaadin at somewhat technical level.

3.1. Overview

In Chapter 1, Introduction, we gave a short introduction to the general architecture of Vaadin. Let
us now look deeper into it. Figure 3.1, “Vaadin Architecture” gives a basic illustration of the archi-
tecture.

Vaadin consists of a web application API, a horde of user interface components, themes for
controlling the appearance, and a data model that allows binding the user interface components
directly to data. Behind the curtains it also employs a terminal adapter to receive requests from
web browsers and make responses by rendering the pages.

An application that uses Vaadin runs as a servlet in a Java web server, serving HTTP requests.
The terminal adapter receives client requests through the web server's Java Servlet API, and
inteprets them to user events for a particular session. Sessions are tracked using cookies. Events
are associated with UI components and delivered to the application, which handles them with
listeners. If the application logic makes changes to the server-side UI components, the terminal
adapter renders them in the web browser by generating a response.The client-side engine running
in the browser receives the responses and uses them to make any necessary changes to the
page in the browser.

31Book of Vaadin

Figure 3.1. Vaadin Architecture

The top level of a user application consists of an application class that inherits com.vaadin.Ap-
plication. It creates the UI components (see below) it needs, receives events regarding them,
and makes necessary changes to the components. For detailed information about inheriting the
Application, see Chapter 4, Writing a Web Application.

The major parts of the architecture and their function are as follows:

User Interface Components The user interface consists of UI components that are
created and laid out by the application. Each server-
side component has a client-side counterpart, with
which the user interacts. The server-side components
can serialize themselves over the client connection
using a terminal adapter. The client-side components,
in turn, can serialize user interaction back to the applic-
ation, which is received in the server-side components
as events. The components relay these events to the
application logic. Most components are bound to a data
source (see below). For a complete description of UI
component architecture, see Chapter 5, User Interface
Components.

Client-Side Engine The Client-Side Engine of Vaadin manages the render-
ing in the web browser using Google Web Toolkit
(GWT). It communicates user interaction and UI
changes with the server-side Terminal Adapter using
the User Interface Definition Language (UIDL), a JSON-

Overview32

Architecture

based language. The communications are made using
asynchronous HTTP or HTTPS requests. See Sec-
tion 3.4, “Client-Side Engine”.

Terminal Adapter The UI components do not render themselves directly
as a web page, but use a Terminal Adapter. This ab-
straction layer allows users to use Vaadin applications
with practically any web browser. Releases 3 and 4 of
IT Mill Toolkit supported HTML and simple AJAX based
rendering, while Vaadin Release 5 supports advanced
AJAX-based rendering using Google Web Toolkit
(GWT). You could imagine some other browser tech-
nology, not even based on HTML, and you - or we for
that matter - could make it work just by writing a new
adapter.Your application would still just see the Vaadin
API.To allow for this sort of abstraction, UI components
communicate their changes to the Terminal Adapter,
which renders them for the user's browser. When the
user does something in the web page, the events are
communicated to the terminal adapter (through the web
server) as asynchronous AJAX requests. The terminal
adapter delivers the user events to the UI components,
which deliver them to the application's UI logic.

Themes The user interface separates between presentation and
logic. While the UI logic is handled as Java code, the
presentation is defined in themes as CSS. Vaadin
provides a default themes. User themes can, in addition
to style sheets, include HTML templates that define
custom layouts and other resources, such as images.
Themes are discussed in detail in Chapter 8, Themes.

UIDL The Terminal Adapter draws the user interface to the
web page and any changes to it using a special User
Interface Definition Language (UIDL). The UIDL com-
munications are done using JSON (JavaScript Object
Notation), which is a lightweight data interchange format
that is especially efficient for interfacing with JavaScript-
based AJAX code in the browser. See Section 3.2.3,
“JSON” and Appendix A, User Interface Definition
Language (UIDL) for details.

Events User interaction with UI components creates events,
which are first processed on the client-side with
JavaScript and then passed all the way through the
HTTP server, terminal adapter, and user component
layers to the application. See Section 3.5, “Events and
Listeners”.

Data Model In addition to the user interface model, Vaadin provides
a data model for interfacing data presented in UI com-
ponents. Using the data model, the user interface
components can update the application data directly,
without the need for any control code. All the UI com-

33Overview

Architecture

ponents use this data model internally, but they can be
bound to a separate data source as well. For example,
you can bind a table component to an SQL query re-
sponse. For a complete overview of the Vaadin Data
Model, please refer to Chapter 9, Binding Components
to Data.

3.2.Technological Background

This section provides an introduction to the various technologies and designs on which Vaadin
is based: AJAX-based web applications in general, Google Web Toolkit, and JSON data inter-
change format.This knowledge is not necessary for using Vaadin, but provides some background
if you need to make low-level extensions to Vaadin.

3.2.1. AJAX

AJAX (Asynchronous JavaScript and XML) is a technique for developing web applications with
responsive user interaction, similar to traditional desktop applications. While conventional
JavaScript-enabled HTML pages can receive new content only with page updates, AJAX-enabled
pages send user interaction to the server using an asynchronous request and receive updated
content in the response. This way, only small parts of the page data can be loaded. This goal
is archieved by the use of a certain set of technologies: XHTML, CSS, DOM, JavaScript, XMLHt-
tpRequest, and XML.

AJAX, with all the fuss and pomp it receives, is essentially made possible by a simple API, namely
the XMLHttpRequest class in JavaScript. The API is available in all major browsers and, as of
2006, the API is under way to become a W3C standard.

Communications between the browser and the server usually require some sort of serialization
(or marshalling) of data objects. AJAX suggests the use of XML for data representation in com-
munications between the browser and the server. While Vaadin Release 4 used XML for data
interchange, Release 5 uses the more efficient JSON. For more information about JSON and its
use in Vaadin, see Section 3.2.3, “JSON”.

If you're a newcomer to Ajax, Section 12.1, “Special Characteristics of AJAX Applications” dis-
cusses the history and motivations for AJAX-based web applications, as well as some special
characteristics that differ from both traditional web applications and desktop applications.

3.2.2. Google Web Toolkit

Google Web Toolkit is a software development kit for developing client-side web applications
easily, without having to use JavaScript or other browser technologies directly. Applications using
GWT are developed with Java and compiled into JavaScript with the GWT Compiler.

GWT is essentially a client-side technology, normally used to develop user interface logic in the
web browser. GWT applications still need to communicate with a server using RPC calls and by
serializing any data. Vaadin effectively hides all client-server communications, allows handling
user interaction logic in a server application, and allows software development in a single server-
side application. This makes the architecture of an AJAX-based web application much simpler.

Vaadin uses GWT to render user interfaces in the web browser and handle the low-level tasks
of user interaction in the browser. Use of GWT is largely invisible in Vaadin for applications that
do not need any custom GWT components.

Technological Background34

Architecture

See Section 3.4, “Client-Side Engine” for a description of how GWT is used in the Client-Side
Engine of Vaadin. Chapter 11, Developing New Components provides information about the in-
tegration of GWT-based user interface components with Vaadin.

3.2.3. JSON

JSON is a lightweight data-interchange format that is easy and fast to generate and parse. JSON
messages are said to be possibly a hundred times faster to parse than XML with current browser
technology.The format is a subset of the JavaScript language, which makes it possible to evaluate
JSON messages directly as JavaScript expressions. This makes JSON very easy to use in
JavaScript applications and therefore also for AJAX applications.

The Client-Side Engine of Vaadin uses JSON through Google Web Toolkit, which supports JSON
communications in the com.google.gwt.json.client package. Together with advanced update
optimization and caching, Vaadin is able to update changes in the user interface to the browser
in an extremely efficient way.

The use of JSON is completely invisible to a developer using Vaadin. Implementation of client-
server serialization in custom widgets uses abstract interfaces that may be implemented as any
low-level interchange format, such as XML or JSON. Details on JSON communications are given
in Section A.2, “JSON Rendering”.

3.3. Applications as Java Servlet Sessions

Vaadin framework does basically everything it does on top of the Java Servlet API, which lies
hidden deep under the hood, with the terminal adapter being the lowest level layer for handling
requests from the web container.

When the web container gets the first request for a URL registered for an application, it creates
an instance of the ApplicationServlet class in Vaadin framework that inherits the HttpServlet
class defined in Java Servlet API. It follows sessions by using HttpSession interface and asso-
ciates an Application instance with each session. During the lifetime of a session, the framework
relays user actions to the proper application instance, and further to a user interface component.

3.4. Client-Side Engine

This section gives an overview of the client-side architecture of Vaadin. Knowledge of the client-
side technologies is generally not needed unless you develop or use custom GWT components.
The client-side engine is based on Google Web Toolkit (GWT), which allows the development
of the engine and client-side components solely with Java.

Chapter 11, Developing New Components provides information about the integration of GWT-
based user interface components with Vaadin.

35JSON

Architecture

Figure 3.2. Architecture of Vaadin Client-Side Engine

Figure 3.2, “Architecture of Vaadin Client-Side Engine” illustrates the architecture of the client-
side engine using a button component as an example. The user interface is managed by the
ApplicationConnection class, which handles AJAX requests to the server and renders the user
interface according to responses. Communications are done over HTTP(S) using the JSON data
interchange format and the User Interface Definition Language (UIDL). In the server-side applic-
ation, the button is used with the Button class of Vaadin. On the client-side, the user interface
consists of various GWT components that inherit Widget class. In the figure above, the GWT
class Button is used to render the button in the browser (the inheritance of Button is simplified
in the figure). Vaadin provides an VButton class, which implements the Paintable interface
needed for rendering the component with GWT.

Client-Side Engine36

Architecture

The actual initial web page that is loaded in the browser is an empty page that loads the JavaScript
code of the Vaadin Client-Side Engine. After it is loaded and started, it handles the AJAX requests
to the server. All server communications are done through the ApplicationConnection class.

The communication with the server is done as UIDL (User Interface Definition Language) mes-
sages using the JSON message interchange format over a HTTP(S) connection. UIDL is described
in Appendix A, User Interface Definition Language (UIDL) and JSON in Section 3.2.3, “JSON”
and Section A.2, “JSON Rendering”.

3.5. Events and Listeners

Vaadin offers an event-driven programming model for handling user interaction. When a user
does something in the user interface, such as clicks a button or selects an item, the application
needs to know about it. Many Java-based user interface frameworks follow the Event-Listener
pattern (also known as the Observer design pattern) to communicate user input to the application
logic. So does Vaadin.The design pattern involves two kinds of elements: an object that generates
("fires" or "emits") events and a number of listeners that listen for the events.When such an event
occurs, the object sends a notification about it to all the listeners. In a typical case, there is only
one listener.

Events can serve many kinds of purposes. In Vaadin, the usual purpose of events is handling
user interaction in a user interface. Session management can require special events, such as
for time-out, in which case the event would actually be the lack of user interaction. Time-out is a
special case of timed or scheduled events, where an event occurs at a specific date and time or
when a set time has passed. Database and other asynchronous communications can cause
events as well.

To receive events of a particular type, an application must register a listener object with the event
source. The listeners are registered in the components with the addListener() method. The
method has a generic version defined at the level of AbstractComponent, the base class of all
components.

Most components that have related events define their own event class and corresponding
listener classes. For example, the Button has Button.ClickEvent events, which can be listened
to through the Button.ClickListener interface.

In the following, we handle button clicks with a listener implemented as an anonymous class:

final Button button = new Button("Push it!");

button.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 button.setCaption("You pushed it!");
 }
});

Figure 3.3, “Class Diagram of a Button Click Listener” illustrates the case where an application-
specific class inherits the Button.ClickListener interface to be able to listen for button click
events. The application must instantiate the listener class and register it with addListener().
When an event occurs, an event object is instantiated, in this case a ClickEvent.The event object
knows the related UI component, in this case the Button.

37Events and Listeners

Architecture

Figure 3.3. Class Diagram of a Button Click Listener

In the ancient times of C programming, callback functions filled largely the same need as listeners
do now. In object-oriented languages, we have only classes and methods, not functions, so the
application has to give a class interface instead of a callback function pointer to the framework.
However, Vaadin supports defining a method as a listener as well, using the MethodListener
wrapper.

Notice that many listener interfaces inherit the java.util.EventListener superinterface, but it is
not generally necessary to inherit it.

Section 4.4, “Handling Events with Listeners” goes into details of handling events in practice.

Events and Listeners38

Architecture

Chapter 4

Writing a Web
Application

4.1. Overview .. 39
4.2. Managing the Main Window .. 42
4.3. Sub-Windows .. 43
4.4. Handling Events with Listeners .. 46
4.5. Referencing Resources ... 49
4.6. Shutting Down an Application .. 52
4.7. Handling Errors .. 53
4.8. Setting Up the Application Environment .. 58

This chapter provides the fundamentals of web application development with Vaadin, concentrating
on the basic elements of an application from a practical point-of-view.

If you are a newcomer to AJAX development, you may benefit from Section 12.1, “Special
Characteristics of AJAX Applications”. It explains the role of pages in AJAX web applications,
and provides some basic design patterns for applications.

4.1. Overview

An application made with Vaadin runs as a Java Servlet in a Servlet container. The entry-point
is the application class, which needs to create and manage all necessary user interface compon-
ents, including windows. User interaction is handled with event listeners, simplified by binding
user interface components directly to data.Visual appearance is defined in themes as CSS files.

39Book of Vaadin

Icons, other images, and downloadable files are handled as resources, which can be external or
served by the application server or the application itself.

Figure 4.1. Application Architecture

Figure 4.1, “Application Architecture” above gives the basic architecture of an application made
with the Vaadin framework, with all the major elements, which are introduced below and discussed
in detail in this chapter.

First of all, an application that uses Vaadin must define an application class that inherits the ab-
stract com.vaadin.Application class.The application class must implement the init() method.

public class MyApp extends com.vaadin.Application {

 public void init() {
 ... initialization code goes here ...
 }
}

Besides acting as the entry-point in the servlet, the Application class provides facilities for window
access, execution control, and theme selection. The application API may seem similar to Java
Servlet API, but that is only superficial. Vaadin framework associates requests with sessions so
that an application class instance is really a session object. Because of this, you can develop
web applications much like you would develop desktop applications.

Overview40

Writing a Web Application

Restarting Application Session

When you open the URL for the application, it creates a new user session. The
session is preserved even if you reload the page. However, if you use Eclipse, it
likes to do hot deployment to Tomcat and you may experience a problem that the
application does not return to its initial state after you modify code. As Tomcat likes
to persist sessions on server shutdown, the application state can remain even if you
restart the server.

Adding the ?restartApplication parameter in the URL tells the Vaadin servlet
to create a new Application instance on loading the page. If you also include a URI
fragment, the parameter should be given before the fragment.

The most important thing in the initialization is the creation of the main window (see below), which
any application has. This, and the deployment of the application as a Java Servlet in the Servlet
container, as described in Section 4.8, “Setting Up the Application Environment”, are the minimal
requirements for an application.

Below is a short overview of the basic elements of an application:

Windows An application always has a main window, as described
in Section 4.2, “Managing the Main Window”. An applic-
ation can actually have a number of such application-
level windows, all bound to the same application ses-
sion, as described in Section 12.2, “Application-Level
Windows”. Application-level windows can contain non-
native sub-windows, which are essentially floating lay-
out components handled inside the browser.

User Interface Components The user interface consists of UI components that are
created and laid out by the application. User interaction
with the components causes events (see below) related
to the component, which the application must handle.
Most components are bound to some data using the
Data Model (see below). You can make your own UI
components through either inheritance or composition.
For a thorough reference of UI components, see
Chapter 5, User Interface Components, for layout
components, see Chapter 6, Managing Layout, and for
composing components, see Section 5.23, “Component
Composition with CustomComponent”.

Events and Listeners Events, and listeners that handle events, are the basis
of handling user interaction in an application. Sec-
tion 3.5, “Events and Listeners” gave an introduction
to events and listeners from an architectural point-of-
view, while Section 4.4, “Handling Events with Listen-
ers” later in this chapter takes a more practical view.

Resources A user interface can display images or have links to
web pages or downloadable documents. These are
resources, which can be external or provided by the
web server or the application itself. Section 4.5, “Refer-

41Overview

Writing a Web Application

encing Resources” gives a practical overview of the
different types of resources.

Themes The presentation and logic of the user interface are
separated. While the UI logic is handled as Java code,
the presentation is defined in themes as CSS. Vaadin
provides a default theme. User-defined themes can, in
addition to style sheets, include HTML templates that
define custom layouts and other theme resources, such
as images.Themes are discussed in detail in Chapter 8,
Themes, custom layouts in Section 6.13, “Custom
Layouts”, and theme resources in Section 4.5.4,
“Theme Resources”.

Data Binding Field components are essentially views to data, repres-
ented in a data model. Using the data model, the com-
ponents can update the application data directly, without
the need for any control code. A field component model
is always bound to a property, an item, or a container,
depending on the field type. While all the components
have a default data model, they can be bound to a user-
defined data source. For example, you can bind a table
component to an SQL query response. For a complete
overview of data binding in Vaadin, please refer to
Chapter 9, Binding Components to Data.

4.2. Managing the Main Window

As explained in Section 12.1, “Special Characteristics of AJAX Applications”, an AJAX web ap-
plication usually runs in a single "web page" in a browser window. The page is generally not re-
loaded after it is opened initially, but it communicates user interaction with the server through
AJAX communications. A window in an AJAX application is therefore more like a window in a
desktop application and less like a web page.

A Window is the top-level container of a user interface displayed in a browser window. As an
AJAX application typically runs on a single "page" (URL), there is usually just one window -- the
main window. The main window can be accessed using the URL of the application. You set the
main window with the setMainWindow() method of the Application class.

import com.vaadin.ui.*;

public class HelloWorld extends com.vaadin.Application {
 public void init() {
 Window main = new Window("The Main Window");
 setMainWindow(main);

... fill the main window with components ...
 }
}

You can add components to the main window, or to any other window, with the addComponent()
method, which actually adds the given component to the root layout component bound to the
window. If you wish to use other than the default root layout, you can set it with setContent(),
as explained in Section 6.2, “Window and Panel Root Layout”.

Managing the Main Window42

Writing a Web Application

Vaadin has two basic kinds of windows: application-level windows, such as the main window,
and sub-windows inside the application-level windows. The sub-windows are explained in the
next section, while application-level windows are covered in Section 12.2, “Application-Level
Windows”.

4.3. Sub-Windows

An application-level window can have a number of floating child or sub-windows. They are
managed by the client-side JavaScript runtime of Vaadin using HTML features. Vaadin allows
opening and closing sub-windows, refreshing one window from another, resizing windows, and
scrolling the window content. Sub-windows are typically used for Dialog Windows and Multiple
Document Interface applications. Sub-windows are by default not modal; you can set them
modal as described in Section 4.3.4, “Modal Windows”.

As with all user interface components, the appearance of a window and its contents is defined
with themes.

User control of a sub-window is limited to moving, resizing, and closing the window. Maximizing
or minimizing are not yet supported.

4.3.1. Opening and Closing a Sub-Window

You can open a new window by creating a new Window object and adding it to the main window
with addWindow() method of the Application class.

mywindow = new Window("My Window");
mainwindow.addWindow(mywindow);

You close the window in a similar fashion, by calling the removeWindow() of the Application
class:

myapplication.removeWindow (mywindow);

The user can, by default, close a sub-window by clicking the close button in the upper-right corner
of the window. You can disable the button by setting the window as read-only with
setReadOnly(true). Notice that you could disable the button also by making it invisible in
CSS with a "display: none" formatting. The problem with such a cosmetic disabling is that a
malicious user might re-enable the button and close the window, which might cause problems
and possibly be a security hole. Setting the window as read-only not only disables the close
button on the client side, but also prevents processing the close event on the server side.

The following example demonstrates the use of a sub-window in an application. The example
manages the window using a custom component that contains a button for opening and closing
the window.

/** Component contains a button that allows opening a window. */
public class WindowOpener extends CustomComponent
 implements Window.CloseListener {
 Window mainwindow; // Reference to main window
 Window mywindow; // The window to be opened
 Button openbutton; // Button for opening the window
 Button closebutton; // A button in the window
 Label explanation; // A descriptive text

 public WindowOpener(String label, Window main) {
 mainwindow = main;

 // The component contains a button that opens the window.

43Sub-Windows

Writing a Web Application

 final VerticalLayout layout = new VerticalLayout();

 openbutton = new Button("Open Window", this,
 "openButtonClick");
 explanation = new Label("Explanation");
 layout.addComponent(openbutton);
 layout.addComponent(explanation);

 setCompositionRoot(layout);
 }

 /** Handle the clicks for the two buttons. */
 public void openButtonClick(Button.ClickEvent event) {
 /* Create a new window. */
 mywindow = new Window("My Dialog");
 mywindow.setPositionX(200);
 mywindow.setPositionY(100);

 /* Add the window inside the main window. */
 mainwindow.addWindow(mywindow);

 /* Listen for close events for the window. */
 mywindow.addListener(this);

 /* Add components in the window. */
 mywindow.addComponent(
 new Label("A text label in the window."));
 closebutton = new Button("Close", this, "closeButtonClick");
 mywindow.addComponent(closebutton);

 /* Allow opening only one window at a time. */
 openbutton.setEnabled(false);

 explanation.setValue("Window opened");
 }

 /** Handle Close button click and close the window. */
 public void closeButtonClick(Button.ClickEvent event) {
 /* Windows are managed by the application object. */
 mainwindow.removeWindow(mywindow);

 /* Return to initial state. */
 openbutton.setEnabled(true);

 explanation.setValue("Closed with button");
 }

 /** In case the window is closed otherwise. */
 public void windowClose(CloseEvent e) {
 /* Return to initial state. */
 openbutton.setEnabled(true);

 explanation.setValue("Closed with window controls");
 }
}

The example implements a custom component that inherits the CustomComponent class. It
consists of a Button that it uses to open a window and a Label to describe the state of the window.
When the window is open, the button is disabled.When the window is closed, the button is enabled
again.

You can use the above custom component in the application class with:

 public void init() {
 Window main = new Window("The Main Window");
 setMainWindow(main);

Opening and Closing a Sub-Window44

Writing a Web Application

 main.addComponent(new WindowOpener("Window Opener", main));
}

When added to an application, the screen will look as illustrated in the following screenshot:

Figure 4.2. Opening a Sub-Window

4.3.2. Window Positioning

When created, a window will have a default size and position.You can specify the size of a window
with setHeight() and setWidth() methods. You can set the position of the window with
setPositionX() and setPositionY() methods.

/* Create a new window. */
mywindow = new Window("My Dialog");

/* Set window size. */
mywindow.setHeight("200px");
mywindow.setWidth("400px");

/* Set window position. */
mywindow.setPositionX(200);
mywindow.setPositionY(50);

Notice that the size of the main window is unknown and the getHeight and getWidth methods
will return -1.

4.3.3. Scrolling Sub-Window Content

If a sub-window has a fixed or percentual size and its content becomes too big to fit in the content
area, a scroll bar will appear for the particular direction. On the other hand, if the sub-window
has undefined size in the direction, it will fit the size of the content and never get a scroll bar.
Scroll bars in sub-windows are handled with regular HTML features, namely overflow: auto
property in CSS.

45Window Positioning

Writing a Web Application

As Window extends Panel, windows are also Scrollable. Note that the interface defines
programmatic scrolling, not scrolling by the user. Please see Section 6.6, “Panel”.

4.3.4. Modal Windows

A modal window is a child window that has to be closed by the user before the use of the parent
window can continue. Dialog windows are typically modal. The advantage of modal windows is
the simplification of user interaction, which may contribute to the clarity of the user interface.
Modal windows are also easy to use from a development perspective, because as user interaction
is isolated to them, changes in application state are more limited while the modal window is open.
The disadvantage of modal windows is that they can restrict workflow too much.

Figure 4.3. Screenshot of the Modal Window Demo Application

Depending on theme settings, the parent window may be grayed while the modal window is open.

The demo application of Vaadin includes an example of using modal windows. Figure 4.3,
“Screenshot of the Modal Window Demo Application” above is from the demo application. The
example includes the source code.

Security Warning

Modality of child windows is purely a client-side feature and can be circumvented
with client-side attack code. You should not trust in the modality of child windows in
security-critical situations such as login windows.

4.4. Handling Events with Listeners

Let us put into practice what we learned of event handling in Section 3.5, “Events and Listeners”.
You can handle events in three basic ways, as shown below.

Modal Windows46

Writing a Web Application

The following example follows a typical pattern where you have a Button component and a
listener that handles user interaction (clicks) communicated to the application as events. Here
we define a class that listens click events.

public class TheButton implements Button.ClickListener {
 Button thebutton;

 /** Creates button into given container. */
 public TheButton(AbstractComponentContainer container) {
 thebutton = new Button ("Do not push this button");
 thebutton.addListener(this);
 container.addComponent(thebutton);
 }

 /** Handle button click events from the button. */
 public void buttonClick (Button.ClickEvent event) {
 thebutton.setCaption ("Do not push this button again");
 }
}

As an application often receives events for several components of the same class, such as multiple
buttons, it has to be able to distinguish between the individual components. There are several
techniques to do this, but probably the easiest is to use the property of the received event, which
is set to the object sending the event. This requires keeping at hand a reference to every object
that emits events.

public class TheButtons implements Button.ClickListener {
 Button thebutton;
 Button secondbutton;

 /** Creates two buttons in given container. */
 public TheButtons(AbstractComponentContainer container) {
 thebutton = new Button ("Do not push this button");
 thebutton.addListener(this);
 container.addComponent(thebutton);

 secondbutton = new Button ("I am a button too");
 secondbutton.addListener(this);
 container.addComponent (secondbutton);
 }

 /** Handle button click events from the two buttons. */
 public void buttonClick (Button.ClickEvent event) {
 if (event.getButton() == thebutton)
 thebutton.setCaption("Do not push this button again");
 else if (event.getButton() == secondbutton)
 secondbutton.setCaption("I am not a number");
 }
}

Another solution to handling multiple events of the same class involves attaching an event source
to a listener method instead of the class. An event can be attached to a method using another
version of the addListener() method, which takes the event handler method as a parameter.
The method can be passed either by the name of the method or as a Method object. In the ex-
ample below, we use the name of the method, as a string (which is not checked at compile time).

public class TheButtons2 {
 Button thebutton;
 Button secondbutton;

 /** Creates two buttons in given container. */
 public TheButtons2(AbstractComponentContainer container) {
 thebutton = new Button ("Do not push this button");
 thebutton.addListener(Button.ClickEvent.class, this,

47Handling Events with Listeners

Writing a Web Application

 "theButtonClick");
 container.addComponent(thebutton);

 secondbutton = new Button ("I am a button too");
 secondbutton.addListener(Button.ClickEvent.class, this,
 "secondButtonClick");
 container.addComponent (secondbutton);
 }

 public void theButtonClick (Button.ClickEvent event) {
 thebutton.setCaption ("Do not push this button again");
 }

 public void secondButtonClick (Button.ClickEvent event) {
 secondbutton.setCaption ("I am not a number!");
 }
}

Adding a listener method with addListener() is really just a wrapper that creates a
com.vaadin.event.ListenerMethod listener object, which is an adapter from a listener class to
a method. It implements the java.util.EventListener interface and can therefore work for any
event source using the interface. Notice that not all listener classes necessarily inherit the
EventListener interface.

The third way, which uses anonymous local class definitions, is often the easiest as it does not
require cumbering the managing class with new interfaces or methods. The following example
defines an anonymous class that inherits the Button.ClickListener interface and implements
the buttonClick() method.

public class TheButtons3 {
 Button thebutton;
 Button secondbutton;

 /** Creates two buttons in given container. */
 public TheButtons3(AbstractComponentContainer container) {
 thebutton = new Button ("Do not push this button");

 /* Define a listener in an anonymous class. */
 thebutton.addListener(new Button.ClickListener() {
 /* Handle the click. */
 public void buttonClick(ClickEvent event) {
 thebutton.setCaption (
 "Do not push this button again");
 }
 });
 container.addComponent(thebutton);

 secondbutton = new Button ("I am a button too");
 secondbutton.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 secondbutton.setCaption ("I am not a number!");
 }
 });
 container.addComponent (secondbutton);
 }
}

Other techniques for separating between different sources also exist. They include using object
properties, names, or captions to separate between them. Using captions or any other visible
text is generally discouraged, as it may create problems for internationalization. Using other
symbolic strings can also be dangerous, because the syntax of such strings is checked only
runtime.

Handling Events with Listeners48

Writing a Web Application

Events are usually emitted by the framework, but applications may need to emit them too in some
situations, such as when updating some part of the UI is required. Events can be emitted using
the fireEvent(Component.Event) method of AbstractComponent.The event is then relayed
to all the listeners of the particular event class for the object. Some components have a default
event type, for example, a Button has a nested Button.ClickEvent class and a corresponding
Button.ClickListener interface.These events can be triggered with fireComponentEvent().

4.5. Referencing Resources

Web applications work over the web and have various resources, such as images or downloadable
files, that the web browser has to get from the server. These resources are typically used in
Embedded (images) or Link (downloadable files) user interface components.Various components,
such as TabSheet, can also include icons, which are also handled as resources.

A web server can handle many of such requests for static resources without having to ask them
from the application, or the Application object can provide them. For dynamic resources, the
user application must be able to create them dynamically. Vaadin provides resource request in-
terfaces for applications so that they can return various kinds of resources, such as files or dy-
namically created resources. These include the StreamResource class and URI and parameter
handlers described in Section 12.5.1, “URI Handlers” and Section 12.5.2, “Parameter Handlers”,
respectively.

Vaadin provides also low-level facilities for retrieving the URI and other parameters of a HTTP
request. We will first look into how applications can provide various kinds of resources and then
look into low-level interfaces for handling URIs and parameters to provide resources and func-
tionalities.

Notice that using URI or parameter handlers to create "pages" is not meaningful in Vaadin or in
AJAX applications generally. Please see Section 12.1, “Special Characteristics of AJAX Applica-
tions” for a detailed explanation.

4.5.1. Resource Interfaces and Classes

Vaadin has two interfaces for resources: a generic Resource interface and a more specific Ap-
plicationResource interface for resources provided by the application.

Figure 4.4. Resource Interface and Class Diagram

ApplicationResource resources are managed by the Application class.When you create such
a resource, you give the application object to the constructor. The constructor registers the re-
source in the application using the addResource method.

Application manages requests for the resources and allows accessing resources using a URI.
The URI consists of the base name of the application and a relative name of the resource. The

49Referencing Resources

Writing a Web Application

relative name is "APP/"+resourceid+"/"+filename, for example "APP/1/myimage.png".
The resourceid is a generated numeric identifier to make resources unique, and filename
is the file name of the resource given in the constructor of its class. However, the application
using a resource does not usually need to consider its URI. It only needs to give the resource to
an appropriate Embedded or Link or some other user interface component, which manages the
rendering of the URI.

4.5.2. File Resources

File resources are files stored anywhere in the file system. The use of file resources generally
falls into two main categories: downloadable files and embedded images.

A file object that can be accessed as a file resource is defined with the standard java.io.File
class. You can create the file either with an absolute or relative path, but the base path of the
relative path depends on the installation of the web server. For example, in Apache Tomcat, the
default current directory is the installation path of Tomcat.

4.5.3. Class Loader Resources

The ClassResource allows resources to be loaded from the deployed package of the application
using Java Class Loader. The one-line example below loads an image resource from the applic-
ation package and displays it in an Embedded component.

mainwindow.addComponent(new Embedded ("",
 new ClassResource("smiley.jpg",
 mainwindow.getApplication())));

4.5.4.Theme Resources

Theme resources are files included in a theme, typically images. See Chapter 8, Themes for
more information on themes.

4.5.5. Stream Resources

Stream resources are application resources that allow creating dynamic resource content. Charts
are typical examples of dynamic images. To define a stream resource, you need to implement
the StreamResource.StreamSource interface and its getStream method. The method needs
to return an InputStream from which the stream can be read.

The following example demonstrates the creation of a simple image in PNG image format.

import java.awt.image.*;

public class MyImageSource
 implements StreamResource.StreamSource {
 ByteArrayOutputStream imagebuffer = null;
 int reloads = 0;

 /* We need to implement this method that returns
 * the resource as a stream. */
 public InputStream getStream () {
 /* Create an image and draw something on it. */
 BufferedImage image = new BufferedImage (200, 200,
 BufferedImage.TYPE_INT_RGB);
 Graphics drawable = image.getGraphics();
 drawable.setColor(Color.lightGray);
 drawable.fillRect(0,0,200,200);
 drawable.setColor(Color.yellow);

File Resources50

Writing a Web Application

 drawable.fillOval(25,25,150,150);
 drawable.setColor(Color.blue);
 drawable.drawRect(0,0,199,199);
 drawable.setColor(Color.black);
 drawable.drawString("Reloads="+reloads, 75, 100);
 reloads++;

 try {
 /* Write the image to a buffer. */
 imagebuffer = new ByteArrayOutputStream();
 ImageIO.write(image, "png", imagebuffer);

 /* Return a stream from the buffer. */
 return new ByteArrayInputStream(
 imagebuffer.toByteArray());
 } catch (IOException e) {
 return null;
 }
 }
}

The content of the generated image is dynamic, as it updates the reloads counter with every call.
The ImageIO.write() method writes the image to an output stream, while we had to return an
input stream, so we stored the image contents to a temporary buffer.

You can use resources in various ways. Some user interface components, such as Link and
Embedded, take their parameters as a resource.

Below we display the image with the Embedded component. The StreamResource constructor
gets a reference to the application and registers itself in the application's resources. Assume that
main is a reference to the main window and this is the application object.

// Create an instance of our stream source.
StreamResource.StreamSource imagesource = new MyImageSource ();

// Create a resource that uses the stream source and give it a name.
// The constructor will automatically register the resource in
// the application.
StreamResource imageresource =
 new StreamResource(imagesource, "myimage.png", this);

// Create an embedded component that gets its contents
// from the resource.
main.addComponent(new Embedded("Image title", imageresource));

The image will look as follows:

51Stream Resources

Writing a Web Application

Figure 4.5. Screenshot of the stream resource example with an embedded
image

We named the resource as myimage.png. The application adds a resource key to the file name
of the resource to make i t un ique. The fu l l URI wi l l be l ike
http://localhost:8080/testbench/APP/1/myimage.png. The end
APP/1/myimage.png is the relative part of the URI.You can get the relative part of a resource's
URI from the application with Application.getRelativeLocation().

Another solution for creating dynamic content is an URI handler, possibly together with a para-
meter handler. See Section 12.5.1, “URI Handlers” and Section 12.5.2, “Parameter Handlers”.

4.6. Shutting Down an Application

A user can log out or close the web page or browser, so a session and the associated application
instance can end. Ending an application can be initiated by the application logic. Otherwise, it
will be ended automatically when the Servlet session times out.

4.6.1. Closing an Application

If the user quits the application through the user interface, an event handler should call the
close() method in the Application class to shutdown the session.

In the following example, we have a Logout button, which ends the user session.

Button closeButton = new Button("Logout");

closeButton.addListener(new Button.ClickListener() {
 @Override
 public void buttonClick(ClickEvent event) {
 getMainWindow().getApplication().close();
 }
});

main.addComponent(closeButton);

You will soon notice that closing the application simply reloads the application with a new Applic-
ation instance. You can set the window to redirect to a different URL (that does not reload the
application) with setLogoutURL. In your application class, write:

setLogoutURL("/logout.html");

Shutting Down an Application52

Writing a Web Application

4.6.2. Handling the Closing of a Window

Closing the main window (or all application-level windows) does not close session and the applic-
ation instance will be left hanging. You need to program such behaviour by handling the close
events of the windows.

If the user closes a browser window, such as the main window or any other application-level
window, the window will send a final AJAX request to the server, which will fire a Win-
dow.CloseEvent for the closed window.You can handle the event with a Window.CloseListener.
In case the user closes the browser, the event is fired for every open window.

// Close the application if the main window is closed.
main.addListener(new Window.CloseListener(){
 @Override
 public void windowClose(CloseEvent e) {
 System.out.println("Closing the application");
 getMainWindow().getApplication().close();
 }
});

Notice that refreshing a window means closing and reopening it. Therefore, if you have a close
handler as above, the user loses the possibility to refresh the browser window.

In the likely case that the browser crashes, no close event is communicated to the server. As the
server has no way of knowing about the problem, and the session will be left hanging until the
session timeout expires. During this time, the user can restart the browser, open the application
URL, and the main window will be rendered where the user left off.This can be desired behaviour
in many cases, but sometimes it is not and can create a security problem.

4.7. Handling Errors

4.7.1. Error Indicator and message

All components have a built-in error indicator that can be set explicitly with
setComponentError() or can be turned on implicitly if validating the component fails. As with
component caption, the placement of the indicator is managed by the layout in which the com-
ponent is contained. Usually, the error indicator is placed right of the caption text. Hovering the
mouse pointer over the field displays the error message.

The following example shows how you can set the component error explicitly. The example es-
sentially validates field value without using an actual validator.

// Create a field.
final TextField textfield = new TextField("Enter code");
main.addComponent(textfield);

// Let the component error be initially clear.
textfield.setComponentError(null); // (actually the default)

// Have a button right of the field (and align it properly).
final Button button = new Button("Ok!");
main.addComponent(button);
((VerticalLayout)main.getLayout())
 .setComponentAlignment(button, Alignment.BOTTOM_LEFT);

// Handle button clicks
button.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 // If the field value is bad, set its error.

53Handling the Closing of a Window

Writing a Web Application

 // (Allow only alphanumeric characters.)
 if (! ((String) textfield.getValue()).matches("^\\w*$")) {
 // Put the component in error state and
 // set the error message.
 textfield.setComponentError(
 new UserError("Must be letters and numbers"));
 } else {
 // Otherwise clear it.
 textfield.setComponentError(null);
 }
 }
});

Figure 4.6. Error indicator active

The Form component handles and displays also the errors of its contained fields so that it displays
both the error indicator and the message in a special error indicator area. See Section 5.19,
“Form” and Section 5.19.3, “Validating Form Input” for details on the Form component and val-
idation of form input.

4.7.2. Notifications

Notifications are error or information boxes that appear typically at the center of the screen. A
notification box has a caption and optional description and icon. The box stays on the screen
either for a defined time or until the user clicks it.The notification type defines the default appear-
ance and behaviour of a notification.

Notifications are always associated with a window object, which can be a child window (the pos-
itioning is always relative to the entire browser view). The Window class provides a
showNotification() method for displaying notifications. The method takes the caption and
an optional description and notification type as parameters.The method also accepts a notification
object of type Window.Notification, as described further below.

mainwindow.showNotification("This is the caption",
 "This is the description");

Figure 4.7. Notification

The caption and description are, by default, written on the same line. If you want to have a line
break between them, use the XHTML line break markup "
". You can use any XHTML
markup in the caption and description of a notification. If it is possible to get the notification content

Notifications54

Writing a Web Application

from user input, you should sanitize the content carefully, as noted in Section 12.9.1, “Sanitizing
User Input to Prevent Cross-Site Scripting”.

main.showNotification("This is a warning",
 "
This is the <i>last</i> warning",
 Window.Notification.TYPE_WARNING_MESSAGE);

Figure 4.8. Notification with Formatting

The notification type defines the overall default style and behaviour of a notification. If no notific-
ation type is given, the "humanized" type is used as the default. The notification types, listed
below, are defined in the Window.Notification class.

TYPE_HUMANIZED_MESSAGE A user-friendly message that does not annoy too much:
it does not require confirmation by clicking and disap-
pears quickly. It is centered and has a neutral gray
color.

TYPE_WARNING_MESSAGE Warnings are messages of medium importance. They
are displayed with colors that are neither neutral nor
too distractive. A warning is displayed for 1.5 seconds,
but the user can click the message box to dismiss it.
The user can continue to interact with the application
while the warning is displayed.

TYPE_ERROR_MESSAGE Error messages are notifications that require the highest
user attention, with alert colors and by requiring the
user to click the message to dismiss it. The error mes-
sage box does not itself include an instruction to click
the message, although the close box in the upper right
corner indicates it visually. Unlike with other notifica-
tions, the user can not interact with the application while
the error message is displayed.

TYPE_TRAY_NOTIFICATION Tray notifications are displayed in the "system tray"
area, that is, in the lower-right corner of the browser
view. As they do not usually obsure any user interface,
they are displayed longer than humanized or warning
messages, 3 seconds by default.The user can continue
to interact with the application normally while the tray
notification is displayed.

All of the features of specific notification types can be controlled with the attributes of Window.No-
tification. You can pass an explicitly created notification object to the showNotification()
method.

// Create a notification with default settings for a warning.
Window.Notification notif = new Window.Notification(
 "Be warned!",
 "This message lurks in the top-left corner!",
 Window.Notification.TYPE_WARNING_MESSAGE);

// Set the position.

55Notifications

Writing a Web Application

notif.setPosition(Window.Notification.POSITION_TOP_LEFT);

// Let it stay there until the user clicks it
notif.setDelayMsec(-1);

// Show it in the main window.
main.showNotification(notif);

The setPosition() method allows setting the positioning of the notification.The method takes
as its parameter any of the constants:

Window.Notification.POSITION_CENTERED

Window.Notification.POSITION_CENTERED_TOP

Window.Notification.POSITION_CENTERED_BOTTOM

Window.Notification.POSITION_TOP_LEFT

Window.Notification.POSITION_TOP_RIGHT

Window.Notification.POSITION_BOTTOM_LEFT

Window.Notification.POSITION_BOTTOM_RIGHT

The setDelayMSec() allows you to set the time in milliseconds for how long the notification is
displayed. Parameter value -1 means that the message is displayed until the user clicks the
message box. It also prevents interaction with other parts of the application window, as is default
behaviour for error messages. It does not, however, add a close box that the error notification
has.

4.7.3. Customizing System Messages

System messages are notifications that indicate a major invalid state in an application that usually
requires restarting the application. Session timeout is perhaps the most typical such state.

System messages are strings managed in SystemMessages class.

sessionExpired Application servlet session expired. A session expires if no
server requests are made during the session timeout period.
The session timeout can be configured with the
session-timeout parameter in web.xml, as described
in Section 4.8.3, “Deployment Descriptor web.xml”.

communicationErrorURL An unspecified communication problem between the
Vaadin Client-Side Engine and the application server. The
server may be unavailable or there is some other problem.

authenticationError This error occurs if 401 (Unauthorized) response to a re-
quest is received from the server.

internalError A serious internal problem, possibly indicating a bug in
Vaadin Client-Side Engine or in some custom client-side
code.

outOfSync The client-side state is invalid with respect to server-side
state.

cookiesDisabled Informs the user that cookies are disabled in the browser
and the application does not work without them.

Customizing System Messages56

Writing a Web Application

Each message has four properties: a short caption, the actual message, a URL to which to redirect
after displaying the message, and property indicating whether the notification is enabled.

Additional details may be written (in English) to the debug console window described in Sec-
tion 12.4, “Debug and Production Mode”.

You can override the default system messages by implementing the getSystemMessages()
method in the application class. The method should return a Application.SystemMessages
object. The easiest way to customize the messages is to use a CustomizedSystemMessages
object as follows:

// Override the default implementation
public static SystemMessages getSystemMessages() {
 CustomizedSystemMessages messages =
 new CustomizedSystemMessages();
 messages.setSessionExpiredCaption("Ohno, session expired!");
 messages.setSessionExpiredMessage("Don't idle!");
 messages.setSessionExpiredNotificationEnabled(true);
 messages.setSessionExpiredURL("http://vaadin.com/");
 return messages;
}

Notice that the special getSystemMessages() method is not defined in an interface nor does
it exist in the Application superclass.

4.7.4. Handling Uncaught Exceptions

Application development with Vaadin follows the event-driven programming model. Mouse and
keyboard events in the client cause (usually higher-level) events on the server-side, which can
be handled with listeners, and that is how most of the application logic works. Handling the events
can result in exceptions either in the application logic or in the framework itself, but some of them
may not be caught properly.

For example, in the following code excerpt, we throw an error in an event listener but do not catch
it, so it falls to the framework.

final Button button = new Button ("Fail Me");

button.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 // Throw some exception.
 throw new RuntimeException("You can't catch this.");
 }
});

Any such exceptions that occur in the call chain, but are not caught at any other level, are even-
tually caught by the terminal adapter in ApplicationServlet, the lowest-level component that
receives client requests. The terminal adapter passes all such caught exceptions as events to
the error listener of the Application instance through the Terminal.ErrorListener interface.The
Application class does not, by default, throw such exceptions forward.

The reason for this error-handling logic lies in the logic that handles component state synchron-
ization between the client and the server. We want to handle all the serialized variable changes
in the client request, because otherwise the client-side and server-side component states would
become unsynchronized very easily, which could put the entire application in an invalid state.

The default implementation of the Terminal.ErrorListener interface in the Application class
simply prints the error to console. It also tries to find out a component related to the error. If the
exception occurred in a listener attached to a component, that component is considered as the

57Handling Uncaught Exceptions

Writing a Web Application

component related to the exception. If a related component is found, the error handler sets the
component error for it, the same attribute which you can set with setComponentError().

In UI, the component error is shown with a small red "!" -sign (in the default theme). If you hover
the mouse pointer over it, you will see the entire backtrace of the exception in a large tooltip box,
as illustrated in Figure 4.9, “Uncaught Exception in Component Error Indicator” for the above
code example.

Figure 4.9. Uncaught Exception in Component Error Indicator

You can change the logic of handling the terminal errors easily by overriding the
terminalError() method in your application class (the one that inherits Application) or by
setting a custom error listener with the setErrorHandler method. You can safely discard the
default handling or extend its usage with your custom error handling or logging system. In the
example code below, the exceptions are also reported as notifications in the main window.

@Override
public void terminalError(Terminal.ErrorEvent event) {
 // Call the default implementation.
 super.terminalError(event);

 // Some custom behaviour.
 if (getMainWindow() != null) {
 getMainWindow().showNotification(
 "An unchecked exception occured!",
 event.getThrowable().toString(),
 Notification.TYPE_ERROR_MESSAGE);
 }
}

Handling other exceptions works in the usual way for Java Servlets. Uncaught exceptions are
finally caught and handled by the application server.

4.8. Setting Up the Application Environment

Vaadin applications are deployed as Java web applications. A Java "web application" can contain
a number of servlets, each of which can be a Vaadin application or some other servlet, and
static resources such as HTML files. Such a web application is normally packaged as WAR (Web
application ARchive) file, which can be deployed to a Java application server (or a servlet con-
tainer to be exact).

For a detailed tutorial on how web applications are packaged, please refer to any Java book that
discusses Java Servlets. Sun has an excellent reference online at http://java.sun.com/j2ee/tutori-
al/1_3-fcs/doc/WCC3.html [http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html].

Setting Up the Application Environment58

Writing a Web Application

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html

Remember that, in the Java Servlet parlance, "web application" means a collection of Java servlets
or portlets, JSP and static HTML pages, and various other resources that form an application.
Such a Java web application is typically packaged as a WAR package for deployment. Vaadin
applications, on the other hand, run as servlets within such a Java web application. There exists
also other kinds of web applications.To avoid confusion with the general meaning of "web applic-
ation", we often refer to Java web application as "WAR" in this book.

4.8.1. Creating Deployable WAR in Eclipse

To deploy an application to a web server, you need to create a WAR package. Here we give the
instructions for Eclipse.

1. Select File Export and then Web WAR File. Or, right-click the project in the Project
Explorer and select Web WAR File.

2. Select the Web project to export. Enter Destination file name (.war).

3. Make any other settings in the dialog, and click Finish.

4.8.2. Web Application Contents

The following files are required in a web application in order to run it.

Web application organization

WEB-INF/web.xml This is the standard web application descriptor that
defines how the application is organized.You can refer
to any Java book about the contents of this file. Also
see an example in Example 4.1, “web.xml”.

WEB-INF/lib/vaadin-6.x.x.jar This is the Vaadin library. It is included in the product
package in lib directory.

Your application classes You must include your application classes either in a
JAR file in WEB-INF/lib or as classes in
WEB-INF/classes

Your own theme files (OPTION-
AL)

If your application uses a special theme (look and feel),
you must include it in VAADIN/themes/themename
directory.

Widget sets (OPTIONAL) If your application uses a project-specific widget set, it
must be compiled in the VAADIN/widgetset/ direct-
ory.

4.8.3. Deployment Descriptor web.xml

The deployment descriptor is an XML file with the name web.xml in the WEB-INF directory of
a web application. It is a standard component in Java EE describing how a web application should
be deployed. The structure of the deployment descriptor is illustrated by the following example.
You simply deploy applications as servlets implemented by the special
com.vaadin.terminal.gwt.server.ApplicationServlet wrapper class. The class of
the actual application is specified by giving the application parameter with the name of the

59Creating Deployable WAR in Eclipse

Writing a Web Application

specific application class to the servlet. The servlet is then connected to a URL in a standard
way for Java Servlets.

Example 4.1. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app
 id="WebApp_ID" version="2.4"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <servlet>
 <servlet-name>myservlet</servlet-name>
 <servlet-class>
 com.vaadin.terminal.gwt.server.ApplicationServlet
 </servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>MyApplicationClass</param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>myservlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

The descriptor defines a servlet with name myservlet. The servlet class, com.vaadin.termin-
al.gwt.server.ApplicationServlet, is provided by Vaadin framework and it should be the same
for all Vaadin projects. The servlet takes the class name Calc of the user application class as a
parameter, including the full package path to the class. If the class is in the default package the
package path is obviously not used.

The url-pattern is defined above as /*. This matches to any URL under the project context.
We defined above the project context as myproject so the application URL will be
http://localhost:8080/myproject/. If the project were to have multiple applications or
servlets, they would have to be given different names to distinguish them. For example,
url-pattern /myapp/* w o u l d m a t c h a U R L s u c h a s
http://localhost:8080/myproject/myapp/. Notice that the slash and the asterisk must
be included at the end of the pattern.

Notice also that if the URL pattern is other than root /* (such as /myapp/*), you will also need
to make a servlet mapping to /VAADIN/* (unless you are serving it statically as noted below).
For example:

 ...
 <servlet-mapping>
 <servlet-name>myservlet</servlet-name>
 <url-pattern>/myurl/*</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>myservlet</servlet-name>
 <url-pattern>/VAADIN/*</url-pattern>
 </servlet-mapping>

If you have multiple servlets, you should specify only one /VAADIN/* mapping . It doesn't matter
which servlet you map the pattern to, as long as it is a Vaadin servlet.

Deployment Descriptor web.xml60

Writing a Web Application

You do not have to provide the above /VAADIN/* mapping if you serve both the widget sets
and (custom and default) themes statically in the WebContent/VAADIN/ directory.The mapping
simply allows serving them dynamically from the Vaadin JAR. Serving them statically is recom-
mended for production environments as it is faster. If you serve the content from within the same
web application, you may not have the root pattern /* for the Vaadin servlet, as then all the re-
quests would be mapped to the servlet.

Deployment Descriptor Parameters

Deployment descriptor can have many parameters and options that control the execution of a
servlet. You can find a complete documentation of the deployment descriptor in Java Servlet
Specification at http://java.sun.com/products/servlet/.

By default, Vaadin applications run in debug mode, which should be used during development.
This enables various debugging features. For production use, you should have put in your
web.xml the following parameter:

<context-param>
 <param-name>productionMode</param-name>
 <param-value>true</param-value>
 <description>Vaadin production mode</description>
</context-param>

The parameter and the debug and production modes are described in detail in Section 12.4,
“Debug and Production Mode”.

One often needed option is the session timeout. Different servlet containers use varying defaults
for timeouts, such as 30 minutes for Apache Tomcat.You can set the timeout with:

<session-config>
 <session-timeout>30</session-timeout>
</session-config>

After the timeout expires, the close() method of the Application class will be called.You should
implement it if you wish to handle timeout situations.

61Deployment Descriptor web.xml

Writing a Web Application

62

Chapter 5

User Interface
Components

5.1. Overview .. 64
5.2. Interfaces and Abstractions ... 65
5.3. Common Component Features ... 70
5.4. Label ... 80
5.5. Link ... 84
5.6. TextField ... 86
5.7. TextArea ... 91
5.8. PasswordField .. 92
5.9. RichTextArea .. 92
5.10. Date and Time Input with DateField .. 94
5.11. Button ... 99
5.12. CheckBox ... 100
5.13. Selecting Items .. 100
5.14. Table .. 113
5.15. Tree ... 131
5.16. MenuBar ... 132
5.17. Embedded .. 133
5.18. Upload .. 135
5.19. Form .. 138
5.20. ProgressIndicator .. 146

63Book of Vaadin

5.21. Slider ... 147
5.22. LoginForm .. 149
5.23. Component Composition with CustomComponent 152

This chapter provides an overview and a detailed description of all non-layout components in
Vaadin.

5.1. Overview

Vaadin provides a comprehensive set of user interface components and allows you to define
custom components. Figure 5.1, “UI Component Inheritance Diagram” illustrates the inheritance
hierarchy of the UI component classes and interfaces. Interfaces are displayed in gray, abstract
classes in orange, and regular classes in blue. An annotated version of the diagram is featured
in the Vaadin Cheat Sheet.

Figure 5.1. UI Component Inheritance Diagram

At the top of the interface hierarchy, we have the Component interface. At the top of the class
hierarchy, we have the AbstractComponent class. It is inherited by two other abstract classes:
AbstractField, inherited further by field components, and AbstractComponentContainer, inher-

Overview64

User Interface Components

ited by various container and layout components. Components that are not bound to a content
data model, such as labels and links, inherit AbstractComponent directly.

The layout of the various components in a window is controlled, logically, by layout components,
just like in conventional Java UI toolkits for desktop applications. In addition, with the Custom-
Layout component, you can write a custom layout as an XHTML template that includes the loc-
ations of any contained components. Looking at the inheritance diagram, we can see that layout
components inherit the AbstractComponentContainer and the Layout interface. Layout com-
ponents are described in detail in Chapter 6, Managing Layout.

Looking at it from the perspective of an object hierarchy, we would have a Window object, which
contains a hierachy of layout components, which again contain other layout components, field
components, and other visible components.

You can browse the built-in UI components of Vaadin library in the Sampler application of the
Vaadin Demo. The Sampler shows a description, JavaDoc documentation, and a code samples
for each of the components.

In addition to the built-in components, many components are available as add-ons, either from
the Vaadin Directory or from independent sources. Both commercial and free components exist.
The installation of add-ons is described in Chapter 15, Using Vaadin Add-ons.

Vaadin Cheat Sheet and Refcard

Figure 5.1, “UI Component Inheritance Diagram” is included in the Vaadin Cheat
Sheet that illustrates the basic relationship hierarchy of the user interface components
and data binding classes and interfaces. You can download it at http://dev.vaad-
in.com/browser/doc/trunk/cheatsheet/vaadin-cheatsheet-duplex.pdf.

The diagram is also included in the six-page DZone Refcard, which you can find at
https://vaadin.com/refcard.

5.2. Interfaces and Abstractions

Vaadin user interface components are built on a skeleton of interfaces and abstract classes that
define and implement the features common to all components and the basic logic how the com-
ponent states are serialized between the server and the client.

This section gives details on the basic component interfaces and abstractions. The layout and
other component container abstractions are described in Chapter 6, Managing Layout.The inter-
faces that define the Vaadin data model are described in Chapter 9, Binding Components to
Data.

65Interfaces and Abstractions

User Interface Components

http://dev.vaadin.com/browser/doc/trunk/cheatsheet/vaadin-cheatsheet-duplex.pdf
http://dev.vaadin.com/browser/doc/trunk/cheatsheet/vaadin-cheatsheet-duplex.pdf
https://vaadin.com/refcard

Figure 5.2. Component Interfaces and Abstractions

All components also implement the Paintable interface, which is used for serializing ("painting")
the components to the client, and the reverse VariableOwner interface, which is needed for
deserializing component state or user interaction from the client.

In addition to the interfaces defined within the Vaadin framework, all components implement the
java.io.Serializable interface to allow serialization. Serialization is needed in many clustering
and cloud computing solutions.

5.2.1. Component Interface

The Component interface is paired with the AbstractComponent class, which implements all
the methods defined in the interface.

Component Tree Management

Components are laid out in the user interface hierarchically. The layout is managed by layout
components, or more generally components that implement the ComponentContainer interface.
Such a container is the parent of the contained components.

The getParent() method allows retrieving the parent component of a component. While there
is a setParent(), you rarely need it as you usually add components with the addComponent()
method of the ComponentContainer interface, which automatically sets the parent.

A component does not know its parent when the component is created, so you can not refer to
the parent in the constructor with getParent(). Also, it is not possible to fetch a reference to
the application object with getApplication() before having a parent. For example, the following
is invalid:

public class AttachExample extends CustomComponent {
 public AttachExample() {
 // ERROR: We can't access the application object yet.
 ClassResource r = new ClassResource("smiley.jpg",

Component Interface66

User Interface Components

 getApplication());
 Embedded image = new Embedded("Image:", r);
 setCompositionRoot(image);
 }
}

Adding a component to an application triggers calling the attach() method for the component.
Correspondingly, removing a component from a container triggers calling the detach() method.
If the parent of an added component is already connected to the application, the attach() is
called immediately from setParent().

public class AttachExample extends CustomComponent {
 public AttachExample() {
 }

 @Override
 public void attach() {
 super.attach(); // Must call.

 // Now we know who ultimately owns us.
 ClassResource r = new ClassResource("smiley.jpg",
 getApplication());
 Embedded image = new Embedded("Image:", r);
 setCompositionRoot(image);
 }
}

The attachment logic is implemented in AbstractComponent, as described in Section 5.2.2,
“AbstractComponent”.

5.2.2. AbstractComponent

AbstractComponent is the base class for all user interface components. It is the (only) imple-
mentation of the Component interface, implementing all the methods defined in the interface.

AbstractComponent has a single abstract method, getTag(), which returns the serialization
identifier of a particular component class. It needs to be implemented when (and only when)
creating entirely new components. AbstractComponent manages much of the serialization of
component states between the client and the server. Creation of new components and serialization
is described in Chapter 11, Developing New Components, and the server-side serialization API
in Appendix A, User Interface Definition Language (UIDL).

5.2.3. Field Components (Field and AbstractField)

Fields are components that have a value that the user can change through the user interface.
Figure 5.3, “Field Components” illustrates the inheritance relationships and the important interfaces
and base classes.

67AbstractComponent

User Interface Components

Figure 5.3. Field Components

Field components are built upon the framework defined in the Field interface and the Abstract-
Field base class.

Fields are strongly coupled with the Vaadin data model.The field value is handled as a Property
of the field component. Selection fields allow management of the selectable items through the
Container interface.

The description of the field interfaces and base classes is broken down in the following sections.

Field Interface

The Field interface inherits the Component superinterface and also the Property interface to
have a value for the field. AbstractField is the only class implementing the Field interface directly.
The relationships are illustrated in Figure 5.4, “Field Interface Inheritance Diagram”.

Field Components (Field and AbstractField)68

User Interface Components

Figure 5.4. Field Interface Inheritance Diagram

You can set the field value with the setValue() and read with the getValue() method defined
in the Property interface. The actual value type depends on the component.

The Field interface defines a number of attributes, which you can retrieve or manipulate with the
corresponding setters and getters.

description All fields have a description. Notice that while this attribute is defined
in the Field component, it is implemented in AbstractField, which
does not directly implement Field, but only through the AbstractField
class.

required When enabled, a required indicator (usually the asterisk * character)
is displayed on the left, above, or right the field, depending on the
containing layout and whether the field has a caption. If such fields
are validated but are empty and the requiredError property (see
below) is set, an error indicator is shown and the component error is
set to the text defined with the error property. Without validation, the
required indicator is merely a visual guide.

requiredError Defines the error message to show when a value is required, but none
is entered. The error message is set as the component error for the
field and is usually displayed in a tooltip when the mouse pointer hovers
over the error indicator. The Form component can display the error
message in a special error indicator area.

Handling Field Value Changes

Field inherits Property.ValueChangeListener to allow listening for field value changes and
Property.Editor to allow editing values.

When the value of a field changes, a Property.ValueChangeEvent is triggered for the field.You
should not implement the valueChange() method in a class inheriting AbstractField, as it is
already implemented in AbstractField. You should instead implement the method explicitly by
adding the implementing object as a listener.

69Field Components (Field and AbstractField)

User Interface Components

AbstractField Base Class

AbstractField is the base class for all field components. In addition to the component features
inherited from AbstractComponent, it implements a number of features defined in Property,
Buffered, Validatable, and Component.Focusable interfaces.

5.3. Common Component Features

The component base classes and interfaces provide a large number of features. Let us look at
some of the most commonly needed features. Features not documented here can be found from
the Java API Reference.

The interface defines a number of properties, which you can retrieve or manipulate with the cor-
responding setters and getters.

5.3.1. Caption

A caption is an explanatory textual label accompanying a user interface component, usually
shown above, left of, or inside the component.The contents of a caption are automatically quoted,
so no raw XHTML can be rendered in a caption.

The caption text can usually be given as the first parameter of a constructor of a component or
with setCaption().

// New text field with caption "Name"
TextField name = new TextField("Name");
layout.addComponent(name);

The caption of a component is, by default, managed and displayed by the layout component or
component container inside which the component is placed. For example, the VerticalLayout
component shows the captions left-aligned above the contained components, while the Form-
Layout component shows the captions on the left side of the vertically laid components, with the
captions and their associated components left-aligned in their own columns. The CustomCom-
ponent does not manage the caption of its composition root, so if the root component has a
caption, it will not be rendered.

Figure 5.5. Caption Management by VerticalLayout and FormLayout
components.

Some components, such as Button and Panel, manage the caption themselves and display it
inside the component.

Icon (see Section 5.3.4, “Icon”) is closely related to caption and is usually displayed horizontally
before or after it, depending on the component and the containing layout. Also the required indic-
ator in field components is usually shown before or after the caption.

Common Component Features70

User Interface Components

An alternative way to implement a caption is to use another component as the caption, typically
a Label, a TextField, or a Panel. A Label, for example, allows highlighting a shortcut key with
XHTML markup or to bind the caption to a data source. The Panel provides an easy way to add
both a caption and a border around a component.

CSS Style Rules

.v-caption {}
 .v-captiontext {}
 .v-caption-clearelem {}
 .v-required-field-indicator {}

A caption is be rendered inside an HTML element that has the v-caption CSS style class.The
containing layout may enclose a caption inside other caption-related elements.

Some layouts put the caption text in a v-captiontext element. A v-caption-clearelem
is used in some layouts to clear a CSS float property in captions. An optional required indicator
in field components is contained in a separate element with v-required-field-indicator
style.

5.3.2. Description and Tooltips

All components (that inherit AbstractComponent) have a description separate from their caption.
The description is usually shown as a tooltip that appears when the mouse pointer hovers over
the component for a short time.

You can set the description with setDescription() and retrieve with getDescription().

Button button = new Button("A Button");
button.setDescription("This is the tooltip");

The tooltip is shown in Figure 5.6, “Component Description as a Tooltip”.

Figure 5.6. Component Description as a Tooltip

A description is rendered as a tooltip in most components. Form shows it as text in the top area
of the component, as described in Section 5.19.1, “Form as a User Interface Component”.

When a component error has been set with setComponentError(), the error is usually also
displayed in the tooltip, below the description (Form displays it in the bottom area of the form).
Components that are in error state will also display the error indicator. See Section 4.7.1, “Error
Indicator and message”.

The description is actually not plain text, but you can use XHTML tags to format it. Such a rich
text description can contain any HTML elements, including images.

button.setDescription(
 "<h2>"+
 "A richtext tooltip</h2>"+
 ""+
 " Use rich formatting with XHTML"+
 " Include images from themes"+
 " etc."+
 "");

71Description and Tooltips

User Interface Components

The result is shown in Figure 5.7, “A Rich Text Tooltip”.

Figure 5.7. A Rich Text Tooltip

Notice that the setter and getter are defined for all fields in the Field interface, not for all compon-
ents in the Component interface.

5.3.3. Enabled

The enabled property controls whether the user can actually use the component. A disabled
component is visible, but grayed to indicate the disabled state.

Components are always enabled by default. You can disable a component with
setEnabled(false).

Button enabled = new Button("Enabled");
enabled.setEnabled(true); // The default
layout.addComponent(enabled);

Button disabled = new Button("Disabled");
disabled.setEnabled(false);
layout.addComponent(disabled);

Figure 5.8, “An Enabled and Disabled Button” shows the enabled and disabled buttons.

Figure 5.8. An Enabled and Disabled Button

A disabled component is automatically put in read-only state. No client interaction with such a
component is sent to the server and, as an important security feature, the server-side components
do not receive state updates from the client in the read-only state. This feature exists in all built-
in components in Vaadin and is automatically handled for all Field components for the field
property value. For custom widgets, you need to make sure that the read-only state is checked
on the server-side for all safety-critical variables.

CSS Style Rules

Disabled components have the v-disabled CSS style in addition to the component-specific
style. To match a component with both the styles, you have to join the style class names with a
dot as done in the example below.

.v-textfield.v-disabled {
 border: dotted;
}

This would make the border of all disabled text fields dotted.

TextField disabled = new TextField("Disabled");
disabled.setValue("Read-only value");

Enabled72

User Interface Components

disabled.setEnabled(false);
layout.addComponent(disabled);

The result is illustrated in Figure 5.9, “Styling Disabled Components”.

Figure 5.9. Styling Disabled Components

5.3.4. Icon

An icon is an explanatory graphical label accompanying a user interface component, usually
shown above, left of, or inside the component. Icon is closely related to caption (see Section 5.3.1,
“Caption”) and is usually displayed horizontally before or after it, depending on the component
and the containing layout.

The icon of a component can be set with the setIcon() method. The image is provided as a
resource, perhaps most typically a ThemeResource.

// Component with an icon from a custom theme
TextField name = new TextField("Name");
name.setIcon(new ThemeResource("icons/user.png"));
layout.addComponent(name);

// Component with an icon from another theme ('runo')
Button ok = new Button("OK");
ok.setIcon(new ThemeResource("../runo/icons/16/ok.png"));
layout.addComponent(ok);

The icon of a component is, by default, managed and displayed by the layout component or
component container in which the component is placed. For example, the VerticalLayout com-
ponent shows the icons left-aligned above the contained components, while the FormLayout
component shows the icons on the left side of the vertically laid components, with the icons and
their associated components left-aligned in their own columns. The CustomComponent does
not manage the icon of its composition root, so if the root component has an icon, it will not be
rendered.

Figure 5.10. Displaying an Icon from a Theme Resource.

Some components, such as Button and Panel, manage the icon themselves and display it inside
the component.

CSS Style Rules

An icon will be rendered inside an HTML element that has the v-icon CSS style class. The
containing layout may enclose an icon and a caption inside elements related to the caption, such
as v-caption.

5.3.5. Locale

The locale property defines the country and language used in a component. You can use the
locale information in conjunction with an internationalization scheme to acquire localized resources.
Some components, such as DateField, use the locale for component localization.

73Icon

User Interface Components

You can set the locale of a component (or the application) with setLocale().

// Component for which the locale is meaningful
InlineDateField date = new InlineDateField("Datum");

// German language specified with ISO 639-1 language
// code and ISO 3166-1 alpha-2 country code.
date.setLocale(new Locale("de", "DE"));

date.setResolution(DateField.RESOLUTION_DAY);
layout.addComponent(date);

The resulting date field is shown in Figure 5.11, “Set Locale for InlineDateField”.

Figure 5.11. Set Locale for InlineDateField

You can get the locale of a component with getLocale(). If the locale is undefined for a com-
ponent, that is, not explicitly set, the locale of the parent component is used. If none of the parent
components have a locale set, the locale of the application is used, and if that is not set, the default
system locale is set, as given by Locale.getDefault().

Because of the requirement that the component must be attached to the application, it is awkward
to use getLocale() for internationalization.You can not use it in the constructor, so you would
have to get the locale in attach() as shown in the following example:

Button cancel = new Button() {
 @Override
 public void attach() {
 ResourceBundle bundle = ResourceBundle.getBundle(
 MyAppCaptions.class.getName(), getLocale());
 setCaption(bundle.getString("CancelKey"));
 }
};
layout.addComponent(cancel);

It is normally a better practice to get the locale from an application-global parameter and use it
to get the localized resource right when the component is created.

// Captions are stored in MyAppCaptions resource bundle
// and the application object is known in this context.
ResourceBundle bundle =
 ResourceBundle.getBundle(MyAppCaptions.class.getName(),
 getApplication().getLocale());

// Get a localized resource from the bundle
Button cancel = new Button(bundle.getString("CancelKey"));
layout.addComponent(cancel);

Selecting a Locale

A common task in many applications is selecting a locale. This is done in the following example
with a Select component.

Locale74

User Interface Components

// The locale in which we want to have the language
// selection list
Locale displayLocale = Locale.ENGLISH;

// All known locales
final Locale[] locales = Locale.getAvailableLocales();

// Allow selecting a language. We are in a constructor of a
// CustomComponent, so preselecting the current
// language of the application can not be done before
// this (and the selection) component are attached to
// the application.
final Select select = new Select("Select a language") {
 @Override
 public void attach() {
 setValue(getLocale());
 }
};
for (int i=0; i<locales.length; i++) {
 select.addItem(locales[i]);
 select.setItemCaption(locales[i],
 locales[i].getDisplayName(displayLocale));

 // Automatically select the current locale
 if (locales[i].equals(getLocale()))
 select.setValue(locales[i]);
}
layout.addComponent(select);

// Locale code of the selected locale
final Label localeCode = new Label("");
layout.addComponent(localeCode);

// A date field which language the selection will change
final InlineDateField date =
 new InlineDateField("Calendar in the selected language");
date.setResolution(DateField.RESOLUTION_DAY);
layout.addComponent(date);

// Handle language selection
select.addListener(new Property.ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 Locale locale = (Locale) select.getValue();
 date.setLocale(locale);
 localeCode.setValue("Locale code: " +
 locale.getLanguage() + "_" +
 locale.getCountry());
 }
});
select.setImmediate(true);

The user interface is shown in Figure 5.12, “Selecting a Locale”.

75Locale

User Interface Components

Figure 5.12. Selecting a Locale

5.3.6. Read-Only

The property defines whether the value of a component can be changed. The property is mainly
applicable to Field components, as they have a value that can be edited by the user.

TextField readwrite = new TextField("Read-Write");
readwrite.setValue("You can change this");
readwrite.setReadOnly(false); // The default
layout.addComponent(readwrite);

TextField readonly = new TextField("Read-Only");
readonly.setValue("You can't touch this!");
readonly.setReadOnly(true);
layout.addComponent(readonly);

The resulting read-only text field is shown in Figure 5.13, “A Read-Only Component.”.

Figure 5.13. A Read-Only Component.

Setting a layout or some other component container as read-only does not usually make the
contained components read-only recursively. This is different from, for example, the disabled
state, which is usually applied recursively. The Form component is an exception, as it applies
the read-only state to the form fields.

Notice that the value of a selection component is the selection, not its items. A read-only selection
component doesn't therefore allow its selection to be changed, but other changes are possible.
For example, if you have a read-only Table in editable mode, its contained fields and the under-
lying data model can still be edited, and the user could sort it or reorder the columns.

Client-side state modifications will not be communicated to the server-side and, more importantly,
server-side field components will not accept changes to the value of a read-only Field component.
The latter is an important security feature, because a malicious user can not fabricate state
changes in a read-only field. This is handled at the level of AbstractField in setValue(), so
you can not change the value programmatically either. Calling setValue() on a read-only field
results in Property.ReadOnlyException.

Also notice that while the read-only status applies automatically to the property value of a field,
it does not apply to other component variables. A read-only component can accept some other
variable changes from the client-side and some of such changes could be acceptable, such as
change in the scroll bar position of a Table. Custom widgets should check the read-only state
for variables bound to business data.

Read-Only76

User Interface Components

CSS Style Rules

Setting a normally editable component to read-only state can change its appearance to disallow
editing the value. In addition to CSS styling, also the HTML structure can change. For example,
TextField loses the edit box and appears much like a Label.

A read-only component will have the v-readonly style. The following CSS rule would make
the text in all read-only TextField components appear in italic.

.v-textfield.v-readonly {
 font-style: italic;
}

5.3.7. Style Name

The style name property defines one or more custom CSS style class names for the component.
The getStyleName() returns the current style names as a space-separated list. The
setStyleName() replaces all the styles with the given style name or a space-separated list of
style names. You can also add and remove individual style names with addStylename() and
removeStyleName(). A style name must be a valid CSS style name.

Label label = new Label("This text has a lot of style");
label.addStyleName("mystyle");
layout.addComponent(label);

The style name will appear in the component's HTML element in two forms: literally as given and
prefixed with the component class specific style name. For example, if you add a style name
mystyle to a Button, the component would get both mystyle and v-button-mystyle styles.
Neither form may conflict with built-in style names of Vaadin or GWT. For example, focus style
would conflict with a built-in style of the same name, and an option style for a Select component
would conflict with the built-in v-select-option style.

The following CSS rule would apply the style to any component that has the mystyle style.

.mystyle {
 font-family: fantasy;
 font-style: italic;
 font-size: 25px;
 font-weight: bolder;
 line-height: 30px;
}

The resulting styled component is shown in Figure 5.14, “Component with a Custom Style”

Figure 5.14. Component with a Custom Style

5.3.8. Visible

Components can be hidden by setting the visible property to false. Also the caption, icon and
any other component features are made hidden. Hidden components are not just invisible, but
their content is not communicated to the browser at all. That is, they are not made invisible cos-
metically with only CSS rules. This feature is important for security if you have components that
contain security-critical information that must only be shown in specific application states.

TextField readonly = new TextField("Read-Only");
readonly.setValue("You can't see this!");

77Style Name

User Interface Components

readonly.setVisible(false);
layout.addComponent(readonly);

The resulting invisible component is shown in Figure 5.15, “An Invisible Component.”.

Figure 5.15. An Invisible Component.

Beware that invisible beings can leave footprints.The containing layout cell that holds the invisible
component will not go away, but will show in the layout as extra empty space. Also expand ratios
work just like if the component was visible - it is the layout cell that expands, not the component.

If you need to make a component only cosmetically invisible, you should use a custom theme to
set it display: none style. This is mainly useful for certain special components such as Pro-
gressIndicator, which have effects even when made invisible in CSS. If the hidden component
has undefined size and is enclosed in a layout that also has undefined size, the containing layout
will collapse when the component disappears. If you want to have the component keep its size,
you have to make it invisible by setting all its font and other attributes to be transparent. In such
cases, the invisible content of the component can be made visible easily in the browser.

A component made invisible with the visible property has no particular CSS style class to indicate
that it is hidden.The element does exist though, but has display: none style, which overrides
any CSS styling.

5.3.9. Sizing Components

Vaadin components are sizeable; not in the sense that they were fairly large or that the number
of the components and their features are sizeable, but in the sense that you can make them fairly
large on the screen if you like, or small or whatever size.

The Sizeable interface, shared by all components, provides a number of manipulation methods
and constants for setting the height and width of a component in absolute or relative units, or for
leaving the size undefined.

The size of a component can be set with setWidth() and setHeight() methods.The methods
take the size as a floating-point value. You need to give the unit of the measure as the second
parameter for the above methods. The available units are listed in Table 5.1, “Size Units” below.

mycomponent.setWidth(100, Sizeable.UNITS_PERCENTAGE);
mycomponent.setWidth(400, Sizeable.UNITS_PIXELS);

Alternatively, you can speficy the size as a string. The format of such a string must follow the
HTML/CSS standards for specifying measures.

mycomponent.setWidth("100%");
mycomponent.setHeight("400px");

The "100%" percentage value makes the component take all available size in the particular direction
(see the description of Sizeable.UNITS_PERCENTAGE in the table below). You can also use
the shorthand method setSizeFull() to set the size to 100% in both directions.

The size can be undefined in either or both dimensions, which means that the component will
take the minimum necessary space. Most components have undefined size by default, but some
layouts have full size in horizontal direction. You can set the height or width as undefined with
Sizeable.SIZE_UNDEFINED parameter for setWidth() and setHeight().

Sizing Components78

User Interface Components

You always need to keep in mind that a layout with undefined size may not contain components
with defined relative size, such as "full size". See Section 6.12.1, “Layout Size” for details.

The Table 5.1, “Size Units” lists the available units and their codes defined in the Sizeable inter-
face.

Table 5.1. Size Units

The pixel is the basic hardware-
specific measure of one physic-
al display pixel.

pxUNITS_PIXELS

The point is a typographical
unit, which is usually defined as

ptUNITS_POINTS

1/72 inches or about 0.35 mm.
However, on displays the size
can vary significantly depending
on display metrics.

The pica is a typographical unit,
defined as 12 points, or 1/7

pcUNITS_PICAS

inches or about 4.233 mm. On
displays, the size can vary de-
pending on display metrics.

A unit relative to the used font,
the width of the upper-case "M"
letter.

emUNITS_EM

A unit relative to the used font,
the height of the lower-case "x"
letter.

exUNITS_EX

A physical length unit, milli-
meters on the surface of a dis-

mmUNITS_MM

play device. However, the actu-
al size depends on the display,
its metrics in the operating sys-
tem, and the browser.

A physical length unit, centi-
meters on the surface of a dis-

cmUNITS_CM

play device. However, the actu-
al size depends on the display,
its metrics in the operating sys-
tem, and the browser.

A physical length unit, inches
on the surface of a display

inUNITS_INCH

device. However, the actual
size depends on the display, its
metrics in the operating system,
and the browser.

A relative percentage of the
available size. For example, for

%UNITS_PERCENTAGE

the top-level layout 100% would
be the full width or height of the
browser window. The percent-

79Sizing Components

User Interface Components

age value must be between 0
and 100.

If a component inside HorizontalLayout or VerticalLayout has full size in the namesake direction
of the layout, the component will expand to take all available space not needed by the other
components. See Section 6.12.1, “Layout Size” for details.

5.3.10. Managing Input Focus

When the user clicks on a component, the component gets the input focus, which is indicated by
highlighting according to style definitions. If the component allows inputting text, the focus and
insertion point are indicated by a cursor. Pressing the Tab key moves the focus to the component
next in the focus order.

Focusing is supported by all Field components and also by Form and Upload.

The focus order or tab index of a component is defined as a positive integer value, which you
can set with setTabIndex() and get with getTabIndex(). The tab index is managed in the
context of the application-level Window in which the components are contained.The focus order
can therefore jump between two any lower-level component containers, such as sub-windows
or panels.

The default focus order is determined by the natural hierarchical order of components in the order
in which they were added under their parents. The default tab index is 0 (zero).

Giving a negative integer as the tab index removes the component from the focus order entirely.

CSS Style Rules

The component having the focus will have an additional style class with the -focus suffix. For
example, a TextField, which normally has the v-textfield style, would additionally have the
v-textfield-focus style.

For example, the following would make a text field blue when it has focus.

.v-textfield-focus {
 background: lightblue;
}

5.4. Label

Label is a text component that displays non-editable text. In addition to regular text, you can also
display preformatted text and HTML, depending on the content mode of the label.

// A container that is 100% wide by default
VerticalLayout layout = new VerticalLayout();

Label label = new Label("Labeling can be dangerous");
layout.addComponent(label);

The text will wrap around and continue on the next line if it exceeds the width of the Label. The
default width is 100%, so the containing layout must also have a defined width. Some layout
components have undefined width by default, such as HorizontalLayout, so you need to pay
special care with them.

// A container with a defined width. The default content layout
// of Panel is VerticalLayout, which has 100% default width.

Managing Input Focus80

User Interface Components

Panel panel = new Panel("Panel Containing a Label");
panel.setWidth("300px");

panel.addComponent(
 new Label("This is a Label inside a Panel. There is " +
 "enough text in the label to make the text " +
 "wrap when it exceeds the width of the panel."));

As the size of the Panel in the above example is fixed and the width of Label is the default 100%,
the text in the Label will wrap to fit the panel, as shown in Figure 5.16, “The Label Component”.

Figure 5.16.The Label Component

Setting Label to undefined width will cause it to not wrap at the end of the line, as the width of
the content defines the width. If placed inside a layout with defined width, the Label will overflow
the layout horizontally and, normally, be truncated.

Even though Label is text and often used as a caption, it also has a caption, just like any other
component. As with other components, the caption is managed by the containing layout.

5.4.1. Content Mode

The contents of a label are formatted depending on the content mode. By default, the text is as-
sumed to be plain text and any contained XML-specific characters will be quoted appropriately
to allow rendering the contents of a label in XHTML in a web browser. The content mode can be
set in the constructor or with setContentMode(), and can have the following values:

CONTENT_DEFAULT The default content mode is CONTENT_TEXT (see below).

CONTENT_PREFORMATTED Content mode, where the label contains preformatted text.
It will be, by default, rendered with a fixed-width typewriter
font. Preformatted text can contain line breaks, written in
Java with the \n escape sequence for a newline character
(ASCII 0x0a), or tabulator characters written with \t (ASCII
0x08).

CONTENT_RAW Content mode where the label contains raw text. Output is
not required to be valid XML. It can be, for example, HTML,
which can be unbalanced or otherwise invalid XML. The ex-
ample below uses the
 tag in HTML. While XHTML
should be preferred in most cases, this can be useful for
some specific purposes where you may need to display
loosely formatted HTML content. The raw mode also pre-
serves character entities, some of which might otherwise be
interpreted incorrectly.

81Content Mode

User Interface Components

Please note the security and validity warnings regarding the
content mode later in this section.

CONTENT_TEXT Content mode, where the label contains only plain text. All
characters are allowed, including the special <, >, and &
characters in XML or HTML, which are quoted properly in
XHTML while rendering the component. This is the default
mode.

CONTENT_XHTML Content mode where the label contains XHTML.The content
will be enclosed in a DIV element having the namespace
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd".

Please note the security and validity warnings regarding the
content mode later in this section.

CONTENT_XML Content mode, where the label contains well-formed and
well-balanced XML. Each of the root elements must have
their default namespace specified.

Please note the security and validity warnings regarding the
content mode later in this section.

CONTENT_UIDL Formatted content mode, where the contents are XML that
is restricted to UIDL 1.0, the internal language of Vaadin for
AJAX communications between the server and the browser.
Obsolete since IT Mill Toolkit 5.0.

Cross-Site Scripting Warning

Having Label in RAW, XHTML, or XML content modes allows pure HTML content. If
the content comes from user input, you should always carefully sanitize it to prevent
cross-site scripting (XSS) attacks. Please see Section 12.9.1, “Sanitizing User Input
to Prevent Cross-Site Scripting”.

Also, the validity of the XML content is not checked when rendering the component
and any errors can result in an error in the browser. If the content comes from an
uncertain source, you should always validate it before displaying it in the component.

The following example demonstrates the use of Label in different modes.

GridLayout labelgrid = new GridLayout (2,1);

labelgrid.addComponent (new Label ("CONTENT_DEFAULT"));
labelgrid.addComponent (
 new Label ("This is a label in default mode: <plain text>",
 Label.CONTENT_DEFAULT));

labelgrid.addComponent (new Label ("CONTENT_PREFORMATTED"));
labelgrid.addComponent (
 new Label ("This is a preformatted label.\n"+
 "The newline character \\n breaks the line.",
 Label.CONTENT_PREFORMATTED));

labelgrid.addComponent (new Label ("CONTENT_RAW"));
labelgrid.addComponent (
 new Label ("This is a label in raw mode.
It can contain, "+
 "for example, unbalanced markup.",
 Label.CONTENT_RAW));

Content Mode82

User Interface Components

labelgrid.addComponent (new Label ("CONTENT_TEXT"));
labelgrid.addComponent (
 new Label ("This is a label in (plain) text mode",
 Label.CONTENT_TEXT));

labelgrid.addComponent (new Label ("CONTENT_XHTML"));
labelgrid.addComponent (
 new Label ("<i>This</i> is an XHTML formatted label",
 Label.CONTENT_XHTML));

labelgrid.addComponent (new Label ("CONTENT_XML"));
labelgrid.addComponent (
 new Label ("This is an <myelement>XML</myelement> "+
 "formatted label",
 Label.CONTENT_XML));

main.addComponent(labelgrid);

The rendering will look as follows:

Figure 5.17. Label Modes Rendered on Screen

5.4.2. Making Use of the XHTML Mode

Using the XHTML, XML, or raw modes allow inclusion of, for example, images within the text
flow, which is not possible with any regular layout components. The following example includes
an image within the text flow, with the image coming from a class loader resource.

ClassResource labelimage = new ClassResource ("labelimage.jpg",
 this);
main.addComponent(new Label("Here we have an image <img src=\"" +
 this.getRelativeLocation(labelimage) +
 "\"/> within text.",
 Label.CONTENT_XHTML));

When you use a class loader resource, the image has to be included in the JAR of the web ap-
plication. In this case, the labelimage.jpg needs to be in the default package.When rendered
in a web browser, the output will look as follows:

Figure 5.18. Referencing An Image Resource in Label

Another solution would be to use the CustomLayout component, where you can write the com-
ponent content as an XHTML fragment in a theme, but such a solution may be too heavy for
most cases.

83Making Use of the XHTML Mode

User Interface Components

Notice that the rendering of XHTML depends on the assumption that the client software and the
terminal adapter are XHTML based. It is possible to write a terminal adapter for a custom thin
client application, which may not be able to render XHTML at all. There are also differences
between web browsers in their support of XHTML.

5.4.3. Spacing with a Label

You can use a Label to create vertical or horizontal space in a layout. If you need a empty "line"
in a vertical layout, having just a label with empty text is not enough, as it will collapse to zero
height. The same goes for a label with only whitespace as the label text.You need to use a non-
breaking space character, either or :

layout.addComponent(new Label(" ", Label.CONTENT_XHTML));

Using the Label.CONTENT_PREFORMATTED mode has the same effect; preformatted spaces
do not collapse in a vertical layout. In a HorizontalLayout, the width of a space character may
be unpredictable if the label font is proportional, so you can use the preformatted mode to add
em-width wide spaces.

If you want a gap that has adjustable width or height, you can use an empty label if you specify
a height or width for it. For example, to create vertical space in a VerticalLayout:

Label gap = new Label();
gap.setHeight("1em");
verticalLayout.addComponent(gap);

You can make a flexible expanding spacer by having a relatively sized empty label with 100%
height or width and setting the label as expanding in the layout.

// A wide component bar
HorizontalLayout horizontal = new HorizontalLayout();
horizontal.setWidth("100%");

// Have a component before the gap (a collapsing cell)
Button button1 = new Button("I'm on the left");
horizontal.addComponent(button1);

// An expanding gap spacer
Label expandingGap = new Label();
expandingGap.setWidth("100%");
horizontal.addComponent(expandingGap);
horizontal.setExpandRatio(expandingGap, 1.0f);

// A component after the gap (a collapsing cell)
Button button2 = new Button("I'm on the right");
horizontal.addComponent(button2);

5.4.4. CSS Style Rules

The Label component has a v-label overall style.

The Reindeer theme includes a number of predefined styles for typical formatting cases. These
include "h1" (Reindeer.LABEL_H1) and "h2" (Reindeer.LABEL_H2) heading styles and
"light" (Reindeer.LABEL_SMALL) style.

5.5. Link

The Link component allows making hyperlinks. References to locations are represented as re-
source objects, explained in Section 4.5, “Referencing Resources”. The Link is a regular HTML

Spacing with a Label84

User Interface Components

hyperlink, that is, an <a href> anchor element that is handled natively by the browser. Unlike
when clicking a Button, clicking a Link does not cause an event on the server-side.

Links to an arbitrary URL can be made by using an ExternalResource as follows:

// Textual link
Link link = new Link("Click Me!",
 new ExternalResource("http://vaadin.com/"));

You can use setIcon() to make image links as follows:

// Image link
Link iconic = new Link(null,
 new ExternalResource("http://vaadin.com/"));
iconic.setIcon(new ThemeResource("img/nicubunu_Chain.png"));

// Image + caption
Link combo = new Link("To appease both literal and visual",
 new ExternalResource("http://vaadin.com/"));
combo.setIcon(new ThemeResource("img/nicubunu_Chain.png"));

The resulting links are shown in Figure 5.19, “Link Example”. You could add a "display:
block" style for the icon element to place the caption below it.

Figure 5.19. Link Example

With the simple constructor used in the above example, the resource is opened in the current
window. Using the constructor that takes the target window as a parameter, or by setting the
target window with setTargetName(), you can open the resource in another window, such as
a native popup window. As the target name is an HTML target string managed by the browser,
the target can be any window, including windows not managed by the application itself.You can
use the special underscored target names, such as _blank to open the link to a new browser
window or tab.

// Hyperlink to a given URL
Link link = new Link("Take me a away to a faraway land",
 new ExternalResource("http://vaadin.com/"));

// Open the URL in a new window/tab
link.setTargetName("_blank");

// Indicate visually that it opens in a new window/tab
link.setIcon(new ThemeResource("icons/external-link.png"));
link.addStyleName("icon-after-caption");

Normally, the link icon is before the caption.You can have it right of the caption by reversing the
text direction in the containing element.

/* Position icon right of the link caption. */
.icon-after-caption {
 direction: rtl;
}
/* Add some padding around the icon. */

85Link

User Interface Components

.icon-after-caption .v-icon {
 padding: 0 3px;
}

The resulting link is shown in Figure 5.20, “Link That Opens a New Window”.

Figure 5.20. Link That Opens a New Window

With the _blank target, a normal new browser window is opened. If you wish to open it in a
popup window, you need to give a size for the window with setTargetWidth() and
setTargetHeight(). You can control the window border style with setTargetBorder(),
which takes any of the defined border styles TARGET_BORDER_DEFAULT,
TARGET_BORDER_MINIMAL, and TARGET_BORDER_NONE. The exact result depends on the
browser.

// Open the URL in a popup
link.setTargetName("_blank");
link.setTargetBorder(Link.TARGET_BORDER_NONE);
link.setTargetHeight(300);
link.setTargetWidth(400);

In addition to the Link component, Vaadin allows alternative ways to make hyperlinks.The Button
component has a Reindeer.BUTTON_LINK style name that makes it look like a hyperlink, while
handling clicks in a server-side click listener instead of in the browser. Also, you can make hyper-
links (or any other HTML) in a Label in XHTML content mode.

CSS Style Rules
.v-link { }
 a { }
 .v-icon {}
 span {}

The overall style for the Link component is v-link. The root element contains the <a href>
hyperlink anchor. Inside the anchor are the icon, with v-icon style, and the caption in a text
span.

Hyperlink anchors have a number of pseudo-classes that are active at different times. An unvisited
link has a:link class and a visited link a:visited. When the mouse pointer hovers over the
link, it will have a:hover, and when the mouse button is being pressed over the link, the
a:active class.When combining the pseudo-classes in a selector, please notice that a:hover
must come after an a:link and a:visited, and a:active after the a:hover.

5.6. TextField

TextField is one of the most commonly used user interface components. It is a Field component
that allows entering textual values using keyboard.

The following example creates a simple text field:

// Create a text field
TextField tf = new TextField("A Field");

// Put some initial content in it
tf.setValue("Stuff in the field");

CSS Style Rules86

User Interface Components

See the result in Figure 5.21, “TextField Example”.

Figure 5.21. TextField Example

Value changes are handled with a Property.ValueChangeListener, as in most other fields. The
value can be acquired with getValue() directly from the text field, as is done in the example
below, or from the property reference of the event.

// Handle changes in the value
tf.addListener(new Property.ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 // Assuming that the value type is a String
 String value = (String) tf.getValue();

 // Do something with the value
 getWindow().showNotification("Value is:", value);
 }
});

// Fire value changes immediately when the field loses focus
tf.setImmediate(true);

Much of the API of TextField is defined in AbstractTextField, which allows different kinds of
text input fields, such as rich text editors, which do not share all the features of the single-line
text fields.

Figure 5.22.Text Field Class Relationships

5.6.1. Data Binding

You can bind a TextField to any property type that allows conversion of the value to and from
String with the getValue() and setValue() methods.

// Have an initial data model. As Double is unmodificable and
// doesn't support assignment from String, the object is
// reconstructed in the wrapper when the value is changed.
Double trouble = 42.0;

// Wrap it in a property data source
final ObjectProperty<Double> property =
 new ObjectProperty<Double>(trouble);

87Data Binding

User Interface Components

// Create a text field bound to it
TextField tf = new TextField("The Answer", property);
tf.setImmediate(true);

// Show that the value is really written back to the
// data source when edited by user.
Label feedback = new Label(property);
feedback.setCaption("The Value");

When you put values in a Form or Table, the DefaultFieldFactory creates a TextField for almost
every property type by default. However, you often need to make a custom factory that sets the
text field description, immediateness, validation, formatting, and so on.

See Chapter 9, Binding Components to Data for more details on data binding, field factories for
Table in Section 5.14.3, “Editing the Values in a Table”, and for Form in the section called
“Generating Proper Fields with a FormFieldFactory”.

5.6.2. String Length

The setMaxLength() method sets the maximum length of the input string so that the browser
prevents the user from entering a longer one. As a security feature, the input value is automatically
truncated on the server-side, as the maximum length setting could be bypassed on the client-
side. The maximum length property is defined at AbstractTextField level.

Notice that the maximum length setting does not affect the width of the field. You can set the
width with setWidth(), as with other components. Using em widths is recommended to better
approximate the proper width in relation to the size of the used font. There is no standard way
in HTML for setting the width exactly to a number of letters (in a monospaced font).You can trick
your way around this restriction by putting the text field in an undefined-width VerticalLayout
together with an undefined-width Label that contains a sample text, and setting the width of the
text field as 100%. The layout will get its width from the label, and the text field will use that.

5.6.3. Handling Null Values

As with any field, the value of a TextField can be set as null.This occurs most commonly when
you create a new field without setting a value for it or bind the field value to a data source that
allows null values. In such case, you might want to show a special value that stands for the null
value.You can set the null representation with the setNullRepresentation() method. Most
typically, you use an empty string for the null representation, unless you want to differentiate from
a string that is explicitly empty.The default null representation is "null", which essentially warns
that you may have forgotten to initialize your data objects properly.

The setNullSettingAllowed() controls whether the user can actually input a null value by
using the null value representation. If the setting is false, which is the default, inputting the null
value representation string sets the value as the literal value of the string, not null. This default
assumption is a safeguard for data sources that may not allow null values.

// Create a text field without setting its value
TextField tf = new TextField("Field Energy (J)");
tf.setNullRepresentation("-- null-point energy --");

// The null value is actually the default
tf.setValue(null);

// Allow user to input the null value by
// its representation
tf.setNullSettingAllowed(true);

String Length88

User Interface Components

// Feedback to see the value
Label value = new Label(tf);
value.setCaption("Current Value:");

The Label, which is bound to the value of the TextField, displays a null value as empty. The
resulting user interface is shown in Figure 5.23, “Null Value Representation”.

Figure 5.23. Null Value Representation

5.6.4.Text Change Events

Often you want to receive a change event immediately when the text field value changes. The
immediate mode is not literally immediate, as the changes are transmitted only after the field
loses focus. In the other extreme, using keyboard events for every keypress would make typing
unbearably slow and also processing the keypresses is too complicated for most purposes. Text
change events are transmitted asynchronously soon after typing and do not block typing while
an event is being processed.

Text change events are received with a TextChangeListener, as is done in the following example
that demonstrates how to create a text length counter:

// Text field with maximum length
final TextField tf = new TextField("My Eventful Field");
tf.setValue("Initial content");
tf.setMaxLength(20);

// Counter for input length
final Label counter = new Label();
counter.setValue(tf.toString().length() +
 " of " + tf.getMaxLength());

// Display the current length interactively in the counter
tf.addListener(new TextChangeListener() {
 public void textChange(TextChangeEvent event) {
 int len = event.getText().length();
 counter.setValue(len + " of " + tf.getMaxLength());
 }
});

// This is actually the default
tf.setTextChangeEventMode(TextChangeEventMode.LAZY);

The result is shown in Figure 5.24, “Text Change Events”.

Figure 5.24.Text Change Events

The text change event mode defines how quickly the changes are transmitted to the server and
cause a server-side event. Lazier change events allow sending larger changes in one event if
the user is typing fast, thereby reducing server requests.

89Text Change Events

User Interface Components

You can set the text change event mode of a TextField with setTextChangeEventMode().
The allowed modes are defined in TextChangeEventMode class and are the following:

TextChangeEventMode.LAZY
(default)

An event is triggered when there is a pause in editing
the text. The length of the pause can be modified with
setInputEventTimeout(). As with the TIMEOUT
mode, a text change event is forced before a possible
ValueChangeEvent, even if the user did not keep a
pause while entering the text.

This is the default mode.

TextChangeEventMode.TIMEOUT A text change in the user interface causes the event to
be communicated to the application after a timeout
period. If more changes are made during this period,
the event sent to the server-side includes the changes
made up to the last change. The length of the timeout
can be set with setInputEventTimeout().

If a ValueChangeEvent would occur before the timeout
period, a TextChangeEvent is triggered before it, on
the condition that the text content has changed since
the previous TextChangeEvent.

TextChangeEventMode.EAGER An event is triggered immediately for every change in
the text content, typically caused by a key press. The
requests are separate and are processed sequentially
one after another. Change events are nevertheless
communicated asynchronously to the server, so further
input can be typed while event requests are being pro-
cessed.

5.6.5. CSS Style Rules
.v-textfield { }

The HTML structure of TextField is extremely simple, consisting only of an element with
v-textfield style.

For example, the following custom style uses dashed border:

.v-textfield-dashing {
 border: thin dashed;
 background: white; /* Has shading image by default */
}

The result is shown in Figure 5.25, “Styling TextField with CSS”.

Figure 5.25. Styling TextField with CSS

The style name for TextField is also used in several components that contain a text input field,
even if the text input is not an actual TextField. This ensures that the style of different text input
boxes is similar.

CSS Style Rules90

User Interface Components

5.7. TextArea

TextArea is a multi-line version of the TextField component described in Section 5.6, “TextField”.

The following example creates a simple text area:

// Create the area
TextArea area = new TextArea("Big Area");

// Put some content in it
area.setValue("A row\n"+
 "Another row\n"+
 "Yet another row");

The result is shown in Figure 5.26, “TextArea Example”.

Figure 5.26. TextArea Example

You can set the number of visible rows with setRows() or use the regular setHeight() to
define the height in other units. If the actual number of rows exceeds the number, a vertical
scrollbar will appear. Setting the height with setRows() leaves space for a horizontal scrollbar,
so the actual number of visible rows may be one higher if the scrollbar is not visible.

You can set the width with the regular setWidth() method. Setting the size with the em unit,
which is relative to the used font size, is recommended.

Word Wrap

The setWordwrap() sets whether long lines are wrapped (true - default) when the line length
reaches the width of the writing area. If the word wrap is disabled (false), a vertical scrollbar
will appear instead.The word wrap is only a visual feature and wrapping a long line does not insert
line break characters in the field value; shortening a wrapped line will undo the wrapping.

TextArea area1 = new TextArea("Wrapping");
area1.setWordwrap(true); // The default
area1.setValue("A quick brown fox jumps over the lazy dog");

TextArea area2 = new TextArea("Nonwrapping");
area2.setWordwrap(false);
area2.setValue("Victor jagt zwölf Boxkämpfer quer "+
 "über den Sylter Deich");

The result is shown in Figure 5.27, “Word Wrap in TextArea”.

91TextArea

User Interface Components

Figure 5.27. Word Wrap in TextArea

CSS Style Rules
.v-textarea { }

The HTML structure of TextArea is extremely simple, consisting only of an element with
v-textarea style.

5.8. PasswordField

The PasswordField is a variant of TextField that hides the typed input from visual inspection.

PasswordField tf = new PasswordField("Keep it secret");

The result is shown in Figure 5.28, “PasswordField”.

Figure 5.28. PasswordField

You should note that the PasswordField hides the input only from "over the shoulder" visual
observation. Unless the server connection is encrypted with a secure connection, such as HTTPS,
the input is transmitted in clear text and may be intercepted by anyone with low-level access to
the network. Also phishing attacks that intercept the input in the browser may be possible by
exploiting JavaScript execution security holes in the browser.

CSS Style Rules
.v-textfield { }

The PasswordField does not have its own CSS style name but uses the same v-textfield
style as the regular TextField. See Section 5.6.5, “CSS Style Rules” for information on styling
it.

5.9. RichTextArea

The RichTextArea field allows entering or editing formatted text. The toolbar provides all basic
editing functionalities. The text content of RichTextArea is represented in HTML format. Rich-
TextArea inherits TextField and does not add any API functionality over it. You can add new
functionality by extending the client-side components VRichTextArea and VRichTextToolbar.

CSS Style Rules92

User Interface Components

As with TextField, the textual content of the rich text area is the Property of the field and can
be set with setValue() and read with getValue().

// Create a rich text area
final RichTextArea rtarea = new RichTextArea();
rtarea.setCaption("My Rich Text Area");

// Set initial content as HTML
rtarea.setValue("<h1>Hello</h1>\n" +
 "<p>This rich text area contains some text.</p>");

Figure 5.29. Rich Text Area Component

Above, we used context-specific tags such as <h1> in the initial HTML content. The rich text
area component does not allow creating such tags, only formatting tags, but it does preserve
them unless the user edits them away. Any non-visible whitespace such as the new line character
(\n) are removed from the content. For example, the value set above will be as follows when
read from the field with getValue():

<h1>Hello</h1> <p>This rich text area contains some text.</p>

The rich text area is one of the few components in Vaadin that contain textual labels.The selection
boxes in the toolbar are in English and currently can not be localized in any other way than by
inheriting or reimplementing the client-side VRichTextToolbar widget.The buttons can be localized
simply with CSS by downloading a copy of the toolbar background image, editing it, and replacing
the default toolbar. The toolbar is a single image file from which the individual button icons are
picked, so the order of the icons is different from the rendered. The image file depends on the
client-side implementation of the toolbar.

.v-richtextarea-richtextexample .gwt-ToggleButton

.gwt-Image {
 background-image: url(img/richtextarea-toolbar-fi.png)
 !important;
}

Figure 5.30. Regular English and a Localized Rich Text Area Toolbar

93RichTextArea

User Interface Components

Cross-Site Scripting with RichTextArea

The user input from a RichTextArea is transmitted as XHTML from the browser to server-side
and is not sanitized. As the entire purpose of the RichTextArea component is to allow input of
formatted text, you can not sanitize it just by removing all HTML tags. Also many attributes, such
as style, should pass through the sanitization.

See Section 12.9.1, “Sanitizing User Input to Prevent Cross-Site Scripting” for more details on
Cross-Site scripting vulnerabilities and sanitization of user input.

CSS Style Rules
.v-richtextarea { }
.v-richtextarea .gwt-RichTextToolbar { }
.v-richtextarea .gwt-RichTextArea { }

The rich text area consists of two main parts: the toolbar with overall style
.gwt-RichTextToolbar and the editor area with style .gwt-RichTextArea.The editor area
obviously contains all the elements and their styles that the HTML content contains. The toolbar
contains buttons and drop-down list boxes with the following respective style names:

.gwt-ToggleButton { }

.gwt-ListBox { }

5.10. Date and Time Input with DateField

The DateField component provides the means to display and input date and time. The field
comes in two variations: PopupDateField, with a numeric input box and a popup calendar view,
and InlineDateField, with the calendar view always visible. The DateField base class defaults
to the popup variation.

The example below illustrates the use of the DateField baseclass, which is equivalent to the
PopupDateField. We set the initial time of the date field to current time by using the default
constructor of the java.util.Date class.

// Create a DateField with the default style
DateField date = new DateField();

// Set the date and time to present
date.setValue(new Date());

The result is shown in Figure 5.31, “DateField (PopupDateField) for Selecting Date and Time”.

Figure 5.31. DateField (PopupDateField) for Selecting Date and Time

Cross-Site Scripting with RichTextArea94

User Interface Components

5.10.1. PopupDateField

The PopupDateField provides date input using a text box for the date and time. As the DateField
defaults to this component, the use is exactly the same as described earlier. Clicking the handle
right of the date opens a popup view for selecting the year, month, and day, as well as time. Also
the Down key opens the popup. Once opened, the user can navigate the calendar using the
cursor keys.

The date and time selected from the popup are displayed in the text box according to the default
date and time format of the current locale, or as specified with setDateFormat(). The same
format definitions are used for parsing user input.

Date and Time Format

The date and time are normally displayed according to the default format for the current locale
(see Section 5.3.5, “Locale”).You can specify a custom format with setDateFormat(). It takes
a format string that follows the format of the SimpleDateFormat in Java.

// Display only year, month, and day in ISO format
date.setDateFormat("yyyy-MM-dd");

The result is shown in Figure 5.32, “Custom Date Format for PopupDateField”.

Figure 5.32. Custom Date Format for PopupDateField

The same format specification is also used for parsing user-input date and time, as described
later.

Handling Malformed User Input

A user can easily input a malformed or otherwise invalid date or time. DateField has two validation
layers: first on the client-side and then on the server-side.

The validity of the entered date is first validated on the client-side, immediately when the input
box loses focus. If the date format is invalid, the v-datefield-parseerror style is set.
Whether this causes a visible indication of a problem depends on the theme.The built-in reindeer
theme does not shown any indication by default, making server-side handling of the problem
more convenient.

.mydate.v-datefield-parseerror .v-textfield {
 background: pink;
}

The setLenient(true) setting enables relaxed interpretation of dates, so that invalid dates,
such as February 30th or March 0th, are wrapped to the next or previous month, for example.

The server-side validation phase occurs when the date value is sent to the server. If the date
field is set in immediate state, it occurs immediately after the field loses focus. Once this is done
and if the status is still invalid, an error indicator is displayed beside the component. Hovering
the mouse pointer over the indicator shows the error message.

95PopupDateField

User Interface Components

You can handle the errors by overriding the handleUnparsableDateString() method. The
method gets the user input as a string parameter and can provide a custom parsing mechanism,
as shown in the following example.

// Create a date field with a custom parsing and a
// custom error message for invalid format
PopupDateField date = new PopupDateField("My Date") {
 @Override
 protected Date handleUnparsableDateString(String dateString)
 throws Property.ConversionException {
 // Try custom parsing
 String fields[] = dateString.split("/");
 if (fields.length >= 3) {
 try {
 int year = Integer.parseInt(fields[0]);
 int month = Integer.parseInt(fields[1])-1;
 int day = Integer.parseInt(fields[2]);
 GregorianCalendar c =
 new GregorianCalendar(year, month, day);
 return c.getTime();
 } catch (NumberFormatException e) {
 throw new Property.
 ConversionException("Not a number");
 }
 }

 // Bad date
 throw new Property.
 ConversionException("Your date needs two slashes");
 }
};

// Display only year, month, and day in slash-delimited format
date.setDateFormat("yyyy/MM/dd");

// Don't be too tight about the validity of dates
// on the client-side
date.setLenient(true);

The handler method must either return a parsed Date object or throw a ConversionException.
Returning null will set the field value to null and clear the input box.

Customizing the Error Message

In addition to customized parsing, overriding the handler method for unparseable input is useful
for internationalization and other customization of the error message. You can also use it for
another way for reporting the errors, as is done in the example below:

// Create a date field with a custom error message for invalid format
PopupDateField date = new PopupDateField("My Date") {
 @Override
 protected Date handleUnparsableDateString(String dateString)
 throws Property.ConversionException {
 // Have a notification for the error
 getWindow().showNotification(
 "Your date needs two slashes",
 Notification.TYPE_WARNING_MESSAGE);

 // A failure must always also throw an exception
 throw new Property.ConversionException("Bad date");
 }
};

PopupDateField96

User Interface Components

If the input is invalid, you should always throw the exception; returning a null value would make
the input field empty, which is probably undesired.

Input Prompt

Like other fields that have a text box, PopupDateField allows an input prompt that is visible until
the user has input a value.You can set the prompt with setInputPrompt.

PopupDateField date = new PopupDateField();

// Set the prompt
date.setInputPrompt("Select a date");

// Set width explicitly to accommodate the prompt
date.setWidth("10em");

The date field doesn't automatically scale to accommodate the prompt, so you need to set it ex-
plicitly with setWidth().

The input prompt is not available in the DateField superclass.

CSS Style Rules

.v-datefield, v-datefield-popupcalendar {}
 .v-textfield, v-datefield-textfield {}
 .v-datefield-button {}

The top-level element of DateField and all its variants have v-datefield style.The base class
and the PopupDateField also have the v-datefield-popupcalendar style.

In addition, the top-level element has a style that indicates the resolution, with v-datefield-
basename and an extension, which is one of full, day, month, or year. The -full style is
enabled when the resolution is smaller than a day. These styles are used mainly for controlling
the appearance of the popup calendar.

The text box has v-textfield and v-datefield-textfield styles, and the calendar button
v-datefield-button.

Once opened, the calendar popup has the following styles at the top level:

.v-datefield-popup {}
 .v-popupcontent {}
 .v-datefield-calendarpanel {}

The top-level element of the floating popup calendar has .v-datefield-popup style. Observe
that the popup frame is outside the HTML structure of the component, hence it is not enclosed
in the v-datefield element and does not include any custom styles. The content in the
v-datefield-calendarpanel is the same as in InlineDateField, as described in Sec-
tion 5.10.2, “InlineDateField”.

5.10.2. InlineDateField

The InlineDateField provides a date picker component with a month view.The user can navigate
months and years by clicking the appropriate arrows. Unlike with the popup variant, the month
view is always visible in the inline field.

// Create a DateField with the default style
InlineDateField date = new InlineDateField();

97InlineDateField

User Interface Components

// Set the date and time to present
date.setValue(new java.util.Date());

The result is shown in Figure 5.33, “Example of the InlineDateField”.

Figure 5.33. Example of the InlineDateField

The user can also navigate the calendar using the cursor keys.

CSS Style Rules

.v-datefield {}
 .v-datefield-calendarpanel {}
 .v-datefield-calendarpanel-header {}
 .v-datefield-calendarpanel-prevyear {}
 .v-datefield-calendarpanel-prevmonth {}
 .v-datefield-calendarpanel-month {}
 .v-datefield-calendarpanel-nextmonth {}
 .v-datefield-calendarpanel-nextyear {}
 .v-datefield-calendarpanel-body {}
 .v-datefield-calendarpanel-weekdays,
 .v-datefield-calendarpanel-weeknumbers {}
 .v-first {}
 .v-last {}
 .v-datefield-calendarpanel-weeknumber {}
 .v-datefield-calendarpanel-day {}
 .v-datefield-calendarpanel-time {}
 .v-datefield-time {}
 .v-select {}
 .v-label {}

The top-level element has the v-datefield style. In addition, the top-level element has a style
name that indicates the resolution of the calendar, with v-datefield- basename and an exten-
sion, which is one of full, day, month, or year.The -full style is enabled when the resolution
is smaller than a day.

The v-datefield-calendarpanel-weeknumbers and
v-datefield-calendarpanel-weeknumber styles are enabled when the week numbers
are enabled.The former controls the appearance of the weekday header and the latter the actual
week numbers.

The other style names should be self-explanatory. For weekdays, the v-first and v-last
styles allow making rounded endings for the weekday bar.

5.10.3.Time Resolution

You probably will not need milliseconds in most applications, and might not even need the time,
but just the date, or month or year. The visibility of the input components is controlled by time

Time Resolution98

User Interface Components

resolution, which can be set with setResolution() method.The method takes as its parameters
the lowest visible component, typically RESOLUTION_DAY for just dates and RESOLUTION_MIN
for dates with time in hours and minutes. Please see the API Reference for a complete list of
resolution parameters.

5.10.4. DateField Locale

The date and time are displayed according to the locale of the user, as reported by the browser.
You can set a custom locale with the setLocale() method of AbstractComponent, as described
in Section 5.3.5, “Locale”. Only Gregorian calendar is supported.

5.11. Button

The Button is a user interface component that is normally used for finalizing input and initiating
some action. When the user clicks a button, a Button.ClickEvent is emitted. A listener that in-
herits the Button.ClickListener interface can handle clicks with the buttonClick() method.

public class TheButton extends CustomComponent
 implements Button.ClickListener {
 Button thebutton;

 public TheButton() {
 // Create a Button with the given caption.
 thebutton = new Button ("Do not push this button");

 // Listen for ClickEvents.
 thebutton.addListener(this);

 setCompositionRoot(thebutton);
 }

 /** Handle click events for the button. */
 public void buttonClick (Button.ClickEvent event) {
 thebutton.setCaption ("Do not push this button again");
 }
}

Figure 5.34. An Example of a Button

As a user interface often has several buttons, you can differentiate between them either by
comparing the Button object reference returned by the getButton() method of Button.Click-
Event to a kept reference or by using a separate listener method for each button. The listening
object and method can be given to the constructor. For a detailed description of these patterns
together with some examples, please see Section 3.5, “Events and Listeners”.

CSS Style Rules
.v-button { }

The exact CSS style name can be different if a Button has the switchMode attribute enabled.
See the alternative CSS styles below.

Adding the "small" style name enables a smaller style for the Button. You can also use the
BUTTON_SMALL constant in Runo and Reindeer theme classes as well. The BaseTheme class

99DateField Locale

User Interface Components

also has a BUTTON_LINK style, with "link" style name, which makes the button look like a hy-
perlink.

5.12. CheckBox

CheckBox is a two-state selection component that can be either checked or unchecked. The
caption of the check box will be placed right of the actual check box. Vaadin provides two ways
to create check boxes: individual check boxes with the CheckBox component described in this
section and check box groups with the OptionGroup component in multiple selection mode, as
described in Section 5.13.5, “Radio Button and Check Box Groups with OptionGroup”.

Clicking on a check box will change its state. The state is the Boolean property of the Button,
and can be set with setValue() and obtained with getValue() method of the Property inter-
face. Changing the value of a check box will cause a ValueChangeEvent, which can be handled
by a ValueChangeListener.

// A check box with default state (not checked, false).
final CheckBox checkbox1 = new CheckBox("My CheckBox");
main.addComponent(checkbox1);

// Another check box with explicitly set checked state.
final CheckBox checkbox2 = new CheckBox("Checked CheckBox");
checkbox2.setValue(true);
main.addComponent(checkbox2);

// Make some application logic. We use anonymous listener
// classes here. The above references were defined as final
// to allow accessing them from inside anonymous classes.
checkbox1.addListener(new ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 // Copy the value to the other checkbox.
 checkbox2.setValue(checkbox1.getValue());
 }
});
checkbox2.addListener(new ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 // Copy the value to the other checkbox.
 checkbox1.setValue(checkbox2.getValue());
 }
});

Figure 5.35. An Example of a Check Box

For an example on the use of check boxes in a table, see Section 5.14, “Table”.

CSS Style Rules
.v-checkbox { }

5.13. Selecting Items

Vaadin gives many alternatives for selecting one or more items from a list, using drop-down and
regular lists, radio button and check box groups, tables, trees, and so on.

CheckBox100

User Interface Components

The core library includes the following selection components, all based on the AbstractSelect
class:

Select In single selection mode, a drop-down list with a text input area, which
the user can use to filter the displayed items. In multiselect mode, a
list box equivalent to ListSelect.

ComboBox A drop-down list for single selection. Otherwise as Select, but the user
can also enter new items. The component also provides an input
prompt.

ListSelect A vertical list box for selecting items in either single or multiple selection
mode.

NativeSelect Provides selection using the native selection component of the browser,
typically a drop-down list for single selection and a multi-line list in
multiselect mode. This uses the <select> element in HTML.

OptionGroup Shows the items as a vertically arranged group of radio buttons in the
single selection mode and of check boxes in multiple selection mode.

TwinColSelect Shows two list boxes side by side where the user can select items
from a list of available items and move them to a list of selected items
using control buttons.

In addition, the Tree and Table components allow special forms of selection. They also inherit
the AbstractSelect.

5.13.1. Binding Selection Components to Data

The selection components are strongly coupled with the Vaadin Data Model.The selectable items
in all selection components are objects that implement the Item interface and are contained in
a Container. The current selection is bound to the Property interface.

Even though the data model is used, the selection components allow simple use in the most
common cases. Each selection component is bound to a default container type, which supports
management of items without need to implement a container.

See Chapter 9, Binding Components to Data for a detailed description of the data model, its in-
terfaces, and built-in implementations.

Adding New Items

New items are added with the addItem() method defined in the Container interface.

// Create a selection component
Select select = new Select ("Select something here");

// Add some items and give each an item ID
select.addItem("Mercury");
select.addItem("Venus");
select.addItem("Earth");

The addItem() method creates an empty Item, which is identified by its item identifier (IID)
object, given as the parameter. This item ID is by default used also as the caption of the item,
as explained in the next section. The identifier is typically a String. The item is of a type specific

101Binding Selection Components to Data

User Interface Components

to the container and has itself little relevance for most selection components, as the properties
of an item may not be used in any way (except in Table), only the item ID.

The item identifier can be of any object type. We could as well have given integers for the item
identifiers and set the captions explicitly with setItemCaption(). You could also add an item
with the parameterless addItem(), which returns an automatically generated item ID.

// Create a selection component
Select select = new Select("My Select");

// Add an item with a generated ID
Object itemId = select.addItem();
select.setItemCaption(itemId, "The Sun");

// Select the item
select.setValue(itemId);

Some container types may support passing the actual data object to the add method. For example,
you can add items to a BeanItemContainer with addBean(). Such implementations can use a
separate item ID object, or the data object itself as the item ID, as is done in addBean(). In the
latter case you can not depend on the default way of acquiring the item caption; see the description
of the different caption modes later.

The following section describes the different options for determining the item captions.

Item Captions

The displayed captions of items in a selection component can be set explicitly with
setItemCaption() or determined from the item IDs or item properties. This behaviour is
defined with the caption mode, which you can set with setItemCaptionMode(). The default
mode is ITEM_CAPTION_MODE_EXPLICIT_DEFAULTS_ID, which uses the item identifiers for
the captions, unless given explicitly.

In addition to a caption, an item can have an icon. The icon is set with setItemIcon().

Caption Modes for Selection Components

ITEM_CAPTION_MODE_EXPLICIT_DEFAULTS_ID This is the default caption mode and its flexibility allows
using it in most cases. By default, the item identifier will
be used as the caption. The identifier object does not
necessarily have to be a string; the caption is retrieved
with toString() method. If the caption is specified
explicitly with setItemCaption(), it overrides the
item identifier.

Select select = new Select("Moons of Mars");

// Use the item ID also as the caption of this item
select.addItem(new Integer(1));

// Set item caption for this item explicitly
select.addItem(2); // same as "new Integer(2)"
select.setItemCaption(2, "Deimos");

ITEM_CAPTION_MODE_EXPLICIT Captions must be explicitly specified with
setItemCaption(). If they are not, the caption will
be empty. Such items with empty captions will never-

Binding Selection Components to Data102

User Interface Components

theless be displayed in the Select component as empty
items. If they have an icon, they will be visible.

ITEM_CAPTION_MODE_ICON_ONLY Only icons are shown, captions are hidden.

ITEM_CAPTION_MODE_ID String representation of the item identifier object is used
as caption.This is useful when the identifier is a string,
and also when the identifier is an complex object that
has a string representation. For example:

Select select = new Select("Inner Planets");
select.setItemCaptionMode(Select.ITEM_CAPTION_MODE_ID);

// A class that implements toString()
class PlanetId extends Object implements
Serializable {
 String planetName;
 PlanetId (String name) {
 planetName = name;
 }
 public String toString () {
 return "The Planet " + planetName;
 }
}

// Use such objects as item identifiers
String planets[] = {"Mercury", "Venus", "Earth",
"Mars"};
for (int i=0; i<planets.length; i++)
 select.addItem(new PlanetId(planets[i]));

ITEM_CAPTION_MODE_INDEX Index number of item is used as caption. This caption
mode is applicable only to data sources that implement
the Container.Indexed interface. If the interface is not
available, the component will throw a ClassCastExcep-
tion. The Select component itself does not implement
this interface, so the mode is not usable without a
separate data source. An IndexedContainer, for ex-
ample, would work.

ITEM_CAPTION_MODE_ITEM String representation of item, acquired with
toString(), is used as the caption.This is applicable
mainly when using a custom Item class, which also
requires using a custom Container that is used as a
data source for the Select component.

ITEM_CAPTION_MODE_PROPERTY Item captions are read from the String representation
of the property with the identifier specified with
setItemCaptionPropertyId(). This is useful, for
example, when you have a container that you use as
the data source for a Select, and you want to use a
specific property for caption.

In the example below, we bind a selection component
to a bean container and use a property of the bean as
the caption.

103Binding Selection Components to Data

User Interface Components

/* A bean with a "name" property. */
public class Planet implements Serializable {
 String name;

 public Planet(String name) {
 this.name = name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }
}

void propertyModeExample() {
 VerticalLayout layout = new VerticalLayout();

 // Have a bean container to put the beans in
 BeanItemContainer<Planet> container =
 new
BeanItemContainer<Planet>(Planet.class);

 // Put some example data in it
 container.addItem(new Planet("Mercury"));
 container.addItem(new Planet("Venus"));
 container.addItem(new Planet("Earth"));
 container.addItem(new Planet("Mars"));

 // Create a selection component bound to the
container
 Select select = new Select("Planets",
container);

 // Set the caption mode to read the caption
directly
 // from the 'name' property of the bean
 select.setItemCaptionMode(
 Select.ITEM_CAPTION_MODE_PROPERTY);
 select.setItemCaptionPropertyId("name");

 layout.addComponent(select);

Getting and Setting Selection

A selection component provides the current selection as the property of the component (with the
Property interface). The property value is an item identifier object that identifies the selected
item.You can get the identifier with getValue() of the Property interface.

You can select an item with the corresponding setValue() method. In multiselect mode, the
property will be an unmodifiable set of item identifiers. If no item is selected, the property will be
null in single selection mode or an empty collection in multiselect mode.

The Select and NativeSelect components will show "-" selection when no actual item is selected.
This is the null selection item identifier. You can set an alternative ID with
setNullSelectionItemId(). Setting the alternative null ID is merely a visual text; the
getValue() will still return null value if no item is selected, or an empty set in multiselect
mode.

Binding Selection Components to Data104

User Interface Components

The item identifier of the currently selected item will be set as the property of the Select object.
You can access it with the getValue() method of the Property interface of the component.
Also, when handling changes in a Select component with the Property.ValueChangeListener
interface, the Property.ValueChangeEvent will have the selected item as the property of the
event, accessible with the getProperty() method.

Figure 5.36. Selected Item

5.13.2. Basic Select Component

The Select component allows, in single selection mode, selecting an item from a drop-down list.
The component also has a text field area, which allows entering search text by which the items
shown in the drop-down list are filtered.

In multiple selection mode, the component shows the items in a vertical list box, identical to
ListSelect.

Figure 5.37.The Select Component

Filtered Selection

The Select component allows filtering the items available for selection. The component shows
as an input box for entering text.The text entered in the input box is used for filtering the available
items shown in a drop-down list. Pressing Enter will complete the item in the input box. Pressing
Up- and Down-arrows can be used for selecting an item from the drop-down list. The drop-down
list is paged and clicking on the scroll buttons will change to the next or previous page. The list
selection can also be done with the arrow keys on the keyboard. The shown items are loaded
from the server as needed, so the number of items held in the component can be quite large.

Vaadin provides two filtering modes:FILTERINGMODE_CONTAINS matches any item that contains
the string given in the text field part of the component and FILTERINGMODE_STARTSWITH

105Basic Select Component

User Interface Components

matches only items that begin with the given string. The filtering mode is set with
setFilteringMode(). Setting the filtering mode to the default value FILTERINGMODE_OFF
disables filtering.

Select select = new Select("Enter containing substring");

select.setFilteringMode(AbstractSelect.Filtering.FILTERINGMODE_CONTAINS);

/* Fill the component with some items. */
final String[] planets = new String[] {
 "Mercury", "Venus", "Earth", "Mars",
 "Jupiter", "Saturn", "Uranus", "Neptune" };

for (int i = 0; i < planets.length; i++)
 for (int j = 0; j < planets.length; j++) {
 select.addItem(planets[j] + " to " + planets[i]);

The above example uses the containment filter that matches to all items containing the input
string. As shown in Figure 5.38, “Filtered Selection” below, when we type some text in the input
area, the drop-down list will show all the matching items.

Figure 5.38. Filtered Selection

CSS Style Rules

.v-filterselect { }

.v-filterselect-input { }

.v-filterselect-button { }

.v-filterselect-suggestpopup { }

.v-filterselect-prefpage-off { }

.v-filterselect-suggestmenu { }

.v-filterselect-status { }

.v-select { }

.v-select-select { }

In its default state, only the input field of the Select component is visible. The entire component
is enclosed in v-filterselect style, the input field has v-filterselect-input style and
the button in the right end that opens and closes the drop-down result list has
v-filterselect-button style.

The drop-down result list has an overall v-filterselect-suggestpopup style. It contains
the list of suggestions with v-filterselect-suggestmenu style and a status bar in the bottom

Basic Select Component106

User Interface Components

with v-filterselect-status style. The list of suggestions is padded with an area with
v-filterselect-prefpage-off style above and below the list.

In multiselect-mode, the styles of the component aere identical to ListSelect component, with
v-select overall style and v-select-select for the native selection element.

5.13.3. ListSelect

The ListSelect component is list box that shows the selectable items in a vertical list. If the
number of items exceeds the height of the component, a scrollbar is shown.The component allows
both single and multiple selection modes, which you can set with setMultiSelect(). It is
visually identical in both modes.

// Create the selection component
ListSelect select = new ListSelect("My Selection");

// Add some items
select.addItem("Mercury");
select.addItem("Venus");
select.addItem("Earth");
...

select.setNullSelectionAllowed(false);

// Show 5 items and a scrollbar if there are more
select.setRows(5);

The number of visible items is set with setRows().

Figure 5.39.The ListSelect Component

CSS Style Rules

.v-select {}

.v-select-select {}

The component has a v-select overall style. The native select element has
v-select-select style.

5.13.4. Native Selection Component NativeSelect

NativeSelect offers the native selection component of web browsers, using the HTML <select>
element. The component is shown as a drop-down list.

// Create the selection component
final NativeSelect select = new NativeSelect("Native Selection");

// Add some items
select.addItem("Mercury");
select.addItem("Venus");
...

107ListSelect

User Interface Components

// Set the width in "columns" as in TextField
select.setColumns(10);

select.setNullSelectionAllowed(false);

The setColumns() allows setting the width of the list as "columns", which is a measure that
depends on the browser.

Figure 5.40.The NativeSelect Component

Multiple selection mode is not allowed; you should use the ListSelect component instead. Also
adding new items, which would be enabled with setNewItemsAllowed(), is not allowed.

CSS Style Rules

.v-select {}

.v-select-select {}

The component has a v-select overall style. The native select element has
v-select-select style.

5.13.5. Radio Button and Check Box Groups with OptionGroup

The OptionGroup class provides selection from alternatives using a group of radio buttons in
single selection mode. In multiple selection mode, the items show up as check boxes.

OptionGroup optiongroup = new OptionGroup("My Option Group");

// Use the multiple selection mode.
myselect.setMultiSelect(true);

Figure 5.41, “Option Button Group in Single and Multiple Selection Mode” shows the OptionGroup
in both single and multiple selection mode.

Radio Button and Check Box Groups with OptionGroup108

User Interface Components

Figure 5.41. Option Button Group in Single and Multiple Selection Mode

You can create check boxes individually using the CheckBox class, as described in Section 5.12,
“CheckBox”. The advantages of the OptionGroup component are that as it maintains the indi-
vidual check box objects, you can get an array of the currently selected items easily, and that
you can easily change the appearance of a single component.

Disabling Items

You can disable individual items in an OptionGroup with setItemEnabled(). The user can
not select or deselect disabled items in multi-select mode, but in single-select mode the use can
change the selection from a disabled to an enabled item. The selections can be changed pro-
grammatically regardless of whether an item is enabled or disabled. You can find out whether
an item is enabled with isItemEnabled().

The setItemEnabled() identifies the item to be disabled by its item ID.

// Have an option group
OptionGroup group = new OptionGroup("My Disabled Group");
group.addItem("One");
group.addItem("Two");
group.addItem("Three");

// Disable one item
group.setItemEnabled("Two", false);

The item IDs are also used for the captions in this example. The result is shown in Figure 5.42,
“OptionGroup with a Disabled Item”.

Figure 5.42. OptionGroup with a Disabled Item

Setting an item as disabled turns on the v-disabled style for it.

CSS Style Rules

.v-select-optiongroup {}

.v-select-option.v-checkbox {}

.v-select-option.v-radiobutton {}

The v-select-optiongroup is the overall style for the component. Each check box will have
the v-checkbox style, borrowed from the CheckBox component, and each radio button the

109Radio Button and Check Box Groups with OptionGroup

User Interface Components

v-radiobutton style. Both the radio buttons and check boxes will also have the
v-select-option style that allows styling regardless of the option type. Disabled items have
additionally the v-disabled style.

The options are normally laid out vertically. You can use horizontal layout by setting display:
inline-block for the options. The nowrap setting for the overall element prevents wrapping
if there is not enough horizontal space in the layout, or if the horizontal width is undefined.

/* Lay the options horizontally */
.v-select-optiongroup-horizontal .v-select-option {
 display: inline-block;
}

/* Avoid wrapping if the layout is too tight */
.v-select-optiongroup-horizontal {
 white-space: nowrap;
}

/* Some extra spacing is needed */
.v-select-optiongroup-horizontal
 .v-select-option.v-radiobutton {
 padding-right: 10px;
}

Use of the above rules requires setting a custom horizontal style name for the component.
The result is shown in Figure 5.43, “Horizontal OptionGroup”.

Figure 5.43. Horizontal OptionGroup

5.13.6.Twin Column Selection with TwinColSelect

The TwinColSelect field provides a multiple selection component that shows two lists side by
side, with the left column containing unselected items and the right column the selected items.
The user can select items from the list on the left and click on the ">>" button to move them to
the list on the right. Items can be deselected by selecting them in the right list and clicking on the
"<<" button.

TwinColSelect is always in multi-select mode, so its property value is always a collection of the
item IDs of the selected items, that is, the items in the right column.

The selection columns can have their own captions, separate from the overall component caption,
which is managed by the containing layout. You can set the column captions with
setLeftColumnCaption() and setRightColumnCaption().

final TwinColSelect select =
 new TwinColSelect("Select Targets to Destroy");

// Set the column captions (optional)
select.setLeftColumnCaption("These are left");
select.setRightColumnCaption("These are done for");

// Put some data in the select
String planets[] = {"Mercury", "Venus", "Earth", "Mars",
 "Jupiter", "Saturn", "Uranus", "Neptune"};
for (int pl=0; pl<planets.length; pl++)
 select.addItem(planets[pl]);

Twin Column Selection with TwinColSelect110

User Interface Components

// Set the number of visible items
select.setRows(planets.length);

The resulting component is shown in Figure 5.44, “Twin Column Selection”.

Figure 5.44.Twin Column Selection

The setRows() method sets the height of the component by the number of visible items in the
selection boxes. Setting the height with setHeight() to a defined value overrides the rows
setting.

CSS Style Rules

.v-select-twincol {}
 .v-select-twincol-options-caption {}
 .v-select-twincol-selections-caption {}
 .v-select-twincol-options {}
 .v-select-twincol-buttons {}
 .v-button {}
 .v-button-wrap {}
 .v-button-caption {}
 .v-select-twincol-deco {}
 .v-select-twincol-selections {}

The TwinColSelect component has an overall v-select-twincol style. If set, the left and
right column captions have v-select-twincol-options-caption and
v-select-twincol-options-caption style names, respectively.The left box, which displays
the unselected items, has v-select-twincol-options-caption style and the right box,
which displays the selected items, has v-select-twincol-options-selections style.
Between them is the button area, which has overall v-select-twincol-buttons style; the
actual buttons reuse the styles for the Button component. Between the buttons is a divider element
with v-select-twincol-deco style.

5.13.7. Allowing Adding New Items

The selection components allow the user to add new items, with a user interface similar to combo
boxes in desktop user interfaces. You need to enable the newItemsAllowed mode with the
setNewItemsAllowed() method.

myselect.setNewItemsAllowed(true);

The user interface for adding new items depends on the selection component and the selection
mode. The regular Select component in single selection mode, which appears as a combo box,
allows you to simply type the new item in the combo box and hit Enter to add it. In most other
selection components, as well as in the multiple selection mode of the regular Select component,
a text field that allows entering new items is shown below the selection list, and clicking the +
button will add the item in the list, as illustrated in Figure 5.45, “Select Component with Adding
New Items Allowed”.

111Allowing Adding New Items

User Interface Components

Figure 5.45. Select Component with Adding New Items Allowed

The identifier of an item added by the user will be a String object identical to the caption of the
item.You should consider this if the item identifier of automatically filled items is some other type
or otherwise not identical to the caption.

Adding new items is possible in both single and multiple selection modes and in all styles. Adding
new items may not be possible if the Select is bound to an external Container that does not allow
adding new items.

5.13.8. Multiple Selection Mode

Setting the Select, NativeSelect, or OptionGroup components to multiple selection mode with
the setMultiSelect() method changes their appearance to allow selecting multiple items.

Select and NativeSelect These components appear as a native HTML selection
list, as shown in Figure 5.45, “Select Component with
Adding New Items Allowed”. By holding the Ctrl or Shift
key pressed, the user can select multiple items.

OptionGroup The option group, which is a radio button group in single
selection mode, will show as a check box group in mul-
tiple selection mode. See Section 5.13.5, “Radio Button
and Check Box Groups with OptionGroup”.

The TwinColSelect, described in Section 5.13.6, “Twin Column Selection with TwinColSelect”,
is a special multiple selection mode that is not meaningful for single selection.

myselect.setMultiSelect(true);

As in single selection mode, the selected items are set as the property of the Select object. In
multiple selection mode, the property is a Collection of currently selected items. You can get
and set the property with the getValue() and setValue() methods as usual.

A change in the selection will trigger a ValueChangeEvent, which you can handle with a
Propery.ValueChangeListener. As usual, you should use setImmediate(true) to trigger
the event immediately when the user changes the selection. The following example shows how
to handle selection changes with a listener.

public class SelectExample
 extends CustomComponent
 implements Property.ValueChangeListener {
 // Create a Select object with a caption.
 Select select = new Select("This is a Select component");

Multiple Selection Mode112

User Interface Components

 VerticalLayout layout = new VerticalLayout();
 Label status = new Label("-");

 SelectExample () {
 setCompositionRoot (layout);
 layout.addComponent(select);

 // Fill the component with some items.
 final String[] planets = new String[] {
 "Mercury", "Venus", "Earth", "Mars",
 "Jupiter", "Saturn", "Uranus", "Neptune"};
 for (int i=0; i<planets.length; i++)
 select.addItem(planets[i]);

 // By default, the change event is not triggered
 // immediately when the selection changes.
 // This enables the immediate events.
 select.setImmediate(true);

 // Listen for changes in the selection.
 select.addListener(this);

 layout.addComponent(status);
 }

 /* Respond to change in the selection. */
 public void valueChange(Property.ValueChangeEvent event) {
 // The event.getProperty() returns the Item ID (IID)
 // of the currently selected item in the component.
 status.setValue("Currently selected item ID: " +
 event.getProperty());
 }
}

5.13.9. Other Common Features

Item Icons

You can set an icon for each item with setItemIcon(), or define an item property that provides
the icon resource with setItemIconPropertyId(), in a fashion similar to captions. Notice,
however, that icons are not supported in NativeSelect, TwinColSelect, and some other selection
components and modes.This is because HTML does not support images inside the native select
elements. Icons are also not really visually applicable.

5.14. Table

The Table component is intended for presenting tabular data organized in rows and columns.
The Table is one of the most versatile components in Vaadin. Table cells can include text or ar-
bitrary UI components. You can easily implement editing of the table data, for example clicking
on a cell could change it to a text field for editing.

The data contained in a Table is managed using the Data Model of Vaadin (see Chapter 9,
Binding Components to Data), through the Container interface of the Table.This makes it possible
to bind a table directly to a data source, such as a database query. Only the visible part of the
table is loaded into the browser and moving the visible window with the scrollbar loads content
from the server. While the data is being loaded, a tooltip will be displayed that shows the current
range and total number of items in the table. The rows of the table are items in the container and
the columns are properties. Each table row (item) is identified with an item identifier (IID), and
each column (property) with a property identifier (PID).

113Other Common Features

User Interface Components

When creating a table, you first need to define columns with addContainerProperty(). This
method comes in two flavors. The simpler one takes the property ID of the column and uses it
also as the caption of the column. The more complex one allows differing PID and header for the
column. This may make, for example, internationalization of table headers easier, because if a
PID is internationalized, the internationalization has to be used everywhere where the PID is
used.The complex form of the method also allows defining an icon for the column from a resource.
The "default value" parameter is used when new properties (columns) are added to the table, to
fill in the missing values. (This default has no meaning in the usual case, such as below, where
we add items after defining the properties.)

/* Create the table with a caption. */
Table table = new Table("This is my Table");

/* Define the names and data types of columns.
 * The "default value" parameter is meaningless here. */
table.addContainerProperty("First Name", String.class, null);
table.addContainerProperty("Last Name", String.class, null);
table.addContainerProperty("Year", Integer.class, null);

/* Add a few items in the table. */
table.addItem(new Object[] {
 "Nicolaus","Copernicus",new Integer(1473)}, new Integer(1));
table.addItem(new Object[] {
 "Tycho", "Brahe", new Integer(1546)}, new Integer(2));
table.addItem(new Object[] {
 "Giordano","Bruno", new Integer(1548)}, new Integer(3));
table.addItem(new Object[] {
 "Galileo", "Galilei", new Integer(1564)}, new Integer(4));
table.addItem(new Object[] {
 "Johannes","Kepler", new Integer(1571)}, new Integer(5));
table.addItem(new Object[] {
 "Isaac", "Newton", new Integer(1643)}, new Integer(6));

In this example, we used an increasing Integer object as the Item Identifier, given as the second
parameter to addItem(). The actual rows are given simply as object arrays, in the same order
in which the properties were added. The objects must be of the correct class, as defined in the
addContainerProperty() calls.

Figure 5.46. Basic Table Example

Scalability of the Table is largely dictated by the container. The default IndexedContainer is
relatively heavy and can cause scalability problems, for example, when updating the values. Use
of an optimized application-specific container is recommended. Table does not have a limit for
the number of items and is just as fast with hundreds of thousands of items as with just a few.
With the current implementation of scrolling, there is a limit of around 500 000 rows, depending
on the browser and the pixel height of rows.

Table114

User Interface Components

5.14.1. Selecting Items in a Table

The Table allows selecting one or more items by clicking them with the mouse. When the user
selects an item, the IID of the item will be set as the property of the table and a ValueChangeEvent
is triggered. To enable selection, you need to set the table selectable. You will also need to set
it as immediate in most cases, as we do below, because without it, the change in the property
will not be communicated immediately to the server.

The following example shows how to enable the selection of items in a Table and how to handle
ValueChangeEvent events that are caused by changes in selection. You need to handle the
event with the valueChange() method of the Property.ValueChangeListener interface.

// Allow selecting items from the table.
table.setSelectable(true);

// Send changes in selection immediately to server.
table.setImmediate(true);

// Shows feedback from selection.
final Label current = new Label("Selected: -");

// Handle selection change.
table.addListener(new Property.ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 current.setValue("Selected: " + table.getValue());
 }
});

Figure 5.47.Table Selection Example

If the user clicks on an already selected item, the selection will deselected and the table property
will have null value. You can disable this behaviour by setting
setNullSelectionAllowed(false) for the table.

The selection is the value of the table's property, so you can get it with getValue(). You can
get it also from a reference to the table itself. In single selection mode, the value is the item
identifier of the selected item or null if no item is selected. In multiple selection mode (see below),
the value is a Set of item identifiers. Notice that the set is unmodifiable, so you can not simply
change it to change the selection.

Multiple Selection Mode

A table can also be in multiselect mode, where a user can select multiple items by clicking them
with left mouse button while holding the Ctrl key (or Meta key) pressed. If Ctrl is not held, clicking
an item will select it and other selected items are deselected. The user can select a range by
selecting an item, holding the Shift key pressed, and clicking another item, in which case all the
items between the two are also selected. Multiple ranges can be selected by first selecting a

115Selecting Items in a Table

User Interface Components

range, then selecting an item while holding Ctrl, and then selecting another item with both Ctrl
and Shift pressed.

The multiselect mode is enabled with the setMultiSelect() method of the Select interface
of Table. Setting table in multiselect mode does not implicitly set it as selectable, so it must be
set separately.

The setMultiSelectMode() property affects the control of multiple selection:
MultiSelectMode.DEFAULT is the default behaviour, which requires holding the Ctrl (or Meta)
key pressed while selecting items, while in MultiSelectMode.SIMPLE holding the Ctrl key is
not needed. In the simple mode, items can only be deselected by clicking them.

5.14.2.Table Features

Page Length and Scrollbar

The default style for Table provides a table with a scrollbar. The scrollbar is located at the right
side of the table and becomes visible when the number of items in the table exceeds the page
length, that is, the number of visible items.You can set the page length with setPageLength().

Setting the page length to zero makes all the rows in a table visible, no matter how many rows
there are. Notice that this also effectively disables buffering, as all the entire table is loaded to
the browser at once. Using such tables to generate reports does not scale up very well, as there
is some inevitable overhead in rendering a table with Ajax. For very large reports, generating
HTML directly is a more scalable solution.

Resizing Columns

You can set the width of a column programmatically from the server-side with
setColumnWidth().The column is identified by the property ID and the width is given in pixels.

The user can resize table columns by dragging the resize handle between two columns. Resizing
a table column causes a ColumnResizeEvent, which you can handle with a Table.ColumnRes-
izeListener. The table must be set in immediate mode if you want to receive the resize events
immediately, which is typical.

table.addListener(new Table.ColumnResizeListener() {
 public void columnResize(ColumnResizeEvent event) {
 // Get the new width of the resized column
 int width = event.getCurrentWidth();

 // Get the property ID of the resized column
 String column = (String) event.getPropertyId();

 // Do something with the information
 table.setColumnFooter(column, String.valueOf(width) + "px");
 }
});

// Must be immediate to send the resize events immediately
table.setImmediate(true);

See Figure 5.48, “Resizing Columns” for a result after the columns of a table has been resized.

Table Features116

User Interface Components

Figure 5.48. Resizing Columns

Reordering Columns

If setColumnReorderingAllowed(true) is set, the user can reorder table columns by
dragging them with the mouse from the column header,

Collapsing Columns

When setColumnCollapsingAllowed(true) is set, the right side of the table header shows
a drop-down list that allows selecting which columns are shown. Collapsing columns is different
than hiding columns with setVisibleColumns(), which hides the columns completely so that
they can not be made visible (uncollapsed) from the user interface.

You can collapse columns programmatically with setColumnCollapsed(). Collapsing must
be enabled before collapsing columns with the method or it will throw an IllegalAccessException.

// Allow the user to collapse and uncollapse columns
table.setColumnCollapsingAllowed(true);

// Collapse this column programmatically
try {
 table.setColumnCollapsed("born", true);
} catch (IllegalAccessException e) {
 // Can't occur - collapsing was allowed above
 System.err.println("Something horrible occurred");
}

// Give enough width for the table to accommodate the
// initially collapsed column later
table.setWidth("250px");

See Figure 5.49, “Collapsing Columns”.

Figure 5.49. Collapsing Columns

If the table has undefined width, it minimizes its width to fit the width of the visible columns. If
some columns are initially collapsed, the width of the table may not be enough to accomodate
them later, which will result in an ugly horizontal scrollbar. You should consider giving the table
enough width to accomodate columns uncollapsed by the user.

117Table Features

User Interface Components

Components Inside a Table

The cells of a Table can contain any user interface components, not just strings. If the rows are
higher than the row height defined in the default theme, you have to define the proper row height
in a custom theme.

When handling events for components inside a Table, such as for the Button in the example
below, you usually need to know the item the component belongs to. Components do not them-
selves know about the table or the specific item in which a component is contained. Therefore,
the handling method must use some other means for finding out the Item ID of the item. There
are a few possibilities. Usually the easiest way is to use the setData() method to attach an
arbitrary object to a component.You can subclass the component and include the identity inform-
ation there.You can also simply search the entire table for the item with the component, although
that solution may not be so scalable.

The example below includes table rows with a Label in XHTML formatting mode, a multiline
TextField, a CheckBox, and a Button that shows as a link.

// Create a table and add a style to allow setting the row height in theme.
final Table table = new Table();
table.addStyleName("components-inside");

/* Define the names and data types of columns.
 * The "default value" parameter is meaningless here. */
table.addContainerProperty("Sum", Label.class, null);
table.addContainerProperty("Is Transferred", CheckBox.class, null);
table.addContainerProperty("Comments", TextField.class, null);
table.addContainerProperty("Details", Button.class, null);

/* Add a few items in the table. */
for (int i=0; i<100; i++) {
 // Create the fields for the current table row
 Label sumField = new Label(String.format(
 "Sum is $%04.2f
<i>(VAT incl.)</i>",
 new Object[] {new Double(Math.random()*1000)}),
 Label.CONTENT_XHTML);
 CheckBox transferredField = new CheckBox("is transferred");

 // Multiline text field. This required modifying the
 // height of the table row.
 TextField commentsField = new TextField();
 commentsField.setRows(3);

 // The Table item identifier for the row.
 Integer itemId = new Integer(i);

 // Create a button and handle its click. A Button does not
 // know the item it is contained in, so we have to store the
 // item ID as user-defined data.
 Button detailsField = new Button("show details");
 detailsField.setData(itemId);
 detailsField.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 // Get the item identifier from the user-defined data.
 Integer itemId = (Integer)event.getButton().getData();
 getWindow().showNotification("Link "+
 itemId.intValue()+" clicked.");
 }
 });
 detailsField.addStyleName("link");

 // Create the table row.
 table.addItem(new Object[] {sumField, transferredField,

Table Features118

User Interface Components

 commentsField, detailsField},
 itemId);
}

// Show just three rows because they are so high.
table.setPageLength(3);

The row height has to be set higher than the default with a style rule such as the following:

/* Table rows contain three-row TextField components. */
.v-table-components-inside .v-table-cell-content {
 height: 54px;
}

The table will look as shown in Figure 5.50, “Components in a Table”.

Figure 5.50. Components in a Table

Iterating Over a Table

As the items in a Table are not indexed, iterating over the items has to be done using an iterator.
The getItemIds() method of the Container interface of Table returns a Collection of item
identifiers over which you can iterate using an Iterator. For an example about iterating over a
Table, please see Section 9.4, “Collecting Items in Containers”. Notice that you may not modify
the Table during iteration, that is, add or remove items. Changing the data is allowed.

Filtering Table Contents

A table can be filtered if its container data source implements the Filterable interface, as the
default IndexedContainer does. See Section 9.4.4, “Filterable Containers”.

5.14.3. Editing the Values in a Table

Normally, a Table simply displays the items and their fields as text. If you want to allow the user
to edit the values, you can either put them inside components as we did above, or you can simply
call setEditable(true) and the cells are automatically turned into editable fields.

Let us begin with a regular table with a some columns with usual Java types, namely a Date,
Boolean, and a String.

// Create a table. It is by default not editable.
final Table table = new Table();

// Define the names and data types of columns.
table.addContainerProperty("Date", Date.class, null);

119Editing the Values in a Table

User Interface Components

table.addContainerProperty("Work", Boolean.class, null);
table.addContainerProperty("Comments", String.class, null);

// Add a few items in the table.
for (int i=0; i<100; i++) {
 Calendar calendar = new GregorianCalendar(2008,0,1);
 calendar.add(Calendar.DAY_OF_YEAR, i);

 // Create the table row.
 table.addItem(new Object[] {calendar.getTime(),
 new Boolean(false),
 ""},
 new Integer(i)); // Item identifier
}

table.setPageLength(8);
layout.addComponent(table);

You could put the table in editable mode right away if you need to. We'll continue the example
by adding a mechanism to switch the Table from and to the editable mode.

final CheckBox switchEditable = new CheckBox("Editable");
switchEditable.addListener(new Property.ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 table.setEditable(((Boolean)event.getProperty()
 .getValue()).booleanValue());
 }
});
switchEditable.setImmediate(true);
layout.addComponent(switchEditable);

Now, when you check to checkbox, the components in the table turn into editable fields, as shown
in Figure 5.51, “A Table in Normal and Editable Mode”.

Figure 5.51. A Table in Normal and Editable Mode

Field Factories

The field components that allow editing the values of particular types in a table are defined in a
field factory that implements the TableFieldFactory interface. The default implementation is
DefaultFieldFactory, which offers the following crude mappings:

Table 5.2.Type to Field Mappings in DefaultFieldFactory

Mapped to Field ClassProperty Type

A DateField.Date

A CheckBox.Boolean

Editing the Values in a Table120

User Interface Components

Mapped to Field ClassProperty Type

A Form.The fields of the form are automatically
created from the item's properties using a

Item

FormFieldFactory. The normal use for this
property type is inside a Form and is less useful
inside a Table.

A TextField.The text field manages conversions
from the basic types, if possible.

other

Field factories are covered with more detail in Section 5.19.2, “Binding Form to Data”.You could
just implement the TableFieldFactory interface, but we recommend that you extend the Default-
FieldFactory according to your needs. In the default implementation, the mappings are defined
in the createFieldByPropertyType() method (you might want to look at the source code)
both for tables and forms.

Navigation in Editable Mode

In the editable mode, the editor fields can have focus. Pressing Tab moves the focus to next
column or, at the last column, to the first column of the next item. Respectively, pressing Shift+Tab
moves the focus backward. If the focus is in the last column of the last visible item, the pressing
Tab moves the focus outside the table. Moving backward from the first column of the first item
moves the focus to the table itself. Some updates to the table, such as changing the headers or
footers or regenerating a column, can move the focus from an editor component to the table itself.

The default behaviour may be undesirable in many cases. For example, the focus also goes
through any read-only editor fields and can move out of the table inappropriately.You can provide
better navigation is to use event handler for shortcut keys such as Tab, Arrow Up, Arrow Down,
and Enter.

// Keyboard navigation
class KbdHandler implements Handler {
 Action tab_next = new ShortcutAction("Tab",
 ShortcutAction.KeyCode.TAB, null);
 Action tab_prev = new ShortcutAction("Shift+Tab",
 ShortcutAction.KeyCode.TAB,
 new int[] {ShortcutAction.ModifierKey.SHIFT});
 Action cur_down = new ShortcutAction("Down",
 ShortcutAction.KeyCode.ARROW_DOWN, null);
 Action cur_up = new ShortcutAction("Up",
 ShortcutAction.KeyCode.ARROW_UP, null);
 Action enter = new ShortcutAction("Enter",
 ShortcutAction.KeyCode.ENTER, null);
 public Action[] getActions(Object target, Object sender) {
 return new Action[] {tab_next, tab_prev, cur_down,
 cur_up, enter};
 }

 public void handleAction(Action action, Object sender,
 Object target) {
 if (target instanceof TextField) {
 // Move according to keypress
 int itemid = (Integer) ((TextField) target).getData();
 if (action == tab_next || action == cur_down)
 itemid++;
 else if (action == tab_prev || action == cur_up)
 itemid--;
 // On enter, just stay where you were. If we did
 // not catch the enter action, the focus would be
 // moved to wrong place.

121Editing the Values in a Table

User Interface Components

 if (itemid >= 0 && itemid < table.size()) {
 TextField newTF = valueFields.get(itemid);
 if (newTF != null)
 newTF.focus();
 }
 }
 }
}

// Panel that handles keyboard navigation
Panel navigator = new Panel();
navigator.addStyleName(Reindeer.PANEL_LIGHT);
navigator.addComponent(table);
navigator.addActionHandler(new KbdHandler());

The main issue in implementing keyboard navigation in an editable table is that the editor fields
do not know the table they are in.To find the parent table, you can either look up in the component
container hierarchy or simply store a reference to the table with setData() in the field component.
The other issue is that you can not acquire a reference to an editor field from the Table component.
One solution is to use some external collection, such as a HashMap, to map item IDs to the ed-
itor fields.

// Can't access the editable components from the table so
// must store the information
final HashMap<Integer,TextField> valueFields =
 new HashMap<Integer,TextField>();

The map has to be filled in a TableFieldFactory, such as in the following. You also need to set
the reference to the table there and you can also set the initial focus there.

table.setTableFieldFactory(new TableFieldFactory () {
 public Field createField(Container container, Object itemId,
 Object propertyId, Component uiContext) {
 TextField field = new TextField((String) propertyId);

 // User can only edit the numeric column
 if ("Source of Fear".equals(propertyId))
 field.setReadOnly(true);
 else { // The numeric column
 // The field needs to know the item it is in
 field.setData(itemId);

 // Remember the field
 valueFields.put((Integer) itemId, field);

 // Focus the first editable value
 if (((Integer)itemId) == 0)
 field.focus();
 }
 return field;
 }
});

The issues are complicated by the fact that the editor fields are not generated for the entire table,
but only for a cache window that includes the visible items and some items above and below it.
For example, if the beginning of a big scrollable table is visible, the editor component for the last
item does not exist. This issue is relevant mostly if you want to have wrap-around navigation that
jumps from the last to first item and vice versa.

5.14.4. Column Headers and Footers

Table supports both column headers and footers; the headers are enabled by default.

Column Headers and Footers122

User Interface Components

Headers

The table header displays the column headers at the top of the table. You can use the column
headers to reorder or resize the columns, as described earlier. By default, the header of a column
is the property ID of the column, unless given explicitly with setColumnHeader().

// Define the properties
table.addContainerProperty("lastname", String.class, null);
table.addContainerProperty("born", Integer.class, null);
table.addContainerProperty("died", Integer.class, null);

// Set nicer header names
table.setColumnHeader("lastname", "Name");
table.setColumnHeader("born", "Born");
table.setColumnHeader("died", "Died");

The text of the column headers and the visibility of the header depends on the column header
mode. The header is visible by default, but you can disable it with
setColumnHeaderMode(Table.COLUMN_HEADER_MODE_HIDDEN).

Footers

The table footer can be useful for displaying sums or averages of values in a column, and so on.
The footer is not visible by default; you can enable it with setFooterVisible(true). Unlike
in the header, the column headers are empty by default. You can set their value with
setColumnFooter(). The columns are identified by their property ID.

The following example shows how to calculate average of the values in a column:

// Have a table with a numeric column
Table table = new Table("Custom Table Footer");
table.addContainerProperty("Name", String.class, null);
table.addContainerProperty("Died At Age", Integer.class, null);

// Insert some data
Object people[][] = {{"Galileo", 77},
 {"Monnier", 83},
 {"Vaisala", 79},
 {"Oterma", 86}};
for (int i=0; i<people.length; i++)
 table.addItem(people[i], new Integer(i));

// Calculate the average of the numeric column
double avgAge = 0;
for (int i=0; i<people.length; i++)
 avgAge += (Integer) people[i][1];
avgAge /= people.length;

// Set the footers
table.setFooterVisible(true);
table.setColumnFooter("Name", "Average");
table.setColumnFooter("Died At Age", String.valueOf(avgAge));

// Adjust the table height a bit
table.setPageLength(table.size());

The resulting table is shown in Figure 5.52, “A Table with a Footer”.

123Column Headers and Footers

User Interface Components

Figure 5.52. A Table with a Footer

Handling Mouse Clicks on Headers and Footers

Normally, when the user clicks a column header, the table will be sorted by the column, assuming
that the data source is Sortable and sorting is not disabled. In some cases, you might want some
other functionality when the user clicks the column header, such as selecting the column in some
way.

Clicks in the header cause a HeaderClickEvent, which you can handle with a Table.Header-
ClickListener. Click events on the table header (and footer) are, like button clicks, sent immedi-
ately to server, so there is no need to set setImmediate().

// Handle the header clicks
table.addListener(new Table.HeaderClickListener() {
 public void headerClick(HeaderClickEvent event) {
 String column = (String) event.getPropertyId();
 getWindow().showNotification("Clicked " + column +
 "with " + event.getButtonName());
 }
});

// Disable the default sorting behavior
table.setSortDisabled(true);

Setting a click handler does not automatically disable the sorting behavior of the header; you
need to disable it explicitly with setSortDisabled(true). Header click events are not sent
when the user clicks the column resize handlers to drag them.

The HeaderClickEvent object provides the identity of the clicked column with getPropertyId().
The getButton() reports the mouse button with which the click was made: BUTTON_LEFT,
BUTTON_RIGHT, or BUTTON_MIDDLE.The getButtonName() a human-readable button name
in English: "left", "right", or "middle". The isShiftKey(), isCtrlKey(), etc., methods
indicate if the Shift, Ctrl, Alt or other modifier keys were pressed during the click.

Clicks in the footer cause a FooterClickEvent, which you can handle with a Table.FooterClick-
Listener. Footers do not have any default click behavior, like the sorting in the header. Otherwise,
handling clicks in the footer is equivalent to handling clicks in the header.

5.14.5. Generated Table Columns

You might want to have a column that has values calculated from other columns. Or you might
want to format table columns in some way, for example if you have columns that display currencies.
The ColumnGenerator interface allows defining custom generators for such columns.

You add new generated columns to a Table with addGeneratedColumn(). It takes the column
identifier as its parameters. Usually you want to have a more user-friendly and possibly interna-

Generated Table Columns124

User Interface Components

tionalized column header. You can set the header and a possible icon by calling
addContainerProperty() before adding the generated column.

// Define table columns.
table.addContainerProperty(
 "date", Date.class, null, "Date", null, null);
table.addContainerProperty(
 "quantity", Double.class, null, "Quantity (l)", null, null);
table.addContainerProperty(
 "price", Double.class, null, "Price (e/l)", null, null);
table.addContainerProperty(
 "total", Double.class, null, "Total (e)", null, null);

// Define the generated columns and their generators.
table.addGeneratedColumn("date",
 new DateColumnGenerator());
table.addGeneratedColumn("quantity",
 new ValueColumnGenerator("%.2f l"));
table.addGeneratedColumn("price",
 new PriceColumnGenerator());
table.addGeneratedColumn("total",
 new ValueColumnGenerator("%.2f e"));

Notice that the addGeneratedColumn() always places the generated columns as the last
column, even if you defined some other order previously. You will have to set the proper order
with setVisibleColumns().

table.setVisibleColumns(new Object[] {"date", "quantity", "price", "total"});

The generators are objects that implement the Table.ColumnGenerator interface and its
generateCell() method.The method gets the identity of the item and column as its parameters,
in addition to the table object. It has to return a component object.

The following example defines a generator for formatting Double valued fields according to a
format string (as in java.util.Formatter).

/** Formats the value in a column containing Double objects. */
class ValueColumnGenerator implements Table.ColumnGenerator {
 String format; /* Format string for the Double values. */

 /**
 * Creates double value column formatter with the given
 * format string.
 */
 public ValueColumnGenerator(String format) {
 this.format = format;
 }

 /**
 * Generates the cell containing the Double value.
 * The column is irrelevant in this use case.
 */
 public Component generateCell(Table source, Object itemId,
 Object columnId) {
 // Get the object stored in the cell as a property
 Property prop =
 source.getItem(itemId).getItemProperty(columnId);
 if (prop.getType().equals(Double.class)) {
 Label label = new Label(String.format(format,
 new Object[] { (Double) prop.getValue() }));

 // Set styles for the column: one indicating that it's
 // a value and a more specific one with the column
 // name in it. This assumes that the column name
 // is proper for CSS.

125Generated Table Columns

User Interface Components

 label.addStyleName("column-type-value");
 label.addStyleName("column-" + (String) columnId);
 return label;
 }
 return null;
 }
}

The generator is called for all the visible (or more accurately cached) items in a table. If the user
scrolls the table to another position in the table, the columns of the new visible rows are generated
dynamically. The columns in the visible (cached) rows are also generated always when an item
has a value change. It is therefore usually safe to calculate the value of generated cells from the
values of different rows (items).

When you set a table as editable, regular fields will change to editing fields. When the user
changes the values in the fields, the generated columns will be updated automatically. Putting a
table with generated columns in editable mode has a few quirks. The editable mode of Table
does not affect generated columns. You have two alternatives: either you generate the editing
fields in the generator or, in case of formatter generators, remove the generator in the editable
mode. The example below uses the latter approach.

// Have a check box that allows the user
// to make the quantity and total columns editable.
final CheckBox editable = new CheckBox(
 "Edit the input values - calculated columns are regenerated");

editable.setImmediate(true);
editable.addListener(new ClickListener() {
 public void buttonClick(ClickEvent event) {
 table.setEditable(editable.booleanValue());

 // The columns may not be generated when we want to
 // have them editable.
 if (editable.booleanValue()) {
 table.removeGeneratedColumn("quantity");
 table.removeGeneratedColumn("total");
 } else { // Not editable
 // Show the formatted values.
 table.addGeneratedColumn("quantity",
 new ValueColumnGenerator("%.2f l"));
 table.addGeneratedColumn("total",
 new ValueColumnGenerator("%.2f e"));
 }
 // The visible columns are affected by removal
 // and addition of generated columns so we have
 // to redefine them.
 table.setVisibleColumns(new Object[] {"date", "quantity",
 "price", "total", "consumption", "dailycost"});
 }
});

You will also have to set the editing fields in immediate mode to have the update occur imme-
diately when an edit field loses the focus. You can set the fields in immediate mode with the a
custom TableFieldFactory, such as the one given below, that just extends the default implement-
ation to set the mode:

public class ImmediateFieldFactory extends DefaultFieldFactory {
 public Field createField(Container container,
 Object itemId,
 Object propertyId,
 Component uiContext) {
 // Let the DefaultFieldFactory create the fields...
 Field field = super.createField(container, itemId,

Generated Table Columns126

User Interface Components

 propertyId, uiContext);

 // ...and just set them as immediate.
 ((AbstractField)field).setImmediate(true);

 return field;
 }
}
...
table.setFieldFactory(new ImmediateFieldFactory());

If you generate the editing fields with the column generator, you avoid having to use such a field
factory, but of course have to generate the fields for both normal and editable modes.

Figure 5.53, “Table with Generated Columns in Normal and Editable Mode” shows a table with
columns calculated (blue) and simply formatted (black) with column generators.

Figure 5.53.Table with Generated Columns in Normal and Editable Mode

5.14.6. Formatting Table Columns

The displayed values of properties shown in a table are normally formatted using the toString()
method of each property. Customizing the format of a column can be done in several ways:

• Using ColumnGenerator to generate a second column that is formatted. The original
column needs to be set invisible. See Section 5.14.5, “Generated Table Columns”.

• Using a PropertyFormatter as a proxy between the table and the data property. This
also normally requires using an mediate container in the table.

• Overriding the default formatPropertyValue() in Table.

127Formatting Table Columns

User Interface Components

As using a PropertyFormatter is generally much more awkward than overriding the
formatPropertyValue(), its use is not described here.

You can override formatPropertyValue() as is done in the following example:

// Create a table that overrides the default
// property (column) format
final Table table = new Table("Formatted Table") {
 @Override
 protected String formatPropertyValue(Object rowId,
 Object colId, Property property) {
 // Format by property type
 if (property.getType() == Date.class) {
 SimpleDateFormat df =
 new SimpleDateFormat("yyyy-MM-dd hh:mm:ss");
 return df.format((Date)property.getValue());
 }

 return super.formatPropertyValue(rowId, colId, property);
 }
};

// The table has some columns
table.addContainerProperty("Time", Date.class, null);

... Fill the table with data ...

You can also distinguish between columns by the colId parameter, which is the property ID of
the column. DecimalFormat is useful for formatting decimal values.

... in formatPropertyValue() ...
} else if ("Value".equals(pid)) {
 // Format a decimal value for a specific locale
 DecimalFormat df = new DecimalFormat("#.00",
 new DecimalFormatSymbols(locale));
 return df.format((Double) property.getValue());
}
...
table.addContainerProperty("Value", Double.class, null);

A table with the formatted date and decimal value columns is shown in Figure 5.54, “Formatted
Table Columns”.

Figure 5.54. Formatted Table Columns

You can use CSS for further styling of table rows, columns, and individual cells by using a Cell-
StyleGenerator. It is described in Section 5.14.7, “CSS Style Rules”.

5.14.7. CSS Style Rules

Styling the overall style of a Table can be done with the following CSS rules.

CSS Style Rules128

User Interface Components

.v-table {}
 .v-table-header-wrap {}
 .v-table-header {}
 .v-table-header-cell {}
 .v-table-resizer {} /* Column resizer handle. */
 .v-table-caption-container {}
 .v-table-body {}
 .v-table-row-spacer {}
 .v-table-table {}
 .v-table-row {}
 .v-table-cell-content {}

Notice that some of the widths and heights in a table are calculated dynamically and can not be
set in CSS.

Setting Individual Cell Styles

The Table.CellStyleGenerator interface allows you to set the CSS style for each individual cell
in a table. You need to implement the getStyle(), which gets the row (item) and column
(property) identifiers as parameters and can return a style name for the cell. The returned style
name will be concatenated to prefix "v-table-cell-content-".

Alternatively, you can use a Table.ColumnGenerator (see Section 5.14.5, “Generated Table
Columns”) to generate the actual UI components of the cells and add style names to them.

Table table = new Table("Table with Cell Styles");
table.addStyleName("checkerboard");

// Add some columns in the table. In this example, the property
// IDs of the container are integers so we can determine the
// column number easily.
table.addContainerProperty("0", String.class, null, "", null, null);
for (int i=0; i<8; i++)
 table.addContainerProperty(""+(i+1), String.class, null,
 String.valueOf((char) (65+i)), null, null);

// Add some items in the table.
table.addItem(new Object[]{
 "1", "R", "N", "B", "Q", "K", "B", "N", "R"}, new Integer(0));
table.addItem(new Object[]{
 "2", "P", "P", "P", "P", "P", "P", "P", "P"}, new Integer(1));
for (int i=2; i<6; i++)
 table.addItem(new Object[]{String.valueOf(i+1),
 "", "", "", "", "", "", "", ""}, new Integer(i));
table.addItem(new Object[]{
 "7", "P", "P", "P", "P", "P", "P", "P", "P"}, new Integer(6));
table.addItem(new Object[]{
 "8", "R", "N", "B", "Q", "K", "B", "N", "R"}, new Integer(7));
table.setPageLength(8);

// Set cell style generator
table.setCellStyleGenerator(new Table.CellStyleGenerator() {
 public String getStyle(Object itemId, Object propertyId) {
 int row = ((Integer)itemId).intValue();
 int col = Integer.parseInt((String)propertyId);

 // The first column.
 if (col == 0)
 return "rowheader";

 // Other cells.
 if ((row+col)%2 == 0)
 return "black";
 else

129CSS Style Rules

User Interface Components

 return "white";
 }
});

You can then style the cells, for example, as follows:

/* Center the text in header. */
.v-table-header-cell {
 text-align: center;
}

/* Basic style for all cells. */
.v-table-checkerboard .v-table-cell-content {
 text-align: center;
 vertical-align: middle;
 padding-top: 12px;
 width: 20px;
 height: 28px;
}

/* Style specifically for the row header cells. */
.v-table-cell-content-rowheader {
 background: #E7EDF3
 url(../default/table/img/header-bg.png) repeat-x scroll 0 0;
}

/* Style specifically for the "white" cells. */
.v-table-cell-content-white {
 background: white;
 color: black;
}

/* Style specifically for the "black" cells. */
.v-table-cell-content-black {
 background: black;
 color: white;
}

The table will look as shown in Figure 5.55, “Cell Style Generator for a Table”.

Figure 5.55. Cell Style Generator for a Table

CSS Style Rules130

User Interface Components

5.15. Tree

The Tree component allows a natural way to represent data that has hierarchical relationships,
such as filesystems or message threads. The Tree component in Vaadin works much like the
tree components of most modern desktop user interface toolkits, for example in directory
browsing.

The typical use of the Tree component is for displaying a hierachical menu, like a menu on the
left side of the screen, as in Figure 5.56, “A Tree Component as a Menu”, or for displaying
filesystems or other hierarchical datasets. The menu style makes the appearance of the tree
more suitable for this purpose.

final Object[][] planets = new Object[][]{
 new Object[]{"Mercury"},
 new Object[]{"Venus"},
 new Object[]{"Earth", "The Moon"},
 new Object[]{"Mars", "Phobos", "Deimos"},
 new Object[]{"Jupiter", "Io", "Europa", "Ganymedes",
 "Callisto"},
 new Object[]{"Saturn", "Titan", "Tethys", "Dione",
 "Rhea", "Iapetus"},
 new Object[]{"Uranus", "Miranda", "Ariel", "Umbriel",
 "Titania", "Oberon"},
 new Object[]{"Neptune", "Triton", "Proteus", "Nereid",
 "Larissa"}};

Tree tree = new Tree("The Planets and Major Moons");

/* Add planets as root items in the tree. */
for (int i=0; i<planets.length; i++) {
 String planet = (String) (planets[i][0]);
 tree.addItem(planet);

 if (planets[i].length == 1) {
 // The planet has no moons so make it a leaf.
 tree.setChildrenAllowed(planet, false);
 } else {
 // Add children (moons) under the planets.
 for (int j=1; j<planets[i].length; j++) {
 String moon = (String) planets[i][j];

 // Add the item as a regular item.
 tree.addItem(moon);

 // Set it to be a child.
 tree.setParent(moon, planet);

 // Make the moons look like leaves.
 tree.setChildrenAllowed(moon, false);
 }

 // Expand the subtree.
 tree.expandItemsRecursively(planet);
 }
}

main.addComponent(tree);

Figure 5.56, “A Tree Component as a Menu” below shows the tree from the code example in a
practical situation.

You can read or set the currently selected item by the value property of the Tree component,
that is, with getValue() and setValue(). When the user clicks an item on a tree, the tree will

131Tree

User Interface Components

Figure 5.56. A Tree Component as a Menu

receive an ValueChangeEvent, which you can catch with a ValueChangeListener. To receive
the event immediately after the click, you need to set the tree as setImmediate(true).

The Tree component uses Container data sources much like the Table component, with the
addition that it also utilizes hierarchy information maintained by a HierarchicalContainer. The
contained items can be of any item type supported by the container. The default container and
its addItem() assume that the items are strings and the string value is used as the item ID.

5.16. MenuBar

The MenuBar component allows creating horizontal dropdown menus, much like the main menu
in desktop applications.

// Create a menu bar
final MenuBar menubar = new MenuBar();
main.addComponent(menubar);

You insert the top-level menu items to a MenuBar object with the addItem() method. It takes
a string label, an icon resource, and a command as its parameters. The icon and command are
not required and can be null.

MenuBar.MenuItem beverages =
 menubar.addItem("Beverages", null, null);

The command is called when the user clicks the item. A menu command is a class that implements
the MenuBar.Command interface.

// A feedback component
final Label selection = new Label("-");
main.addComponent(selection);

// Define a common menu command for all the menu items.
MenuBar.Command mycommand = new MenuBar.Command() {
 public void menuSelected(MenuItem selectedItem) {
 selection.setValue("Ordered a " +
 selectedItem.getText() +
 " from menu.");
 }
};

The addItem() method returns a MenuBar.MenuItem object, which you can use to add sub-
menu items. The MenuItem has an identical addItem() method.

MenuBar132

User Interface Components

// Put some items in the menu hierarchically
MenuBar.MenuItem beverages =
 menubar.addItem("Beverages", null, null);
MenuBar.MenuItem hot_beverages =
 beverages.addItem("Hot", null, null);
hot_beverages.addItem("Tea", null, mycommand);
hot_beverages.addItem("Coffee", null, mycommand);
MenuBar.MenuItem cold_beverages =
 beverages.addItem("Cold", null, null);
cold_beverages.addItem("Milk", null, mycommand);

// Another top-level item
MenuBar.MenuItem snacks =
 menubar.addItem("Snacks", null, null);
snacks.addItem("Weisswurst", null, mycommand);
snacks.addItem("Salami", null, mycommand);

// Yet another top-level item
MenuBar.MenuItem services =
 menubar.addItem("Services", null, null);
services.addItem("Car Service", null, mycommand);

The menu will look as follows:

Figure 5.57. Menu Bar

CSS Style Rules
.v-menubar { }
.gwt-MenuItem {}
.gwt-MenuItem-selected {}

The menu bar has the overall style name .v-menubar. Each menu item has .gwt-MenuItem
style normally and .gwt-MenuItem-selected when the item is selected.

5.17. Embedded

The Embedded component allows displaying embedded media objects, such as images, anim-
ations, or any embeddable media type supported by the browser.The contents of an Embedded
component are managed as resources. For documentation on resources, see Section 4.5, “Ref-
erencing Resources”.

The following example displays an image from the same Java package as the class itself using
the class loader.

Embedded image = new Embedded("Yes, logo:",
 new ClassResource("vaadin-logo.png", this));
main.addComponent(image);

133CSS Style Rules

User Interface Components

Figure 5.58. Embedded Image

The Embedded component supports several different content types, which are rendered differently
in HTML. You can set the content type with setType(), although for images, as in the above
example, the type is determined automatically.

Embedded.TYPE_OBJECT The default embedded type, allows embedding certain file
types inside HTML <object> and <embed> elements.

Embedded.TYPE_IMAGE Embeds an image inside a HTML element.

Embedded.TYPE_BROWSER Embeds a browser frame inside a HTML <iframe> ele-
ment.

5.17.1. Embedded Objects

The Embedded.TYPE_OBJECT is the default and most generic embedded type, which allows
embedding media objects inside HTML <object> and <embed> elements.You need define the
MIME type for the object type.

Currently, only Shockwave Flash animations are supported (MIME type
application/x-shockwave-flash).

// Create a Shockware Flash resource
final ClassResource flashResource =
 new ClassResource("itmill_spin.swf", getApplication());

// Display the resource in a Embedded compoant
final Embedded embedded =
 new Embedded("Embedded Caption", flashResource);

// This is the default type, but we set it anyway.
embedded.setType(Embedded.TYPE_OBJECT);

// This is recorgnized automatically, but set it anyway.
embedded.setMimeType("application/x-shockwave-flash");

You can set object parameters with setParameter(), which takes a parameter's name and
value as strings. The object parameters are included in the HTML as <param> elements.

5.17.2. Embedded Images

Images are embedded with the type Embedded.TYPE_IMAGE, although you do not normally
need to set the type explicitly, as it is recognized automatically from the MIME type of the resource,
as in the example above.

Embedded Objects134

User Interface Components

Embedded component has by default undefined size in both directions, so it will automatically
fit the size of the embedded image. If you want scrolling with scroll bars, you can put the Embed-
ded inside a Panel that has a defined size to enable scrolling, as described in Section 6.6.1,
“Scrolling the Panel Content”.You can also give it a defined size and set the overflow: auto
CSS property for it in a theme.

You can find another example of displaying an image from FileResource in Section 5.18, “Up-
load”. Another example, in Section 4.5.5, “Stream Resources”, shows how you can generate the
content of an Embedded component dynamically using a StreamResource.

If you have a dynamically generated image, for example with a StreamResource, and the data
changes, you need to reload the image in the browser. Because of how caching is handled in
some browsers, you are best off by renaming the filename of the resource with a unique name,
such as one including a timestamp. You should set cache time to zero with setCacheTime()
for the resource object when you create it.

// Create the stream resource with some initial filename.
StreamResource imageResource =
 new StreamResource(imageSource, "initial-filename.png",
 getApplication());

// Instruct browser not to cache the image.
imageResource.setCacheTime(0);

// Display the image in an Embedded component.
Embedded embedded = new Embedded("", imageResource);

When refreshing, you also need to call requestRepaint() for the Embedded object.

// This needs to be done, but is not sufficient.
embedded.requestRepaint();

// Generate a filename with a timestamp.
SimpleDateFormat df = new SimpleDateFormat("yyyyMMddHHmmssSSS");
String filename = "myfilename-" + df.format(new Date()) + ".png";

// Replace the filename in the resource.
imageResource.setFilename(makeImageFilename());

You can find more detailed information about the StreamResource in Section 4.5.5, “Stream
Resources”.

5.17.3. Browser Frames

The browser frame type allows you to embed external content inside an HTML <iframe> element.
You can refer to a URL with an ExternalResource object. URLs are given with the standard
Java URL class.

URL url = new URL("http://dev.vaadin.com/");
Embedded browser = new Embedded("", new ExternalResource(url));
browser.setType(Embedded.TYPE_BROWSER);
main.addComponent(browser);

5.18. Upload

The Upload component allows a user to upload files to the server. It displays a file name entry
box, a file selection button, and an upload submit button. The user can either write the filename
in the text area or click the Browse button to select a file. After the file is selected, the user sends
the file by pressing the upload submit button.

135Browser Frames

User Interface Components

// Create the Upload component.
Upload upload = new Upload("Upload the file here", this);

Figure 5.59. Upload Component

You can set the text of the upload button with setButtonCaption(), as in the example above,
but it is difficult to change the look of the Browse button.This is a security feature of web browsers.
The language of the Browse button is determined by the browser, so if you wish to have the
language of the Upload component consistent, you will have to use the same language in your
application.

upload.setButtonCaption("Upload Now");

The uploaded files are typically stored as files in a file system, in a database, or as temporary
objects in memory.The upload component writes the received data to an java.io.OutputStream
so you have plenty of freedom in how you can process the upload content.

To use the Upload component, you need to define a class that implements the Upload.Receiver
interface. The receiveUpload() method is called when the user clicks the submit button. The
method must return an OutputStream. To do this, it typically creates a File or a memory buffer
where the stream is written.The method gets the file name and MIME type of the file, as reported
by the browser.

When an upload is finished, successfully or unsuccessfully, the Upload component will emit the
Upload.FinishedEvent event.To receive it, you need to implement the Upload.FinishedListener
interface, and register the listening object in the Upload component. The event object will also
include the file name, MIME type, and length of the file. Notice that the more specific Upload.Faile-
dEvent and Upload.SucceededEvent events will be called in the cases where the upload failed
or succeeded, respectively.

The following example allows uploading images to /tmp/uploads directory in (UNIX) filesystem
(the directory must exist or the upload fails). The component displays the last uploaded image
in an Embedded component.

import java.io.File;
import java.io.FileOutputStream;
import java.io.OutputStream;
import com.vaadin.terminal.FileResource;
import com.vaadin.ui.*;

public class MyUploader extends CustomComponent
 implements Upload.SucceededListener,
 Upload.FailedListener,
 Upload.Receiver {

 Panel root; // Root element for contained components.
 Panel imagePanel; // Panel that contains the uploaded image.
 File file; // File to write to.

 MyUploader() {
 root = new Panel("My Upload Component");
 setCompositionRoot(root);

 // Create the Upload component.
 final Upload upload =
 new Upload("Upload the file here", this);

 // Use a custom button caption instead of plain "Upload".

Upload136

User Interface Components

 upload.setButtonCaption("Upload Now");

 // Listen for events regarding the success of upload.
 upload.addListener((Upload.SucceededListener) this);
 upload.addListener((Upload.FailedListener) this);

 root.addComponent(upload);
 root.addComponent(new Label("Click 'Browse' to "+
 "select a file and then click 'Upload'."));

 // Create a panel for displaying the uploaded image.
 imagePanel = new Panel("Uploaded image");
 imagePanel.addComponent(
 new Label("No image uploaded yet"));
 root.addComponent(imagePanel);
 }

 // Callback method to begin receiving the upload.
 public OutputStream receiveUpload(String filename,
 String MIMEType) {
 FileOutputStream fos = null; // Output stream to write to
 file = new File("/tmp/uploads/" + filename);
 try {
 // Open the file for writing.
 fos = new FileOutputStream(file);
 } catch (final java.io.FileNotFoundException e) {
 // Error while opening the file. Not reported here.
 e.printStackTrace();
 return null;
 }

 return fos; // Return the output stream to write to
 }

 // This is called if the upload is finished.
 public void uploadSucceeded(Upload.SucceededEvent event) {
 // Log the upload on screen.
 root.addComponent(new Label("File " + event.getFilename()
 + " of type '" + event.getMIMEType()
 + "' uploaded."));

 // Display the uploaded file in the image panel.
 final FileResource imageResource =
 new FileResource(file, getApplication());
 imagePanel.removeAllComponents();
 imagePanel.addComponent(new Embedded("", imageResource));
 }

 // This is called if the upload fails.
 public void uploadFailed(Upload.FailedEvent event) {
 // Log the failure on screen.
 root.addComponent(new Label("Uploading "
 + event.getFilename() + " of type '"
 + event.getMIMEType() + "' failed."));
 }
}

The example does not check the type of the uploaded files in any way, which will cause an error
if the content is anything else but an image. The program also assumes that the MIME type of
the file is resolved correctly based on the file name extension. After uploading an image, the
component will look as show in Figure 5.60, “Image Upload Example” below.The browser shows
the Browse button localized.

137Upload

User Interface Components

Figure 5.60. Image Upload Example

5.19. Form

Most web applications need forms. The Form component in Vaadin offers an easy way to create
forms where the fields can be automatically generated from a data source that is bound to the
form. The BeanItem adapter allows the data sources to be just JavaBeans or Plain Old Java
Objects (POJOs) with just the setter and getter methods. Form manages buffering so that the
form contents can be committed to the data source only when filling the form is complete, and
before that, the user can discard any changes.

The Form component is also a layout, with a bounding box, a caption, a description field, and a
special error indicator. As such, it can also be used within logical forms to group input fields.

5.19.1. Form as a User Interface Component

To begin with the Form, it is a UI component with a layout suitable for its purpose. A Form has
a caption, a description, a layout that contains the fields, an error indicator, and a footer, as illus-
trated in Figure 5.61, “Layout of the Form Component” below. Unlike with other components, the
caption is shown within the border. (See the details below on how to enable the border with CSS,
as it may not be enabled in the default style.)

Figure 5.61. Layout of the Form Component

Form138

User Interface Components

Unlike most components, Form does not accept the caption in the constructor, as forms are often
captionless, but you can give the caption with the setCaption(). While the description text,
which you can set with setDescription(), is shown as a tooltip in most other components, a Form
displays it in top of the form box as shown in the figure above.

Form form = new Form();
form.setCaption("Form Caption");
form.setDescription("This is a description of the Form that is " +
 "displayed in the upper part of the form. You normally " +
 "enter some descriptive text about the form and its " +
 "use here.");

Form has FormLayout as its default layout, but you can set any other layout with setLayout().
See Section 6.5, “FormLayout” for more information. Note that the Form itself handles layout
for the description, the footer and other common elements of the form. The user-set layout only
manages the contained fields and their captions.

The Form is most of all a container for fields so it offers many kinds of automation for creating
and managing fields.You can, of course, create fields directly in the layout, but it is usually more
desirable to bind the fields to the connected data source.

// Add a field directly to the layout. This field will
// not be bound to the data source Item of the form.
form.getLayout().addComponent(new TextField("A Field"));

// Add a field and bind it to an named item property.
form.addField("another", new TextField("Another Field"));

Binding forms and their fields to data objects is described further in Section 5.19.2, “Binding Form
to Data” below.

The Form has a special error indicator inside the form. The indicator can show the following
types of error messages:

• Errors set with the setComponentError() method of the form. For example:

form.setComponentError(new UserError("This is the error indicator of the Form."));

• Errors caused by a validator attached to the Form with addValidator().

• Errors caused by validators attached to the fields inside forms, if
setValidationVisible(true) is set for the form.This type of validation is explained
futher in Section 5.19.3, “Validating Form Input” below.

• Errors from automatic validation of fields set as required with setRequired(true) if
an error message has also been set with setRequiredError().

Only a single error is displayed in the error indicator at a time.

Finally, Form has a footer area.The footer is a HorizontalLayout by default, but you can change
it with setFooter().

// Set the footer layout.
form.setFooter(new VerticalLayout());

form.getFooter().addComponent(
 new Label("This is the footer area of the Form. "+
 "You can use any layout here. "+
 "This is nice for buttons."));

139Form as a User Interface Component

User Interface Components

// Have a button bar in the footer.
HorizontalLayout okbar = new HorizontalLayout();
okbar.setHeight("25px");
form.getFooter().addComponent(okbar);

// Add an Ok (commit), Reset (discard), and Cancel buttons
// for the form.
Button okbutton = new Button("OK", form, "commit");
okbar.addComponent(okbutton);
okbar.setComponentAlignment(okbutton, Alignment.TOP_RIGHT);
okbar.addComponent(new Button("Reset", form, "discard"));
okbar.addComponent(new Button("Cancel"));

CSS Style Rules

.v-form {}

.v-form legend

.v-form fieldset {}

.v-form-error {}

.v-form-errormessage {}

.v-form-description {}

The top-level style name of a Form component is v-form. It is important to notice that the form
is implemented as a HTML <fieldset>, which allows placing the caption (or "legend") inside
the border. It would not be so meaningful to set a border for the top-level form element. The fol-
lowing example sets a border around the form, as is done in Figure 5.61, “Layout of the Form
Component” above.

.v-form fieldset {
 border: thin solid;
}

The top-level element of the form has the style name v-form-error if a component error has
been set for the form.

5.19.2. Binding Form to Data

The main purpose of the Form component is that you can bind it to a data source and let the
Form generate and manage fields automatically. The data source can be any class that imple-
ments the Item interface, which is part of the Vaadin Data Model, as described in Chapter 9,
Binding Components to Data. You can either implement the Item interface yourself, which can
be overly complicated, or use the ready BeanItem adapter to bind the form to any JavaBean
object.You can also use PropertysetItem to bind the form to an ad hoc set of Property objects,
resembling a Map.

Let us consider the following simple JavaBean with proper setter and getter methods for the
member variables.

/** A simple JavaBean. */
public class PersonBean {
 String name;
 String city;

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setCity(String city) {

Binding Form to Data140

User Interface Components

 this.city = city;
 }

 public String getCity() {
 return city;
 }
}

We can now bind this bean to a Form using the BeanItem adapter as follows.

// Create a form and use FormLayout as its layout.
final Form form = new Form();

// Set form caption and description texts
form.setCaption("Contact Information");
form.setDescription("Please specify name of the person and the city where the person
lives in.");

// Create the custom bean.
PersonBean bean = new PersonBean();

// Create a bean item that is bound to the bean.
BeanItem item = new BeanItem(bean);

// Bind the bean item as the data source for the form.
form.setItemDataSource(item);

The Form uses FormLayout layout by default and automatically generates the fields for each
of the bean properties, as shown in Figure 5.62, “Form Automatically Generated from a Bean”
below.

Figure 5.62. Form Automatically Generated from a Bean

The automatically determined order of the fields can be undesirable. To set the order properly,
you can use the setVisibleItemProperties() method of the Form, which takes an ordered
collection as its parameter. Fields that are not listed in the collection are not included in the form.

// Set the order of the items in the form.
Vector order = new Vector();
order.add("city");
order.add("name");
form.setVisibleItemProperties(order);

The form uses the property identifiers as the captions of the fields by default. If you want to have
more proper captions for the fields, which is often the case, you need to use a FieldFactory to
create the fields, as is shown in the section below.

Generating Proper Fields with a FormFieldFactory

The form generates the fields automatically using very coarse logic. A String, int, or double will
result in a TextField alike, regardless of the meaning of the field. You might want to have a city

141Binding Form to Data

User Interface Components

name to be input with a combo box, for example. You can create such custom fields by imple-
menting the createField() method in the FormFieldFactory interface.

The default implementation, DefaultFieldFactory is shared with the Table component: it also
implements the TableFieldFactory interface. This allows the DefaultFieldFactory to create the
fields for both purposes with the same logic. It is usually simplest to just extend the default imple-
mentation instead of implementing the interfaces from scratch. You should consult the source
code of DefaultFieldFactory to see how it works; you may want to reimplement
createFieldByPropertyType(), which actually creates the fields by type, instead of the
createField().

Below is an example of implementing the FormFieldFactory interface for a specific form, using
the names of the fields of the form to create the editable field components.

class MyFieldFactory implements FormFieldFactory {
 public Field createField(Item item, Object propertyId,
 Component uiContext) {
 // Identify the fields by their Property ID.
 String pid = (String) propertyId;
 if ("name".equals(pid)) {
 return new TextField("Name");
 } else if ("city".equals(pid)) {
 Select select = new Select("City");
 select.addItem("Berlin");
 select.addItem("Helsinki");
 select.addItem("London");
 select.addItem("New York");
 select.addItem("Turku");
 select.setNewItemsAllowed(true);
 return select;
 }

 return null; // Invalid field (property) name.
 }
}

You set a Form to use a custom field factory with setFieldFactory():

form.setFieldFactory(new MyFieldFactory());

The earlier example will now look as shown in Figure 5.63, “Form Fields Generated with a
FormFieldFactory”.

Binding Form to Data142

User Interface Components

Figure 5.63. Form Fields Generated with a FormFieldFactory

5.19.3. Validating Form Input

Validation of the form input is one of the most important tasks in handling forms. The fields in
Vaadin can be bound to validators. The validation provides feedback about bad input and the
forms can also manage validation results and accept the input only if all validations are successful.
Fields can also be set as required, which is a special built-in validator. The validators work on
the server-side.

Using Validators in Forms

Validators check the validity of input and, if the input is invalid, can provide an error message
through an exception.Validators are classes that implement the Validator interface.The interface
has two methods that you must implement: isValid() that returns the success or failure as a
truth value, and validate(), which reports a failure with an exception. The exception can be
associated with an error message describing the details of the error.

Simple validators that only need to produce a single error message in case the validation fails
can inherit from AbstractValidator or AbstractStringValidator. The Vaadin also provides a
number of standard validators, including IntegerValidator and DoubleValidator for validating
numerical input, StringLengthValidator, EmailValidator and the more general RegexpValidator
for checking that a string matches a Java regular expression:

// Postal code that must be 5 digits (10000-99999).
TextField field = new TextField("Postal Code");
field.setColumns(5);

// Create the validator
Validator postalCodeValidator = new RegexpValidator(
 "[1-9][0-9]{4}", "Postal code must be a number 10000-99999.");
field.addValidator(postalCodeValidator);

If you are using a custom FieldFactory to generate the fields, you may want to set the validators
for fields there. It is useful to have the form in immediate mode:

// Set the form to act immediately on user input. This is
// necessary for the validation of the fields to occur immediately
// when the input focus changes and not just on commit.
form.setImmediate(true);

143Validating Form Input

User Interface Components

Validation is done always when you call the commit() method of the Form.

// The Commit button calls form.commit().
Button commit = new Button("Commit", form, "commit");

If any of the validators in the form fail, the commit will fail and a validation exception message is
displayed in the error indicator of the form. If the commit is successful, the input data is written
to the data source. Notice that commit() also implicitly sets setValidationVisible(true)
(if setValidationVisibleOnCommit() is true, as is the default). This makes the error in-
dicators visible even if they were previously not visible.

Figure 5.64. Form Validation in Action

For cases in which more complex error handling is required, the validator can also implement
the Validator interface directly:

// Create the validator
Validator postalCodeValidator = new Validator() {

 // The isValid() method returns simply a boolean value, so
 // it can not return an error message.
 public boolean isValid(Object value) {
 if (value == null || !(value instanceof String)) {
 return false;
 }

 return ((String) value).matches("[1-9][0-9]{4}");
 }

 // Upon failure, the validate() method throws an exception
 // with an error message.
 public void validate(Object value)
 throws InvalidValueException {
 if (!isValid(value)) {
 if (value != null &&
 value.toString().startsWith("0")) {
 throw new InvalidValueException(
 "Postal code must not start with a zero.");
 } else {
 throw new InvalidValueException(
 "Postal code must be a number 10000-99999.");
 }
 }
 }
};

Required Fields in Forms

Setting a field as required outside a form is usually just a visual clue to the user. Leaving a
required field empty does not display any error indicator in the empty field as a failed validation
does. However, if you set a form field as required with setRequired(true) and give an error

Validating Form Input144

User Interface Components

message with setRequiredError() and the user leaves the required field empty, the form
will display the error message in its error indicator.

form.getField("name").setRequired(true);
form.getField("name").setRequiredError("Name is missing");
form.getField("address").setRequired(true); // No error message

To have the validation done immediately when the fields lose focus, you should set the form as
immediate, as was done in the section above.

Figure 5.65. Empty Required Field After Clicking Commit

Note

It is important that you provide the user with feedback from failed validation of required
fields either by setting an error message or by providing the feedback by other means.

Otherwise, when a user clicks the Ok button (commits the form), the button does not
appear to work and the form does not indicate any reason. As an alternative to setting
the error message, you can handle the validation error and provide the feedback
about the problem with a different mechanism.

5.19.4. Buffering Form Data

Buffering means keeping the edited data in a buffer and writing it to the data source only when
the commit() method is called for the component. If the user has made changes to a buffer,
calling discard() restores the buffer from the data source. Buffering is actually a feature of all
Field components and Form is a Field. Form manages the buffering of its contained fields so
that if commit() or discard() is called for the Form, it calls the respective method for all of
its managed fields.

final Form form = new Form();
...add components...

// Enable buffering.
form.setWriteThrough(false);

// The Ok button calls form.commit().
Button commit = new Button("Ok", form, "commit");

// The Restore button calls form.discard().
Button restore = new Button("Restore", form, "discard");

The Form example in the Feature Browser of Vaadin demonstrates buffering in forms.The Widget
caching demo in Additional demos demonstrates buffering in other Field components, its source
code is available in BufferedComponents.java.

145Buffering Form Data

User Interface Components

5.20. ProgressIndicator

The ProgressIndicator component allows displaying the progress of a task graphically. The
progress is given as a floating-point value between 0.0 and 1.0.

Figure 5.66.The Progress Indicator Component

The progress indicator polls the server for updates for its value. If the value has changed, the
progress is updated. Notice that the user application does not have to handle any polling event,
but updating the component is done automatically.

Creating a progress indicator is just like with any other component.You can give the initial progress
value as a parameter for the constructor. The default polling frequency is 1000 milliseconds (one
second), but you can set some other interval with the setPollingInterval() method.

// Create the indicator
final ProgressIndicator indicator =
 new ProgressIndicator(new Float(0.0));
main.addComponent(indicator);

// Set polling frequency to 0.5 seconds.
indicator.setPollingInterval(500);

CSS Style Rules
/* Base element. */
.v-progressindicator {}

/* Progress indication element on top of the base. */
.v-progressindicator div {}

The default style for the progress indicator uses an animated GIF image (img/base.gif) as
the base background for the component.The progress is a <div> element inside the base.When
the progress element grows, it covers more and more of the base background. By default, the
graphic of the progress element is defined in img/progress.png under the default style directory.
S e e
com.vaadin.terminal.gwt/public/default/progressindicator/progressindicator.css.

5.20.1. Doing Heavy Computation

The progress indicator is often used to display the progress of a heavy server-side computation
task. In the following example, we create a thread in the server to do some "heavy work". All the
thread needs to do is to set the value of the progress indicator with setValue() and the current
progress is displayed automatically when the browser polls the server.

// Create an indicator that makes you look busy
final ProgressIndicator indicator =
 new ProgressIndicator(new Float(0.0));
main.addComponent(indicator);

// Set polling frequency to 0.5 seconds.
indicator.setPollingInterval(500);

// Add a button to start working
final Button button = new Button("Click to start");
main.addComponent(button);

ProgressIndicator146

User Interface Components

// Another thread to do some work
class WorkThread extends Thread {
 public void run () {
 double current = 0.0;
 while (true) {
 // Do some "heavy work"
 try {
 sleep(50); // Sleep for 50 milliseconds
 } catch (InterruptedException) {}

 // Show that you have made some progress:
 // grow the progress value until it reaches 1.0.
 current += 0.01;
 if (current>1.0)
 indicator.setValue(new Float(1.0));
 else
 indicator.setValue(new Float(current));

 // After all the "work" has been done for a while,
 // take a break.
 if (current > 1.2) {
 // Restore the state to initial.
 indicator.setValue(new Float(0.0));
 button.setVisible(true);
 break;
 }
 }
 }
}

// Clicking the button creates and runs a work thread
button.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 final WorkThread thread = new WorkThread();
 thread.start();

 // The button hides until the work is done.
 button.setVisible(false);
 }
});

Figure 5.67. Starting Heavy Work

5.21. Slider

The Slider is a vertical or horizontal bar that allows setting a numeric value within a defined range
by dragging a bar handle with the mouse. The value is shown when dragging the handle.

Slider has a number of different constructors that take a combination of the caption, minimum
and maximum value, resolution, and the orientation of the slider.

// Create a vertical slider
final Slider vertslider = new Slider(1, 100);
vertslider.setOrientation(Slider.ORIENTATION_VERTICAL);

Slider Properties

min Minimum value of the slider range. The default is 0.0.

147Slider

User Interface Components

max Maximum value of the slider range. The default is 100.0.

resolution The number of digits after the decimal point. The default is 0.

orientation T h e o r i e n t a t i o n c a n b e e i t h e r h o r i z o n t a l
(Slider.ORIENTATION_HORIZONTAL) or vertical
(Slider.ORIENTATION_VERTICAL). The default is horizontal.

As the Slider is a field component, you can handle value changes with a ValueChangeListener.
The value of the Slider field is a Double object.

// Shows the value of the vertical slider
final Label vertvalue = new Label();
vertvalue.setSizeUndefined();

// Handle changes in slider value.
vertslider.addListener(new Property.ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 double value = (Double) vertslider.getValue();

 // Use the value
 box.setHeight((float) value, Sizeable.UNITS_PERCENTAGE);
 vertvalue.setValue(String.valueOf(value));
 }
});

// The slider has to be immediate to send the changes
// immediately after the user drags the handle.
vertslider.setImmediate(true);

You can set the value with the setValue() method defined in Slider that takes the value as a
native double value. The setter can throw a ValueOutOfBoundsException, which you must
handle.

// Set the initial value. This has to be set after the
// listener is added if we want the listener to handle
// also this value change.
try {
 vertslider.setValue(50.0);
} catch (ValueOutOfBoundsException e) {
}

Alternatively, you can use the regular setValue(Object), which does not do bounds checking.

Figure 5.68, “The Slider Component” shows both vertical (from the code examples) and horizontal
sliders that control the size of a box. The slider values are displayed also in separate labels.

Slider148

User Interface Components

Figure 5.68.The Slider Component

CSS Style Rules
.v-slider {}
.v-slider-base {}
.v-slider-handle {}

The enclosing style for the Slider is v-slider. The slider bar has style v-slider-base. Even
though the handle is higher (for horizontal slider) or wider (for vertical slider) than the bar, the
handle element is nevertheless contained within the slider bar element. The appearance of the
handle comes from a background image defined in the background CSS property.

5.22. LoginForm

The LoginForm component is a login form that allows a password manager in the web browser
to remember and later automatically fill in the username and password. This commonly used
functionality does not work with regular Vaadin components and is a common problem with Ajax
applications.

// A wrapper with a caption for the login form
Panel loginPanel = new Panel("Login");
loginPanel.setWidth("250px");

LoginForm login = new LoginForm();
loginPanel.addComponent(login);

The resulting form is shown in Figure 5.69, “The LoginForm Component”.

149CSS Style Rules

User Interface Components

Figure 5.69.The LoginForm Component

The LoginForm uses static HTML inside an iframe element to enable the functionality. The
component provides a default implementation of the static HTML; if you want to change the layout,
you need to reimplement the getLoginHtml() method.

The login form has by default 100%x100% relative size, taking all the space given by the containing
layout. You may set the size to fixed values, but not undefined in either direction, because the
contained iframe element takes all of this size (it also has 100%x100% size). How the actual
form uses this space depends on the static HTML. Giving too little space for the form results in
scroll bars.

5.22.1. Customizing LoginForm

Customization of the login form is necessary, for example, if you need to change the layout or
internationalize the form. Customization is done by overriding the getLoginHtml() method,
which returns the static HTML of the form. The customization layer is very "unvaadin"-like, and
at best hack-ish, but dictated by the form management in browsers.

Let us look at a custom login form that lets the user of the form to give the field captions:

class MyLoginForm extends LoginForm {
 String usernameCaption;
 String passwordCaption;
 String submitCaption;

 public MyLoginForm(String usernameCaption,
 String passwordCaption, String submitCaption) {
 this.usernameCaption = usernameCaption;
 this.passwordCaption = passwordCaption;
 this.submitCaption = submitCaption;
 }

Then we override the method that generates the static HTML for the form:

@Override
protected byte[] getLoginHTML() {
 // Application URI needed for submitting form
 String appUri = getApplication().getURL().toString()
 + getWindow().getName() + "/";

 String x, h, b; // XML header, HTML head and body

The XML header is needed for the validity of the XHTML page:

Customizing LoginForm150

User Interface Components

 x = "<!DOCTYPE html PUBLIC \"-//W3C//DTD "
 + "XHTML 1.0 Transitional//EN\" "
 + "\"http://www.w3.org/TR/xhtml1/"
 + "DTD/xhtml1-transitional.dtd\">\n";

Notice that it is important to have a newline (\n) at the end of the XML header line.

The HTML header part contains JavaScript definitions that handle submitting the form data. It
also copies the style sheet references from the parent window.

 h = "<head><script type='text/javascript'>"
 + "var setTarget = function() {"
 + " var uri = '" + appUri + "loginHandler';"
 + " var f = document.getElementById('loginf');"
 + " document.forms[0].action = uri;"
 + " document.forms[0].username.focus();"
 + "};"
 + ""
 + "var styles = window.parent.document.styleSheets;"
 + "for(var j = 0; j < styles.length; j++) {\n"
 + " if(styles[j].href) {"
 + " var stylesheet = document.createElement('link');\n"
 + " stylesheet.setAttribute('rel', 'stylesheet');\n"
 + " stylesheet.setAttribute('type', 'text/css');\n"
 + " stylesheet.setAttribute('href', styles[j].href);\n"
 + " document.getElementsByTagName('head')[0]"
 + " .appendChild(stylesheet);\n"
 + " }"
 + "}\n"
 + "function submitOnEnter(e) {"
 + " var keycode = e.keyCode || e.which;"
 + " if (keycode == 13) {document.forms[0].submit();}"
 + "}\n"
 + "</script>"
 + "</head>";

The HTML body element contains the actual form. Notice that it is contained within an inner
iframe. The form and the button must have JavaScript calls to submit the form content.

 b = "<body onload='setTarget();'"
 + " style='margin:0;padding:0; background:transparent;'"
 + " class='"
 + ApplicationConnection.GENERATED_BODY_CLASSNAME + "'>"
 + "<div class='v-app v-app-loginpage'"
 + " style='background:transparent;'>"
 + "<iframe name='logintarget' style='width:0;height:0;"
 + "border:0;margin:0;padding:0;'></iframe>"
 + "<form id='loginf' target='logintarget'"
 + " onkeypress='submitOnEnter(event)'"
 + " method='post'>"
 + "<table>"
 + "<tr><td>" + usernameCaption + "</td>"
 + "<td><input class='v-textfield' style='display:block;'"
 + " type='text' name='username'></td></tr>"
 + "<tr><td>" + passwordCaption + "</td>"
 + " <td><input class='v-textfield'"
 + " style='display:block;' type='password'"
 + " name='password'></td></tr>"
 + "</table>"
 + "<div>"
 + "<div onclick='document.forms[0].submit();'"
 + " tabindex='0' class='v-button' role='button'>"
 + ""
 + ""
 + submitCaption + ""
 + "</div></div></form></div></body>";

151Customizing LoginForm

User Interface Components

Then combine and return the page as a byte array.

 return (x + "<html>" + h + b + "</html>").getBytes();
}

We can use the custom login form as follows:

MyLoginForm loginForm = new MyLoginForm("Name of the User",
 "A passing word", "Login Me Now");

The customized LoginForm is shown in Figure 5.70, “Customizing the LoginForm”.

Figure 5.70. Customizing the LoginForm

Styling with CSS
.v-customcomponent {}
.v-customcomponent .v-embedded {}
.v-app-loginpage {}
.v-app-loginpage .v-textfield {}
.v-app-loginpage .v-button {}

The LoginForm component is a purely server-side component that extends CustomComponent
and therefore has a v-customcomponent base style. If you wish to do any styling for the com-
ponent, you should give it a custom style name to distinguish it from the regular CustomCom-
ponent.

The component contains an iframe in an element with v-embedded style.The other styles are
defined in the static HTML code returned by the getLoginHTML() method. The default imple-
mentation reuses the styles of the TextField and Button components for the input fields and the
button, that is, v-textfield and v-button. The root element has the same v-app style as
a regular Vaadin application would have, and an additional v-app-loginpage style.

...
+ "<div class='v-app v-app-loginpage'
 style=\"background:transparent;\">"
...
+ "<input class='v-textfield' ...
...
+ "<div><input class='v-textfield' ...
...
<div ... class='v-button' role='button'>

5.23. Component Composition with CustomComponent

The ease of making new user interface components is one of the core features of Vaadin.Typically,
you simply combine existing built-in components to produce composite components. In many
applications, such composite components make up the majority of the user interface.

To create a composite component, you need to inherit the CustomComponent and call the
setCompositionRoot() in the constructor to set the composition root component. The root
component is typically a layout component that contains multiple components.

Styling with CSS152

User Interface Components

For example:

class MyComposite extends CustomComponent {
 public MyComposite(String message) {
 // A layout structure used for composition
 Panel panel = new Panel("My Custom Component");
 panel.setContent(new VerticalLayout());

 // Compose from multiple components
 Label label = new Label(message);
 label.setSizeUndefined(); // Shrink
 panel.addComponent(label);
 panel.addComponent(new Button("Ok"));

 // Set the size as undefined at all levels
 panel.getContent().setSizeUndefined();
 panel.setSizeUndefined();
 setSizeUndefined();

 // The composition root MUST be set
 setCompositionRoot(panel);
 }
}

Take note of the sizing when trying to make a customcomponent that shrinks to fit the contained
components. You have to set the size as undefined at all levels; the sizing of the composite
component and the composition root are separate.

You can use the component as follows:

MyComposite mycomposite = new MyComposite("Hello");

The rendered component is shown in Figure 5.71, “A Custom Composite Component”.

Figure 5.71. A Custom Composite Component

You can also inherit any other components, such as layouts, to attain similar composition. Even
further, you can create entirely new low-level components, by integrating custom Google Web
Toolkit components or by extending the client-side functionality of built-in components. Develop-
ment of custom GWT components is covered in Chapter 11, Developing New Components.

153Component Composition with CustomComponent

User Interface Components

154

Chapter 6

Managing Layout

6.1. Overview .. 156
6.2. Window and Panel Root Layout ... 158
6.3. VerticalLayout and HorizontalLayout ... 158
6.4. GridLayout .. 163
6.5. FormLayout .. 166
6.6. Panel ... 168
6.7. HorizontalSplitPanel and VerticalSplitPanel 172
6.8. TabSheet ... 174
6.9. Accordion ... 177
6.10. AbsoluteLayout .. 178
6.11. CssLayout .. 180
6.12. Layout Formatting .. 183
6.13. Custom Layouts ... 190

Ever since the ancient xeroxians invented graphical user interfaces, programmers have wanted
to make GUI programming ever easier for themselves. Solutions started simple. When GUIs
appeared on PC desktops, practically all screens were of the VGA type and fixed into 640x480
size. Mac or X Window System on UNIX were not much different. Everyone was so happy with
such awesome graphics resolutions that they never thought that an application would have to
work on a radically different screen size. At worst, screens could only grow, they thought, giving
more space for more windows. In the 80s, the idea of having a computer screen in your pocket
was simply not realistic. Hence, the GUI APIs allowed placing UI components using screen co-
ordinates. Visual Basic and some other systems provided an easy way for the designer to drag
and drop components on a fixed-sized window. One would have thought that at least translators
would have complained about the awkwardness of such a solution, but apparently they were not,

155Book of Vaadin

as non-engineers, heard or at least cared about. At best, engineers could throw at them a resource
editor that would allow them to resize the UI components by hand. Such was the spirit back then.

After the web was born, layout design was doomed to change for ever. At first, layout didn't
matter much, as everyone was happy with plain headings, paragraphs, and a few hyperlinks here
and there. Designers of HTML wanted the pages to run on any screen size. The screen size was
actually not pixels but rows and columns of characters, as the baby web was really just hypertext,
not graphics.That was soon to be changed.The first GUI-based browser, NCSA Mosaic, launched
a revolution that culminated in Netscape Navigator. Suddenly, people who had previously been
doing advertisement brochures started writing HTML. This meant that layout design had to be
easy not just for programmers, but also allow the graphics designer to do his or her job without
having to know a thing about programming.The W3C committee designing web standards came
up with the CSS (Cascading Style Sheet) specification, which allowed trivial separation of appear-
ance from content. Later versions of HTML followed, XHTML appeared, as did countless other
standards.

Page description and markup languages are a wonderful solution for static presentations, such
as books and most web pages. Real applications, however, need to have more control. They
need to be able to change the state of user interface components and even their layout on the
run. This creates a need to separate the presentation from content on exactly the right level.

Thanks to the attack of graphics designers, desktop applications were, when it comes to appear-
ance, far behind web design. Sun Microsystems had come in 1995 with a new programming
language, Java, for writing cross-platform desktop applications. Java's original graphical user
interface toolkit, AWT (Abstract Windowing Toolkit), was designed to work on multiple operating
systems as well as embedded in web browsers. One of the special aspects of AWT was the
layout manager, which allowed user interface components to be flexible, growing and shrinking
as needed. This made it possible for the user to resize the windows of an application flexibly and
also served the needs of localization, as text strings were not limited to some fixed size in pixels.
It became even possible to resize the pixel size of fonts, and the rest of the layout adapted to the
new size.

Layout management of Vaadin is a direct successor of the web-based concept for separation of
content and appearance and of the Java AWT solution for binding the layout and user interface
components into objects in programs. Vaadin layout components allow you to position your UI
components on the screen in a hierarchical fashion, much like in conventional Java UI toolkits
such as AWT, Swing, or SWT. In addition, you can approach the layout from the direction of the
web with the CustomLayout component, which you can use to write your layout as a template
in XHTML that provides locations of any contained components.

The moral of the story is that, because Vaadin is intended for web applications, appearance is
of high importance. The solutions have to be the best of both worlds and satisfy artists of both
kind: code and graphics. On the API side, the layout is controlled by UI components, particularly
the layout components. On the visual side, it is controlled by themes. Themes can contain any
HTML, CSS, and JavaScript that you or your web artists create to make people feel good about
your software.

6.1. Overview

The user interface components in Vaadin can roughly be divided in two groups: components that
the user can interact with and layout components for placing the other components to specific
places in the user interface. The layout components are identical in their purpose to layout
managers in regular desktop frameworks for Java and you can use plain Java to accomplish
sophisticated component layouting.

Overview156

Managing Layout

You start by creating a root layout for the main window, unless you use the default, and then add
the other layout components hierarchically, and finally the interaction components as the leaves
of the component tree.

// Create the main window.
Window main = new Window("My Application");
setMainWindow(main);

// Set the root layout (VerticalLayout is actually the default).
VerticalLayout root = new VerticalLayout();
main.setContent(root);

// Add the topmost component.
root.addComponent(new Label("The Ultimate Cat Finder"));

// Add a horizontal layout for the bottom part.
HorizontalLayout bottom = new HorizontalLayout();
root.addComponent(bottom);

bottom.addComponent(new Tree("Major Planets and Their Moons"));
bottom.addComponent(new Panel());
...

You will usually need to tune the layout components a bit by setting sizes, expansion ratios,
alignments, spacings, and so on. The general settings are described in Section 6.12, “Layout
Formatting”, while the layout component specific settings are described in connection with the
component.

Layouts are coupled with themes that specify various layout features, such as backgrounds,
borders, text alignment, and so on. Definition and use of themes is described in Chapter 8,
Themes

You can see the finished version of the above example in Figure 6.1, “Layout Example”.

Figure 6.1. Layout Example

The alternative for using layout components is to use the special CustomLayout that allows
using HTML templates. This way, you can let the web page designers take responsibility of
component layouting using their own set of tools.What you lose is the ability to manage the layout
dynamically.

157Overview

Managing Layout

The Visual Editor

While you can always program the layout by hand, the Vaadin plugin for the Eclipse
IDE includes a visual (WYSIWYG) editor that you can use to create user interfaces
visually. The editor generates the code that creates the user interface and is useful
for rapid application development and prototyping. It is especially helpful when you
are still learning the framework, as the generated code, which is designed to be as
reusable as possible, also works as an example of how you create user interfaces
with Vaadin. You can find more about the editor in Chapter 7, Visual User Interface
Design with Eclipse.

6.2. Window and Panel Root Layout

The Window and its superclass Panel have a single root layout component. The component is
usually a Layout, but any ComponentContainer is allowed. When you create the components,
they create a default root layout, usually VerticalLayout, but you can change it with the setCon-
tent() method.

Window main = new Window("My Application");
setMainWindow(main);

// Set another root layout for the main window.
TabSheet tabsheet = new TabSheet();
main.setContent(tabsheet);

The size of the root layout is the default size of the particular layout component, for example, a
VerticalLayout has 100% width and undefined height by default. In many applications, you want
to use the full area of the browser view. Setting the components contained inside the root layout
to full size is not enough, and would actually lead to an invalid state if the height of the root layout
is undefined.

// This is actually the default.
main.setContent(new VerticalLayout());

// Set the size of the root layout to full width and height.
main.getContent().setSizeFull();

// Add a title area on top of the screen. This takes just the
// vertical space it needs.
main.addComponent(new Label("My Application"));

// Add a menu-view area that takes rest of the vertical space.
HorizontalLayout menuview = new HorizontalLayout();
menuview.setSizeFull();
main.addComponent(menuview);

See Section 6.12.1, “Layout Size” for more information about setting layout sizes.

6.3. VerticalLayout and HorizontalLayout

VerticalLayout and HorizontalLayout are containers for laying components out either vertically
or horizontally, respectively. These are the two most important layout components in Vaadin and
some components, such as Window and Panel, have a VerticalLayout as the root layout, which
you can set with setContent().

Typical use of the layouts goes as follows:

VerticalLayout vertical = new VerticalLayout ();
vertical.addComponent(new TextField("Name"));

Window and Panel Root Layout158

Managing Layout

vertical.addComponent(new TextField("Street address"));
vertical.addComponent(new TextField("Postal code"));
main.addComponent(vertical);

In these layouts, component captions are placed above the component. The layout will look on
screen as follows:

Using HorizontalLayout gives the following layout:

The layouts can have spacing between the horizontal or vertical cells, defined with
setSpacing(), as described in Section 6.12.3, “Layout Cell Spacing”.The contained components
can be aligned within their cells with setComponentAlignment(), as described in Sec-
tion 6.12.2, “Layout Cell Alignment”.

6.3.1. Sizing Contained Components

The components contained within an ordered layout can be laid out in a number of different ways
depending on how you specify their height or width in the primary direction of the layout component.

Figure 6.2. Component Widths in HorizontalLayout

Figure 6.2, “Component Widths in HorizontalLayout” above gives a summary of the sizing options
for a HorizontalLayout. The figure is broken down in the following subsections.

Layout with Undefined Size

If a VerticalLayout has undefined height or HorizontalLayout undefined width, the layout will
shrink to fit the contained components so that there is no extra space between them.

HorizontalLayout fittingLayout = new HorizontalLayout();
fittingLayout.setWidth(Sizeable.SIZE_UNDEFINED, 0); // Default
fittingLayout.addComponent(new Button("Small"));
fittingLayout.addComponent(new Button("Medium-sized"));

159Sizing Contained Components

Managing Layout

fittingLayout.addComponent(new Button("Quite a big component"));
parentLayout.addComponent(fittingLayout);

The both layouts actually have undefined height by default and HorizontalLayout has also un-
defined width, while VerticalLayout has 100% relative width.

If such a vertical layout with undefined height continues below the bottom of a window (a Window
object), the window will pop up a vertical scroll bar on the right side of the window area.This way,
you get a "web page". The same applies to Panel.

A layout that contains components with percentual size must have a defined
size!

If a layout has undefined size and a contained component has, say, 100% size, the
component would fill the space given by the layout, while the layout would shrink to
fit the space taken by the component, which would be a paradox. This requirement
holds for height and width separately.The debug mode allows detecting such invalid
cases; see Section 12.4.1, “Debug Mode”.

An exception to the above rule is a case where you have a layout with undefined size that contains
a component with a fixed or undefined size together with one or more components with relative
size. In this case, the contained component with fixed (or undefined) size in a sense defines the
size of the containing layout, removing the paradox.That size is then used for the relatively sized
components.

The technique can be used to define the width of a VerticalLayout or the height of a Horizont-
alLayout.

// Vertical layout would normally have 100% width
VerticalLayout vertical = new VerticalLayout();

// Shrink to fit the width of contained components
vertical.setWidth(Sizeable.SIZE_UNDEFINED, 0);

// Label has normally 100% width, but we set it as
// undefined so that it will take only the needed space
Label label =
 new Label("\u2190 The VerticalLayout shrinks to fit "+
 "the width of this Label \u2192");
label.setWidth(Sizeable.SIZE_UNDEFINED, 0);
vertical.addComponent(label);

// Button has undefined width by default
Button butt = new Button("\u2190 This Button takes 100% "+
 "of the width \u2192");
butt.setWidth("100%");
vertical.addComponent(butt);

Figure 6.3. Defining the Size with a Component

Sizing Contained Components160

Managing Layout

Layout with Defined Size

If you set a HorizontalLayout to a defined size horizontally or a VerticalLayout vertically, and
there is space left over from the contained components, the extra space is distributed equally
between the component cells. The components are aligned within these cells according to their
alignment setting, top left by default, as in the example below.

fixedLayout.setWidth("400px");

Using percentual sizes for components contained in a layout requires answering the question,
"Percentage of what?" There is no sensible default answer for this question in the current imple-
mentation of the layouts, so in practice, you may not define "100%" size alone.

Expanding Components

Often, you want to have one component that takes all the available space left over from other
components.You need to set its size as 100% and set it as expanding with setExpandRatio().
The second parameter for the method is an expansion ratio, which is relevant if there are more
than one expanding component, but its value is irrelevant for a single expanding component.

HorizontalLayout layout = new HorizontalLayout();
layout.setWidth("400px");

// These buttons take the minimum size.
layout.addComponent(new Button("Small"));
layout.addComponent(new Button("Medium-sized"));

// This button will expand.
Button expandButton = new Button("Expanding component");

// Use 100% of the expansion cell's width.
expandButton.setWidth("100%");

// The component must be added to layout before setting the ratio.
layout.addComponent(expandButton);

// Set the component's cell to expand.
layout.setExpandRatio(expandButton, 1.0f);

parentLayout.addComponent(layout);

Notice that you must call setExpandRatio() after addComponent(), because the layout can
not operate on an component that it doesn't (yet) include.

Expand Ratios

If you specify an expand ratio for multiple components, they will all try to use the available space
according to the ratio.

HorizontalLayout layout = new HorizontalLayout();
layout.setWidth("400px");

// Create three equally expanding components.
String[] captions = { "Small", "Medium-sized",
 "Quite a big component" };
for (int i = 1; i <= 3; i++) {

161Sizing Contained Components

Managing Layout

 Button button = new Button(captions[i-1]);
 button.setWidth("100%");
 layout.addComponent(button);

 // Have uniform 1:1:1 expand ratio.
 layout.setExpandRatio(button, 1.0f);
}

As the example used the same ratio for all components, the ones with more content may have
the content cut. Below, we use differing ratios:

// Expand ratios for the components are 1:2:3.
layout.setExpandRatio(button, i * 1.0f);

If the size of the expanding components is defined as a percentage (typically "100%"), the ratio
is calculated from the overall space available for the relatively sized components. For example,
if you have a 100 pixels wide layout with two cells with 1.0 and 4.0 respective expansion ratios,
and both the components in the layout are set as setWidth("100%"), the cells will have re-
spective widths of 20 and 80 pixels, regardless of the minimum size of the components.

However, if the size of the contained components is undefined or fixed, the expansion ratio is of
the excess available space. In this case, it is the excess space that expands, not the components.

for (int i = 1; i <= 3; i++) {
 // Button with undefined size.
 Button button = new Button(captions[i - 1]);

 layout4.addComponent(button);

 // Expand ratios are 1:2:3.
 layout4.setExpandRatio(button, i * 1.0f);
}

It is not meaningful to combine expanding components with percentually defined size and com-
ponents with fixed or undefined size. Such combination can lead to a very unexpected size for
the percentually sized components.

Percentage of Cells

A percentual size of a component defines the size of the component within its cell. Usually, you
use "100%", but a smaller percentage or a fixed size (smaller than the cell size) will leave an
empty space in the cell and align the component within the cell according to its alignment setting,
top left by default.

HorizontalLayout layout50 = new HorizontalLayout();
layout50.setWidth("400px");

String[] captions1 = { "Small 50%", "Medium 50%",
 "Quite a big 50%" };
for (int i = 1; i <= 3; i++) {
 Button button = new Button(captions1[i-1]);
 button.setWidth("50%");
 layout50.addComponent(button);

Sizing Contained Components162

Managing Layout

 // Expand ratios for the components are 1:2:3.
 layout50.setExpandRatio(button, i * 1.0f);
}
parentLayout.addComponent(layout50);

6.4. GridLayout

GridLayout container lays components out on a grid, defined by the number of columns and
rows. The columns and rows of the grid serve as coordinates that are used for laying out com-
ponents on the grid. Each component can use multiple cells from the grid, defined as an area
(x1,y1,x2,y2), although they typically take up only a single grid cell.

The grid layout maintains a cursor for adding components in left-to-right, top-to-bottom order. If
the cursor goes past the bottom-right corner, it will automatically extend the grid downwards by
adding a new row.

The following example demonstrates the use of GridLayout. The addComponent takes a com-
ponent and optional coordinates. The coordinates can be given for a single cell or for an area in
x,y (column,row) order. The coordinate values have a base value of 0. If coordinates are not
given, the cursor will be used.

// Create a 4 by 4 grid layout.
GridLayout grid = new GridLayout(4, 4);
grid.addStyleName("example-gridlayout");

// Fill out the first row using the cursor.
grid.addComponent(new Button("R/C 1"));
for (int i = 0; i < 3; i++) {
 grid.addComponent(new Button("Col " + (grid.getCursorX() + 1)));
}

// Fill out the first column using coordinates.
for (int i = 1; i < 4; i++) {
 grid.addComponent(new Button("Row " + i), 0, i);
}

// Add some components of various shapes.
grid.addComponent(new Button("3x1 button"), 1, 1, 3, 1);
grid.addComponent(new Label("1x2 cell"), 1, 2, 1, 3);
InlineDateField date = new InlineDateField("A 2x2 date field");
date.setResolution(DateField.RESOLUTION_DAY);
grid.addComponent(date, 2, 2, 3, 3);

The resulting layout will look as follows. The borders have been made visible to illustrate the
layout cells.

163GridLayout

Managing Layout

Figure 6.4.The Grid Layout Component

A component to be placed on the grid must not overlap with existing components. A conflict
causes throwing a GridLayout.OverlapsException.

6.4.1. Sizing Grid Cells

You can define the size of both a grid layout and its components in either fixed or percentual
units, or leave the size undefined altogether, as described in Section 5.3.9, “Sizing Components”.
Section 6.12.1, “Layout Size” gives an introduction to sizing of layouts.

The size of the GridLayout component is undefined by default, so it will shrink to fit the size of
the components placed inside it. In most cases, especially if you set a defined size for the layout
but do not set the contained components to full size, there will be some unused space. The pos-
ition of the non-full components within the grid cells will be determined by their alignment. See
Section 6.12.2, “Layout Cell Alignment” for details on how to align the components inside the
cells.

The components contained within a GridLayout layout can be laid out in a number of different
ways depending on how you specify their height or width. The layout options are similar to Hori-
zontalLayout and VerticalLayout, as described in Section 6.3, “VerticalLayout and Horizont-
alLayout”.

A layout that contains components with percentual size must have a defined
size!

If a layout has undefined size and a contained component has, say, 100% size, the
component would fill the space given by the layout, while the layout would shrink to
fit the space taken by the component, which is a paradox. This requirement holds
for height and width separately.The debug mode allows detecting such invalid cases;
see Section 12.4.1, “Debug Mode”.

Often, you want to have one or more rows or columns that take all the available space left over
from non-expanding rows or columns. You need to set the rows or columns as expanding with
setRowExpandRatio() and setColumnExpandRatio(). The first parameter for these
methods is the index of the row or column to set as expanding. The second parameter for the
methods is an expansion ratio, which is relevant if there are more than one expanding row or
column, but its value is irrelevant if there is only one. With multiple expanding rows or columns,

Sizing Grid Cells164

Managing Layout

the ratio parameter sets the relative portion how much a specific row/column will take in relation
with the other expanding rows/columns.

GridLayout grid = new GridLayout(3,2);

// Layout containing relatively sized components must have
// a defined size, here is fixed size.
grid.setWidth("600px");
grid.setHeight("200px");

// Add some content
String labels [] = {
 "Shrinking column
Shrinking row",
 "Expanding column (1:)
Shrinking row",
 "Expanding column (5:)
Shrinking row",
 "Shrinking column
Expanding row",
 "Expanding column (1:)
Expanding row",
 "Expanding column (5:)
Expanding row"
};
for (int i=0; i<labels.length; i++) {
 Label label = new Label(labels[i], Label.CONTENT_XHTML);
 label.setWidth(null); // Set width as undefined
 grid.addComponent(label);
}

// Set different expansion ratios for the two columns
grid.setColumnExpandRatio(1, 1);
grid.setColumnExpandRatio(2, 5);

// Set the bottom row to expand
grid.setRowExpandRatio(1, 1);

// Align and size the labels.
for (int col=0; col<grid.getColumns(); col++) {
 for (int row=0; row<grid.getRows(); row++) {
 Component c = grid.getComponent(col, row);
 grid.setComponentAlignment(c, Alignment.TOP_CENTER);

 // Make the labels high to illustrate the empty
 // horizontal space.
 if (col != 0 || row != 0)
 c.setHeight("100%");
 }
}

Figure 6.5. Expanding Rows and Columns in GridLayout

If the size of the contained components is undefined or fixed, the expansion ratio is of the excess
space, as in Figure 6.5, “Expanding Rows and Columns in GridLayout” (excess horizontal space
is shown in white). However, if the size of the all the contained components in the expanding
rows or columns is defined as a percentage, the ratio is calculated from the overall space available

165Sizing Grid Cells

Managing Layout

for the percentually sized components. For example, if we had a 100 pixels wide grid layout with
two columns with 1.0 and 4.0 respective expansion ratios, and all the components in the grid
were set as setWidth("100%"), the columns would have respective widths of 20 and 80 pixels,
regardless of the minimum size of their contained components.

CSS Style Rules
.v-gridlayout {}
.v-gridlayout-margin {}

The v-gridlayout is the root element of the GridLayout component. The v-gridlayout-margin is a
simple element inside it that allows setting a padding between the outer element and the cells.

For styling the individual grid cells, you should style the components inserted in the cells. The
implementation structure of the grid can change, so depending on it, as is done in the example
below, is not generally recommended. Normally, if you want to have, for example, a different
color for a certain cell, just make set the component inside it setSizeFull(), and add a style
name for it. Sometimes you may need to use a layout component between a cell and its actual
component just for styling.

The following example shows how to make the grid borders visible, as in Figure 6.5, “Expanding
Rows and Columns in GridLayout”.

.v-gridlayout-gridexpandratio {
 background: blue; /* Creates a "border" around the grid. */
 margin: 10px; /* Empty space around the layout. */
}

/* Add padding through which the background color shows. */
.v-gridlayout-gridexpandratio .v-gridlayout-margin {
 padding: 2px;
}

/* Add cell borders and make the cell backgrounds white.
 * Warning: This depends heavily on the HTML structure. */
.v-gridlayout-gridexpandratio > div > div > div {
 padding: 2px; /* Layout background will show through. */
 background: white; /* The cells will be colored white. */
}

/* Components inside the layout are a safe way to style cells. */
.v-gridlayout-gridexpandratio .v-label {
 text-align: left;
 background: #ffffc0; /* Pale yellow */
}

You should beware of margin, padding, and border settings in CSS as they can mess up the
layout. The dimensions of layouts are calculated in the Client-Side Engine of Vaadin and some
settings can interfere with these calculations. For more information, on margins and spacing, see
Section 6.12.3, “Layout Cell Spacing” and Section 6.12.4, “Layout Margins”

6.5. FormLayout

FormLayout is the default layout of a Form component. It lays the form fields and their captions
out in two columns, with optional indicators for required fields and errors that can be shown for
each field.

CSS Style Rules166

Managing Layout

A Form handles additional layout elements itself, including a caption, a form description, a form
error indicator, a footer that is often used for buttons and a border. For more information on these,
see Section 5.19, “Form”.

The field captions can have an icon in addition to the text.

// A FormLayout used outside the context of a Form
FormLayout fl = new FormLayout();

// Make the FormLayout shrink to its contents
fl.setSizeUndefined();

TextField tf = new TextField("A Field");
fl.addComponent(tf);

// Mark the first field as required
tf.setRequired(true);
tf.setRequiredError("The Field may not be empty.");

TextField tf2 = new TextField("Another Field");
fl.addComponent(tf2);

// Set the second field straing to error state with a message.
tf2.setComponentError(
 new UserError("This is the error indicator of a Field."));

The resulting layout will look as follows. The error message shows in a tooptip when you hover
the mouse pointer over the error indicator.

Figure 6.6. A FormLayout Layout for Forms

CSS Style Rules
.v-formlayout {}
.v-formlayout .v-caption {}

/* Columns in a field row. */
.v-formlayout-contentcell {} /* Field content. */
.v-formlayout-captioncell {} /* Field caption. */
.v-formlayout-errorcell {} /* Field error indicator. */

/* Overall style of field rows. */
.v-formlayout-row {}
.v-formlayout-firstrow {}
.v-formlayout-lastrow {}

/* Required field indicator. */
.v-formlayout .v-required-field-indicator {}
.v-formlayout-captioncell .v-caption
 .v-required-field-indicator {}

/* Error indicator. */

167CSS Style Rules

Managing Layout

.v-formlayout-cell .v-errorindicator {}

.v-formlayout-error-indicator .v-errorindicator {}

The top-level element of FormLayout has the v-formlayout style. The layout is tabular with
three columns: the caption column, the error indicator column, and the field column. These can
be styled with v-formlayout-captioncell, v-formlayout-errorcell, and
v-formlayout-contentcell, respectively. While the error indicator is shown as a dedicated
column, the indicator for required fields is currently shown as a part of the caption column.

For information on setting margins and spacing, see also Section 6.12.3, “Layout Cell Spacing”
and Section 6.12.4, “Layout Margins”.

6.6. Panel

Panel is a simple container with a frame and an optional caption. The content area is bound to
a an inner layout component for laying out the contained components. The default content layout
is a VerticalLayout, but you can change it with the setContent() method to be any class im-
plementing the ComponentContainer interface.

The caption can have an icon in addition to the text.

// Create a panel with a caption.
final Panel panel = new Panel("Contact Information");
panel.addStyleName("panelexample");

// The width of a Panel is 100% by default, make it
// shrink to fit the contents.
panel.setWidth(Sizeable.SIZE_UNDEFINED, 0);

// Create a layout inside the panel
final FormLayout form = new FormLayout();

// Have some margin around it.
form.setMargin(true);

// Add some components
form.addComponent(new TextField("Name"));
form.addComponent(new TextField("Email"));

// Set the layout as the root layout of the panel
panel.setContent(form);

The resulting layout is shown in Figure 6.7, “A Panel Layout in Runo Theme” with the Runo
theme.

Figure 6.7. A Panel Layout in Runo Theme

See Section 6.2, “Window and Panel Root Layout” for more information about setting the content
layout.

Panel168

Managing Layout

Panel has 100% width and undefined width by default. This corresponds with the default sizing
of VerticalLayout, the default root layout of Panel. If you set undefined width for a panel, also
the root layout must have undefined width to avoid a paradox.

CSS Style Rules
.v-panel {}
.v-panel-caption {}
.v-panel-nocaption {}
.v-panel-content {}
.v-panel-deco {}

The entire panel has v-panel style. A panel consists of three parts: the caption, content, and
bottom decorations (shadow).These can be styled with v-panel-caption, v-panel-content,
and v-panel-deco, respectively. If the panel has no caption, the caption element will have the
style v-panel-nocaption.

The built-in light style has no borders or border decorations for the Panel. You enable it simply
by adding the light style name for the panel, as is done in the example below. You can also
use the PANEL_LIGHT constant defined in BaseTheme class; it is usable in all subthemes.

// Have a window with a SplitPanel.
final Window window = new Window("Window with a Light Panel");
window.setWidth("400px");
window.setHeight("200px");
final HorizontalSplitPanel splitter =
 new HorizontalSplitPanel();
window.setContent(splitter);

// Create a panel with a caption.
final Panel light = new Panel("Light Panel");
light.setSizeFull();

// The "light" style is a predefined style without borders
light.addStyleName(Runo.PANEL_LIGHT);

light.addComponent(new Label("The light Panel has no borders."));
light.getLayout().setMargin(true);

// The Panel will act as a "caption" of the left panel
// in the SplitPanel.
splitter.addComponent(light);
splitter.setSplitPosition(250, Sizeable.UNITS_PIXELS);

main.addWindow(window);

Figure 6.8, “A Panel with Light Style” shows the rendered Panel in the Runo theme.

169CSS Style Rules

Managing Layout

Figure 6.8. A Panel with Light Style

The light style is typical when using a Panel as the root layout of a window or some similar layout,
as in the example above.

6.6.1. Scrolling the Panel Content

Normally, if a panel has undefined size in a direction, as it has by default vertically, it will fit the
size of the content and grow as the content grows. However, if it has a fixed or percentual size
and its content becomes too big to fit in the content area, a scroll bar will appear for the particular
direction. Scroll bars in a Panel are handled natively by the browser with the overflow: auto
property in CSS.

In the following example, the Embedded component has undefined size in both dimensions by
default, but we also have to set undefined size for the root layout of the panel as the default
VerticalLayout only has undefined height by default.

// Serve the image from the theme
Resource rsrc = new ThemeResource("img/embedded-journalist.jpg");

// Display the image without caption
Embedded image = new Embedded(null, rsrc);
image.setSizeUndefined(); // Actually the default

// The panel will give it scrollbars. The root layout
// (VerticalLayout) must have undefined width to make the
// horizontal scroll bar appear.
Panel panel = new Panel("Embedding");
panel.setWidth("400px");
panel.setHeight("300px");
panel.getContent().setSizeUndefined();
panel.addComponent(image);

layout.addComponent(panel);

The result is shown in Figure 6.9, “Panel with Scroll Bars”.

Scrolling the Panel Content170

Managing Layout

Figure 6.9. Panel with Scroll Bars

Programmatic Scrolling with Scrollable

Panel implements the Scrollable interface to allow programmatic scrolling. You first need to
enable programmatic scrolling with setScrollable(true), after which you can set the scroll
position in pixels with setScrollTop() and setScrollLeft().

Consider the following example:

final Panel panel = new Panel("Scrolling Panel");
panel.setHeight("300px");
panel.setWidth("400px");
panel.getContent().setHeight("1000px");
panel.setScrollable(true);

layout.addComponent(panel);

HorizontalLayout scrollButtons = new HorizontalLayout();
layout.addComponent(scrollButtons);

Button scrollUp = new Button("Scroll Up");
scrollUp.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 int scrollPos = panel.getScrollTop() - 250;
 if (scrollPos < 0)
 scrollPos = 0;
 panel.setScrollTop(scrollPos);
 }
});
scrollButtons.addComponent(scrollUp);

Button scrollDown = new Button("Scroll Down");
scrollDown.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 int scrollPos = panel.getScrollTop();
 if (scrollPos > 1000)
 scrollPos = 1000;
 panel.setScrollTop(scrollPos + 250);
 }
});
scrollButtons.addComponent(scrollDown);

171Scrolling the Panel Content

Managing Layout

6.7. HorizontalSplitPanel and VerticalSplitPanel

HorizontalSplitPanel and VerticalSplitPanel are a two-component containers that divide the
available space into two areas to accomodate the two components. HorizontalSplitPanel makes
the split horizontally with a vertical splitter bar, and VerticalSplitPanel vertically with a horizontal
splitter bar. The user can drag the bar to adjust its position.

You can set the two components with the setFirstComponent() and
setSecondComponent() methods, or with the regular addComponent() method.

// Have a panel to put stuff in
Panel panel = new Panel("Split Panels Inside This Panel");

// Have a horizontal split panel as its root layout
HorizontalSplitPanel hsplit = new HorizontalSplitPanel();
panel.setContent(hsplit);

// Put a component in the left panel
Tree tree = new Tree("Menu", TreeExample.createTreeContent());
hsplit.setFirstComponent(tree);

// Put a vertical split panel in the right panel
VerticalSplitPanel vsplit = new VerticalSplitPanel();
hsplit.setSecondComponent(vsplit);

// Put other components in the right panel
vsplit.addComponent(new Label("Here's the upper panel"));
vsplit.addComponent(new Label("Here's the lower panel"));

The result is shown in Figure 6.10, “HorizontalSplitPanel and VerticalSplitPanel”. Observe
that the tree is cut horizontally as it can not fit in the layout. If its height exceeds the height of the
panel, a vertical scroll bar will appear automatically. If horizontal scroll bar is necessary, you
could put the content in a Panel, which can have scroll bars in both directions.

Figure 6.10. HorizontalSplitPanel and VerticalSplitPanel

You can set the split position with setSplitPosition(). It accepts any units defined in the
Sizeable interface, with percentual size relative to the size of the component.

// Have a horizontal split panel
HorizontalSplitPanel hsplit = new HorizontalSplitPanel();
hsplit.setFirstComponent(new Label("75% wide panel"));
hsplit.setSecondComponent(new Label("25% wide panel"));

HorizontalSplitPanel and VerticalSplitPanel172

Managing Layout

// Set the position of the splitter as percentage
hsplit.setSplitPosition(75, Sizeable.UNITS_PERCENTAGE);

Another version of the setSplitPosition() method allows leaving out the unit, using the
same unit as previously.The method also has versions take take a boolean parameter, reverse,
which allows defining the size of the right or bottom panel instead of the left or top panel.

The split bar allows the user to adjust the split position by dragging the bar with mouse. To lock
the split bar, use setLocked(true). When locked, the move handle in the middle of the bar is
disabled.

// Lock the splitter
hsplit.setLocked(true);

Setting the split position programmatically and locking the split bar is illustrated in Figure 6.11,
“A Layout With Nested SplitPanels”.

Figure 6.11. A Layout With Nested SplitPanels

Notice that the size of a split panel must not be undefined in the split direction.

CSS Style Rules
/* For a horizontal SplitPanel. */
.v-splitpanel-horizontal {}
.v-splitpanel-hsplitter {}
.v-splitpanel-hsplitter-locked {}

/* For a vertical SplitPanel. */
.v-splitpanel-vertical {}
.v-splitpanel-vsplitter {}
.v-splitpanel-vsplitter-locked {}

/* The two container panels. */
.v-splitpanel-first-container {} /* Top or left panel. */
.v-splitpanel-second-container {} /* Bottom or right panel. */

The entire split panel has the style v-splitpanel-horizontal or v-splitpanel-vertical,
depending on the panel direction. The split bar or splitter between the two content panels has
either the ...-splitter or ...-splitter-locked style, depending on whether its position
is locked or not.

173CSS Style Rules

Managing Layout

6.8. TabSheet

The TabSheet is a multicomponent container that allows switching between the components
with "tabs". The tabs are organized as a tab bar at the top of the tab sheet. Clicking on a tab
opens its contained component in the main display area of the layout.

You add new tabs to a tab sheet with the addTab() method. The simple version of the method
takes as its parameter the root component of the tab.You can use the root component to retrieve
its corresponding Tab object. Typically, you put a layout component as the root component.

// Create an empty tab sheet.
TabSheet tabsheet = new TabSheet();

// Create a component to put in a tab and put
// some content in it.
VerticalLayout myTabRoot = new VerticalLayout();
myTabRoot.addComponent(new Label("Hello, I am a Tab!"));

// Add the component to the tab sheet as a new tab.
tabsheet.addTab(myTabRoot);

// Get the Tab holding the component and set its caption.
tabsheet.getTab(myTabRoot).setCaption("My Tab");

Each tab in a tab sheet is represented as a Tab object, which manages the tab caption, icon,
and attributes such as hidden and visible.You can set the caption with setCaption() and the
icon with setIcon(). If the component added with addTab() has a caption or icon, it is used
as the default for the Tab object. However, changing the attributes of the root component later
does not affect the tab, but you must make the setting through the Tab object. The addTab()
returns the new Tab object, so you can easily set an attribute using the reference.

// Set an attribute using the returned reference
tabsheet.addTab(myTab).setCaption("My Tab");

You can also give the caption and the icon as parameters for the addTab() method.The following
example demonstrates the creation of a simple tab sheet, where each tab shows a different Label
component. The tabs have an icon, which are (in this example) loaded as Java class loader re-
sources from the application.

TabSheet tabsheet = new TabSheet();

// Make the tabsheet shrink to fit the contents.
tabsheet.setSizeUndefined();

tabsheet.addTab(new Label("Contents of the first tab"),
 "First Tab",
 new ClassResource("images/Mercury_small.png", this));
tabsheet.addTab(new Label("Contents of the second tab"),
 "Second Tab",
 new ClassResource("images/Venus_small.png", this));
tabsheet.addTab(new Label("Contents of the third tab"),
 "Third tab",
 new ClassResource("images/Earth_small.png", this));

Figure 6.12. A Simple TabSheet Layout

TabSheet174

Managing Layout

The hideTabs() method allows hiding the tab bar entirely.This can be useful in tabbed document
interfaces (TDI) when there is only one tab. An individual tab can be made invisible by setting
setVisible(false) for the Tab object. A tab can be disabled by setting setEnabled(false).

Clicking on a tab selects it. This fires a TabSheet.SelectedTabChangeEvent, which you can
handle by implementing the TabSheet.SelectedTabChangeListener interface. The source
component of the event, which you can retrieve with getSource() method of the event, will be
the TabSheet component. You can find the currently selected tab with getSelectedTab()
and select (open) a particular tab programmatically with setSelectedTab(). Notice that also
adding the first tab fires the SelectedTabChangeEvent, which may cause problems in your
handler if you assume that everything is initialized before the first change event.

The example below demonstrates handling TabSheet related events and enabling and disabling
tabs. The sort of logic used in the example is useful in sequential user interfaces, often called
wizards, where the user goes through the tabs one by one, but can return back if needed.

import com.vaadin.ui.*;
import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.TabSheet.SelectedTabChangeEvent;

public class TabSheetExample extends CustomComponent implements
 Button.ClickListener, TabSheet.SelectedTabChangeListener {
 TabSheet tabsheet = new TabSheet();
 Button tab1 = new Button("Push this button");
 Label tab2 = new Label("Contents of Second Tab");
 Label tab3 = new Label("Contents of Third Tab");

 TabSheetExample() {
 setCompositionRoot(tabsheet);

 // Listen for changes in tab selection.
 tabsheet.addListener(this);

 // First tab contains a button, for which we
 // listen button click events.
 tab1.addListener(this);

 // This will cause a selectedTabChange() call.
 tabsheet.addTab(tab1, "First Tab", null);

 // A tab that is initially invisible.
 tabsheet.addTab(tab2, "Second Tab", null);
 tabsheet.getTab(tab2).setVisible(false);

 // A tab that is initially disabled.
 tabsheet.addTab(tab3, "Third tab", null);
 tabsheet.getTab(tab3).setEnabled(false);
 }

 public void buttonClick(ClickEvent event) {
 // Enable the invisible and disabled tabs.
 tabsheet.getTab(tab2).setVisible(true);
 tabsheet.getTab(tab3).setEnabled(true);

 // Change selection automatically to second tab.
 tabsheet.setSelectedTab(tab2);
 }

 public void selectedTabChange(SelectedTabChangeEvent event) {
 // Cast to a TabSheet. This isn't really necessary in
 // this example, as we have only one TabSheet component,
 // but would be useful if there were multiple TabSheets.
 final TabSheet source = (TabSheet) event.getSource();

175TabSheet

Managing Layout

 if (source == tabsheet) {
 // If the first tab was selected.
 if (source.getSelectedTab() == tab1) {
 // The 2. and 3. tabs may not have been set yet.
 if (tabsheet.getTab(tab2) != null
 && tabsheet.getTab(tab3) != null) {
 tabsheet.getTab(tab2).setVisible(false);
 tabsheet.getTab(tab3).setEnabled(false);
 }
 }
 }
 }
}

Figure 6.13. A TabSheet with Hidden and Disabled Tabs

CSS Style Rules
.v-tabsheet {}
.v-tabsheet-tabs {}
.v-tabsheet-content {}
.v-tabsheet-deco {}
.v-tabsheet-tabcontainer {}
.v-tabsheet-tabsheetpanel {}
.v-tabsheet-hidetabs {}

.v-tabsheet-scroller {}

.v-tabsheet-scrollerPrev {}

.v-tabsheet-scrollerNext {}

.v-tabsheet-scrollerPrev-disabled{}

.v-tabsheet-scrollerNext-disabled{}

.v-tabsheet-tabitem {}

.v-tabsheet-tabitem-selected {}

.v-tabsheet-tabitemcell {}

.v-tabsheet-tabitemcell-first {}

.v-tabsheet-tabs td {}

.v-tabsheet-spacertd {}

The entire tabsheet has the v-tabsheet style. A tabsheet consists of three main parts: the tabs
on the top, the main content pane, and decorations around the tabsheet.

The tabs area at the top can be styled with v-tabsheet-tabs, v-tabsheet-tabcontainer
and v-tabsheet-tabitem*.

The style v-tabsheet-spacertd is used for any empty space after the tabs. If the tabsheet
has too little space to show all tabs, scroller buttons enable browsing the full tab list. These use
the styles v-tabsheet-scroller*.

The content area where the tab contents are shown can be styled with v-tabsheet-content,
and the surrounding decoration with v-tabsheet-deco.

CSS Style Rules176

Managing Layout

6.9. Accordion

Accordion is a multicomponent container similar to TabSheet, except that the "tabs" are arranged
vertically. Clicking on a tab opens its contained component in the space between the tab and the
next one. You can use an Accordion identically to a TabSheet, which it actually inherits. See
Section 6.8, “TabSheet” for more information.

The following example shows how you can create a simple accordion. As the Accordion is rather
naked alone, we put it inside a Panel that acts as its caption and provides it a border.

// Create the Accordion.
Accordion accordion = new Accordion();

// Have it take all space available in the layout.
accordion.setSizeFull();

// Some components to put in the Accordion.
Label l1 = new Label("There are no previously saved actions.");
Label l2 = new Label("There are no saved notes.");
Label l3 = new Label("There are currently no issues.");

// Add the components as tabs in the Accordion.
accordion.addTab(l1, "Saved actions", null);
accordion.addTab(l2, "Notes", null);
accordion.addTab(l3, "Issues", null);

// A container for the Accordion.
Panel panel = new Panel("Tasks");
panel.setWidth("300px");
panel.setHeight("300px");
panel.addComponent(accordion);

// Trim its layout to allow the Accordion take all space.
panel.getLayout().setSizeFull();
panel.getLayout().setMargin(false);

Figure 6.14, “An Accordion” shows what the example would look like with the default theme.

Figure 6.14. An Accordion

177Accordion

Managing Layout

CSS Style Rules
.v-accordion {}
.v-accordion-item {}
.v-accordion-item-open {}
.v-accordion-item-first {}
.v-accordion-item-caption {}
.v-accordion-item-caption .v-caption {}
.v-accordion-item-content {}

The top-level element of Accordion has the v-accordion style. An Accordion consists of a
sequence of item elements, each of which has a caption element (the tab) and a content area
element.

The selected item (tab) has also the v-accordion-open style. The content area is not shown
for the closed items.

6.10. AbsoluteLayout

AbsoluteLayout allows placing components in arbitrary positions in the layout area.The positions
are specified in the addComponent() method with horizontal and vertical coordinates relative
to an edge of the layout area. The positions can include a third depth dimension, the z-index,
which specifies which components are displayed in front and which behind other components.

The positions are specified by a CSS absolute position string, using the left, right, top,
bottom, and z-index properties known from CSS. In the following example, we have a 300 by
150 pixels large layout and position a text field 50 pixels from both the left and the top edge:

// A 400x250 pixels size layout
AbsoluteLayout layout = new AbsoluteLayout();
layout.setWidth("400px");
layout.setHeight("250px");

// A component with coordinates for its top-left corner
TextField text = new TextField("Somewhere someplace");
layout.addComponent(text, "left: 50px; top: 50px;");

The left and top specify the distance from the left and top edge, respectively. The right and
bottom specify the distances from the right and top edge.

// At the top-left corner
Button button = new Button("left: 0px; top: 0px;");
layout.addComponent(button, "left: 0px; top: 0px;");

// At the bottom-right corner
Button buttCorner = new Button("right: 0px; bottom: 0px;");
layout.addComponent(buttCorner, "right: 0px; bottom: 0px;");

// Relative to the bottom-right corner
Button buttBrRelative = new Button("right: 50px; bottom: 50px;");
layout.addComponent(buttBrRelative, "right: 50px; bottom: 50px;");

// On the bottom, relative to the left side
Button buttBottom = new Button("left: 50px; bottom: 0px;");
layout.addComponent(buttBottom, "left: 50px; bottom: 0px;");

// On the right side, up from the bottom
Button buttRight = new Button("right: 0px; bottom: 100px;");
layout.addComponent(buttRight, "right: 0px; bottom: 100px;");

CSS Style Rules178

Managing Layout

The result of the above code examples is shown in Figure 6.15, “Components Positioned Relative
to Various Edges”.

Figure 6.15. Components Positioned Relative to Various Edges

In the above examples, we had components of undefined size and specified the positions of
components by a single pair of coordinates. The other possibility is to specify an area and let the
component fill the area by specifying a proportinal size for the component, such as "100%". Nor-
mally, you use setSizeFull() to take the entire area given by the layout.

// Specify an area that a component should fill
Panel panel = new Panel("A Panel filling an area");
panel.setSizeFull(); // Fill the entire given area
layout.addComponent(panel, "left: 25px; right: 50px; "+
 "top: 100px; bottom: 50px;");

The result is shown in Figure 6.16, “Component Filling an Area Specified by Coordinates”

Figure 6.16. Component Filling an Area Specified by Coordinates

You can also use proportional coordinates to specify the coordinates:

// A panel that takes 30% to 90% horizontally and
// 20% to 80% vertically
Panel panel = new Panel("A Panel");
panel.setSizeFull(); // Fill the specified area
layout.addComponent(panel, "left: 30%; right: 10%;" +
 "top: 20%; bottom: 20%;");

179AbsoluteLayout

Managing Layout

The result is shown in Figure 6.17, “Specifying an Area by Proportional Coordinates”

Figure 6.17. Specifying an Area by Proportional Coordinates

Drag and drop is very useful for moving the components contained in an AbsoluteLayout. Check
out the example in Section 12.12.6, “Dropping on a Component”.

Styling with CSS
.v-absolutelayout {}
.v-absolutelayout-wrapper {}

The AbsoluteLayout component has v-absolutelayout root style. Each component in the
layout is contained within an element that has the v-absolutelayout-wrapper.The component
captions are outside the wrapper elements, in a separate element with the usual v-caption
style.

6.11. CssLayout

CssLayout allows strong control over styling of the components contained inside the layout.The
components are contained in a simple DOM structure consisting of <div> elements. By default,
the contained components are laid out horizontally and wrap naturally when they reach the width
of the layout, but you can control this and most other behaviour with CSS. You can also inject
custom CSS for each contained component. As CssLayout has a very simple DOM structure
and no dynamic rendering logic, relying purely on the built-in rendering logic of the browsers, it
is the fastest of the layout components.

The basic use of CssLayout is just like with any other layout component:

CssLayout layout = new CssLayout();

// Component with a layout-managed caption and icon
TextField tf = new TextField("A TextField");
tf.setIcon(new ThemeResource("icons/user.png"));
layout.addComponent(tf);

// Labels are 100% wide by default so must unset width
Label label = new Label("A Label");
label.setWidth(Sizeable.SIZE_UNDEFINED, 0);
layout.addComponent(label);

Styling with CSS180

Managing Layout

layout.addComponent(new Button("A Button"));

The result is shown in Figure 6.18, “Basic Use of CssLayout”. Notice that the default spacing
and alignment of the layout is quite crude and CSS styling is nearly always needed.

Figure 6.18. Basic Use of CssLayout

The display attribute of CssLayout is inline-block by default, so the components are laid
out horizontally following another. CssLayout has 100% width by default. If the components
reach the width of the layout, they are wrapped to the next "line" just as text would be. If you add
a component with 100% width, it will take an entire line by wrapping before and after the compon-
ent.

Overriding the getCss() method allows injecting custom CSS for each component. The CSS
returned by the method is inserted in the style attribute of the <div> element of the component,
so it will override any style definitions made in CSS files.

CssLayout layout = new CssLayout() {
 @Override
 protected String getCss(Component c) {
 if (c instanceof Label) {
 // Color the boxes with random colors
 int rgb = (int) (Math.random()*(1<<24));
 return "background: #" + Integer.toHexString(rgb);
 }
 return null;
 }
};
layout.setWidth("400px"); // Causes to wrap the contents

// Add boxes of various sizes
for (int i=0; i<40; i++) {
 Label box = new Label(" ", Label.CONTENT_XHTML);
 box.addStyleName("flowbox");
 box.setWidth((float) Math.random()*50,
 Sizeable.UNITS_PIXELS);
 box.setHeight((float) Math.random()*50,
 Sizeable.UNITS_PIXELS);
 layout.addComponent(box);
}

The style name added to the components allows making common styling in a CSS file:

.v-label-flowbox {
 border: thin black solid;
}

Figure 6.19, “Use of getCss() and line wrap” shows the rendered result.

181CssLayout

Managing Layout

Figure 6.19. Use of getCss() and line wrap

The stregth of the CssLayout is also its weakness. Much of the logic behind the other layout
components is there to give nice default behaviour and to handle the differences in different
browsers. Some browsers, no need to say which, are notoriously incompatible with the CSS
standards, so they require a lot of custom CSS.You may need to make use of the browser-spe-
cific style classes in the root element of the application. Some features in the other layouts are
not even solvable in pure CSS, at least in all browsers.

Styling with CSS
.v-csslayout {}
.v-csslayout-margin {}
.v-csslayout-container {}

The CssLayout component has v-csslayout root style. The margin element with
v-csslayout-margin style is always enabled. The components are contained in an element
with v-csslayout-container style.

For example, we could style the basic CssLayout example shown earlier as follows:

/* Have the caption right of the text box, bottom-aligned */
.csslayoutexample .mylayout .v-csslayout-container {
 direction: rtl;
 line-height: 24px;
 vertical-align: bottom;
}

/* Have some space before and after the caption */
.csslayoutexample .mylayout .v-csslayout-container .v-caption {
 padding-left: 3px;
 padding-right: 10px;
}

The example would now be rendered as shown in Figure 6.20, “Styling CssLayout”.

Figure 6.20. Styling CssLayout

Captions and icons that are managed by the layout are contained in an element with v-caption
style. These caption elements are contained flat at the same level as the actual component ele-
ments.This may cause problems with wrapping in inline-block mode, as wrapping can occur
between the caption and its corresponding component element just as well as between compon-
ents. Such use case is therefore not feasible.

Styling with CSS182

Managing Layout

6.12. Layout Formatting

While the formatting of layouts is mainly done with style sheets, just as with other components,
style sheets are not ideal or even possible to use in some situations. For example, CSS does
not allow defining the spacing of table cells, which is done with the cellspacing attribute in
HTML.

Moreover, as many layout sizes are calculated dynamically in the Client-Side Engine of Vaadin,
some CSS settings can fail altogether.

6.12.1. Layout Size

The size of a layout component can be specified with the setWidth() and setHeight()
methods defined in the Sizeable interface, just like for any component. It can also be undefined,
in which case the layout shrinks to fit the component(s) inside it. Section 5.3.9, “Sizing Compon-
ents” gives details on the interface.

Figure 6.21. HorizontalLayout with Undefined vs Defined size

Many layout components take 100% width by default, while they have the height undefined.

The sizes of components inside a layout can also be defined as a percentage of the space
available in the layout, for example with setWidth("100%"); or with the (most commonly used
method) setFullSize() that sets 100% size in both directions. If you use a percentage in a
HorizontalLayout, VerticalLayout, or GridLayout, you will also have to set the component as
expanding, as noted below.

Warning

A layout that contains components with percentual size must have a defined size!

If a layout has undefined size and a contained component has, say, 100% size, the
component will try to fill the space given by the layout, while the layout will shrink to
fit the space taken by the component, which is a paradox. This requirement holds
for height and width separately.The debug mode allows detecting such invalid cases;
see Section 12.4.1, “Debug Mode”.

For example:

// This takes 100% width but has undefined height.
VerticalLayout layout = new VerticalLayout();

// A button that takes all the space available in the layout.
Button button = new Button("100%x100% button");
button.setSizeFull();
layout.addComponent(button);

// We must set the layout to a defined height vertically, in
// this case 100% of its parent layout, which also must
// not have undefined size.
layout.setHeight("100%");

183Layout Formatting

Managing Layout

The default layout of Window and Panel is VerticalLayout with undefined height. If you insert
enough components in such a layout, it will grow outside the bottom of the view area and scrollbars
will appear in the browser. If you want your application to use all the browser view, nothing more
or less, you should use setFullSize() for the root layout.

// Create the main window.
Window main = new Window("Main Window");
setMainWindow(main);

// Use full size.
main.getLayout().setSizeFull();

Expanding Components

If you set a HorizontalLayout to a defined size horizontally or a VerticalLayout vertically, and
there is space left over from the contained components, the extra space is distributed equally
between the component cells. The components are aligned within these cells, according to their
alignment setting, top left by default, as in the example below.

Often, you don't want such empty space, but want one or more components to take all the leftover
space. You need to set such a component to 100% size and use setExpandRatio(). If there
is just one such expanding component in the layout, the ratio parameter is irrelevant.

If you set multiple components as expanding, the expand ratio dictates how large proportion of
the available space (overall or excess depending on whether the components are sized as a
percentage or not) each component takes. In the example below, the buttons have 1:2:3 ratio
for the expansion.

GridLayout has corresponding method for both of its directions, setRowExpandRatio() and
setColumnExpandRatio().

Expansion is dealt in detail in the documentation of the layout components that support it. See
Section 6.3, “VerticalLayout and HorizontalLayout” and Section 6.4, “GridLayout” for details
on components with relative sizes.

6.12.2. Layout Cell Alignment

You can set the alignment of the component inside a specific layout cell with the
setComponentAlignment() method. The method takes as its parameters the component
contained in the cell to be formatted, and the horizontal and vertical alignment.

Figure 6.22, “Cell Alignments” illustrates the alignment of components within a GridLayout.

Layout Cell Alignment184

Managing Layout

Figure 6.22. Cell Alignments

The easiest way to set alignments is to use the constants defined in the Alignment class. Let
us look how the buttons in the top row of the above GridLayout are aligned with constants:

// Create a grid layout
final GridLayout grid = new GridLayout(3, 3);

grid.setWidth(400, Sizeable.UNITS_PIXELS);
grid.setHeight(200, Sizeable.UNITS_PIXELS);

Button topleft = new Button("Top Left");
grid.addComponent(topleft, 0, 0);
grid.setComponentAlignment(topleft, Alignment.TOP_LEFT);

Button topcenter = new Button("Top Center");
grid.addComponent(topcenter, 1, 0);
grid.setComponentAlignment(topcenter, Alignment.TOP_CENTER);

Button topright = new Button("Top Right");
grid.addComponent(topright, 2, 0);
grid.setComponentAlignment(topright, Alignment.TOP_RIGHT);
...

The following table lists all the Alignment constants by their respective locations:

Table 6.1. Alignment Constants

TOP_RIGHTTOP_CENTERTOP_LEFT

MIDDLE_RIGHTMIDDLE_CENTERMIDDLE_LEFT

BOTTOM_RIGHTBOTTOM_CENTERBOTTOM_LEFT

Another way to specify the alignments is to create an Alignment object and specify the horizontal
and vertical alignment with separate constants.You can specify either of the directions, in which
case the other alignment direction is not modified, or both with a bitmask operation between the
two directions.

Button middleleft = new Button("Middle Left");
grid.addComponent(middleleft, 0, 1);
grid.setComponentAlignment(middleleft,
 new Alignment(Bits.ALIGNMENT_VERTICAL_CENTER |
 Bits.ALIGNMENT_LEFT));

Button middlecenter = new Button("Middle Center");
grid.addComponent(middlecenter, 1, 1);
grid.setComponentAlignment(middlecenter,
 new Alignment(Bits.ALIGNMENT_VERTICAL_CENTER |
 Bits.ALIGNMENT_HORIZONTAL_CENTER));

Button middleright = new Button("Middle Right");
grid.addComponent(middleright, 2, 1);

185Layout Cell Alignment

Managing Layout

grid.setComponentAlignment(middleright,
 new Alignment(Bits.ALIGNMENT_VERTICAL_CENTER |
 Bits.ALIGNMENT_RIGHT));

Obviously, you may combine only one vertical bitmask with one horizontal bitmask, though you
may leave either one out. The following table lists the available alignment bitmask constants:

Table 6.2. Alignment Bitmasks

Bits.ALIGNMENT_LEFTHorizontal

Bits.ALIGNMENT_HORIZONTAL_CENTER

Bits.ALIGNMENT_RIGHT

Bits.ALIGNMENT_TOPVertical

Bits.ALIGNMENT_VERTICAL_CENTER

Bits.ALIGNMENT_BOTTOM

You can determine the current alignment of a component with getComponentAlignment(),
which returns an Alignment object.The class provides a number of getter methods for decoding
the alignment, which you can also get as a bitmask value.

Size of Aligned Components

You can only align a component that is smaller than its containing cell in the direction of alignment.
If a component has 100% width, as many components have by default, horizontal alignment does
not have any effect. For example, Label is 100% wide by default and can not therefore be hori-
zontally aligned as such. The problem can be hard to notice, as the text inside a Label is left-
aligned.

You usually need to set either a fixed size, undefined size, or less than a 100% relative size for
the component to be aligned - a size that is smaller than the containing layout has.

For example, assuming that a Label has short content that is less wide than the containing Ver-
ticalLayout, you could center it as follows:

VerticalLayout layout = new VerticalLayout(); // 100% default width
Label label = new Label("Hello"); // 100% default width
label.setSizeUndefined();
layout.addComponent(label);
layout.setComponentAlignment(label, Alignment.MIDDLE_CENTER);

If you set the size as undefined and the component itself contains components, make sure that
the contained components also have either undefined or fixed size. For example, if you set the
size of a Form as undefined, its containing layout FormLayout has 100% default width, which
you also need to set as undefined. But then, any components inside the FormLayout must have
either undefined or fixed size.

6.12.3. Layout Cell Spacing

The VerticalLayout, HorizontalLayout, and GridLayout layouts offer a setSpacing() method
for enabling space between the cells in the layout. Enabling the spacing adds a spacing style for
all cells except the first so that, by setting the left or top padding, you can specify the amount of
spacing.

To enable spacing, simply call setSpacing(true) for the layout as follows:

Layout Cell Spacing186

Managing Layout

HorizontalLayout layout2 = new HorizontalLayout();
layout2.addStyleName("spacingexample");
layout2.setSpacing(true);
layout2.addComponent(new Button("Component 1"));
layout2.addComponent(new Button("Component 2"));
layout2.addComponent(new Button("Component 3"));

VerticalLayout layout4 = new VerticalLayout();
layout4.addStyleName("spacingexample");
layout4.setSpacing(true);
layout4.addComponent(new Button("Component 1"));
layout4.addComponent(new Button("Component 2"));
layout4.addComponent(new Button("Component 3"));

In practise, the setSpacing() method toggles between the
"v-COMPONENTCLASSNAME-spacing-on" and "-off" CSS class names in the cell elements.
Elements having those class names can be used to define the spacing metrics in a theme.

The layouts have a spacing style name to define spacing also when spacing is off. This allows
you to define a small default spacing between components by default and a larger one when the
spacing is actually enabled.

Spacing can be horizontal (for HorizontalLayout), vertical (for VerticalLayout), or both (for
GridLayout).The name of the spacing style for horizontal and vertical spacing is the base name
of the component style name plus the "-spacing-on" suffix, as shown in the following table:

Table 6.3. Spacing Style Names

v-verticallayout-spacing-onVerticalLayout

v-horizontallayout-spacing-onHorizontalLayout

v-gridlayout-spacing-onGridLayout

In the CSS example below, we specify the exact amount of spacing for the code example given
above, for the layouts with the custom "spacingexample" style:

/* Set the amount of horizontal cell spacing in a
 * specific element with the "-spacingexample" style. */
.v-horizontallayout-spacingexample .v-horizontallayout-spacing-on {
 padding-left: 30px;
}

/* Set the amount of vertical cell spacing in a
 * specific element with the "-spacingexample" style. */
.v-verticallayout-spacingexample .v-verticallayout-spacing-on {
 padding-top: 30px;
}

/* Set the amount of both vertical and horizontal cell spacing
 * in a specific element with the "-spacingexample" style. */
.v-gridlayout-spacingexample .v-gridlayout-spacing-on {
 padding-top: 30px;
 padding-left: 50px;
}

The resulting layouts will look as shown in Figure 6.23, “Layout Spacings”, which also shows the
layouts with no spacing.

187Layout Cell Spacing

Managing Layout

Figure 6.23. Layout Spacings

Note

Spacing is unrelated to "cell spacing" in HTML tables.While many layout components
are implemented with HTML tables in the browser, this implementation is not guar-
anteed to stay the same and at least Vertical-/HorizontalLayout could be implemen-
ted with <div> elements as well. In fact, as GWT compiles widgets separately for
different browsers, the implementation could even vary between browsers.

Also note that HTML elements with spacing classnames don't necessarily exist in a
component after rendering, because the Client-Side Engine of Vaadin processes
them.

6.12.4. Layout Margins

By default, layout components do not have any margin around them. You can add margin with
CSS directly to the layout component. Below we set margins for a specific layout component
(here a horizontallayout):

layout1.addStyleName("marginexample1");

.v-horizontallayout-marginexample1
 .v-horizontallayout-margin {
 padding-left: 200px;
 padding-right: 100px;
 padding-top: 50px;
 padding-bottom: 25px;
}

Similar settings exist for other layouts such as verticallayout.

The layout size calculations require the margins to be defined as CSS padding rather than as
CSS margin.

As an alternative to the pure CSS method, you can set up a margin around the layout that can
be enabled with setMargin(true). The margin element has some default margin widths, but
you can adjust the widths in CSS if you need to.

Let us consider the following example, where we enable the margin on all sides of the layout:

// Create a layout
HorizontalLayout layout2 = new HorizontalLayout();
containinglayout.addComponent(
 new Label("Layout with margin on all sides:"));
containinglayout.addComponent(layout2);

// Set style name for the layout to allow styling it
layout2.addStyleName("marginexample");

Layout Margins188

Managing Layout

// Have margin on all sides around the layout
layout2.setMargin(true);

// Put something inside the layout
layout2.addComponent(new Label("Cell 1"));
layout2.addComponent(new Label("Cell 2"));
layout2.addComponent(new Label("Cell 3"));

You can enable the margins only for specific sides. The margins are specified for the
setMargin() method in clockwise order for top, right, bottom, and left margin. The following
would enable the top and left margins:

layout2.setMargin(true, false, false, true);

You can specify the actual margin widths in the CSS if you are not satisfied with the default widths
(in this example for a HorizontalLayout):

.v-horizontallayout-marginexample .v-horizontallayout-margin-left {padding-left:
200px;}
.v-horizontallayout-marginexample .v-horizontallayout-margin-right {padding-right:
100px;}
.v-horizontallayout-marginexample .v-horizontallayout-margin-top {padding-top:
50px; }
.v-horizontallayout-marginexample .v-horizontallayout-margin-bottom {padding-bottom:
25px; }

The resulting margins are shown in Figure 6.24, “Layout Margins” below. The two ways produce
identical margins.

Figure 6.24. Layout Margins

CSS Style Rules

The CSS style names for the margin widths for setMargin() consist of the specific layout name
plus -margin-left and so on. The CSS style names for CSS-only margins consist of the
specific layout name plus -margin. Below, the style rules are given for VerticalLayout:

/* Alternative 1: CSS only style */
.v-verticallayout-margin {
 padding-left: ___px;
 padding-right: ___px;
 padding-top: ___px;
 padding-bottom: ___px;
}

189Layout Margins

Managing Layout

/* Alternative 2: CSS rules to be enabled in code */
.v-verticallayout-margin-left {padding-left: ___px;}
.v-verticallayout-margin-right {padding-right: ___px;}
.v-verticallayout-margin-top {padding-top: ___px;}
.v-verticallayout-margin-bottom {padding-bottom: ___px;}

6.13. Custom Layouts

While it is possible to create almost any typical layout with the standard layout components, it is
sometimes best to separate the layout completely from code.With the CustomLayout component,
you can write your layout as a template in XHTML that provides locations of any contained
components. The layout template is included in a theme. This separation allows the layout to be
designed separately from code, for example using WYSIWYG web designer tools such as Adobe
Dreamweaver.

A template is a HTML file located under layouts folder under a theme folder under the
WebContent/VAADIN/themes/ f o l d e r , f o r e x a m p l e ,
WebContent/VAADIN/themes/themename/layouts/mylayout.html. (Notice that the
root path WebContent/VAADIN/themes/ for themes is fixed.) A template can also be provided
dynamically from an InputStream, as explained below. A template includes <div> elements
with a location attribute that defines the location identifier. All custom layout HTML-files must
be saved using UTF-8 character encoding.

<table width="100%" height="100%">
 <tr height="100%">
 <td>
 <table align="center">
 <tr>
 <td align="right">User name:</td>
 <td><div location="username"></div></td>
 </tr>
 <tr>
 <td align="right">Password:</td>
 <td><div location="password"></div></td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td align="right" colspan="2">

<div location="okbutton"></div>
 </td>
 </tr>
</table>

The client-side engine of Vaadin will replace contents of the location elements with the compon-
ents. The components are bound to the location elements by the location identifier given to
addComponent(), as shown in the example below.

// Have a Panel where to put the custom layout.
Panel panel = new Panel("Login");
panel.setSizeUndefined();
main.addComponent(panel);

// Create custom layout from "layoutname.html" template.
CustomLayout custom = new CustomLayout("layoutname");
custom.addStyleName("customlayoutexample");

// Use it as the layout of the Panel.
panel.setContent(custom);

// Create a few components and bind them to the location tags

Custom Layouts190

Managing Layout

// in the custom layout.
TextField username = new TextField();
custom.addComponent(username, "username");

TextField password = new TextField();
custom.addComponent(password, "password");

Button ok = new Button("Login");
custom.addComponent(ok, "okbutton");

The resulting layout is shown below in Figure 6.25, “Example of a Custom Layout Component”.

Figure 6.25. Example of a Custom Layout Component

You can use addComponent() also to replace an existing component in the location given in
the second parameter.

In addition to a static template file, you can provide a template dynamically with the CustomLayout
constructor that accepts an InputStream as the template source. For example:

new CustomLayout(new ByteArrayInputStream("Template".getBytes()));

or

new CustomLayout(new FileInputStream(file));

191Custom Layouts

Managing Layout

192

Chapter 7

Visual User
Interface Design

with Eclipse

7.1. Overview .. 193
7.2. Creating a New Composite .. 194
7.3. Using The Visual Designer .. 196
7.4. Structure of a Visually Editable Component .. 202

This chapter provides instructions for developing the graphical user interface of Vaadin components
with the Vaadin Plugin for the Eclipse IDE.

7.1. Overview

The visual designer feature in the Vaadin Plugin for Eclipse allows you to design the user interface
of an entire application or of specific composite components. The plugin generates the actual
Java code, which is designed to be reusable, so you can design the basic layout of the user in-
terface with the visual designer and build the user interaction logic on top of the generated code.
You can use inheritance and composition to modify the components further.

The designer works with classes that extend the CustomComponent class, which is the basic
technique in Vaadin for creating composite components. Component composition is described

193Book of Vaadin

in Section 5.23, “Component Composition with CustomComponent”. Any CustomComponent
will not do for the visual designer; you need to create a new one as instructed below.

For instructions on installing the Eclipse plugin, see Section 2.2.1, “Vaadin Plugin for Eclipse”.

Using a Composite Component

You can use a composite component as you would use any Vaadin component. Just remember
that the component as well as its root layout, which is an AbsoluteLayout, are 100% wide and
high by default. A component with full size (expand-to-fit container) may not be inside a layout
with undefined size (shrink-to-fit content).The default root layout for Window is a VerticalLayout,
which by default has undefined height, so you have to set it explicitly to a defined size, usually
to full (100%) height.

public class MyApplication extends Application {
 public void init() {
 Window mainWindow = new Window("My Application");
 setMainWindow(mainWindow);

 // Needed because composites are full size
 mainWindow.getContent().setSizeFull();

 MyComposite myComposite = new MyComposite();
 mainWindow.addComponent(myComposite);
 }
}

You could also set the size of the root layout of the composite to a fixed height (in component
properties in the visual editor). An AbsoluteLayout may not have undefined size.

7.2. Creating a New Composite

If the Vaadin Plugin is installed in Eclipse, you can create a new composite component as follows.

1. Select File New Other... in the main menu or right-click the Project Explorer and
select New Other... to open the New window.

2. In the first, Select a wizard step, select Vaadin Vaadin Composite and click Next.

Using a Composite Component194

Visual User Interface Design with Eclipse

3. The Source folder is the root source directory where the new component will be created.
This is by default the default source directory of your project.

Enter the Java Package under which the new component class should be created or
select it by clicking the Browse button. Also enter the class Name of the new component.

195Creating a New Composite

Visual User Interface Design with Eclipse

Finally, click Finish to create the component.

A newly created composite component is opened in the Design window, as shown in Figure 7.1,
“New Composite Component”.

Figure 7.1. New Composite Component

You can observe that a component that you can edit with the visual designer has two tabs at the
bottom of the view: Source and Design. These tabs allow switching between the source view
and the visual design view.

If you later open the source file for editing, the Source and Design tabs should appear below
the source editor. If they do not, right-click the file in the Project Explorer and select Open With.

7.3. Using The Visual Designer

The visual editor view consists of, on the left side, an editing area that displays the current layout
and, on the right side, a control panel that contains a component list for selecting new components
to add, the current component tree, and a component property panel.

Using The Visual Designer196

Visual User Interface Design with Eclipse

7.3.1. Adding New Components

Adding new components to the user interface is done as follows by dragging them from the
component list to either the editing area or to the component tree. If you drag the components
to the tree,

1. Select which components are shown in the component list by entering a search string
or by expanding the filters and selecting only the desired component categories.

2. Drag a component from the component list to either:

a. Editing area, where you can easily move and resize the component. Dragging a
component onto a layout component will add it in it and you can also position com-
ponents within a layout by dragging them.

b. Component tree. Remember that you can only add components under a layout
component or other component container.

3. Edit the component properties

a. In the editing area, you can move and resize the components, and set their alignment
in the containing layout.

b. In the property panel, you can set the component name, size, position and other
properties.

Figure 7.2. Adding a New Component Node

You can delete a component by right-clicking it in the component tree and selecting Remove.
The context menu also allows copying and pasting components.

A composite component created by the plugin must have a AbsoluteLayout as its root layout.
While it is suitable for the visual designer, absolute layouts are rarely used otherwise in Vaadin
applications. If you want to use another root layout, you can add another layout inside the
mainLayout and set that as the root with setCompositionRoot() in the source view. It will
be used as the root when the component is actually used in an application.

197Adding New Components

Visual User Interface Design with Eclipse

7.3.2. Setting Component Properties

The property setting sub-panel of the control panel allows setting component properties. The
panel has two tabs: Layout and Properties, where the latter defines the various basic properties.

Basic Properties

The top section of the property panel, shown in Figure 7.3, “Basic Component Properties”, allows
setting basic component properties. The panel also includes properties such as field properties
for field components.

Figure 7.3. Basic Component Properties

The properties are as follows:

Name The name of the component, which is used for the reference
to the component, so it must obey Java notation for variable
names.

Style Name A space-separated list of CSS style class names for the
component. See Chapter 8, Themes for information on
component styles in themes.

Caption The caption of a component is usually displayed above the
component. Some components, such as Button, display
the caption inside the component. For Label text, you
should set the value of the label instead of the caption,
which should be left empty.

Setting Component Properties198

Visual User Interface Design with Eclipse

Description (tooltip) The description is usually displayed as a tooltip when the
mouse pointer hovers over the component for a while. Some
components, such as Form have their own way of display-
ing the description.

Icon The icon of a component is usually displayed above the
component, left of the caption. Some components, such as
Button, display the icon inside the component.

Formatting type Some components allow different formatting types, such
as Label, which allow formatting either as Text, XHTML,
Preformatted, and Raw.

Value The component value. The value type and how it is dis-
played by the component varies between different compon-
ent types and each value type has its own editor.The editor
opens by clicking on the ... button.

Most of the basic component properties are defined in the Component interface; see Section 5.2.1,
“Component Interface” for further details.

Layout Properties

The size of a component is determined by its width and height, which you can give in the two
edit boxes in the control panel. You can use any unit specifiers for components, as described in
Section 5.3.9, “Sizing Components”. Emptying a size box will make the size "automatic", which
means setting the size as undefined. In the generated code, the undefined value will be expressed
as "-1px".

Setting width of "100px" and auto (undefined or empty) height would result in the following gen-
erated settings for a button:

// myButton
myButton = new Button();
...
myButton.setHeight("-1px");
myButton.setWidth("100px");
...

Figure 7.4, “Layout Properties” shows the control panel area for the size and position.

199Setting Component Properties

Visual User Interface Design with Eclipse

Figure 7.4. Layout Properties

The generated code for the example would be:

// myButton
myButton = new Button();
myButton.setWidth("-1px");
myButton.setHeight("-1px");
myButton.setImmediate(true);
myButton.setCaption("My Button");
mainLayout.addComponent(myButton,
 "top:243.0px;left:152.0px;");

The position is given as a CSS position in the second parameter for addComponent(). The
values "-1px" for width and height will make the button to be sized automatically to the minimum
size required by the caption.

When editing the position of a component inside an AbsoluteLayout, the editor will display ver-
tical and horizontal guides, which you can use to set the position of the component. See Sec-
tion 7.3.3, “Editing an AbsoluteLayout” for more information about editing absolute layouts.

The ZIndex setting controls the "Z coordinate" of the components, that is, which component will
overlay which when they overlap. Value -1 means automatic, in which case the components
added to the layout later will be on top.

7.3.3. Editing an AbsoluteLayout

The visual editor has interactive support for the AbsoluteLayout component that allows positioning
components exactly at specified coordinates.You can position the components using guides that
control the position attributes, shown in the control panel on the right. The position values are
measured in pixels from the corresponding edge; the vertical and horizontal rulers show the dis-
tances from the top and left edge.

Figure 7.5, “Positioning with AbsoluteLayout” shows three components, a Label, a Table, and
a Button, inside an AbsoluteLayout.

Editing an AbsoluteLayout200

Visual User Interface Design with Eclipse

Figure 7.5. Positioning with AbsoluteLayout

Position attributes that are empty are automatic and can be either zero (at the edge) or dynamic
to make it shrink to fit the size of the component, depending on the component. Guides are shown
also for the automatic position attributes and move automatically; in Figure 7.5, “Positioning with
AbsoluteLayout” the right and bottom edges of the Button are automatic.

Moving an automatic guide manually makes the guide and the corresponding the position attribute
non-automatic. To make a manually set attribute automatic, empty it in the control panel. Fig-
ure 7.6, “Manually positioned Label” shows a Label component with all the four edges set
manually. Notice that if an automatic position is 0, the guide is at the edge of the ruler.

Figure 7.6. Manually positioned Label

201Editing an AbsoluteLayout

Visual User Interface Design with Eclipse

7.4. Structure of a Visually Editable Component

A component created by the wizard and later managed by the visual editor has a very specific
structure that allows you to insert your user interface logic in the component while keeping a
minimal amount of code off-limits.You need to know what you can edit yourself and what exactly
is managed by the editor. The managed member variables and methods are marked with the
AutoGenerated annotation, as you can see later.

A visually editable component consists of:

• Member variables containing sub-component references

• Sub-component builder methods

• The constructor

The structure of a composite component is hierarchical, a nested hierarchy of layout components
containing other layout components as well as regular components. The root layout of the com-
ponent tree, or the composition root of the CustomComponent, is named mainLayout. See
Section 5.23, “Component Composition with CustomComponent” for a detailed description of
the structure of custom (composite) components.

7.4.1. Sub-Component References

The CustomComponent class will include a reference to each contained component as a
member variable. The most important of these is the mainLayout reference to the composition
root layout. Such automatically generated member variables are marked with the
@AutoGenerated annotation. They are managed by the editor, so you should not edit them
manually, unless you know what you are doing.

A composite component with an AbsoluteLayout as the composition root, containing a Button
and a Table would have the references as follows:

public class MyComponent extends CustomComponent {

 @AutoGenerated
 private AbsoluteLayout mainLayout;
 @AutoGenerated
 private Button myButton;
 @AutoGenerated
 private Table myTable;
 ...

The names of the member variables are defined in the component properties panel of the visual
editor, in the Component name field, as described in the section called “Basic Properties”.While
you can change the name of any other components, the name of the root layout is always
mainLayout. It is fixed because the editor does not make changes to the constructor, as noted
in Section 7.4.3, “The Constructor”.You can, however, change the type of the root layout, which
is an AbsoluteLayout by default.

Certain typically static components, such as the Label label component, will not have a reference
as a member variable. See the description of the builder methods below for details.

Structure of a Visually Editable Component202

Visual User Interface Design with Eclipse

7.4.2. Sub-Component Builders

Every managed layout component will have a builder method that creates the layout and all its
contained components. The builder puts references to the created components in their corres-
ponding member variables, and it also returns a reference to the created layout component.

Below is an example of an initial main layout:

@AutoGenerated
private AbsoluteLayout buildMainLayout() {
 // common part: create layout
 mainLayout = new AbsoluteLayout();

 // top-level component properties
 setHeight("100.0%");
 setWidth("100.0%");

 return mainLayout;
}

Notice that while the builder methods return a reference to the created component, they also
write the reference directly to the member variable. The returned reference might not be used
by the generated code at all (in the constructor or in the builder methods), but you can use it for
your purposes.

The builder of the main layout is called in the constructor, as explained in Section 7.4.3, “The
Constructor”.When you have a layout with nested layout components, the builders of each layout
will call the appropriate builder methods of their contained layouts to create their contents.

7.4.3.The Constructor

When you create a new composite component using the wizard, it will create a constructor for
the component and fill its basic content.

 public MyComponent() {
 buildMainLayout();
 setCompositionRoot(mainLayout);

 // TODO add user code here
 }

The most important thing to do in the constructor is to set the composition root of the Custom-
Component with the setCompositionRoot() (see Section 5.23, “Component Composition
with CustomComponent” for more details on the composition root). The generated constructor
first builds the root layout of the composite component with buildMainLayout() and then uses
the mainLayout reference.

The editor will not change the constructor afterwards, so you can safely change it as you want.
The editor does not allow changing the member variable holding a reference to the root layout,
so it is always named mainLayout.

203Sub-Component Builders

Visual User Interface Design with Eclipse

204

Chapter 8

Themes

8.1. Overview .. 205
8.2. Introduction to Cascading Style Sheets ... 207
8.3. Creating and Using Themes .. 212
8.4. Creating a Theme in Eclipse .. 216

This chapter provides details about using and creating themes that control the visual look of web
applications. Themes consist of Cascading Style Sheets (CSS) and other theme resources such
as images. We provide an introduction to CSS, especially concerning the styling of HTML by
element classes.

8.1. Overview

Vaadin separates the appearance of the user interface from its logic using themes. Themes can
include CSS style sheets, custom HTML layouts, and any necessary graphics.Theme resources
can also be accessed from an application as ThemeResource objects.

Custom themes are placed under the WebContent/VAADIN/themes/ folder of the web applic-
ation. This location is fixed -- the VAADIN folder specifies that these are static resources specific
to Vaadin. The folder should normally contain also the built-in themes, although you can let them
be loaded dynamically from the Vaadin JAR (even though that is somewhat inefficient). Figure 8.1,
“Contents of a Theme” illustrates the contents of a theme.

205Book of Vaadin

Figure 8.1. Contents of a Theme

The name of a theme folder defines the name of the theme.The name is used in the setTheme()
call. A theme must contain the styles.css stylesheet, but other contents have free naming.
We suggest a convention for naming the folders as img for images, layouts for custom layouts,
and css for additional stylesheets.

Custom themes that use an existing complete theme need to inherit the theme. See Section 8.3.2,
“Built-in Themes” and Section 8.3.4, “Theme Inheritance” for details on inheriting a theme.
Copying and modifying a complete theme is also possible, but it may need more work to maintain
if the modifications are small.

You use a theme with a simple setTheme() method call for the Application object as follows:

public class MyApplication
 extends com.vaadin.Application {
 public void init() {
 setTheme("demo");
 ...
 }
}

An application can use different themes for different users and switch between themes during
execution. For smaller changes, a theme can contain alternate styles for user interface compon-
ents, which can be changed as needed.

In addition to style sheets, a theme can contain HTML templates for custom layouts used with
CustomLayout. See Section 6.13, “Custom Layouts” for details.

Resources provided in a theme can also be accessed using the ThemeResource class, as de-
scribed in Section 4.5.4, “Theme Resources”.This allows using theme resources, such as images,
for example in Embedded objects and other objects that allow inclusion of images using resources.

Overview206

Themes

8.2. Introduction to Cascading Style Sheets

Cascading Style Sheets or CSS is a technique to separate the appearance of a web page from
the content represented in HTML or XHTML. Let us give a short introduction to Cascading Style
Sheets and look how they are relevant to software development with Vaadin.

8.2.1. Basic CSS Rules

A style sheet is a file that contains a set of rules. Each rule consists of one or more selectors,
separated with commas, and a declaration block enclosed in curly braces. A declaration block
contains a list of property statements. Each property has a label and a value, separated with a
colon. A property statement ends with a semicolon.

Let us look at an example:

p, td {
 color: blue;
}

td {
 background: yellow;
 font-weight: bold;
}

In the example above, p and td are element type selectors that match with <p> and <td> ele-
ments in HTML, respectively.The first rule matches with both elements, while the second matches
only with <td> elements. Let us assume that you have saved the above style sheet with the
name mystylesheet.css and consider the following HTML file located in the same folder.

<html>
 <head>
 <link rel="stylesheet" type="text/css"
 href="mystylesheet.css"/>
 </head>
 <body>

<p>This is a paragraph</p>
<p>This is another paragraph</p>

 <table>
 <tr>

<td>This is a table cell</td>
<td>This is another table cell</td>

 </tr>
 </table>
 </body>
</html>

The <link> element defines the style sheet to use. The HTML elements that match the above
rules are emphasized. When the page is displayed in the browser, it will look as shown in the
figure below.

Figure 8.2. Simple Styling by Element Type

207Introduction to Cascading Style Sheets

Themes

CSS has an inheritance mechanism where contained elements inherit the properties of their
parent elements. For example, let us change the above example and define it instead as follows:

table {
 color: blue;
 background: yellow;
}

All elements contained in the <table> element would have the same properties. For example,
the text in the contained <td> elements would be in blue color.

Each HTML element type accepts a certain set of properties. The <div> elements are generic
elements that can be used to create almost any layout and formatting that can be created with
a specific HTML element type. Vaadin uses <div> elements extensively, especially for layouts.

Matching elements by their type is, however, rarely if ever used in style sheets for Vaadin com-
ponents or Google Web Toolkit widgets.

8.2.2. Matching by Element Class

Matching HTML elements by the class attribute of the elements is the most relevant form of
matching with Vaadin. It is also possible to match with the identifier of a HTML element.

The class of an HTML element is defined with the class attribute as follows:

<html>
 <body>

<p class="normal">This is the first paragraph</p>

<p class="another">This is the second paragraph</p>

 <table>
 <tr>

<td class="normal">This is a table cell</td>
<td class="another">This is another table cell</td>

 </tr>
 </table>
 </body>
</html>

The class attributes of HTML elements can be matched in CSS rules with a selector notation
where the class name is written after a period following the element name. This gives us full
control of matching elements by their type and class.

p.normal {color: red;}
p.another {color: blue;}
td.normal {background: pink;}
td.another {background: yellow;}

The page would look as shown below:

Figure 8.3. Matching HTML Element Type and Class

Matching by Element Class208

Themes

We can also match solely by the class by using the universal selector * for the element name,
for example *.normal. The universal selector can also be left out altogether so that we use just
the class name following the period, for example .normal.

.normal {
 color: red;
}

.another {
 blackground: yellow;
}

In this case, the rule will match with all elements of the same class regardless of the element
type. The result is shown in Figure 8.4, “Matching Only HTML Element Class”. This example il-
lustrates a technique to make style sheets compatible regardless of the exact HTML element
used in drawing a component.

Figure 8.4. Matching Only HTML Element Class

To assure compatibility, we recommend that you use only matching based on the element classes
and do not match for specific HTML element types in CSS rules, because either Vaadin or GWT
may use different HTML elements to render some components in the future. For example, IT Mill
Toolkit Release 4 used <div> elements extensively for layout components. However, IT Mill
Toolkit Release 5 and Vaadin use GWT to render the components, and GWT uses the <table>
element to implement most layouts. Similarly, IT Mill Toolkit Release 4 used <div> element also
for buttons, but in Release 5, GWT uses the <button> element. Vaadin has little control over
how GWT renders its components, so we can not guarantee compatibility in different versions
of GWT. However, both <div> and <table> as well as <tr> and <td> elements accept most
of the same properties, so matching only the class hierarchy of the elements should be compatible
in most cases.

8.2.3. Matching by Descendant Relationship

CSS allows matching HTML by their containment relationship. For example, consider the following
HTML fragment:

<body>
 <p class="mytext">Here is some text inside a
 paragraph element</p>
 <table class="mytable">
 <tr>
 <td class="mytext">Here is text inside
 a table and inside a td element.</td>
 </tr>
 </table>
</body>

Matching by the class name .mytext alone would match both the <p> and <td> elements. If
we want to match only the table cell, we could use the following selector:

.mytable .mytext {color: blue;}

209Matching by Descendant Relationship

Themes

To match, a class listed in a rule does not have to be an immediate descendant of the previous
class, but just a descendant. For example, the selector ".v-panel .v-button" would match
all elements with class .v-button somewhere inside an element with class .v-panel.

Let us give an example with a real case. Consider the following Vaadin component.

public class LoginBox extends CustomComponent {
 Panel panel = new Panel("Log In");

 public LoginBox () {
 setCompositionRoot(panel);

 panel.addComponent(new TextField("Username:"));
 panel.addComponent(new TextField("Password:"));
 panel.addComponent(new Button("Login"));
 }
}

The component will look by default as shown in the following figure.

Figure 8.5.Themeing Login Box Example with 'runo' theme.

Now, let us look at the HTML structure of the component. The following listing assumes that the
application contains only the above component in the main window of the application.

<body>
 <div id="v-app">
 <div>
 <div class="v-orderedlayout">
 <div>
 <div class="v-panel">
 <div class="v-panel-caption">Log In</div>
 <div class="v-panel-content">
 <div class="v-orderedlayout">
 <div>
 <div>
 <div class="v-caption">
 Username:
 </div>
 </div>
 <input type="text" class="v-textfield"/>
 </div>
 <div>
 <div>
 <div class="v-caption">
 Password:
 </div>
 </div>
 <input type="password"
 class="v-textfield"/>
 </div>
 <div>

Matching by Descendant Relationship210

Themes

 <button type="button"
 class="v-button">Login</button>
 </div>
 </div>
 </div>
 <div class="v-panel-deco"/>
 </div>
 </div>
 </div>
 </div>
 </div>
</body>

Now, consider the following theme where we set the backgrounds of various elements.

.v-panel .v-panel-caption {
 background: #80ff80; /* pale green */
}

.v-panel .v-panel-content {
 background: yellow;
}

.v-panel .v-textfield {
 background: #e0e0ff; /* pale blue */
}

.v-panel .v-button {
 background: pink;
}

The coloring has changed as shown in the following figure.

Figure 8.6.Themeing Login Box Example with Custom Theme

An element can have multiple classes separated with a space. With multiple classes, a CSS rule
matches an element if any of the classes match.This feature is used in many Vaadin components
to allow matching based on the state of the component. For example, when the mouse is over
a Link component, over class is added to the component. Most of such styling is a feature of
Google Web Toolkit.

8.2.4. Notes on Compatibility

CSS was first proposed in 1994. The specification of CSS is maintained by the CSS Working
Group of World Wide Web Consortium (W3C). Its versions are specified as levels that build upon
the earlier version. CSS Level 1 was published in 1996, Level 2 in 1998. Development of CSS
Level 3 was started in 1998 and is still under way.

211Notes on Compatibility

Themes

While the support for CSS has been universal in all graphical web browsers since at least 1995,
the support has been very incomplete at times and there still exists an unfortunate number of
incompatibilities between browsers.While we have tried to take these incompatibilities into account
in the built-in themes in Vaadin, you need to consider them while developing custom themes.

Compatibility issues are detailed in various CSS handbooks.

8.3. Creating and Using Themes

Custom themes are placed in VAADIN/themes folder of the web application (in the WebContent
directory) as illustrated in Figure 8.1, “Contents of a Theme”. This location is fixed. You need to
have a theme folder for each theme you use in your application, although applications rarely
need more than a single theme. For example, if you want to define a theme with the name
mytheme, you will place it in folder VAADIN/themes/mytheme.

A custom theme must also inherit a built-in theme, as shown in the example below:

@import "../reindeer/styles.css";

.v-app {
 background: yellow;
}

Vaadin 6.0 includes two built-in themes: reindeer and runo.The latter is a compatibility theme
for IT Mill Toolkit 5; there is no longer a "default" theme. See Section 8.3.2, “Built-in Themes”
and Section 8.3.4, “Theme Inheritance” below for details on inheriting themes.

8.3.1. Styling Standard Components

Each user interface component in Vaadin has a CSS style class that you can use to control the
appearance of the component. Some components have additional sub-elements that also allow
styling.

Table 8.1, “Default CSS Style Names of Vaadin Components” lists the style classes of all Vaadin
components, together with their client-side widgets. Notice that a single server-side component
can have multiple client-side implementations. For example, a Button can be rendered on the
client side either as a regular button or a check box, depending on the switchMode attribute of
the button. For details regarding the mapping to client-side components, see Section 11.5, “De-
fining a Widget Set”. Each client-side component type has its own style class and a number of
additional classes that depend on the client-side state of the component. For example, a text
field will have v-textfield-focus class when mouse pointer hovers over the component.
This state is purely on the client-side and is not passed to the server.

Table 8.1. Default CSS Style Names of Vaadin Components

CSS Class NameClient-Side WidgetServer-Side Component

v-absolutelayoutVAbsoluteLayoutAbsoluteLayout

v-accordionVAccordionAccordion

v-buttonVButtonButton

v-checkboxVCheckBoxCheckBox

v-csslayoutVCssLayoutCssLayout

v-customcomponentVCustomComponentCustomComponent

Creating and Using Themes212

Themes

CSS Class NameClient-Side WidgetServer-Side Component

v-customlayoutVCustomLayoutCustomLayout

v-datefieldVDateFieldDateField

v-datefield-entrycalendarVCalendar

v-datefield-calendarVDateFieldCalendar

v-datefield-calendarVPopupCalendar

VTextualDate

-VEmbeddedEmbedded

v-formVFormForm

-VFormLayoutFormLayout

-VGridLayoutGridLayout

v-labelVLabelLabel

v-linkVLinkLink

v-select-optiongroupVOptionGroupOptionGroup

v-horizontallayoutVHorizontalLayoutHorizontalLayout

v-verticallayoutVVerticalLayoutVerticalLayout

v-panelVPanelPanel

Select

v-listselectVListSelect

v-filterselectVFilterSelect

v-sliderVSliderSlider

-VSplitPanelSplitPanel

-VSplitPanelHorizontal

-VSplitPanelVertical

v-tableVScrollTableTable

v-tableVTablePaging

v-tabsheetVTabSheetTabSheet

v-textfieldVTextFieldTextField

VTextArea

VPasswordField

v-treeVTreeTree

v-select-twincolVTwinColSelectTwinColSelect

-VUploadUpload

v-windowVWindowWindow

-CalendarEntry-

v-datefield-calendarpanelCalendarPanel-

v-contextmenuContextMenu-

vaadin-unknownVUnknownComponent-

-VView-

213Styling Standard Components

Themes

CSS Class NameClient-Side WidgetServer-Side Component

gwt-MenuBarMenubar-

gwt-MenuItemMenuItem-

v-datefield-timeTime-

Please see the documentation of the particular components for a listing of possible sub-component
styles.

Some client-side components can be shared by different server-side components. There is also
the VUnknownComponent, which is a component that indicates an internal error in a situation
where the server asked to render a component which is not available on the client-side.

8.3.2. Built-in Themes

Vaadin currently includes two built-in themes: reindeer and runo. The latter is the default
theme for IT Mill Toolkit 5 (where its name is "default"); the default theme in Vaadin 6.0 is
reindeer.

The built-in themes are provided in the respective VAADIN/themes/reindeer/styles.css
and VAADIN/themes/runo/styles.css stylesheets in the Vaadin library JAR. These
stylesheets are compilations of the separate stylesheets for each component in the corresponding
subdirectory. The stylesheets are compiled to a single file for efficiency: the browser needs to
load just a single file.

Various constants related to the built-in themes are defined in the theme classes in com.vaad-
in.ui.themes package. These are mostly special style names for specific components.

setTheme("runo");

Panel panel = new Panel("Regular Panel in the Runo Theme");
panel.addComponent(new Button("Regular Runo Button"));

// A button with the "small" style
Button smallButton = new Button("Small Runo Button");
smallButton.addStyleName(Runo.BUTTON_SMALL);

Panel lightPanel = new Panel("Light Panel");
lightPanel.addStyleName(Runo.PANEL_LIGHT);
lightPanel.addComponent(new Label("With addStyleName(\"light\")"));

The example with the Runo theme is shown in Figure 8.7, “Runo Theme”.

Figure 8.7. Runo Theme

Built-in Themes214

Themes

Serving Built-In Themes Statically

The built-in themes included in the Vaadin library JAR are served dynamically from
the JAR by the servlet. Serving themes and widget sets statically by the web server
is more efficient.You only need to extract the VAADIN/ directory from the JAR under
your WebContent directory. Just make sure to update it if you upgrade to a newer
version of Vaadin.

Creation of a default theme for custom GWT widgets is described in Section 11.3.3, “Styling GWT
Widgets”.

8.3.3. Using Themes

Using a theme is simple, you only need to set the theme with setTheme() in the application
object. The Eclipse wizard for creating custom Vaadin themes automatically adds such call in
the init() method of the application class, as explained in Section 8.4, “Creating a Theme in
Eclipse”.

Defining the appearance of a user interface component is fairly simple. First, you create a com-
ponent and add a custom style name for it with addStyleName(). Then you write the CSS
element that defines the formatting for the component.

8.3.4.Theme Inheritance

When you define your own theme, you will need to inherit a built-in theme (unless you just copy
the built-in theme).

Inheritance in CSS is done with the @import statement. In the typical case, when you define
your own theme, you inherit a built-in theme as follows:

@import "../reindeer/styles.css";

.v-app {
 background: yellow;
}

You can even create a deep hierarchy of themes by inheritance. Such a solution is often useful
if you have some overall theme for your application and a slightly modified theme for different
user classes.You can even make it possible for each user to have his or her own theme.

For example, let us assume that we have the base theme of an application with the name myapp
and a specific myapp-student theme for users with the student role. The stylesheet of the base
theme would be located in themes/myapp/styles.css. We can then "inherit" it in
themes/myapp-student/styles.css with a simple @import statement:

@import "../myapp/styles.css";

.v-app {
 background: green;
}

This would make the page look just as with the base theme, except for the green background.
You could use the theme inheritance as follows:

public class MyApplication extends com.vaadin.Application {

 public void init() {
 setTheme("myapp");

215Using Themes

Themes

 ...
 }

 public void login(User user) {
 if (user.role == User.ROLE_STUDENT)
 setTheme("myapp-student");
 ...
 }

 public void logout() {
 setTheme("myapp");
 ...
 }
}

In the above example, the User class is an imaginary class assumed to hold user information.

8.4. Creating a Theme in Eclipse

The Eclipse plugin provides a wizard for creating custom themes. Do the following steps to create
a new theme.

1. Select File New Other... in the main menu or right-click the Project Explorer and
select New Other.... A window will open.

2. In the Select a wizard step, select the Vaadin Vaadin Theme wizard.

Click Next to proceed to the next step.

3. In the Create a new Vaadin theme step, you have the following settings:

Project (mandatory) The project in which the theme should be created.

Theme name (mandatory) The theme name is used as the name of the theme
folder and in a CSS tag (prefixed with "v-theme-"),
so it must be a proper identifier. Only latin alphanu-
merics, underscore, and minus sign are allowed.

Modify application classes to
use theme (optional)

The setting allows the wizard to write a code state-
ment that enables the theme in the constructor of
the selected application class(es). If you need to
control the theme with dynamic logic, you can leave
the setting unchecked or change the generated line
later.

Creating a Theme in Eclipse216

Themes

Click Finish to create the theme.

The wizard creates the theme folder under the WebContent/VAADIN/themes folder and the
actual style sheet as styles.css, as illustrated in Figure 8.8, “Newly Created Theme”.

Figure 8.8. Newly Created Theme

The created theme inherits a built-in base theme with an @import statement. See the explanation
of theme inheritance in Section 8.3, “Creating and Using Themes”. Notice that the reindeer
theme is not located in the widgetsets folder, but in the Vaadin JAR. See Section 8.3.2, “Built-
in Themes” for information for serving the built-in themes.

If you selected an application class or classes in the Modify application classes to use theme
in the theme wizard, the wizard will add the following line at the end of the init() method of
the application class(es):

setTheme("myprojecttheme");

Notice that renaming a theme by changing the name of the folder will not change the setTheme()
calls in the application classes or vise versa. You need to change such references to theme
names in the calls manually.

217Creating a Theme in Eclipse

Themes

218

Chapter 9

Binding
Components to

Data

9.1. Overview .. 219
9.2. Properties .. 221
9.3. Holding properties in Items .. 224
9.4. Collecting Items in Containers ... 227

This chapter describes the Vaadin Data Model and shows how you can use it to bind components
directly to data sources, such as database queries.

9.1. Overview

The Vaadin Data Model is one of the core concepts of the library.To allow the view (user interface
components) to access the data model of an application directly, we have introduced a standard
data interface.

The model allows binding user interface components directly to the data that they display and
possibly allow to edit. There are three nested levels of hierarchy in the data model: property,
item, and container. Using a spreadsheet application as an analogy, these would correspond to
a cell, a row, and a table, respectively.

219Book of Vaadin

Figure 9.1. Vaadin Data Model

The Data Model is realized as a set of interfaces in the com.vaadin.data package. The package
contains the Property, Item, and Container interfaces, along with a number of more specialized
interfaces and classes.

Notice that the Data Model does not define data representation, but only interfaces. This leaves
the representation fully to the implementation of the containers.The representation can be almost
anything, such as a plain old Java object (POJO) structure, a filesystem, or a database query.

The Data Model is used heavily in the core user interface components of Vaadin, especially the
field components, that is, components that implement the Field interface or more typically extend
AbstractField, which defines many common features. A key feature of all the built-in field com-
ponents is that they can either maintain their data by themselves or be bound to an external data
source. The value of a field is always available through the Property interface. As more than
one component can be bound to the same data source, it is easy to implement various viewer-
editor patterns.

The relationships of the various interfaces are shown in Figure 9.2, “Interface Relationships in
Vaadin Data Model”; the value change event and listener interfaces are shown only for the
Property interface, while the notifier interfaces are omitted altogether.

Overview220

Binding Components to Data

Figure 9.2. Interface Relationships in Vaadin Data Model

The Data Model has many important and useful features, such as support for change notification.
Especially containers have many helper interfaces, including ones that allow indexing, ordering,
sorting, and filtering the data. Also Field components provide a number of features involving the
data model, such as buffering, validation, and lazy loading.

Vaadin provides a number of built-in implementations of the data model interfaces. The built-in
implementations are used as the default data models in many field components.

In addition to the built-in implementations, many data model implementations, such as containers,
are available as add-ons, either from the Vaadin Directory or from independent sources. Both
commercial and free implementations exist. The JPAContainer, described in Chapter 18, Vaadin
JPAContainer, is the most often used conmmercial container add-on. The installation of add-ons
is described in Chapter 15, Using Vaadin Add-ons. Notice that unlike with most regular add-on
components, you do not need to compile a widget set for add-ons that include just data model
implementations.

9.2. Properties

The Property interface is the base of the Vaadin Data Model. It provides a standardized API for
a single data object that can be read (get) and written (set). A property is always typed, but can
optionally support data type conversions.The type of a property can be any Java class. Optionally,
properties can provide value change events for following their changes.

The value of a property is written with setValue() and read with getValue(). The return
value is a generic Object reference, so you need to cast it to the proper type. The type can be
acquired with getType().

final TextField tf = new TextField("Name");

// Set the value

221Properties

Binding Components to Data

tf.setValue("The text field value");

// When the field value is edited by the user
tf.addListener(new Property.ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 // Get the value and cast it to proper type
 String value = (String) tf.getValue();

 // Do something with it
 layout.addComponent(new Label(value));
 }
});

Changes in the property value usually emit a ValueChangeEvent, which can be handled with a
ValueChangeListener.The event object provides reference to the property with getProperty().

Properties are in themselves unnamed.They are collected in items, which associate the properties
with names: the Property Identifiers or PIDs. Items can be further contained in containers and
are identified with Item Identifiers or IIDs. In the spreadsheet analogy, Property Identifiers would
correspond to column names and Item Identifiers to row names. The identifiers can be arbitrary
objects, but must implement the equals(Object) and hashCode() methods so that they can
be used in any standard Java Collection.

The Property interface can be utilized either by implementing the interface or by using some of
the built-in property implementations. Vaadin includes a Property interface implementation for
arbitrary function pairs and bean properties, with the MethodProperty class, and for simple object
properties, with the ObjectProperty class, as described later.

In addition to the simple components, many selection components such as Select, Table, and
Tree provide their current selection through the Property property. In single selection mode, the
property is a single item identifier, while in multiple selection mode it is a set of item identifiers.
Please see the documentation of the selection components for further details.

Components that can be bound to a property have an internal default data source object, typically
a ObjectProperty, which is described later. As all such components are viewers or editors, also
described later, so you can rebind a component to any data source with
setPropertyDataSource().

9.2.1. Property Viewers and Editors

The most important function of the Property as well as of the other data model interfaces is to
connect classes implementing the interface directly to editor and viewer classes. This means
connecting a data source (model) to a user interface component (views) to allow editing or
viewing the data model.

A property can be bound to a component implementing the Viewer interface with
setPropertyDataSource().

// Have a data model
ObjectProperty property =
 new ObjectProperty("Hello", String.class);

// Have a component that implements Viewer
Label viewer = new Label();

// Bind it to the data
viewer.setPropertyDataSource(property);

Property Viewers and Editors222

Binding Components to Data

You can use the same method in the Editor interface to bind a component that allows editing a
particular property type to a property.

// Have a data model
ObjectProperty property =
 new ObjectProperty("Hello", String.class);

// Have a component that implements Viewer
TextField editor = new TextField("Edit Greeting");

// Bind it to the data
editor.setPropertyDataSource(property);

As all field components implement the Property interface, you can bind any component imple-
menting the Viewer interface to any field, assuming that the viewer is able the view the object
type of the field. Continuing from the above example, we can bind a Label to the TextField value:

Label viewer = new Label();
viewer.setPropertyDataSource(editor);

// The value shown in the viewer is updated immediately
// after editing the value in the editor (once it
// loses the focus)
editor.setImmediate(true);

9.2.2. ObjectProperty Implementation

The ObjectProperty class is a simple implementation of the Property interface that allows
storing an arbitrary Java object.

// Have a component that implements Viewer interface
final TextField tf = new TextField("Name");

// Have a data model with some data
String myObject = "Hello";

// Wrap it in an ObjectProperty
ObjectProperty property =
 new ObjectProperty(myObject, String.class);

// Bind the property to the component
tf.setPropertyDataSource(property);

9.2.3. Implementing the Property Interface

Implementation of the Property interface requires defining setters and getters for the value and
the read-only mode. Only a getter is needed for the property type, as the type is often fixed in
property implementations.

The following example shows a simple implementation of the Property interface:

class MyProperty implements Property {
 Integer data = 0;
 boolean readOnly = false;

 // Return the data type of the model
 public Class<?> getType() {
 return Integer.class;
 }

 public Object getValue() {
 return data;
 }

223ObjectProperty Implementation

Binding Components to Data

 // Override the default implementation in Object
 @Override
 public String toString() {
 return Integer.toHexString(data);
 }

 public boolean isReadOnly() {
 return readOnly;
 }

 public void setReadOnly(boolean newStatus) {
 readOnly = newStatus;
 }

 public void setValue(Object newValue)
 throws ReadOnlyException, ConversionException {
 if (readOnly)
 throw new ReadOnlyException();

 // Already the same type as the internal representation
 if (newValue instanceof Integer)
 data = (Integer) newValue;

 // Conversion from a string is required
 else if (newValue instanceof String)
 try {
 data = Integer.parseInt((String) newValue, 16);
 } catch (NumberFormatException e) {
 throw new ConversionException();
 }
 else
 // Don't know how to convert any other types
 throw new ConversionException();

 // Reverse decode the hexadecimal value
 }
}

// Instantiate the property and set its data
MyProperty property = new MyProperty();
property.setValue(42);

// Bind it to a component
final TextField tf = new TextField("Name", property);

The components get the displayed value by the toString() method, so it is necessary to
override it. To allow editing the value, value returned in the toString() must be in a format
that is accepted by the setValue() method, unless the property is read-only.The toString()
can perform any type conversion necessary to make the internal type a string, and the
setValue() must be able to make a reverse conversion.

The implementation example does not notify about changes in the property value or in the read-
only mode. You should normally also implement at least the Property.ValueChangeNotifier
and Property.ReadOnlyStatusChangeNotifier. See the ObjectProperty class for an example
of the implementation.

9.3. Holding properties in Items

The Item interface provides access to a set of named properties. Each property is identified by
a property identifier (PID) and a reference to such a property can be queried from an Item with
getItemProperty() using the identifier.

Holding properties in Items224

Binding Components to Data

Examples on the use of items include rows in a Table, with the properties corresponding to table
columns, nodes in a Tree, and the the data bound to a Form, with item's properties bound to in-
dividual form fields.

Items are generally equivalent to objects in the object-oriented model, but with the exception that
they are configurable and provide an event handling mechanism.The simplest way to utilize Item
interface is to use existing implementations. Provided utility classes include a configurable
property set (PropertysetItem) and a bean-to-item adapter (BeanItem). Also, a Form implements
the interface and can therefore be used directly as an item.

In addition to being used indirectly by many user interface components, items provide the basic
data model underlying the Form component. In simple cases, forms can even be generated
automatically from items. The properties of the item correspond to the fields of the form.

The Item interface defines inner interfaces for maintaining the item property set and listening
changes made to it. PropertySetChangeEvent events can be emitted by a class implementing
the PropertySetChangeNotifier interface. They can be received through the Proper-
tySetChangeListener interface.

9.3.1.The PropertysetItem Implementation

The PropertysetItem is a generic implementation of the Item interface that allows storing prop-
erties. The properties are added with addItemProperty(), which takes a name and the
property as parameters.

The following example demonstrates a typical case of collecting ObjectProperty properties in
an item:

PropertysetItem item = new PropertysetItem();
item.addItemProperty("name", new ObjectProperty("Zaphod"));
item.addItemProperty("age", new ObjectProperty(42));

// Bind it to a component
Form form = new Form();
form.setItemDataSource(item);

9.3.2. Wrapping a Bean in a BeanItem

The BeanItem implementation of the Item interface is a wrapper for Java Bean objects. In fact,
only the setters and getters are required while serialization and other bean features are not, so
you can wrap almost any POJOs with minimal requirements.

// Here is a bean (or more exactly a POJO)
class Person {
 String name;
 int age;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Integer getAge() {
 return age;
 }

 public void setAge(Integer age) {

225The PropertysetItem Implementation

Binding Components to Data

 this.age = age.intValue();
 }
}

// Create an instance of the bean
Person bean = new Person();

// Wrap it in a BeanItem
BeanItem<Person> item = new BeanItem<Person>(bean);

// Bind it to a component
Form form = new Form();
form.setItemDataSource(item);

You can use the getBean() method to get a reference to the underlying bean.

Nested Beans

You may often have composite classes where one class "has a" another class. For example,
consider the following Planet class which "has a" discoverer:

// Here is a bean with two nested beans
public class Planet implements Serializable {
 String name;
 Person discoverer;

 public Planet(String name, Person discoverer) {
 this.name = name;
 this.discoverer = discoverer;
 }

 ... getters and setters ...
}

...
// Create an instance of the bean
Planet planet = new Planet("Uranus",
 new Person("William Herschel", 1738));

When shown in a Form, for example, you would want to list the properties of the nested bean
along the properties of the composite bean. You can do that by binding the properties of the
nested bean individually with a MethodProperty or NestedMethodProperty.You should usually
hide the nested bean from binding as a property by listing only the bound properties in the con-
structor.

// Wrap it in a BeanItem and hide the nested bean property
BeanItem<Planet> item = new BeanItem<Planet>(planet,
 new String[]{"name"});

// Bind the nested properties.
// Use NestedMethodProperty to bind using dot notation.
item.addItemProperty("discoverername",
 new NestedMethodProperty(planet, "discoverer.name"));

// The other way is to use regular MethodProperty.
item.addItemProperty("discovererborn",
 new MethodProperty<Person>(planet.getDiscoverer(),
 "born"));

The difference is that NestedMethodProperty does not access the nested bean immediately
but only when accessing the property values, while when using MethodProperty the nested
bean is accessed when creating the method property. The difference is only significant if the
nested bean can be null or be changed later.

Wrapping a Bean in a BeanItem226

Binding Components to Data

You can use such a bean item for example in a Form as follows:

// Bind it to a component
Form form = new Form();
form.setItemDataSource(item);

// Nicer captions
form.getField("discoverername").setCaption("Discoverer");
form.getField("discovererborn").setCaption("Born");

Figure 9.3. A Form with Nested Bean Properties

The BeanContainer and BeanItemContainer allow easy definition of nested bean properties
with addNestedContainerProperty(), as described in the section called “Nested Properties”.

9.4. Collecting Items in Containers

Container is the highest-level of the data model interfaces supported by Vaadin. It provides a
very flexible way of managing a set of items that share common properties. Contained items are
identified by an item identifier or IID.

Items can be added to a container with the addItem() method. Notice that the actual item is
not passed as a parameter to the method, only the item ID, as the interface assumes that the
container implementation knows how to create the item. The parameterless version of the
method uses an automatically generated item ID. Implementations can provide methods to add
externally created items, or they can assume that the item ID is also the item itself.

Properties can be requested from container by first requesting an item with getItem() and then
getting the properties from the item with getItemProperty(). You can also get a property
directly by the item and property ids with getContainerProperty().

The Container interface was designed with flexibility and efficiency in mind. It contains inner in-
terfaces that containers can optionally implement for ordering the items sequentially, indexing
the items, and accessing them hierarchically. Such ordering models provide the basis for the
Table, Tree, and Select components. As with other data model interfaces, the Container supports
events for notifying about changes made to their contents.

As containers can be unordered, ordered, indexed, or hierarchical, they can interface practically
any kind of data representation.Vaadin includes data connectors for some common data sources,
such as the simple tabular data, with IndexedContainer, and the filesystem, with Filesystem-
Container.

In addition to generic container implementations, also many user interface components are
containers as themselves, in addition to being properties. This is especially true for selection
components, that is, those that implement Select, because they are containers that contain se-
lectable items. Their property is the currently selected item. This is useful as it allows binding
components to view and updating each others' data directly, and makes it easy to reuse already
constructed data models, for example, a form could edit a row (item) of a table directly, and the

227Collecting Items in Containers

Binding Components to Data

table could use a database container as its underlying container. The fields of the form would
correspond to the properties of the item, that is, the cells of the table row.

The library contains a set of utilities for converting between different container implementations
by adding external ordering or hierarchy into existing containers. In-memory containers imple-
menting indexed and hierarchical models provide easy-to-use tools for setting up in-memory data
storages. Such default container implementations include IndexedContainer, which can be
thought of as a generalization of a two-dimensional data table, and BeanItemContainer, which
maps standard Java objects (beans) to items of an indexed container. In addition, the built-in
containers include a hierarchical container for direct file system browsing.

9.4.1. BeanContainer

The BeanContainer is an in-memory container for JavaBean objects. Each contained bean is
wrapped inside a BeanItem wrapper. The item properties are determined automatically by in-
specting the getter and setter methods of the class. This requires that the bean class has public
visibility, local classes for example are not allowed. Only beans of the same type can be added
to the container.

The generic has two parameters: a bean type and an item identifier type.The item identifiers can
be obtained by defining a custom resolver, using a specific item property for the IDs, or by giving
item IDs explicitly. As such, it is more general than the BeanItemContainer, which uses the bean
object itself as the item identifier, making the use usually simpler. Managing the item IDs makes
BeanContainer more complex to use, but it is necessary in some cases where the equals()
or hashCode() methods have been reimplemented in the bean.

// Here is a JavaBean
public class Bean implements Serializable {
 String name;
 double energy; // Energy content in kJ/100g

 public Bean(String name, double energy) {
 this.name = name;
 this.energy = energy;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public double getEnergy() {
 return energy;
 }

 public void setEnergy(double energy) {
 this.energy = energy;
 }
}

void basic(VerticalLayout layout) {
 // Create a container for such beans with
 // strings as item IDs.
 BeanContainer<String, Bean> beans =
 new BeanContainer<String, Bean>(Bean.class);

 // Use the name property as the item ID of the bean
 beans.setBeanIdProperty("name");

BeanContainer228

Binding Components to Data

 // Add some beans to it
 beans.addBean(new Bean("Mung bean", 1452.0));
 beans.addBean(new Bean("Chickpea", 686.0));
 beans.addBean(new Bean("Lentil", 1477.0));
 beans.addBean(new Bean("Common bean", 129.0));
 beans.addBean(new Bean("Soybean", 1866.0));

 // Bind a table to it
 Table table = new Table("Beans of All Sorts", beans);
 layout.addComponent(table);
}

To use explicit item IDs, use the methods addItem(Object, Object),
addItemAfter(Object, Object, Object), and addItemAt(int, Object, Object).

It is not possible to add additional properties to the container, except properties in a nested bean.

Nested Properties

If you have a nested bean with a 1:1 relationship inside a bean type contained in a BeanContainer
or BeanItemContainer, you can add its properties to the container by specifying them with
addNestedContainerProperty(). The feature is defined at the level of AbstractBeanCon-
tainer.

As with a top-level bean in a bean container, also a nested bean must have public visibility or
otherwise an access exception is thrown. Intermediary getters returning a nested bean must always
return a non-null value.

For example, assume that we have the following two beans with the first one nested inside the
second one.

/** Bean to be nested */
public class EqCoord implements Serializable {
 double rightAscension; /* In angle hours */
 double declination; /* In degrees */

 ... constructor and setters and getters for the properties ...
}

/** Bean containing a nested bean */
public class Star implements Serializable {
 String name;
 EqCoord equatorial; /* Nested bean */

 ... constructor and setters and getters for the properties ...
}

After creating the container, you can declare the nested properties by specifying their property
identifiers with the addNestedContainerProperty() in dot notation.

// Create a container for beans
final BeanItemContainer<Star> stars =
 new BeanItemContainer<Star>(Star.class);

// Declare the nested properties to be used in the container
stars.addNestedContainerProperty("equatorial.rightAscension");
stars.addNestedContainerProperty("equatorial.declination");

// Add some items
stars.addBean(new Star("Sirius", new EqCoord(6.75, 16.71611)));
stars.addBean(new Star("Polaris", new EqCoord(2.52, 89.26417)));

229BeanContainer

Binding Components to Data

If you bind such a container to a Table, you probably also need to set the column headers. Notice
that the entire nested bean itself is still a property in the container and would be displayed in its
own column. The toString() method is used for obtaining the displayed value, which is by
default an object reference. You normally do not want this, so you can hide the column with
setVisibleColumns().

// Put them in a table
Table table = new Table("Stars", stars);
table.setColumnHeader("equatorial.rightAscension", "RA");
table.setColumnHeader("equatorial.declination", "Decl");
table.setPageLength(table.size());

// Have to set explicitly to hide the "equatorial" property
table.setVisibleColumns(new Object[]{"name",
 "equatorial.rightAscension", "equatorial.declination"});

The resulting table is shown in Figure 9.4, “Table Bound to a BeanContainer with Nested
Properties”.

Figure 9.4. Table Bound to a BeanContainer with Nested Properties

The bean binding in AbstractBeanContainer normally uses the MethodProperty implementation
of the Property interface to access the bean properties using the setter and getter methods. For
nested properties, the NestedMethodProperty implementation is used.

Defining a Bean ID Resolver

If a bean ID resolver is set using setBeanIdResolver() or setBeanIdProperty(), the
methods addBean(), addBeanAfter(), addBeanAt() and addAll() can be used to add
items to the container. If one of these methods is called, the resolver is used to generate an
identifier for the item (must not return null).

Note that explicit item identifiers can also be used when a resolver has been set by calling the
addItem*() methods - the resolver is only used when adding beans using the addBean*()
or addAll(Collection) methods.

9.4.2. BeanItemContainer

BeanItemContainer is a container for JavaBean objects where each bean is wrapped inside a
BeanItem wrapper. The item properties are determined automatically by inspecting the getter
and setter methods of the class.This requires that the bean class has public visibility, local classes
for example are not allowed. Only beans of the same type can be added to the container.

BeanItemContainer is a specialized version of the BeanContainer described in Section 9.4.1,
“BeanContainer”. It uses the bean itself as the item identifier, which makes it a bit easier to use
than BeanContainer in many cases.The latter is, however, needed if the bean has reimplemented
the equals() or hashCode() methods.

Let us revisit the example given in Section 9.4.1, “BeanContainer” using the BeanItemContainer.

BeanItemContainer230

Binding Components to Data

// Create a container for the beans
BeanItemContainer<Bean> beans =
 new BeanItemContainer<Bean>(Bean.class);

// Add some beans to it
beans.addBean(new Bean("Mung bean", 1452.0));
beans.addBean(new Bean("Chickpea", 686.0));
beans.addBean(new Bean("Lentil", 1477.0));
beans.addBean(new Bean("Common bean", 129.0));
beans.addBean(new Bean("Soybean", 1866.0));

// Bind a table to it
Table table = new Table("Beans of All Sorts", beans);

It is not possible to add additional properties to a BeanItemContainer, except properties in a
nested bean, as described in Section 9.4.1, “BeanContainer”.

9.4.3. Iterating Over a Container

As the items in a Container are not necessarily indexed, iterating over the items has to be done
using an Iterator.The getItemIds() method of Container returns a Collection of item identi-
fiers over which you can iterate. The following example demonstrates a typical case where you
iterate over the values of check boxes in a column of a Table component. The context of the
example is the example used in Section 5.14, “Table”.

// Collect the results of the iteration into this string.
String items = "";

// Iterate over the item identifiers of the table.
for (Iterator i = table.getItemIds().iterator(); i.hasNext();) {
 // Get the current item identifier, which is an integer.
 int iid = (Integer) i.next();

 // Now get the actual item from the table.
 Item item = table.getItem(iid);

 // And now we can get to the actual checkbox object.
 Button button = (Button)
 (item.getItemProperty("ismember").getValue());

 // If the checkbox is selected.
 if ((Boolean)button.getValue() == true) {
 // Do something with the selected item; collect the
 // first names in a string.
 items += item.getItemProperty("First Name")
 .getValue() + " ";
 }
}

// Do something with the results; display the selected items.
layout.addComponent (new Label("Selected items: " + items));

Notice that the getItemIds() returns an unmodifiable collection, so the Container may not be
modified during iteration. You can not, for example, remove items from the Container during it-
eration. The modification includes modification in another thread. If the Container is modified
during iteration, a ConcurrentModificationException is thrown and the iterator may be left in
an undefined state.

231Iterating Over a Container

Binding Components to Data

9.4.4. Filterable Containers

Containers that implement the Container.Filterable interface can be filtered. For example, the
built-in IndexedContainer and the bean item containers implement it. Filtering is typically used
for filtering the content of a Table.

Filters implement the Filter interface and you add them to a filterable container with the
addContainerFilter() method. Container items that pass the filter condition are kept and
shown in the filterable component.

Filter filter = new SimpleStringFilter("name",
 "Douglas", true, false);
table.addContainerFilter(filter);

If multiple filters are added to a container, they are evaluated using the logical AND operator so
that only items that are passed by all the filters are kept.

Atomic and Composite Filters

Filters can be classified as atomic and composite. Atomic filters, such as SimpleStringFilter,
define a single condition, usually for a specific container property. Composite filters make filtering
decisions based on the result of one or more other filters.The built-in composite filters implement
the logical operators AND, OR, or NOT.

For example, the following composite filter would filter out items where the name property contains
the name "Douglas" somewhere and where the age property has value less than 42. The prop-
erties must have String and Integer types, respectively.

filter = new Or(new SimpleStringFilter("name",
 "Douglas", true, false),
 new Compare.Less("age", 42));

Built-In Filter Types

The built-in filter types are the following:

SimpleStringFilter Passes items where the specified property, that must
be of String type, contains the given filterString
as a substring. If ignoreCase is true, the search is
case insensitive. If the onlyMatchPrefix is true,
the substring may only be in the beginning of the string,
otherwise it may be elsewhere as well.

IsNull Passes items where the specified property has null
value. For in-memory filtering, a simple == check is
performed. For other containers, the comparison imple-
mentation is container dependent, but should corres-
pond to the in-memory null check.

Equal, Greater, Less, Great-
erOrEqual, and LessOrEqual

The comparison filter implementations compare the
specified property value to the given constant and pass
items for which the comparison result is true. The
comparison operators are included in the abstract
Compare class.

Filterable Containers232

Binding Components to Data

For the Equal filter, the equals() method for the
property is used in built-in in-memory containers. In
other types of containers, the comparison is container
dependent and may use, for example, database com-
parison operations.

For the other filters, the property value type must imple-
ment the Comparable interface to work with the built-
in in-memory containers. Again for the other types of
containers, the comparison is container dependent.

And and Or These logical operator filters are composite filters that
combine multiple other filters.

Not The logical unary operator filter negates which items
are passed by the filter given as the parameter.

Implementing Custom Filters

A custom filter needs to implement the Container.Filter interface.

A filter can use a single or multiple properties for the filtering logic. The properties used by the
filter must be returned with the appliesToProperty() method. If the filter applies to a user-
defined property or properties, it is customary to give the properties as the first argument for the
constructor of the filter.

class MyCustomFilter implements Container.Filter {
 protected String propertyId;
 protected String regex;

 public MyCustomFilter(String propertyId, String regex) {
 this.propertyId = propertyId;
 this.regex = regex;
 }

 /** Tells if this filter works on the given property. */
 @Override
 public boolean appliesToProperty(Object propertyId) {
 return propertyId != null &&
 propertyId.equals(this.propertyId);
 }

The actual filtering logic is done in the passesFilter() method, which simply returns true if
the item should pass the filter and false if it should be filtered out.

 /** Apply the filter on an item to check if it passes. */
 @Override
 public boolean passesFilter(Object itemId, Item item)
 throws UnsupportedOperationException {
 // Acquire the relevant property from the item object
 Property p = item.getItemProperty(propertyId);

 // Should always check validity
 if (p == null || !p.getType().equals(String.class))
 return false;
 String value = (String) p.getValue();

 // The actual filter logic
 return value.matches(regex);
 }
}

233Filterable Containers

Binding Components to Data

You can use such a custom filter just like any other:

c.addContainerFilter(
 new MyCustomFilter("Name", (String) tf.getValue()));

Filterable Containers234

Binding Components to Data

Chapter 10

Vaadin
SQLContainer

10.1. Architecture ... 236
10.2. Getting Started with SQLContainer ... 236
10.3. Filtering and Sorting .. 237
10.4. Editing .. 238
10.5. Caching, Paging and Refreshing ... 240
10.6. Referencing Another SQLContainer ... 241
10.7. Using FreeformQuery and FreeformStatementDelegate 242
10.8. Non-implemented methods of Vaadin container interfaces 243
10.9. Known Issues and Limitations ... 244

Vaadin SQLContainer is a container implementation that allows easy and customizable access
to data stored in various SQL-speaking databases.

SQLContainer supports two types of database access. Using TableQuery, the pre-made query
generators will enable fetching, updating, and inserting data directly from the container into a
database table - automatically, whereas FreeformQuery allows the developer to use their own,
probably more complex query for fetching data and their own optional implementations for writing,
filtering and sorting support - item and property handling as well as lazy loading will still be handled
automatically.

In addition to the customizable database connection options, SQLContainer also extends the
Vaadin Container interface to implement more advanced and more database-oriented filtering

235Book of Vaadin

rules. Finally, the add-on also offers connection pool implementations for JDBC connection
pooling and JEE connection pooling, as well as integrated transaction support; auto-commit mode
is also provided.

The purpose of this section is to briefly explain the architecture and some of the inner workings
of SQLContainer. It will also give the readers some examples on how to use SQLContainer in
their own applications. The requirements, limitations and further development ideas are also
discussed.

SQLContainer is available from the Vaadin Directory under the same unrestrictive Apache License
2.0 as the Vaadin Framework itself.

10.1. Architecture

The architecture of SQLContainer is relatively simple. SQLContainer is the class implementing
the Vaadin Container interfaces and providing access to most of the functionality of this add-on.
The standard Vaadin Property and Item interfaces have been implementd as the ColumnProperty
and RowItem classes. Item IDs are represented by RowId and TemporaryRowId classes. The
RowId class is built based on the primary key columns of the connected database table or query
result.

In the connection package, the JDBCConnectionPool interface defines the requirements for a
connection pool implementation. Two implementations of this interface are provided: SimpleJD-
BCConnectionPool provides a simple yet very usable implementation to pool and access JDBC
connections. J2EEConnectionPool provides means to access J2EE DataSources.

The query package contains the QueryDelegate interface, which defines everything the SQL-
Container needs to enable reading and writing data to and from a database. As discussed earlier,
two implementations of this interface are provided: TableQuery for automatic read-write support
for a database table, and FreeformQuery for customizing the query, sorting, filtering and writing;
this is done by implementing relevant methods of the FreeformStatementDelegate interface.

The query package also contains Filter and OrderBy classes which have been written to provide
an alternative to the standard Vaadin container filtering and make sorting non-String properties
a bit more user friendly.

Finally, the generator package contains a SQLGenerator interface, which defines the kind of
queries that are required by the TableQuery class.The provided implementations include support
for HSQLDB, MySQL, PostgreSQL (DefaultSQLGenerator), Oracle (OracleGenerator) and
Microsoft SQL Server (MSSQLGenerator). A new or modified implementations may be provided
to gain compatibility with older versions or other database servers.

For further details, please refer to the SQLContainer API documentation.

10.2. Getting Started with SQLContainer

Getting development going with the SQLContainer is easy and quite straight-forward.The purpose
of this section is to describe how to create the required resources and how to fetch data from
and write data to a database table attached to the container.

10.2.1. Creating a connection pool

First, we need to create a connection pool to allow the SQLContainer to connect to a database.
Here we will use the SimpleJDBCConnectionPool, which is a basic implementation of connection

Architecture236

Vaadin SQLContainer

pooling with JDBC data sources. In the following code, we create a connection pool that uses
the HSQLDB driver together with an in-memory database. The initial amount of connections is
2 and the maximum amount is set at 5. Note that the database driver, connection url, username,
and password parameters will vary depending on the database you are using.

JDBCConnectionPool pool = new SimpleJDBCConnectionPool(
 "org.hsqldb.jdbc.JDBCDriver",
 "jdbc:hsqldb:mem:sqlcontainer", "SA", "", 2, 5);

10.2.2. Creating the TableQuery Query Delegate

After the connection pool is created, we'll need a query delegate for the SQLContainer. The
simplest way to create one is by using the built-in TableQuery class. The TableQuery delegate
provides access to a defined database table and supports reading and writing data out-of-the-
box.The primary key(s) of the table may be anything that the database engine supports, and are
found automatically by querying the database when a new TableQuery is instantiated.We create
the TableQuery with the following statement:

TableQuery tq = new TableQuery("tablename", connectionPool);

In order to allow writes from several user sessions concurrently, we must set a version column
to the TableQuery as well. The version column is an integer- or timestamp-typed column which
will either be incremented or set to the current time on each modification of the row. TableQuery
assumes that the database will take care of updating the version column; it just makes sure the
column value is correct before updating a row. If another user has changed the row and the
version number in the database does not match the version number in memory, an Optimist-
icLockException is thrown and you can recover by refreshing the container and allow the user
to merge the data. The following code will set the version column:

tq.setVersionColumn("OPTLOCK");

10.2.3. Creating the Container

Finally, we may create the container itself. This is as simple as stating:

SQLContainer container = new SQLContainer(tq);

After this statement, the SQLContainer is connected to the table tablename and is ready to use
for example as a data source for a Vaadin Table or a Vaadin Form.

10.3. Filtering and Sorting

Filtering and sorting the items contained in an SQLContainer is, by design, always performed in
the database. In practice this means that whenever the filtering or sorting rules are modified, at
least some amount of database communication will take place (the minimum is to fetch the updated
row count using the new filtering/sorting rules).

10.3.1. Filtering

Filtering is performed using the filtering API in Vaadin, which allows for very complex filtering to
be easily applied. More information about the filtering API can be found in .

In addition to the filters provided by Vaadin, SQLContainer also implements the Like filter as well
as the Between filter. Both of these map to the equally named WHERE-operators in SQL. The
filters can also be applied on items that reside in memory, for example, new items that have not
yet been stored in the database or rows that have been loaded and updated, but not yet stored.

237Creating the TableQuery Query Delegate

Vaadin SQLContainer

The following is an example of the types of complex filtering that are possible with the new filtering
API. We want to find all people named Paul Johnson that are either younger than 18 years or
older than 65 years and all Johnsons whose first name starts with the letter "A":

mySQLContainer.addContainerFilter(
 new Or(new And(new Equal("NAME", "Paul"),
 new Or(new Less("AGE", 18),
 new Greater("AGE", 65))),
 new Like("NAME", "A%")));
mySQLContainer.addContainerFilter(
 new Equal("LASTNAME", "Johnson"));

This will produce the following WHERE clause:

WHERE (("NAME" = "Paul" AND ("AGE" < 18 OR "AGE" > 65)) OR "NAME" LIKE "A%") AND "LASTNAME"
 = "Johnson"

10.3.2. Sorting

Sorting can be performed using standard Vaadin, that is, using the sort method from the Contain-
er.Sortable interface. The propertyId parameter refers to column names.

public void sort(Object[] propertyId, boolean[] ascending)

In addition to the standard method, it is also possible to directly add an OrderBy to the container
via the addOrderBy() method. This enables the developer to insert sorters one by one without
providing the whole array of them at once.

All sorting rules can be cleared by calling the sort method with null or an empty array as the first
argument.

10.4. Editing

Editing the items (RowItems) of SQLContainer can be done similarly to editing the items of any
Vaadin container. ColumnProperties of a RowItem will automatically notify SQLContainer to
make sure that changes to the items are recorded and will be applied to the database immediately
or on commit, depending on the state of the auto-commit mode.

10.4.1. Adding items

Adding items to an SQLContainer object can only be done via the addItem() method. This
method will create a new Item based on the connected database table column properties. The
new item will either be buffered by the container or committed to the database through the query
delegate depending on whether the auto commit mode (see the next section) has been enabled.

When an item is added to the container it is impossible to precisely know what the primary keys
of the row will be, or will the row insertion succeed at all.This is why the SQLContainer will assign
an instance of TemporaryRowId as a RowId for the new item. We will later describe how to
fetch the actual key after the row insertion has succeeded.

If auto-commit mode is enabled in the SQLContainer, the addItem() methot will return the final
RowId of the new item.

10.4.2. Fetching generated row keys

Since it is a common need to fetch the generated key of a row right after insertion, a listener/no-
tifier has been added into the QueryDelegate interface. Currently only the TableQuery class

Sorting238

Vaadin SQLContainer

implements the RowIdChangeNotifier interface, and thus can notify interested objects of changed
row IDs.The events fill be fired after commit() in TableQuery has finished; this method is called
by SQLContainer when necessary.

To receive updates on the row IDs, you might use the following code (assuming container is an
instance of SQLContainer). Note that these events are not fired if auto commit mode is enabled.

app.getDbHelp().getCityContainer().addListener(
 new QueryDelegate.RowIdChangeListener() {
 public void rowIdChange(RowIdChangeEvent event) {
 System.err.println("Old ID: " + event.getOldRowId());
 System.err.println("New ID: " + event.getNewRowId());
 }
 });

10.4.3. Version column requirement

If you are using the TableQuery class as the query delegate to the SQLContainer and need to
enable write support, there is an enforced requirement of specifying a version column name to
the TableQuery instance. The column name can be set to the TableQuery using the following
statement:

tq.setVersionColumn("OPTLOCK");

The version column is preferrably an integer or timestamp typed column in the table that is attached
to the TableQuery. This column will be used for optimistic locking; before a row modification the
TableQuery will check before that the version column value is the same as it was when the data
was read into the container. This should ensure that no one has modified the row inbetween the
current user's reads and writes.

Note! TableQuery assumes that the database will take care of updating the version column by
either using an actual VERSION column (if supported by the database in question) or by a trigger
or a similar mechanism.

If you are certain that you do not need optimistic locking, but do want to enable write support,
you may point the version column to, for example, a primary key column of the table.

10.4.4. Auto-commit mode

SQLContainer is by default in transaction mode, which means that actions that edit, add or remove
items are recorded internally by the container. These actions can be either committed to the
database by calling commit() or discarded by calling rollback().

The container can also be set to auto-commit mode. When this mode is enabled, all changes will
be committed to the database immediately. To enable or disable the auto-commit mode, call the
following method:

public void setAutoCommit(boolean autoCommitEnabled)

It is recommended to leave the auto-commit mode disabled, as it ensures that the changes can
be rolled back if any problems are noticed within the container items. Using the auto-commit
mode will also lead to failure in item addition if the database table contains non-nullable columns.

10.4.5. Modified state

When used in the transaction mode it may be useful to determine whether the contents of the
SQLContainer have been modified or not. For this purpose the container provides an

239Version column requirement

Vaadin SQLContainer

isModified() method, which will tell the state of the container to the developer. This method
will return true if any items have been added to or removed from the container, as well as if any
value of an existing item has been modified.

Additionally, each RowItem and each ColumnProperty have isModified() methods to allow
for a more detailed view over the modification status. Do note that the modification statuses of
RowItem and ColumnProperty objects only depend on whether or not the actual Property
values have been modified. That is, they do not reflect situations where the whole RowItem has
been marked for removal or has just been added to the container.

10.5. Caching, Paging and Refreshing

To decrease the amount of queries made to the database, SQLContainer uses internal caching
for database contents.The caching is implemented with a size-limited LinkedHashMap containing
a mapping from RowIds to RowItems.Typically developers do not need to modify caching options,
although some fine-tuning can be done if required.

10.5.1. Container Size

The SQLContainer keeps continuously checking the amount of rows in the connected database
table in order to detect external addition or removal of rows. By default, the table row count is
assumed to remain valid for 10 seconds. This value can be altered from code; with
setSizeValidMilliSeconds() in SQLContainer.

If the size validity time has expired, the row count will be automatically updated on:

• A call to getItemIds() method

• A call to size() method

• Some calls to indexOfId(Object itemId) method

• A call to firstItemId() method

• When the container is fetching a set of rows to the item cache (lazy loading)

10.5.2. Page Length and Cache Size

The page length of the SQLContainer dictates the amount of rows fetched from the database
in one query. The default value is 100, and it can be modified with the setPageLength()
method. To avoid constant queries it is recommended to set the page length value to at least 5
times the amount of rows displayed in a Vaadin Table; obviously, this is also dependent on the
cache ratio set for the Table component.

The size of the internal item cache of the SQLContainer is calculated by multiplying the page
lenght with the cache ratio set for the container. The cache ratio can only be set from the code,
and the default value for it is 2. Hence with the default page length of 100 the internal cache size
becomes 200 items. This should be enough even for larger Tables while ensuring that no huge
amounts of memory will be used on the cache.

10.5.3. Refreshing the Container

Normally, the SQLContainer will handle refreshing automatically when required. However, there
may be situations where an implicit refresh is needed, for example, to make sure that the version

Caching, Paging and Refreshing240

Vaadin SQLContainer

column is up-to-date prior to opening the item for editing in a form. For this purpose a refresh()
method is provided. This method simply clears all caches, resets the current item fetching offset
and sets the container size dirty. Any item-related call after this will inevitably result into row count
and item cache update.

Note that a call to the refresh method will not affect or reset the following properties of the con-
tainer:

• The QueryDelegate of the container

• Auto-commit mode

• Page length

• Filters

• Sorting

10.5.4. Cache Flush Notification Mechanism

Cache usage with databases in multiuser applications always results in some kind of a compromise
between the amount of queries we want to execute on the database and the amount of memory
we want to use on caching the data; and most importantly, risking the cached data becoming
stale.

SQLContainer provides an experimental remedy to this problem by implementing a simple cache
flush notification mechanism. Due to its nature these notifications are disabled by default but can
be easily enabled for a container instance by calling enableCacheFlushNotifications()
at any time during the lifetime of the container.

The notification mechanism functions by storing a weak reference to all registered containers in
a static list structure. To minimize the risk of memory leaks and to avoid unlimited growing of the
reference list, dead weak references are collected to a reference queue and removed from the
list every time a SQLContainer is added to the notification reference list or a container calls the
notification method.

When a SQLContainer has its cache notifications set enabled, it will call the static
notifyOfCacheFlush() method giving itself as a parameter. This method will compare the
notifier-container to all the others present in the reference list. To fire a cache flush event, the
target container must have the same type of QueryDelegate (either TableQuery or Freeform-
Query) and the table name or query string must match with the container that fired the notification.
If a match is found the refresh() method of the matching container is called, resulting in cache
flushing in the target container.

Note: Standard Vaadin issues apply; even if the SQLContainer is refreshed on the server side,
the changes will not be reflected to the UI until a server round-trip is performed, or unless a push
mechanism is used.

10.6. Referencing Another SQLContainer

When developing a database-connected application, there is usually a need to retrieve data related
to one table from one or more other tables. In most cases, this relation is achieved with a foreign
key reference, where a column of the first table contains a primary key or candidate key of a row
in another table.

241Cache Flush Notification Mechanism

Vaadin SQLContainer

SQLContainer offers limited support for this kind of referencing relation, although all referencing
is currently done on the Java side so no constraints need to be made in the database. A new
reference can be created by calling the following method:

public void addReference(SQLContainer refdCont,
 String refingCol, String refdCol);

This method should be called on the source container of the reference. The target container
should be given as the first parameter. The refingCol is the name of the 'foreign key' column
in the source container, and the refdCol is the name of the referenced key column in the target
container.

Note: For any SQLContainer, all the referenced target containers must be different.You can not
reference the same container from the same source twice.

Handling the referenced item can be done through the three provided set/get methods, and the
reference can be completely removed with the removeReference() method. Signatures of
these methods are listed below:

public boolean setReferencedItem(Object itemId,
 Object refdItemId, SQLContainer refdCont)
public Object getReferencedItemId(Object itemId,
 SQLContainer refdCont)
public Item getReferencedItem(Object itemId,
 SQLContainer refdCont)
public boolean removeReference(SQLContainer refdCont)

The setter method should be given three parameters: itemId is the ID of the referencing item
(from the source container), refdItemId is the referenced itemID (from the target container)
and refdCont is a reference to the target container that identifies the reference. This method
returns true if the setting of the referenced item was successful. After setting the referenced item
you must normally call commit() on the source container to persist the changes to the database.

The getReferencedItemId() method will return the item ID of the referenced item. As para-
meters this method needs the item ID of the referencing item and a reference to the target con-
tainer as an identifier. SQLContainer also provides a convenience method
getReferencedItem(), which directly returns the referenced item from the target container.

Finally, the referencing can be removed from the source container by calling the
removeReference() method with the target container as parameter. Note that this does not
actually change anything in the database; it merely removes the logical relation that exists only
on the Java-side.

10.7. Using FreeformQuery and FreeformStatementDelegate

In most cases, the provided TableQuery will be enough to allow a developer to gain effortless
access to an SQL data source. However there may arise situations when a more complex query
with, for example, join expressions is needed. Or perhaps you need to redefine how the writing
or filtering should be done.The FreeformQuery query delegate is provided for this exact purpose.
Out of the box the FreeformQuery supports read-only access to a database, but it can be exten-
ded to allow writing also.

Getting started

Getting started with the FreeformQuery may be done as shown in the following.The connection
pool initialization is similar to the TableQuery example so it is omitted here. Note that the name(s)

Using FreeformQuery and FreeformStatementDelegate242

Vaadin SQLContainer

of the primary key column(s) must be provided to the FreeformQuery manually. This is required
because depending on the query the result set may or may not contain data about primary key
columns. In this example, there is one primary key column with a name 'ID'.

FreeformQuery query = new FreeformQuery(
 "SELECT * FROM SAMPLE", pool, "ID");
SQLContainer container = new SQLContainer(query);

Limitations

While this looks just as easy as with the TableQuery, do note that there are some important
caveats here. Using FreeformQuery like this (without providing FreeformQueryDelegate or
FreeformStatementDelegate implementation) it can only be used as a read-only window to the
resultset of the query. Additionally filtering, sorting and lazy loading features will not be supported,
and the row count will be fetched in quite an inefficient manner. Bearing these limitations in mind,
it becomes quite obvious that the developer is in reality meant to implement the FreeformQuery-
Delegate or FreeformStatementDelegate interface.

The FreeformStatementDelegate interface is an extension of the FreeformQueryDelegate in-
terface, which returns StatementHelper objects instead of pure query Strings. This enables the
developer to use prepared statetemens instead of regular statements. It is highly recommended
to use the FreeformStatementDelegate in all implementations. From this chapter onwards, we
will only refer to the FreeformStatementDelegate in cases where FreeformQueryDelegate
could also be applied.

Creating your own FreeformStatementDelegate

To create your own delegate for FreeformQuery you must implement some or all of the methods
from the FreeformStatementDelegate interface, depending on which ones your use case requires.
The interface contains eight methods which are shown below. For more detailed requirements,
see the JavaDoc documentation of the interface.

// Read-only queries
public StatementHelper getCountStatement()
public StatementHelper getQueryStatement(int offset, int limit)
public StatementHelper getContainsRowQueryStatement(Object... keys)

// Filtering and sorting
public void setFilters(List<Filter> filters)
public void setFilters(List<Filter> filters,
 FilteringMode filteringMode)
public void setOrderBy(List<OrderBy> orderBys)

// Write support
public int storeRow(Connection conn, RowItem row)
public boolean removeRow(Connection conn, RowItem row)

A simple demo implementation of this interface can be found in the SQLContainer package, more
specifically in the class com.vaadin.addon.sqlcontainer.demo.DemoFreeformQueryDelegate.

10.8. Non-implemented methods of Vaadin container interfaces

Due to the database connection inherent to the SQLContainer, some of the methods from the
container interfaces of Vaadin can not (or would not make sense to) be implemented. These
methods are listed below, and they will throw an UnsupportedOperationException on invocation.

public boolean addContainerProperty(Object propertyId,
 Class<?> type,

243Limitations

Vaadin SQLContainer

 Object defaultValue)
public boolean removeContainerProperty(Object propertyId)
public Item addItem(Object itemId)
public Object addItemAt(int index)
public Item addItemAt(int index, Object newItemId)
public Object addItemAfter(Object previousItemId)
public Item addItemAfter(Object previousItemId, Object newItemId)

Additionally, the following methods of the Item interface are not supported in the RowItem class:

public boolean addItemProperty(Object id, Property property)
public boolean removeItemProperty(Object id)

About the getItemIds() method

To properly implement the Vaadin Container interface, a getItemIds() method has been im-
plented in the SQLContainer. By definition, this method returns a collection of all the item IDs
present in the container. What this means in the SQLContainer case is that the container has
to query the database for the primary key columns of all the rows present in the connected
database table.

It is obvious that this could potentially lead to fetching tens or even hundreds of thousands of
rows in an effort to satisfy the method caller. This will effectively kill the lazy loading properties
of SQLContainer and therefore the following warning is expressed here:

Warning

It is highly recommended not to call the getitemIds() method, unless it is known
that in the use case in question the item ID set will always be of reasonable size.

10.9. Known Issues and Limitations

At this point, there are still some known issues and limitations affecting the use of SQLContainer
in certain situations. The known issues and brief explanations are listed below:

• Some SQL data types do not have write support when using TableQuery:

• All binary types

• All custom types

• CLOB (if not converted automatically to a String by the JDBC driver in use)

• See com.vaadin.addon.sqlcontainer.query.generator.StatementHelper for details.

• When using Oracle or MS SQL database, the column name "rownum" can not be used
as a column name in a table connected to SQLContainer.

This limitation exists because the databases in question do not support limit/offset clauses
required for paging. Instead, a generated column named 'rownum' is used to implement
paging support.

The permanent limitations are listed below. These can not or most probably will not be fixed in
future versions of SQLContainer.

• The getItemIds() method is very inefficient - avoid calling it unless absolutely required!

About the getItemIds() method244

Vaadin SQLContainer

• When using FreeformQuery without providing a FreeformStatementDelegate, the row
count query is very inefficient - avoid using FreeformQuery without implementing at
least the count query properly.

• When using FreeformQuery without providing a FreeformStatementDelegate, writing,
sorting and filtering will not be supported.

• When using Oracle database most or all of the numeric types are converted to
java.math.BigDecimal by the Oracle JDBC Driver.

This is a feature of how Oracle DB and the Oracle JDBC Driver handles data types.

245Known Issues and Limitations

Vaadin SQLContainer

246

Chapter 11

Developing New
Components

11.1. Overview .. 248
11.2. Doing It the Simple Way in Eclipse .. 249
11.3. Google Web Toolkit Widgets .. 254
11.4. Integrating a GWT Widget ... 258
11.5. Defining a Widget Set .. 263
11.6. Server-Side Components .. 264
11.7. Using a Custom Component ... 267
11.8. GWT Widget Development .. 269

This chapter describes how you can create custom client-side components as Google Web Toolkit
(GWT) widgets and how you integrate them with Vaadin. The client-side implementations of all
standard user interface components in Vaadin use the same client-side interfaces and patterns.

Google Web Toolkit is intended for developing browser-based user interfaces using the Java
language, which is compiled into JavaScript that is executed in the browser. Knowledge of such
client-side technologies is usually not needed with Vaadin, as its built-in repertoire of user interface
components should be sufficient for most applications. The easiest way to create custom com-
ponents in Vaadin is to make composite components with the CustomComponent class, as
described in Section 5.23, “Component Composition with CustomComponent”. In some cases,
however, you may need to make modifications to existing components, integrate existing GWT
widgets with your application, or create entirely new ones.

247Book of Vaadin

Creation of new widgets involves a number of rather intricate tasks.The Vaadin Plugin for Eclipse
makes many of the tasks much easier, so if you are using Eclipse and the plugin, you should find
Section 11.2, “Doing It the Simple Way in Eclipse” helpful.

If you need more background on the architecture, Section 3.4, “Client-Side Engine” gives an in-
troduction to the architecture of the Vaadin Client-Side Engine. If you are new to Google Web
Toolkit, Section 3.2.2, “Google Web Toolkit” gives an introduction to GWT and its role in the ar-
chitecture of Vaadin.

On Terminology

Google Web Toolkit uses the term widget for user interface components. In this book,
we use the term widget to refer to client-side components made with Google Web
Toolkit, while using the term component in a general sense and also in the special
sense for server-side components.

11.1. Overview

The Client-Side Engine of Vaadin runs in the web browser as a JavaScript program and renders
the user interface components according to state data received from the server. For each server-
side component, there is a client-side widget, which renders the content of the particular component
type. The client-side engine and all the built-in client-side widgets of Vaadin have been pro-
grammed in Java with GWT, and compiled into JavaScript with the GWT Compiler. Developing
custom Vaadin components and integrating existing GWT widgets is easy, requiring only Java
programming.

You can start with any existing GWT widget or design a new one. To integrate it with Vaadin,
you have to implement the Paintable interface of the client-side engine that provides the AJAX
communications with the server-side application.You can find the interface in the com.vaadin.ter-
minal.gwt.client package. You can also choose to extend an existing Vaadin client-side widget
in the com.vaadin.terminal.gwt.client.ui package. You can find the source code for the built-in
widgets in the Vaadin JAR.

To use custom widgets, you need to define a widget set that inherits the DefaultWidgetSet,
which contains the standard widgets, or some other widget set.You can also define stylesheets
for custom widgets. A widget set is defined in a GWT Module Descriptor.

For the server-side API, you need a server-side component that can serialize and deserialize its
attributes to and from the client-side counterpart. A server-side component usually inherits the
AbstractComponent or AbstractField class and implements either the paintContent() or
the more generic paint() method to serialize its data to the client. These methods "paint" the
component in the browser by generating a UIDL element that is sent to the client. The UIDL
element contains all the relevant information about the component, and you can easily add your
own attributes to it. Upon reception of UIDL messages, the client-side engine creates or updates
user interface widgets as needed.

To summarize, you need to do the following:

• Implement the Paintable interface of Vaadin in a GWT widget

• Define a widget set that extends an existing widget set with the new widget

• Create a default CSS style sheet for the widget set (optional)

Overview248

Developing New Components

• Create a GWT Module Descriptor (.gwt.xml) that defines the widget set and the op-
tional style sheet

• Create a server-side counterpart for the client-side widget

Figure 11.1, “Color Picker Package” illustrates the folder hierarchy of the Color Picker example
used in this chapter.

Figure 11.1. Color Picker Package

The ColorPickerApplication.java application provides an example of using the custom
ColorPicker component. The source code for the server-side implementation of the component
is located in the same folder.

The GWT Compiler takes the root folder of the client-side source code as its argument and
compiles all the Java source files into JavaScript. A client-side widget set must therefore be
contained within a single package, which in the Color Picker example is the
com.vaadin.demo.colorpicker.gwt.client package. The inherited widget set and an
optional style sheet are specified in a .gwt.xml descriptor for the GWT Compiler. In the example,
the client-side widget is split in two classes: GwtColorPicker, a pure GWT widget, and VCol-
orPicker that provides the integration with Vaadin. The default style sheet for the widget set is
defined in the descriptor and located in the gwt/public/colorpicker/styles.css subfolder.

11.2. Doing It the Simple Way in Eclipse

While you can develop new widgets with any IDE or even without, you may find Eclipse and the
Vaadin Plugin for it useful, as it automates all the basic routines of widget development, most
importantly the creation of new widgets.

11.2.1. Creating a Widget

You can create a new widget as follows:

249Doing It the Simple Way in Eclipse

Developing New Components

1. Select File New Other... in the main menu or right-click the Project Explorer and
select New Other... or press Ctrl+N to open the New dialog.

2. In the first, Select a wizard step, select Vaadin Vaadin Widget and click Next.

3. In the New Component wizard step, fill out the target folder, package, and class inform-
ation.

Source folder The root folder of the entire source tree. The default
value is the default source tree of your project, and you
should normally leave it unchanged unless you have a
different project structure.

Package The parent package under which the new server-side
component should be created. If it does not already
exist, the .gwt.xml descriptor that defines the widget
set will be created under the widgetset subpackage

Creating a Widget250

Developing New Components

under this package, and the actual new widget under
the widgetset.client.ui subpackage.

Name The class name of the new server-side component.
The name of the client-side widget stub (if you have its
creation enabled) will be the same but with "V-" prefix,
for example, VMycomponent. You can rename the
classes afterwards.

Superclass The superclass of the server-side component. It is Ab-
stractComponent by default, but com.vaadin.ui.Ab-
stractField or com.vaadin.ui.AbstractSelect are
other commonly used superclasses. If you are extend-
ing an existing component, you should select it as the
superclass.You can easily change the superclass later.

Build client-side stub When this option is selected (strongly recommended),
the wizard will build a stub for the client-side widget.

Finally, click Finish to create the new component.

The wizard will:

• Create a server-side component stub in the base package

• Create a GWT module descriptor file (.gwt.xml) in the widgetset package under
the base package

• Create a client-side widget stub in the widgetset.client.ui package under the
base package

• Modify the web.xml deployment descriptor to specify the widget set class name para-
meter for the application.

The structure of the server-side component and the client-side widget, and the serialization of
component state between them, is explained in the subsequent sections of this chapter.

To compile the widget set, click the Compile widget set button in the Eclipse toolbar. See Sec-
tion 11.2.2, “Recompiling the Widget Set” for details. After the compilation finishes, you should
be able to run your application as before, but using the new widget set. The compilation result is
written under the WebContent/VAADIN/widgetsets folder. When you need to recompile the
widget set in Eclipse, see Section 11.2.2, “Recompiling the Widget Set”. For detailed information
on compiling widget sets, see Section 11.8.4, “Compiling GWT Widget Sets”.

The following setting is inserted in the web.xml deployment descriptor to enable the widget set:

<init-param>
 <description>Application widgetset</description>
 <param-name>widgetset</param-name>

<param-value>com.example.myproject.widgetset.MyprojectApplicationWidgetset</param-value>
</init-param>

You can refactor the package structure if you find need for it, but GWT compiler requires that the
client-side code must always be stored under a package named "client".

251Creating a Widget

Developing New Components

11.2.2. Recompiling the Widget Set

After you edit a widget, you need to recompile the widget set. Vaadin automatically suggests to
compile the widget set every time you save a client-side source file. If this gets annoying, you
can disable the automatic recompilation from the Vaadin category in project settings, by selecting
the Suspend automatic widgetset builds option.

You can recompile the widget set manually by clicking the Compile widgetset button in the Eclipse
toolbar, shown in Figure 11.2, “The Compile Widgetset Button in Eclipse Toolbar” while the
project is open and selected.

Figure 11.2.The Compile Widgetset Button in Eclipse Toolbar

The compilation progress is shown in the Console panel in Eclipse, as illustrated in Figure 11.3,
“Recompiling a Widget Set”.

The compilation output is written under the WebContent/VAADIN/widgetsets folder, in a
widget set specific folder.

You can speed up the compilation significantly by compiling the widget set only for your browser
during development. The generated .gwt.xml descriptor stub includes a disabled element that
specifies the target browser. See Section 11.5, “Defining a Widget Set” for more details on setting
the user-agent property.

For detailed information on compiling widget sets, see Section 11.8.4, “Compiling GWT Widget
Sets”. Should you compile a widget set outside Eclipse, you need to refresh the project by selecting
it in Project Explorer and pressing F5.

11.2.3. Plugin Related Project Settings

When you have the Eclipse Plugin installed, the project settings will have a Vaadin section, where
you can select the Vaadin version and make settings to widget set building. The settings window
is shown in Figure 11.4, “Plugin Related Project Settings”.

Recompiling the Widget Set252

Developing New Components

Figure 11.3. Recompiling a Widget Set

Figure 11.4. Plugin Related Project Settings

Suspend automatic widgetset
builds

Normally, when this option is unselected, Eclipse will
suggest to rebuild the widget set automatically every
time you save a widget source file. If this gets annoying,
you can suspend the automatic building by enabling
this option. You then have to click the widget set build
button in the Eclipse toolbar.

JavaScript style Normally, GWT outputs obfuscated JavaScript to make
the code less readable. The main purpose is to protect
the intellectual property, but the obfuscated code is also
more compact, reducing the time required to load and
parse the files. The Obfuscated mode is the default.
The other output types are Pretty, which makes the
JavaScript more readable to a human, and Detailed,
which is more detailed than the pretty option with, for
example, more descriptive variable names.

253Plugin Related Project Settings

Developing New Components

Compiler threads You can set the GWT Compiler to use a specific num-
ber of threads to use the available processor cores.

Create development mode
launch

Clicking this button generates a launch configuration
for starting the application in GWT Development Mode.
You can use the launch configuration to debug client-
side code. See Section 11.8.6, “GWT Development
Mode” for detailed information on the GWT Develpment
Mode launch configuration.

The plugin will automatically download the GWT version compatible with the selected Vaadin
package.

11.3. Google Web Toolkit Widgets

Let us take a look into how you create custom GWT widgets.The authoritative sources for devel-
oping with GWT are the Google Web Toolkit Developer Guide and Google Web Toolkit Class
Reference, both available from the GWT website.

Google Web Toolkit offers a variety of ways for creating custom widgets. The easiest way is to
create composite widgets by grouping existing basic widgets and adding some interaction logic
to them.You can also develop widgets using the lower-level Java interfaces used by the standard
GWT widgets or the really low-level JavaScript interfaces.

A custom GWT widget needs to find its place in the GWT class hierarchy. Figure 11.5, “GWT
Widget Base Class Hierarchy” illustrates the abstract base classes for GWT widgets.

Figure 11.5. GWT Widget Base Class Hierarchy

Each of the base classes offers various services for different types of widgets. Many custom
widgets, such as the Color Picker example below, extend the Composite class to compose the
widget from existing GWT widgets.The other base classes offer various features useful for different
kinds of widgets. You can also choose to extend an existing GWT widget, as we have done for
most of the standard user interface components of Vaadin, or to extend a Vaadin widget.

Google Web Toolkit Widgets254

Developing New Components

11.3.1. Extending a Vaadin Widget

Extending an existing Vaadin widget is an easy way to add features, such as advanced client-
side validation, to existing standard components. Just extend both the server-side component
and the client-side widget, and add the needed properties and other functionality.

A few guidelines apply for extending existing components:

• Do not redefine the client or id member variables in the subclass.They should always
be defined as protected and set by the base class where they are defined in
updateFromUIDL().

• Call super() as the first thing in the constructor.

• In updateFromUIDL():

• Do not call client.updateComponent() as it is already called in the superclass.
If the superclass calls it in an undesired way, you have to reimplement the entire
functionality and not call super.updateFromUIDL() at all.

• Call super.updateFromUIDL(uidl, client), unless you specifically want to
change the behaviour of the superclass implementation of the method. In such case,
you have to set the client and id yourself.

• Be careful about overloading superclass handlers, etc.

11.3.2. Example: A Color Picker GWT Widget

In the following example, we present a custom widget composited from the HorizontalPanel,
Grid, Button, and Label GWT widgets. This widget does not include any Vaadin integration with
the server-side code, which will be added in a separate integration widget later in this chapter.

package com.vaadin.demo.colorpicker.gwt.client.ui;

import com.google.gwt.event.dom.client.*;
import com.google.gwt.user.client.*;
import com.google.gwt.user.client.ui.*;

/**
 * A regular GWT component without integration with Vaadin.
 */
public class GwtColorPicker extends Composite
 implements ClickHandler {

 // The currently selected color name to give client-side
 // feedback to the user.
 protected Label currentcolor = new Label();

 public GwtColorPicker() {
 // Create a 4x4 grid of buttons with names for 16 colors
 final Grid grid = new Grid(4, 4);
 final String[] colors = new String[] { "aqua", "black",
 "blue", "fuchsia", "gray", "green", "lime",
 "maroon", "navy", "olive", "purple", "red",
 "silver", "teal", "white", "yellow" };
 int colornum = 0;
 for (int i = 0; i < 4; i++) {
 for (int j = 0; j < 4; j++, colornum++) {
 // Create a button for each color
 Button button = new Button(colors[colornum]);

255Extending a Vaadin Widget

Developing New Components

 button.addClickHandler(this);

 // Put the button in the Grid layout
 grid.setWidget(i, j, button);

 // Set the button background colors.
 DOM.setStyleAttribute(button.getElement(),
 "background",
 colors[colornum]);

 // For dark colors, the button label must be
 // in white.
 if ("black navy maroon blue purple"
 .indexOf(colors[colornum]) != -1) {
 DOM.setStyleAttribute(button.getElement(),
 "color", "white");
 }
 }
 }

 // Create a panel with the color grid and currently
 // selected color indicator.
 final HorizontalPanel panel = new HorizontalPanel();
 panel.add(grid);
 panel.add(currentcolor);

 // Set the class of the color selection feedback box
 // to allow CSS styling. We need to obtain the DOM
 // element for the current color label. This assumes
 // that the <td> element of the HorizontalPanel is
 // the parent of the label element. Notice that the
 // element has no parent before the widget has been
 // added to the horizontal panel.
 final Element panelcell =
 DOM.getParent(currentcolor.getElement());
 DOM.setElementProperty(panelcell, "className",
 "colorpicker-currentcolorbox");

 // Set initial color. This will be overridden with the
 // value read from server.
 setColor("white");

 // Composite GWT widgets must call initWidget().
 initWidget(panel);
 }

 /** Handles click on a color button. */
 @Override
 public void onClick(ClickEvent event) {
 // Use the button label as the color name to set
 setColor(((Button) event.getSource()).getText());
 }

 /** Sets the currently selected color. */
 public void setColor(String newcolor) {
 // Give client-side feedback by changing the color
 // name in the label.
 currentcolor.setText(newcolor);

 // Obtain the DOM elements. This assumes that the <td>
 // element of the HorizontalPanel is the parent of the
 // caption element.
 final Element caption = currentcolor.getElement();
 final Element cell = DOM.getParent(caption);

 // Give feedback by changing the background color
 DOM.setStyleAttribute(cell, "background", newcolor);

Example: A Color Picker GWT Widget256

Developing New Components

 DOM.setStyleAttribute(caption, "background", newcolor);
 if ("black navy maroon blue purple"
 .indexOf(newcolor) != -1)
 DOM.setStyleAttribute(caption, "color", "white");
 else
 DOM.setStyleAttribute(caption, "color", "black");
 }
}

This example demonstrates one reason for making a custom widget: it provides client-side
feedback to the user in a way that would not be possible or at least practical from server-side
code. Server-side code can only select a static CSS style or a theme, while on the client-side we
can manipulate styles of HTML elements flexibly. Notice that manipulation of the DOM tree de-
pends somewhat on the browser. In this example, the manipulation should be rather compatible,
but in some cases there could be problems.Thd standard GWT and Vaadin widgets handle many
of such compatibility issues, but when doing low-level operations such as DOM manipulation,
you may need to consider browser compatibility.

The structure of the DOM tree depends on how GWT renders its widgets in a specific browser.
It is also not guaranteed that the rendering does not change in future releases of GWT. You
should therefore make as few assumptions regarding the DOM structure as possible. Unfortunately,
GWT does not provide a way to set the style of, for example, cells of layout elements. The above
example therefore assumes that the Grid is a table and the <button> elements are inside <td>
elements of the table. See Section 11.3.3, “Styling GWT Widgets” below for more details on
compatibility.

The widget will look as shown in Figure 11.6, “Color Picker Widget Without Styling”.

Figure 11.6. Color Picker Widget Without Styling

As you may notice, the widget will look rather uninviting without CSS styling. We will next look
how to define a default style for a GWT widget.

11.3.3. Styling GWT Widgets

GWT renders its widgets in the DOM tree of the web browser as HTML elements.Therefore, you
can define their style with Cascading Style Sheets (CSS), just as in HTML. The GWT Compiler
supports packaging style sheets from the source package tree. The style sheet is defined in the
.gwt.xml GWT module descriptor file (see Section 11.5, “Defining a Widget Set” for details).

<!-- Default theme for the widget set. -->
<stylesheet src="colorpicker/styles.css"/>

The style sheet path is relative to the public folder under the folder containing the .gwt.xml
file. In Eclipse, you can add the folders as regular folders instead of Java packages.

Let us define the colorpicker/styles.css as follows.

/* Set style for the color picker table.
 * This assumes that the Grid layout is rendered

257Styling GWT Widgets

Developing New Components

 * as a HTML <table>. */
table.example-colorpicker {
 border-collapse: collapse;
 border: 0px;
}

/* Set color picker button style.
 * This does not make assumptions about the HTML
 * element tree as it only uses the class attributes
 * of the elements. */
.example-colorpicker .gwt-Button {
 height: 60px;
 width: 60px;
 border: none;
 padding: 0px;
}

/* Set style for the right-hand box that shows the
 * currently selected color. While this may work for
 * other implementations of the HorizontalPanel as well,
 * it somewhat assumes that the layout is rendered
 * as a table where cells are <td> elements. */
.colorpicker-currentcolorbox {
 width: 240px;
 text-align: center;
 /* Must be !important to override GWT styling: */
 vertical-align: middle !important;
}

The stylesheet above makes some assumptions regarding the HTML element structure. First, it
assumes that the Grid layout is a table. Second, the custom class name,
colorpicker-currentcolorbox, of the right-hand HorizontalPanel cell was inserted in the
DOM representation of the widget in the GwtColorPicker implementation. Styling a button makes
less assumptions. Using only class names instead of specific element names may make a
stylesheet more compatible if the HTML representation is different in different browsers or changes
in the future.

Figure 11.7. Color Picker Widget With Styling

11.4. Integrating a GWT Widget

Integration of GWT widgets with Vaadin can be done in two basic ways: by modifying the original
widget or by extending it and adding the integration code in the subclass.The latter way is actually

Integrating a GWT Widget258

Developing New Components

the way the standard client-side components in Vaadin are done: they simply inherit the corres-
ponding standard GWT widgets. For example, VButton inherits GWT Button.

The client-side integration code has the following tasks:

• Receive component state from server

• Send state changes caused by user interaction to server

• Manage CSS style class

The integration is broken down in the following sections into server-client deserialization done in
updateFromUIDL() and client-server serialization done with updateVariable().The complete
example of the integration of the Color Picker widget is given at the end of this section.

If you are using the Eclipse IDE, the Vaadin Plugin for Eclipse allows easy creation of a stub for
a new widget, alongside its server-side component. It also manages the widget set for you
automatically. See Section 11.2.1, “Creating a Widget” for detailed instructions.

Naming Conventions

While the use of Vaadin does not require the use of any particular naming conventions
for GWT widgets, some notes regarding naming may be necessary. Even though
Java package names make it possible to use identical class names in the same
context, it may be useful to try to make them more distinctive to avoid any inconveni-
ence. GWT uses plain names for its standard widgets, such as Button.The standard
components of Vaadin use identical or similar names, but that does not cause any
inconvenience, because the GWT widgets and server-side components of Vaadin
are never used in the same context. For the client-side components of Vaadin, we
use the "V" prefix, for example VButton. In the Color Picker example, we use
GwtColorPicker for the GWT widget, VColorPicker for the integration implementa-
tion, and ColorPicker for the server-side component.You may wish to follow similar
conventions.

Notice that the naming convention changed when IT Mill Toolkit was renamed as
Vaadin.The prefix for client-side widgets in IT Mill Toolkit was I, which was changed
to V in Vaadin. Similarly, CSS style name prefixes were changed from i- to v-.

11.4.1. Deserialization of Component State from Server

To receive data from the server, a widget must implement the Paintable interface and its
updateFromUIDL() method.The idea is that the method "paints" the user interface description
by manipulating the HTML tree on the browser.Typically, when using composite GWT components,
most of the DOM tree manipulation is done by standard GWT widgets.

An implementation of the updateFromUIDL() method must include some routine tasks:

• Call updateComponent() and return if it succeeds

• Manage the component identifier

• Manage a reference to the ApplicationConnection object. The widget needs to know
it to be able to initiate a server request when a browser event occurs.

259Deserialization of Component State from Server

Developing New Components

The latter two of these tasks are not needed if the widget does not handle any user input that
needs to be sent to server.

The following excerpt provides a skeleton for the updateFromUIDL() method and shows how
the component identifier and connection object reference are managed by a widget.

 String uidlId;
 ApplicationConnection client;

 ...

 public void updateFromUIDL(UIDL uidl,
 ApplicationConnection client) {
 if (client.updateComponent(this, uidl, true))
 return;

 this.client = client;
 uidlId = uidl.getId();

 ...
 }

The updateComponent() call has several functions important for different kinds of components.
It updates various default attributes, such as disabled, readonly, invisible, and (CSS)
style attributes. If the manageCaption argument is true, the call will also update the caption
of the component. By default, the caption is managed by the parent layout of the component.
Components, such as a Button, that manage the caption themselves, do not need management
of the caption.

The updateComponent() is also part of the transmutation mechanism that allows a single
server-side component to have alternative client-side implementations, based on its parameters.
For example, the Button server-side component can manifest either as a clickable VButton or
as a switchable VCheckBox widget on the client-side. If the parameters are changed, the client-
side widget can be replaced with another dynamically. Determination of the correct implementation
is done in a WidgetSet. If updateComponent() returns true, the client-side engine can attempt
to replace the implementation. For more details on the transmutation mechanism, see Section 11.5,
“Defining a Widget Set”.

The component identifier is used when the component needs to serialize its updated state to
server.The reference to the application connection manager is needed to make the server request.
If a component does not have any state changes that need to be sent to the server, management
of the variables is not needed. See Section 11.4.2, “Serialization of Component State to Server”
below for further details.

The design of the client-side framework of Vaadin, because the Paintable is an interface and
can not store any references. Having an API layer between GWT and custom widgets would be
a much more complicated solution.

11.4.2. Serialization of Component State to Server

User input is handled in GWT widgets with events.

User input is passed to the server using the updateVariable() method. If the immediate
parameter is false, the value is simply added to a queue to be sent to the server at next AJAX
request. If the argument is true, the AJAX request is made immediately, and will include all
queued updates to variables. The immediate argument is described in more detail below.

Serialization of Component State to Server260

Developing New Components

if (uidl_id == null || client == null)
 return;

client.updateVariable(uidl_id, "myvariable",
 newvalue, immediate);

The client of the above example is a reference to the ApplicationConnection object that
manages server requests. The uidl_id argument is the UIDL identifier obtained during a
updateFromUIDL() call with uidl.getId() method.

The updateVariable() method has several varieties to send variables of different types.

Table 11.1. UIDL Variable Types

UIDL TypeDescriptionType

sString object.String

iNative integer value.int

lNative long integer value.long

fNative single-precision floating-
point value.

float

dNative double-precision float-
ing-point value.

double

bNative boolean value.boolean

aArray of object data. The
toString() method is used

Object[]

to serialize each of the objects.
The content strings are es-
caped with escapeString(),
to allow characters such as
quotes.

This serialization mechanism is intended to be as simple as possible in most cases, when the
user input is typically just one state variable, while also allowing the serialization of more complex
data, if necessary.

Immediateness

Server-side components that inherit AbstractComponent have an immediate attribute, set
with setImmediate(). This attribute dictates whether a component makes a server request
immediately when its state changes, or only afterwards. For example, there is no need to send
the contents of a "Username" TextField before the "Login" button has been clicked. On the other
hand, the server can set the TextField as immediate to receive changes for example when the
component loses focus.

Most widgets should support immediateness by receiving the immediate attribute from the UIDL
message that renders the widget.The following example is extracted from the VTextField imple-
mentation.

// Store the immediate attribute in a member variable
private boolean immediate = false;
...

public void updateFromUIDL(UIDL uidl,
 ApplicationConnection client) {

261Serialization of Component State to Server

Developing New Components

 if(client.updateComponent(this, uidl, true))
 return;

 // Receive and store the immediate attribute
 immediate = uidl.getBooleanAttribute("immediate");
 ...
}

public void onChange(Widget sender) {
 if(client != null && id != null) {
 // Use the stored immediate attribute to say
 // whether or not make the server request
 // immediately.
 client.updateVariable(id, "text", getText(),
 immediate);
 }
}

In some widgets, the immediate attribute would have little meaning, and in fact an accidental
false value would cause undesired behaviour. For example, a button is always expected to
send a request to the server when it is clicked. Such widgets can simply use true for the
immediate argument in updateVariable(). For example, VButton does as follows:

public void onClick(Widget sender) {
 if (id == null || client == null)
 return;
 client.updateVariable(id, "state", true,
 /* always immediate */ true);
}

11.4.3. Example: Integrating the Color Picker Widget

Below is a complete example of an integration component for the Color Picker example. It
demonstrates all the basic tasks needed for the integration of a GWT widget with its server-side
counterpart component.

import com.vaadin.terminal.gwt.client.ApplicationConnection;
import com.vaadin.terminal.gwt.client.Paintable;
import com.vaadin.terminal.gwt.client.UIDL;

public class VColorPicker extends GwtColorPicker
 implements Paintable {

 /** Set the CSS class name to allow styling. */
 public static final String CLASSNAME = "example-colorpicker";

 /** Component identifier in UIDL communications. */
 String uidlId;

 /** Reference to the server connection object. */
 ApplicationConnection client;

 /**
 * The constructor should first call super() to initialize
 * the component and then handle any initialization relevant
 * to Vaadin.
 */
 public VColorPicker() {
 // The superclass has a lot of relevant initialization
 super();

 // This method call of the Paintable interface sets
 // the component style name in DOM tree
 setStyleName(CLASSNAME);
 }

Example: Integrating the Color Picker Widget262

Developing New Components

 /**
 * This method must be implemented to update the client-side
 * component from UIDL data received from server.
 *
 * This method is called when the page is loaded for the
 * first time, and every time UI changes in the component
 * are received from the server.
 */
 public void updateFromUIDL(UIDL uidl,
 ApplicationConnection client) {
 // This call should be made first. Ensure correct
 // implementation, and let the containing layout
 // manage the caption, etc.
 if (client.updateComponent(this, uidl, true))
 return;

 // Save reference to server connection object to be
 // able to send user interaction later
 this.client = client;

 // Save the UIDL identifier for the component
 uidlId = uidl.getId();

 // Get value received from server and actualize it
 // in the GWT component
 setColor(uidl.getStringVariable("colorname"));
 }

 /**
 * Override the method to communicate the new value
 * to server.
 **/
 public void setColor(String newcolor) {
 // Ignore if no change
 if (newcolor.equals(currentcolor.getText()))
 return;

 // Let the original implementation to do
 // whatever it needs to do
 super.setColor(newcolor);

 // Updating the state to the server can not be done
 // before the server connection is known, i.e., before
 // updateFromUIDL() has been called.
 if (uidlId == null || client == null)
 return;

 // Communicate the user interaction parameters to server.
 // This call will initiate an AJAX request to the server.
 client.updateVariable(uidlId, "colorname",
 newcolor, true);
 }
}

11.5. Defining a Widget Set

The client-side components, or in GWT terminology, widgets, must be made usable in the client-
side GWT application by defining a widget set. A widget set is actually a GWT application and
needs to be defined in the GWT module descriptor as the entry point of the client-side engine.
A GWT module descriptor is an XML file with extension .gwt.xml.

If you are using the Eclipse IDE, the New Vaadin Widget wizard will automatically create the
GWT module descriptor. See Section 11.2.1, “Creating a Widget” for detailed instructions.

263Defining a Widget Set

Developing New Components

The following example of ColorPickerWidgetSet.gwt.xml shows the GWT module descriptor
of the Color Picker application. We also define the default stylesheet for the color picker widget,
as described above in Section 11.3.3, “Styling GWT Widgets”.

<module>
 <!-- Inherit the default widget set -->
 <inherits name="com.vaadin.terminal.gwt.DefaultWidgetSet" />

 <!-- The default theme of this widget set -->
 <stylesheet src="colorpicker/styles.css"/>
</module>

Compiling widget sets takes considerable time.You can reduce the compilation time significantly
by compiling the widget sets only for your browser, which is useful during development.You can
do this by setting the user.agent property in the .gwt.xml GWT module descriptor.

<set-property name="user.agent" value="gecko1_8"/>

The value attribute should match your browser. The browsers supported by GWT depend on
the GWT version, below is a list of browser identifiers supported by GWT 2.0.

Table 11.2. GWT User Agents

NameIdentifier

Mozilla Firefox 1.5 and latergecko1_8

Mozilla Firefox 1.0 (obsolete)gecko

Internet Explorer 6ie6

Internet Explorer 8ie8

Apple Safari and other Webkit-based browsers
including Google Chrome

safari

Operaopera

For more information about the GWT Module XML Format, please see Google Web Toolkit De-
veloper Guide.

11.6. Server-Side Components

Server-side components provide the API for user applications to build their user interface. Many
applications do not ever need to bother with the client-side implementation of the standard com-
ponents, but those that use their own GWT widgets need to have corresponding server-side
components.

If you are using the Vaadin Plugin for Eclipse, the wizard for creating new widgets will also create
a stub of the server-side component for you. See Section 11.2.1, “Creating a Widget” for detailed
instructions.

A server-side component has two basic tasks: it has to be able to serialize its state variables to
the corresponding client-side component, and deserialize any user input received from the client.
Many of these tasks are taken care of by the component framework.

11.6.1. Binding to the Client-Side Widget

A server-side component needs to be bound to a specific client-side widget. This is done with a
special annotation. For example, for the ColorPicker server-side component, we define:

Server-Side Components264

Developing New Components

import com.vaadin.demo.colorpicker.widgetset.client.ui.VColorPicker;

@ClientWidget(VColorPicker.class)
public class ColorPicker extends AbstractField {
 ...

The annotation is read during the compilation of the widget with the GWT Compiler.The compiler
invokes a WidgetMapGenerator that reads the annotations from the compiled server-side
component classes. It is therefore necessary that the server-side components are compiled before
the client-side compilation, as noted in Section 11.8.4, “Compiling GWT Widget Sets”.

The serialization is broken down into server-client serialization and client-server deserialization
in the following sections.We will also present the complete example of the server-side implement-
ation of the Color Picker component below.

11.6.2. Server-Client Serialization

The server-side implementation of a component must be able to serialize its data into a UIDL
message that is sent to the client.You need to override the paintContent() method, defined
in AbstractComponent.You should call the superclass to allow it to paint its data as well.

The data is serialized with the variants of the addAttribute() and addVariable() methods
for different basic data types.

The UIDL API offered in PaintTarget is covered in Section A.1, “API for Painting Components”.

11.6.3. Client-Server Deserialization

The server-side component must be able to receive state changes from the client-side widget.
This is done by overriding the changeVariables() method, defined in AbstractComponent.
A component should always call the superclass implementation in the beginning to allow it handle
its variables.

The variables are given as objects in the variables map, with the same key with which they
were serialized on the client-side. The object type is likewise the same as given for the particular
variable in updateVariable() in the client-side.

@Override
public void changeVariables(Object source, Map variables) {
 // Let superclass read any common variables.
 super.changeVariables(source, variables);

 // Sets the currently selected color
 if (variables.containsKey("colorname") && !isReadOnly()) {
 final String newValue = (String)variables.get("colorname");

 // Changing the property of the component will
 // trigger a ValueChangeEvent
 setValue(newValue, true);
 }
}

The above example handles variable changes for a field component inheriting AbstractField.
Fields have their value as the value property of the object. Setting the value with setValue(),
as above, will trigger a ValueChangeEvent, which the user of the component can catch with a
ValueChangeListener.

Contained components, such as components inside a layout, are deserialized by referencing
them by their paintable identifier or PID.

265Server-Client Serialization

Developing New Components

11.6.4. Example: Color Picker Server-Side Component

The following example provides the complete server-side ColorPicker component for the Color
Picker example. It has only one state variable: the currently selected color, which is stored as
the property of the component. Implementation of the Property interface is provided in the Ab-
stractField superclass of the component.The UIDL tag name for the component is colorpicker
and the state is communicated through the colorname variable.

package com.vaadin.demo.colorpicker;

import com.vaadin.demo.colorpicker.widgetset.client.ui.VColorPicker;
...

/**
 * Color picker for selecting a color from a palette.
 *
 * @author magi
 */
@ClientWidget(VColorPicker.class)
public class ColorPicker extends AbstractField {
 public ColorPicker() {
 super();
 setValue(new String("white"));
 }

 /** The property value of the field is a String. */
 @Override
 public Class<?> getType() {
 return String.class;
 }

 /** Set the currently selected color. */
 public void setColor(String newcolor) {
 // Sets the color name as the property of the component.
 // Setting the property will automatically cause
 // repainting of the component with paintContent().
 setValue(newcolor);
 }

 /** Retrieve the currently selected color. */
 public String getColor() {
 return (String) getValue();
 }

 /** Paint (serialize) the component for the client. */
 @Override
 public void paintContent(PaintTarget target)
 throws PaintException {
 // Superclass writes any common attributes in the
 // paint target.
 super.paintContent(target);

 // Add the currently selected color as a variable in
 // the paint target.
 target.addVariable(this, "colorname", getColor());
 }

 /** Deserialize changes received from the client. */
 @Override
 public void changeVariables(Object source, Map variables) {
 // Sets the currently selected color
 if (variables.containsKey("colorname") &&
 !isReadOnly()) {
 // Changing the property of the component will
 // trigger a ValueChangeEvent

Example: Color Picker Server-Side Component266

Developing New Components

 setValue((String) variables.get("colorname"), true);
 }
 }
}

11.7. Using a Custom Component

A custom component is used like any other Vaadin component. You will, however, need to
compile the client-side widget set with the GWT Compiler. See Section 11.8.4, “Compiling GWT
Widget Sets” for instructions on how to compile widget sets.

11.7.1. Example: Color Picker Application

The following server-side example application shows how to use the Color Picker custom widget.
The example includes also server-side feedback of the user input and changing the color selection
to show that the communication of the component state works in both directions.

package com.vaadin.demo.colorpicker;

import com.vaadin.data.Property.ValueChangeEvent;
import com.vaadin.data.Property.ValueChangeListener;
import com.vaadin.ui.*;
import com.vaadin.ui.Button.ClickEvent;

/**
 * Demonstration application that shows how to use a simple
 * custom client-side GWT component, the ColorPicker.
 */
public class ColorPickerApplication
 extends com.vaadin.Application {
 Window main = new Window("Color Picker Demo");

 /* The custom component. */
 ColorPicker colorselector = new ColorPicker();

 /* Another component. */
 Label colorname;

 public void init() {
 setMainWindow(main);
 setTheme("demo");

 // Listen for value change events in the custom
 // component, triggered when user clicks a button
 // to select another color.
 colorselector.addListener(new ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 // Provide some server-side feedback
 colorname.setValue("Selected color: " +
 colorselector.getColor());
 }
 });
 main.addComponent(colorselector);

 // Add another component to give feedback from
 // server-side code
 colorname = new Label("Selected color: " +
 colorselector.getColor());
 main.addComponent(colorname);

 // Server-side manipulation of the component state
 Button button = new Button("Set to white");
 button.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {

267Using a Custom Component

Developing New Components

 colorselector.setColor("white");
 }
 });
 main.addComponent(button);
 }
}

11.7.2. Web Application Deployment

Deployment of web applications that include custom components is almost identical to the normal
case where you use only the default widget set of Vaadin. The default case is documented in
Section 4.8.3, “Deployment Descriptor web.xml”. You only need to specify the widget set for
the application in the WebContent/WEB-INF/web.xml deployment descriptor.

If you use the Vaadin Plugin for Eclipse to create a new widget in your project, the plugin will
modify the deployment descriptor to use the custom widget set.

The following deployment descriptor specifies the Color Picker Application detailed in the previous
section.

<?xml version="1.0" encoding="UTF-8"?>
<web-app
 id="WebApp_ID"
 version="2.4"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>myproject</display-name>

 <servlet>
 <servlet-name>ColorPickerServlet</servlet-name>
 <servlet-class>
 com.vaadin.terminal.gwt.server.ApplicationServlet
 </servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>

com.vaadin.demo.colorpicker.ColorPickerApplication
 </param-value>
 </init-param>
 <init-param>
 <param-name>widgetset</param-name>
 <param-value>

com.vaadin.demo.colorpicker.widgetset.ColorPickerWidgetSet
 </param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>ColorPickerServlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

The project specific parameters are emphasized. Notice that the widget set name is not a file
name, but the base name for the ColorPickerWidgetSet.gwt.xml module descriptor.

The Eclipse Plugin will automatically generate the init-param parameter in the web.xml file
of your project when you create a new widget.

Web Application Deployment268

Developing New Components

As the project context root in the above example is myproject and the <url-pattern> is /*,
the URL for the application will be /myproject/. If you are using an URL pattern such as
/myapp/*, you need to make an additional mapping to map requests to /VAADIN/* context to
the same servlet. Otherwise the default widget set and built-in themes in Vaadin will be missing.

 <servlet-mapping>
 <servlet-name>Book of Vaadin Examples</servlet-name>
 <url-pattern>/VAADIN/*</url-pattern>
 </servlet-mapping>

11.8. GWT Widget Development

Development of new GWT widgets includes widget set definition (GWT Module Descriptor),
compiling the widgets and the Vaadin Client-Side Engine to JavaScript with the GWT Compiler,
and debugging the application in the GWT Development Mode.

You can use any IDE for developing GWT components for Vaadin. The examples given in this
book are for the Eclipse IDE. It allows easy launching of the GWT Development Mode, debugging,
and running an external compiler for GWT widget sets.

11.8.1. Creating a Widget Project

Creation of a Vaadin project that uses the default widget set was covered in Section 2.3, “Your
First Project with Vaadin”. Developing custom widgets creates a number of additional requirements
for a project.

Let us review the steps required for creating an application that contains custom widgets. Details
for each step are given in the subsequent sections.

1. Create a new Vaadin project (for Eclipse, see Section 2.3.1)

2. Copy or import the GWT JARs to the project and add them to the class path (Sec-
tion 11.8.2)

3. Write the source code for the client-side widgets, their server-side counterparts, and
the application (Section 11.8.3)

4. Write the web.xml Deployment Descriptor for the web application

• Define the widget set used in the application (Section 11.7.2)

5. Compile the widget set to JavaScript runtime with GWT Compiler (Section 11.8.4)

6. Deploy the project to an application server (for Eclipse and Tomcat see Section 2.3.3)

7. Either:

a. Open a web browser to use the web application.

b. Open a web browser in GWT Development Mode to debug the client-side widget
code. (Section 11.8.6)

The contents of a ready widget development project are described in Section 11.8.5, “Ready to
Run”.

269GWT Widget Development

Developing New Components

The Vaadin Plugin for Eclipse makes the creation of application custom widgets as well as the
application projects easy by taking care of all the above steps (except deployment), so if you use
it, please see Section 11.2, “Doing It the Simple Way in Eclipse” for detailed instructions.

11.8.2. Importing GWT Installation Package

You will need to include the Google Web Toolkit in your project to develop custom widgets. You
can download it from the GWT website - just make sure the version is compatible with the version
of Vaadin that you use. The package includes precompiled libraries and applications for the
specific platform of the installation.To use the libraries, you need to configure them in the classpath
of your project as described below.

You can copy or import either the entire GWT directory or just the GWT JARs to your project.

If you use Eclipse and copy the GWT directory or the libraries to the project with system tools,
remember to select your project folder and press F5 to refresh the project. You can also import
the directory as follows (importing the JARs is similar):

1. Right-click on the project folder in Project Explorer and select Import Import....

2. From the Import dialog, select General File System and click Next.

3. Click Browse button of the "From directory" field and browse to the parent directory
of the GWT installation directory. Click Ok in the file selection dialog.

4. Select the gwt entry in the list box for importing.

5. In the "Into folder" field, enter myproject/gwt. (If you do not set this, all the contents
of the gwt directory will be imported directly below the root directory of the project which
is undesirable.)

6. Click Finish.

You must include the GWT libraries in the classpath of the project. If using Eclipse, right-click on
the project folder in the Project Explorer in Eclipse and select Properties. Select Java Build
Path Libraries.

11.8.3. Writing the Code

Guidelines for the Project Structure

The project structure is otherwise free, but if you use the build script described in Section 11.8.4,
“Compiling GWT Widget Sets” or configure the GWT Development Mode, as described in Sec-
tion 11.8.6, “GWT Development Mode”, the examples assume that source files are located under
the WebContent/WEB-INF/src folder.

We recommend that the name for the package containing the widget set is widgetset, but this
is not required. GWT does, however, require that the client-side code is written under a client
package and any stylesheets are located under a public directory (not necessarily a package)
under the package containing the .gwt.xml descriptor.

See Section 11.8.5, “Ready to Run” for an example project structure.

Importing GWT Installation Package270

Developing New Components

Importing the ColorPicker Demo

If you want to use the Color Picker application as an application skeleton, you need to import it
under the source folder.

1. Right-click on the source folder and select Import.

2. In the Import dialog, select General File System and click Next.

3. Browse to WebContent/WEB-INF/src/com/vaadin/demo/colorpicker/ and
click Ok button in the Import from directory dialog.

4. I n t h e I n t o f o l d e r f i e l d , e n t e r
myproject/WebContent/WEB-INF/src/com/vaadin/demo/colorpicker.

5. Check the colorpicker entry in the list box.

6. Click Finish.

This will import the directory as com.vaadin.demo.colorpicker package. If you want to use it as
a skeleton for your own project, you should refactor it to some other name. Notice that you will
need to refactor the package and application name manually in the web.xml and .gwt.xml
descriptor files.

11.8.4. Compiling GWT Widget Sets

You need to compile the Vaadin Client-Side Engine and your custom widget set to JavaScript
with the GWT Compiler. The easiest way is to use the Vaadin Plugin for Eclipse, it has a toolbar
button that allows you to compile the widget set. See Section 11.2.2, “Recompiling the Widget
Set” for instructions.

If you need to use Ant for compiling a widget set, you can find a script template at the URL ht-
tps://vaadin.com/download/misc/build-widgetset.xml.You can copy the build script to your project
and, once configured, enter:

$ ant -f build-widgetset.xml

To configure the build script, you need to set the paths in the "configure" target and the widget
set class name in the "compile-widgetset" target to suit your project.

You can launch the build script from Eclipse, by right-clicking the script in Package Explorer and
selecting Run As Ant Build. Progress of the compilation is shown in the Console window.

After compilation, refresh the project by selecting it and pressing F5. This makes Eclipse scan
new content in the file system and become aware of the output of the compilation in the
WebContent/VAADIN/widgetsets/ directory. If the project is not refreshed, the JavaScript
runtime is not included in the web application and running the application will result in an error
message such as the following:

Requested resource
[VAADIN/widgetsets/com.vaadin.demo.colorpicker.gwt.ColorPickerWidgetSet/com.vaadin.demo.colorpicker.gwt.ColorPickerWidgetSet.nocache.js]
 not found from filesystem or through class loader. Add widgetset and/or theme JAR to
your classpath or add files to WebContent/VAADIN folder.

Compilation with GWT is required also initially when using the GWT Development Mode, which
is described in Section 11.8.6, “GWT Development Mode”.The compilation with the GWT Compiler
must be done at least once, as it provides files that are used also by the GWT Development

271Compiling GWT Widget Sets

Developing New Components

https://vaadin.com/download/misc/build-widgetset.xml
https://vaadin.com/download/misc/build-widgetset.xml

Mode, even though the browser runs the GWT application in Java Virtual Machine instead of
JavaScript.

Warning

Because GWT supports a slightly reduced version of Java, GWT compilation can
produce errors that do not occur with the Java compiler integrated in the Eclipse IDE.

Also notice that client-side compilation loads the server-side classes (to find the @ClientWidget
annotations) and, as a side effect, executes any static code blocks in the classes, even in any
non-component classes such as the application class. This could cause unexpected behaviour
during the compilation.

Compiling a Custom Widget Set

If you wish to use the build script to compile your own widget sets, open it in an editor. The build
script contains some instructions in the beginning of the file.

First, you need to make some basic configuration in the configure target:

<target name="configure">
 <!-- Path from this file to the project root -->
 <property name="base"
 value="../../../" />

 <!-- Location of GWT distribution -->
 <property name="gwt-location"
 value="${base}gwt" />

 <!-- Location of Vaadin JAR -->
 <property name="vaadin-jar-location"
 value="${base}WebContent/WEB-INF/lib/vaadin-6.3.3.jar"/>

 <!-- Location of project source code -->
 <property name="src-location"
 value="${base}WebContent/WEB-INF/src" />

 <!-- Target where to compile server-side classes -->
 <property name="server-side-destination"
 value="${base}WebContent/WEB-INF/classes"/>

 <!-- Target where to compile the widget set -->
 <property name="client-side-destination"
 value="${base}WebContent/VAADIN/widgetsets" />
</target>

You also need to define the widget set in the configure-widgetset target:

<!-- NOTE: Modify this example to compile your own widgetset -->
<target name="configure-widgetset">

 <!-- Name of the widget set -->
 <property name="widgetset"
 value="com.vaadin.demo.colorpicker.gwt.ColorPickerWidgetSet"/>

The widget set class name must match the package and the file name of the .gwt.xml descriptor,
without the extension.

You can use the compile-widgetset target as it is, or as a template for your own configuration:

<!-- Build the widget set. -->
<target name="compile-widgetset"

Compiling GWT Widget Sets272

Developing New Components

 depends="compile-server-side, generate-widgetset">
 <echo>Compiling ${widgetset}...</echo>

 <java classname="com.google.gwt.dev.Compiler"
 failonerror="yes" fork="yes" maxmemory="256m">
 <arg value="-war" />
 <arg value="${client-side-destination}" />
 <arg value="${widgetset}" />
 <jvmarg value="-Xss1024k"/>
 <jvmarg value="-Djava.awt.headless=true"/>
 <classpath>
 <path refid="compile.classpath"/>
 </classpath>
 </java>
</target>

Notice that the server-side must be compiled before the client-side and the compiled server-side
classes must be included in the class path for the GWT Compiler. The reason is that the annota-
tions that define the component-to-widget mappings are read from the class files during the GWT
compilation.

Google Web Toolkit Version

You must use a version of GWT that is compatible with the version of Vaadin you
are using. If you use the Vaadin Plugin for Eclipse, it automatically downloads a GWT
version that matches the currently used Vaadin version.

Java Stack Overflow Problems

The -Xss parameter for the Java process may be necessary if you experience stack
overflow errors with the default stack size. They occur especially with GWT 1.6,
which uses large amount of stack space.

Notice further that the Windows version of Sun JRE 1.5 has a bug that makes the
stack size setting ineffective. The Windows version also has a smaller default stack
size than the other platforms. If you experience the problem, we advice that you
either use JRE 1.6 on the Windows platform or use a wrapper that circumvents the
problem. To use the wrapper, use class com.vaadin.launcher.WidgetsetCompiler
in the build script instead of the regular compiler.

The -Djava.awt.headless=true parameter is necessary in Linux/UNIX platforms to avoid
some X11 warnings.

You can now compile the widget set with the following command:

$ ant -f build-widgetset.xml

Generating Widget Set Definition

If you use libraries containing other widget sets, you may want to automatically generate the
.gwt.xml GWT Module Descriptor that defines the widget set that combines the Vaadin default
widget set, widget sets included in any libraries, and any widget sets defined in your project.

If you use the build-widgetset.xml Ant build script as a template, you need to define the
settings required for generating a widget set in the configure-widgetset target.

<target name="configure-widgetset">
 <property name="widgetset"
 value="com.vaadin.demo.generated.GeneratedWidgetSet"/>

273Compiling GWT Widget Sets

Developing New Components

<property name="generate.widgetset" value="1"/>
 <property name="widgetset-path" value="com/vaadin/demo/widgetset"/>
</target>

Define the name of the widget set definition file, without the .gwt.xml suffix, in the widgetset
property. The generate-widgetset target is executed only if the generate.widgetset
property is defined. You also need to give a file path to the widget set directory, relative to the
$src-location directory..

The generate-widgetset target is defined as follows:

<target name="generate-widgetset"
 depends="compile-server-side, configure-widgetset"
 if="generate.widgetset">

 <!-- Create the directory if it does not already exist. -->
 <mkdir dir="${src-location}/${widgetset-path}"/>

 <java classname="com.vaadin.terminal.gwt.widgetsetutils.WidgetSetBuilder"
 failonerror="yes" fork="yes" maxmemory="256m">
 <arg value="${widgetset}"/>
 <jvmarg value="-Xss1024k"/>
 <jvmarg value="-Djava.awt.headless=true"/>
 <classpath>
 <path refid="compile.classpath"/>
 </classpath>
 </java>
</target>

The widget set builder assumes that the root of the source directory is the first item in the class
path, here defined with the src-location property. The location must point to the root of the
entire source tree, not the path of the widget set under it. Also the location of compiled server-
side classes must be included, here defined with the server-side-destination property.
In the example script, the class path is defined in the init target as follows:

<path id="compile.classpath">
 <pathelement path="${src-location}" />
 <pathelement path="${server-side-destination}" />
 <pathelement path="${toolkit-jar-location}" />
 <pathelement path="${gwt-location}/gwt-user.jar" />
 <pathelement path="${gwt-location}/gwt-dev-${gwt-platform}.jar" />
 <pathelement path="${gwt-location}/validation-api-1.0.0.GA.jar" />
 <pathelement path="${gwt-location}/validation-api-1.0.0.GA-sources.jar" />
 <fileset dir="${base}WebContent/WEB-INF/lib/">
 <include name="*.jar"/>
 </fileset>
</path>

11.8.5. Ready to Run

Figure 11.8, “Annotated Project Contents” shows the contents of a ready project.

Ready to Run274

Developing New Components

Figure 11.8. Annotated Project Contents

Notice that the Package Explorer does not correspond with the file system contents. Eclipse
displays the items marked with asterisk (*) in a logical location, instead of the physical location
in the file system.

You can either run the application in web mode, as introduced in Section 2.3.4, or debug it in the
GWT Development Mode, as detailed in the next section.

11.8.6. GWT Development Mode

The GWT Development Mode allows debugging client-side GWT applications in a Java IDE such
as Eclipse, as if the applications ran as Java in the browser, even though they actually are
JavaScript.This is made possible by the Google Web Toolkit Developer Plugin, which is available
for major browsers, such as Mozilla Firefox, Google Chrome, Safari, and Internet Explorer.

275GWT Development Mode

Developing New Components

Figure 11.9. GWT Development Mode

Figure 11.9, “GWT Development Mode” shows the GWT Development Mode in action. On the
left, you have the GWT Development Mode window. It displays compilation information and
possible errors that occur during compilation. You can open the application in a new browser
window by clicking Launch Default Browser.

The browser window has a Compile/Browse button, which runs the GWT Compiler to produce
the runtime code and opens a regular web browser to run the application. Notice that even though
it is possible to recompile the program with the button, GWT Compiler must be run at least once
before launching the GWT Development Mode, as described in Section 11.8.4, “Compiling GWT
Widget Sets”, as the compiler creates some required files.

Because GWT supports a slightly reduced version of Java, GWT compilation can produce errors
that do not occur with the Java compiler integrated in the Eclipse IDE. Such errors will show up
in the GWT Development Mode window.

Creating a GWT Development Mode Launch Configuration

If you use the Vaadin Plugin for Eclipse, you can create a launch configuration for the GWT De-
velopment Mode in the project properties. The Vaadin project properties are described in Sec-
tion 11.2.3, “Plugin Related Project Settings”. Open the project properties and the Vaadin section,
click Create development mode launch and OK.You should see the launch configuration appear
in the project.

You can run a launch configuration in a few different ways. For example, select it, open menu
Run Debug As..., and select the launch configuration. The GWT Development Mode window
should open.

Creating a Launch Configuration Manually

This section describes how to create a launch configuration for the GWT Development Mode
manually in the Eclipse IDE, without using the Vaadin Plugin for Eclipse.

GWT Development Mode276

Developing New Components

1. Select from menu Run Debug... and the Debug configuration window will open. Notice
that it is not purposeful to run the GWT Development Mode in the "Run" mode, because
its entire purpose is to allow debugging.

2. Select the Java Application folder and click on the New button to create a new launch
configuration.

Figure 11.10. Creating New Launch Configuration

3. Click on the created launch configuration to open it on the right-side panel. In the Main
tab, give the launch configuration a name. Define the Main class as
com.google.gwt.dev.DevMode.

277GWT Development Mode

Developing New Components

Figure 11.11. Naming Launch Configuration

4. Switch to the Arguments tab and enter arguments for the application.

a. In the Program arguments field, enter:

-noserver -war WebContent/VAADIN/widgetsets
com.example.myproject.widgetset.MyProjectWidgetSet
-startupUrl http://localhost:8080/myproject

The browser application, DevMode, takes as its arguments the following parameters:

-noserver Prevents an embedded web server from starting, thereby
allowing to use an already running server.

-whitelist Adds a regular expression to the list of allowed URL pat-
terns for the web browser. Modify the port number from the
8080 given above as necessary.

-war Output directory for compiling widgets with GWT Compiler.
T h e d i r e c t o r y m u s t b e
WebContent/VAADIN/widgetsets. You can compile
the widgets either from the GWT Development Mode win-
dow or externally as explained later in this chapter.

-startupUrl <URL> The URL to connect to. This must be the same as the
whitelist entry given above. The port number must corres-
pond to the port of the running web server. The Jetty web
server included in Vaadin will run in port 8888 by default.
In contrast, Apache Tomcat installed under Eclipse will run
in port 8080 by default.

GWT Development Mode278

Developing New Components

b. In the VM arguments field enter, for example, -Xms256M -Xmx512M to give the
GWT Development Mode more memory than the default amount.

Figure 11.12. DevMode Arguments

5. In the Classpath tab, you will by default have vaadin-examples, which contains the
default classpath entries for the project. If the classpath entries for the project are suffi-
cient, this should be enough.

6. Click Apply to save the launch configuration.

7. Click Debug to launch the GWT Development Mode using the launch configuration.

See the following section for details on debugging with the GWT Development Mode.

Debugging with GWT Development Mode

The purpose of the GWT Development Mode is to allow debugging client-side GWT applications,
or in our case, GWT widgets. Below is a checklist for important requirements for launching the
GWT Development Mode:

• GWT is installed in the project.

• GWT libraries are included in the project classpath.

• Widget sets have been compiled with GWT Compiler.

• web.xml descriptor is configured.

• Web server is running and listening to the correct port.

• GWT Development Mode launch configuration is configured.

279GWT Development Mode

Developing New Components

Once everything is ready to start debugging, just open a source file, for example, the
com.vaadin.demo.colorpicker.gwt.client.ui.GwtColorPicker class. Find the onClick()
method. At the line containing the setColor() call, right-click on the leftmost bar in the editor
and select Toggle Breakpoint from the popup menu. A small magnifying glass will appear in
the bar to indicate the breakpoint.

Figure 11.13. Setting a Breakpoint

Select from menu Run Debug... and the Debug configuration window will open. Notice that it
is not purposeful to run the GWT Development Mode in the "Run" mode, because its entire pur-
pose is to allow debugging.

Figure 11.14. Debugging with GWT Development Mode

Starting applications under the GWT Development Mode can take considerable time!
Compiling widgets can take 10-60 seconds, depending on the hardware. During this time, the
web browser is unresponsive, does not update its window, and appears "stuck".

Please refer to Eclipse IDE documentation for further instructions on using the debugger.

GWT Development Mode280

Developing New Components

11.8.7. Packaging a Widget Set

Packaging and reusing custom components is almost as easy as with any Java code, but with
a small difference. You can package the source code of a widget set as a JAR. A user can drop
the JAR in the project and add it to the class path. If using widgets from multiple widget sets, the
user has to inherit the widget set in a combining widget set (which can be generated automatically).
The user then has to compile the widget set(s) as described in Section 11.8.4, “Compiling GWT
Widget Sets”.

While you could, in theory, package precompiled widget sets in the JAR as well, it would create
a serious danger for incompatibility between the client-side and server-side versions of Vaadin.
The user would anyhow have to recompile the widget set if he uses multiple widget sets packaged
in different JARs, or has developed project-specific widgets.

The widget set build script template, which you can find at the URL https://vaadin.com/down-
load/misc/build-widgetset.xml, includes an example package-jar target for building a JAR.
You can use the example as it is or modify it as you need.

You need to make the JAR packaging specific configuration in the configure-jar target.
Change to property values to reflect your widget set.

<target name="configure-jar">
 <!-- The compiled JAR name -->
 <property name="jar-destination"
 value="${base}colorpicker.jar"/>

 <!-- Title of the widget set (for JAR) -->
 <property name="widgetset-title"
 value="ColorPicker"/>

 <!-- Version of the widget set (for JAR) -->
 <property name="widgetset-version" value="1.0"/>

 <!-- Vendor of the widget set (for JAR) -->
 <property name="widgetset-vendor"
 value="IT Mill Oy"/>
</target>

You may want to check also the package-jar target if you want to use other license information
or otherwise customize the package content.

Assuming that you have otherwise configured the build script for your project as described in
Section 11.8.4, “Compiling GWT Widget Sets”, you can build the JAR package with the following
command:

$ ant -f build-widgetset.xml package-jar

Notice that the package-jar target does not depend on the compile-widgetset target, as
the compiled widget set is not included in the package. If you really wish to do so, add the de-
pendency and include the compiled files as a fileset for the package.

11.8.8.Troubleshooting

Below are some typical cases that may cause you trouble.

Deferred binding fails The widget set compilation in GWT Development Mode
console produces the following error, which is shown
in the Eclipse console:

281Packaging a Widget Set

Developing New Components

https://vaadin.com/download/misc/build-widgetset.xml
https://vaadin.com/download/misc/build-widgetset.xml

Deferred binding failed for
'com.vaadin.csvalidation.widgetset.client.ui.VJavaScriptEditor'
 (did you forget to inherit a required module?)

This problem occurs if the creation of an instance of a
widget fails, usually due to an exception in the construct-
or. The GWT Development Mode console displays a
more detailed exception log.

Widgets are missing from the
widget set

The widget set compilation displays the list of widgets
included in the widget set. If the list includes only the
inherited widgets (built-in Vaadin widgets), but your
custom widgets are missing, there is a problem.

The typical reason is that the server-side classes are
not yet compiled or are missing from the classpath.
Check that the server-side compilation output folder
(such as build/classes) is included in the classpath
of GWT Compiler and that you compile the server-side
components before the client-side, so that they are
available in the classpath. The reason for this is that
GWT Compiler (or more precisely a Vaadin widget set
generator) reads the annotations that define the
mappping from server-side components to client-side
widgets from compiled class files.

The correct widget set is not
loaded

The widget set must be specified in
WebContent/WEB-INF/web.xml descriptor, as an
initialization parameter for the servlet.

<init-param>
 <description>Application
widgetset</description>
 <param-name>widgetset</param-name>

<param-value>com.example.mylibrary.widgetset.MyWidgetset</param-value>
</init-param>

A generated widget set inherits
itself

The widget set builder can create a .gwt.xml
descriptor that inherits the same widget set.This usually
occurs when the class path for the source files is set
to something different than the root of the entire source
tree, so that the package name of the widget set to be
defined with the descriptor would be invalid.

Troubleshooting282

Developing New Components

Chapter 12

Advanced Web
Application Topics

12.1. Special Characteristics of AJAX Applications 284
12.2. Application-Level Windows .. 284
12.3. Embedding Applications in Web Pages ... 292
12.4. Debug and Production Mode ... 297
12.5. Resources ... 299
12.6. Shortcut Keys .. 302
12.7. Printing .. 306
12.8. Google App Engine Integration ... 307
12.9. Common Security Issues ... 308
12.10. URI Fragment and History Management with UriFragmentUtil-
ity ... 308
12.11. Capturing HTTP Requests .. 310
12.12. Drag and Drop ... 313
12.13. Logging .. 321
12.14. Accessing Session-Global Data .. 322

This chapter covers various features and topics often needed in applications. While other topics
could be considered as "advanced", the first section gives a brief introduction to AJAX development
for beginners.

283Book of Vaadin

12.1. Special Characteristics of AJAX Applications

New to AJAX? This section is intended for people familiar with the development of either tradi-
tional web applications or desktop applications, who are entering AJAX-enabled web application
development. AJAX application development has a few special characteristics with respect to
other types of applications. Possibly the most important one is how the display is managed in
the web browser.

The web was originally not built for applications, but for hypertext pages that you can view with
a browser. The purpose of web pages is to provide content for the user. Application software has
a somewhat different purpose; usually to allow you to work on some data or content, much of
which is not ever intended to be accessible through a web browser as web pages. As the web
is inherently page-based, conventional web applications had to work with page requests and
output HTML as response. JavaScript and AJAX have made it possible to let go of the pages.

Pages are largely an unknown concept to conventional desktop applications. At most, desktop
applications can open multiple windows, but usually they work with a single main window, with
an occasional dialog window here and there. Same goes usually for web applications developed
with Vaadin: an application typically runs on a single page, changing the layout as needed and
popping up dialog boxes.

Not having to load pages and use hyperlinks to communicate all user interaction is a relief for
application development. However, they are an important feature that ordinary desktop applications
lack. They allow referencing different functionalities of an application or resources managed by
the application. They are also important for integration with external applications.

Certain resources can be identified through a URI or Universal Resource Identifier. A URI can
easily be passed around or stored as a bookmark. We will see in Section 12.5.1, “URI Handlers”
how you can retrieve the URI of a page request. Similarly, a page request can have query para-
meters, which can be handled as detailed in Section 12.5.2, “Parameter Handlers”.

Using URIs or request parameters to access functionalities or content is not as straight-forward
as in conventional page-based web applications. Vaadin, just as any other AJAX framework,
uses browser cookies not just for tracking users but also for tracking the application state.
Cookies are unique in a browser, so any two windows share the same cookies and therefore
also the state. The advantage is that you can close your browser and open it again and the ap-
plication will be in the state where you left off (except for components such as text fields which
did not have the immediate attribute enabled). The disadvantage is that there is no good way to
distinguish between the windows, so there can usually be only a single application window. Even
if there were several, you would have trouble with synchronization of application data between
windows. Many conventional page-based web applications simply ignore out-of-sync situations,
but such situations are risky for application platforms that are intended to be stable. Therefore it
is safer to work with a single browser window. If you wish to have multiple windows in your ap-
plication, you can create them inside the main window as Window objects. A URI can be used
to fetch resources that have no particular state or to provide an entry point to the application.

12.2. Application-Level Windows

Vaadin supports two types of windows: application-level windows and sub-windows. The applic-
ation-level windows are native browser windows or tabs. The main window is the special initial
application-level window created when the user first started the application session by opening
the URL in the browser. Sub-windows are freely floating HTML windows inside a browser window,
as described in Section 4.3, “Sub-Windows”.

Special Characteristics of AJAX Applications284

Advanced Web Application Topics

Application-level windows of the same application use the same Application object and therefore
share the same session. Each window is identified with a URL that is used to access it. This
makes it possible to bookmark application-level windows. Such windows can even be created
dynamically based on the URLs.

Application-level windows allow several common use cases for browser-based applications.

• Native popup windows. An application can open popup windows for sub-tasks.

• Page-based browsing. The application can allow the user to open certain content to
different windows. For example, in a messaging application, it can be useful to open
different messages to different windows so that the user can browse through them while
writing a new message.

• Bookmarking. Bookmarks in the web browser can provide an entry-point to some content
provided by an application.

• Embedding windows.Windows can be embedded in web pages, thus making it possible
to provide different views to an application from different pages or even from the same
page, while keeping the same session. See Section 12.3, “Embedding Applications in
Web Pages”.

Because of the special nature of AJAX applications, these uses require some caveats. We will
go through them later in Section 12.2.5, “Caveats in Using Multiple Windows”.

12.2.1. Creating New Application-Level Windows

Creating a new application-level window is much like creating a child window (see Section 4.3,
“Sub-Windows”), except that the window is added with addWindow() to the application object
instead of the main window.

public class WindowTestApplication extends Application {
 public void init() {
 // First create the main window.
 final Window main = new Window ("My Test Application");
 setMainWindow(main);

 // Create another application-level window.
 final Window mywindow = new Window("Second Window");

 // Manually set the name of the window.
 mywindow.setName("mywindow");

 // Add some content to the window.
 mywindow.addComponent(new Label("Has content."));

 // Add the window to the application.
 addWindow(mywindow);
 }
}

This creates the window object that a user can view by opening a URL in a browser. Creating
an application-level window object does not open a new browser window automatically to view
the object, but if you wish to open one, you have to do it explicitly as shown below. An application-
level window has a unique URL, which is based on the application URL and the name of the
window given with the setName() method. For example, if the application URL is
http://localhost:8080/myapp/ and the window name is mywindow, the URL for the window
will be http://localhost:8080/myapp/mywindow/. If the name of a window is not explicitly

285Creating New Application-Level Windows

Advanced Web Application Topics

set with setName(), an automatically generated name will be used. The name can be retrieved
with the getName() method and the entire URL with getURL().

There are three typical ways to open a new window: using the open() method of Window class,
a Link, or referencing it from HTML or JavaScript code written inside a Label component.

The Window open() method takes as parameters a resource to open and the target name.You
can use ExternalResource to open a specific URL, which you get from the window to be opened
with the getURL() method.

/* Create a button to open a new window. */
main.addComponent(new Button("Click to open new window",
 new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 // Open the window.
 main.open(new ExternalResource(mywindow.getURL()),
 "_new");
 }
}));

The target name is one of the default HTML target names (_new, _blank, _top, etc.) or a custom
target name. How the window is exactly opened depends on the browser. Browsers that support
tabbed browsing can open the window in another tab, depending on the browser settings.

Another typical way to open windows is to use a Link component with the window URL as an
ExternalResource.

/* Add a link to the second window. */
Link link = new Link("Click to open second window",
 new ExternalResource(mywindow.getURL()));
link.setTargetName("second");
link.setTargetHeight(300);
link.setTargetWidth(300);
link.setTargetBorder(Link.TARGET_BORDER_DEFAULT);
main.addComponent(link);

Using a Link allows you to specify parameters for the window that opens by clicking on the link.
Above, we set the dimensions of the window and specify what window controls the window should
contain.The Link.TARGET_BORDER_DEFAULT specifies to use the default, which includes most
of the usual window controls, such as the menu, the toolbar, and the status bar.

Another way to allow the user to open a window is to insert the URL in HTML code inside a Label.
This allows even more flexibility in specifying how the window should be opened.

// Add the link manually inside a Label.
main.addComponent(
 new Label("Second window: <a href='" + mywindow.getURL()
 + "' target='second'>click to open",
 Label.CONTENT_XHTML));
main.addComponent(
 new Label("The second window can be accessed through URL: "
 + mywindow.getURL()));

When an application-level window is closed in the browser the close() method is normally
called just like for a child window and the Window object is purged from the application. However,
there are situations where close() might not be called. See Section 12.2.4, “Closing Windows”
for more information.

Creating New Application-Level Windows286

Advanced Web Application Topics

12.2.2. Creation of Windows When Requested

You can create a window object dynamically by its URL sub-path when it is first requested by
overriding the getWindow() method of the Application class.The method gets a window name
as its parameter and must return the corresponding Window object.The window name is determ-
ined from the first URL path element after the application URL (the name may not contain slashes).
See the notes below for setting the actual name of the dynamically created windows below.

The following example allows opening windows with a window name that begins with "planet-"
prefix. Since the method is called for every browser request for the application, we filter only the
requests where a window with the given name does not yet exist.

public class WindowTestApplication extends Application {
 ...

 @Override
 public Window getWindow(String name) {
 // If a dynamically created window is requested, but
 // it does not exist yet, create it.
 if (name.startsWith("planet-") &&
 super.getWindow(name) == null) {
 String planetName =
 name.substring("planet-".length());

 // Create the window object.
 Window newWindow =
 new Window("Window about " + planetName);

 // DANGEROUS: Set the name explicitly. Otherwise,
 // an automatically generated name is used, which
 // is usually safer.
 newWindow.setName(name);

 // Put some content in it.
 newWindow.addComponent(
 new Label("This window contains details about " +
 planetName + "."));

 // Add it to the application as a regular
 // application-level window.
 addWindow(newWindow);

 return newWindow;
 }

 // Otherwise the Application object manages existing
 // windows by their name.
 return super.getWindow(name);
 }

The window name must be a unique indentifier for each Window object instance. If you use
setName() to set the window name explicitly, as we did above, any browser window that has
the same URL (within the same browser) would open the same window object.This is dangerous
and generally not recommended, because the browser windows would share the same window
object. Opening two windows with the same static name would immediately lead to a synchron-
ization error, as is shown in Figure 12.1, “Synchronization Error Between Windows with the Same
Name” below. (While also the window captions are same, they are irrelevant for this problem.)

287Creation of Windows When Requested

Advanced Web Application Topics

Figure 12.1. Synchronization Error Between Windows with the Same Name

There are some cases where setting the name explicitly is useful. The launch application below
is one example, as it always opens the other windows in a window target that is specific to the
window name, thereby never creating two windows with the same URL. Similarly, if you had
embedded the application in a browser frame and the link would open the window in a frame,
you would not have problems. Having a single window instance for a URL is also useful if the
browser crashes and the user opens the window again, as it will have kept its previous (server-
side) state.

12.2.3. Dynamic Multi-Window Applications

Having multiple browser windows or tabs open in the same website and even the same page is
one of the basic use cases of web browsing. The creation of Window objects described in the
previous section allows opening multiple special-purpose windows with different URLs, but how
to open multiple windows with the same URL? The solution is based on the fact that Vaadin
doesn't identify windows only by their URL subpath, but also by an invisible window name.

Leaving the window name to be automatically generated allows opening multiple windows with
the same URL, while each of the windows will have a separate state. The URL in the location
bar stays unchanged and the generated window name is used only for the Ajax communications
to identify the window object. A generated name is a string representation of a unique random
number, such as "1928676448". You should be aware of the generated window names when
overriding the getWindow() method (and not unintentionally create a new window instance
dynamically for each such request). The condition in the above example would also filter out the
requests for an already existing window with a generated name.

Figure 12.2, “A Dynamically Created Window” shows a dynamically created application-level
window with the URL shown in the address bar. The URL for the application is here
http://localhost:8080/book-examples/windowexample/, including the application
context, application path. The dynamically created window's name is planet-mars.

Dynamic Multi-Window Applications288

Advanced Web Application Topics

Figure 12.2. A Dynamically Created Window

The application knows the windows it already has and can return them after the creation. The
application also handles closing and destruction of application-level window objects, as discussed
in Section 12.2.4, “Closing Windows”.

Such dynamic windows could be opened as in the following example:

public void init() {
 final Window main = new Window("Window Test");
 setMainWindow(main);

 // Have some IDs for the dynamically creatable windows.
 final String[] items = new String[] { "mercury", "venus",
 "earth", "mars", "jupiter", "saturn", "uranus",
 "neptune" };

 // Create a list of links to each of the available window.
 for (int i = 0; i < items.length; i++) {
 // Create a URL for the window.
 String windowUrl = getURL() + "planet-" + items[i];

 // Create a link to the window URL. Using the
 // item ID for the target also opens it in a new
 // browser window (or tab) unique to the window name.
 main.addComponent(
 new Link("Open window about " + items[i],
 new ExternalResource(windowUrl),
 items[i], -1, -1, Window.BORDER_DEFAULT));
 }
}

289Dynamic Multi-Window Applications

Advanced Web Application Topics

Figure 12.3. Opening Windows

12.2.4. Closing Windows

When the user closes an application-level window, the Client-Side Engine running in the browser
will report the event to the server before the page is actually removed. You can catch the event
with a Window.CloseListener, as is done in the example below.

newWindow.addListener(new Window.CloseListener() {
 @Override
 public void windowClose(CloseEvent e) {
 // Do something.
 System.out.println(e.getWindow().getName() +
 " was closed");

 // Add a text to the main window about closing.
 // (This does not update the main window.)
 getMainWindow().addComponent(
 new Label("Window '" + e.getWindow().getName() +
 "' was closed."));
 }
});

Notice that the change to the server-side state of the main window (or another application-level
window) does not refresh the window in the browser, so the change will be unseen until user in-
teraction or polling refreshes the window. This problem and its dangers are discussed in Sec-
tion 12.2.5, “Caveats in Using Multiple Windows” below.

The close event does not occur if the browser crashes or the connection is otherwise severed
violently. In such a situation, the window object will be left hanging, which could become a resource
problem if you allow the users to open many such application-level windows. The positive side
is that the user can reconnect to the window using the window URL.

12.2.5. Caveats in Using Multiple Windows

Communication Between Windows

For cases where you need communication between windows, we recommend using floating child
windows. In Vaadin Release 5, an application window can not update the data in other windows.
The contents of a window can only be updated when the particular window makes a request to
the server. The request can be caused by user input or through polling.

Closing Windows290

Advanced Web Application Topics

Changing the server-side state of a window while processing a user event from another window
can potentially cause serious problems. Changing the client-side state of a window does not always
immediately communicate the changes to the server. The server-side state can therefore be out
of sync with the client-side state.

Figure 12.4. Communication Between Two Application-Level Windows

The following example creates a second window that changes the contents of the main window,
as illustrated in the figure above. In this simple case, changing the main window contents is safe.

// Create a table in the main window to hold items added
// in the second window
final Table table = new Table();
table.setPageLength(5);
table.getSize().setWidth(100, Size.UNITS_PERCENTAGE);
table.addContainerProperty("Name", String.class, "");
main.addComponent(table);

// Create the second window
final Window adderWindow = new Window("Add Items");
adderWindow.setName("win-adder");
main.getApplication().addWindow(adderWindow);

// Create selection component to add items to the table
final NativeSelect select = new NativeSelect("Select item to add");
select.setImmediate(true);
adderWindow.addComponent(select);

// Add some items to the selection
String items[] = new String[]{"-- Select --", "Mercury", "Venus",
 "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune"};
for (int i=0; i<items.length; i++)
 select.addItem(items[i]);
select.setNullSelectionItemId(items[0]);

// When an item is selected in the second window, add
// table in the main window
select.addListener(new ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 // If the selected value is something else
 // but a null selection item.
 if (select.getValue() != null) {
 // Add the selected item to the table
 // in the main window
 table.addItem(new Object[]{select.getValue()},
 new Integer(table.size()));
 }
 }
});

291Caveats in Using Multiple Windows

Advanced Web Application Topics

// Link to open the selection window
Link link = new Link("Click to open second window",
 new ExternalResource(adderWindow.getURL()),
 "_new", 50, 200,
 Link.TARGET_BORDER_DEFAULT);
main.addComponent(link);

// Enable polling to update the main window
ProgressIndicator poller = new ProgressIndicator();
poller.addStyleName("invisible");
main.addComponent(poller);

The example uses an invisible ProgressIndicator to implement polling.This is sort of a trick and
a more proper API for polling is under design. Making the progress indicator invisible requires
the following CSS style definition:

.v-progressindicator-invisible {
 display: none;
}

12.3. Embedding Applications in Web Pages

Many web sites are not all Ajax, but Ajax is used only for specific functionalities. In practice, many
web applications are a mixture of dynamic web pages and Ajax applications embedded in such
pages.

Embedding Vaadin applications is easy and there are several different ways to embed them.
One is to have a <div> placeholder for the web application and load the Vaadin Client-Side
Engine with a simple JavaScript code. Another method is even easier, which is to simply use the
<iframe> element. Both of these methods have advantages and disadvantages. The <div>
method can only embed one application in a page, while the <iframe> method can embed as
many as needed. One disadvantage of the <iframe> method is that the size of the <iframe>
element is not flexible according to the content while the <div> method allows such flexibility.
The following sections look closer into these two embedding methods. Additionally, the Vaadin
XS add-on allows embedding Vaadin applications in websites running in another server.

12.3.1. Embedding Inside a div Element

You can embed a Vaadin application inside a web page with a method that is equivalent to
loading the initial page content from the application servlet in a non-embedded application. Nor-
mally, the ApplicationServlet servlet generates an initial page that contains the correct parameters
for the specific application. You can easily configure it to load multiple Vaadin applications on
the same page, assuming that they use the same widget set.

You can view the initial page for your application easily simply by opening the application in a
web browser and viewing the HTML source code.You could just copy and paste the embedding
code from the default initial page. It has, however, some extra functionality that is not normally
needed: it generates some of the script content with document.write() calls, which is useful
only when you are running the application as a portlet in a portal. The method outlined below is
much simpler.

Embedding requires four elements inside the HTML document:

1. In the <head> element, you need to define the application URI and parameters and
load the Vaadin Client-Side Engine. The vaadin variable is an associative map that
can contain various runtime data used by the Client-Side Engine of Vaadin. The

Embedding Applications in Web Pages292

Advanced Web Application Topics

vaadinConfigurations item is itself an associate map that contains parameters for
each of the applications embedded in the page. The map must contain the following
items:

appUri The application URI consists of the context and the applic-
ation path. If the context is /mycontext and the application
path is myapp, the appUri would be /mycontext/myapp.

pathInfo The PATHINFO parameter for the Servlet.

themeUri (optional) URI of the application theme.The URI must include applic-
ation context and the path to the theme directory. Themes
are, by default, stored under the /VAADIN/themes/ path.

versionInfo This item is itself an associative map that contains two
parameters:vaadinVersion contains the version number
of the Vaadin version used by the application. The
applicationVersion parameter contains the version of
the particular application. The contained parameters are
optional, but the versionInfo parameter itself is not.

The following example defines two applications to run in the same window: the Calcu-
lator and Hello World examples. In the example, the application context is /mycontext.

<script type="text/javascript">
 var vaadin = {
 vaadinConfigurations: {
 'calc': {
 appUri:'/mycontext/Calc',
 pathInfo: '/',
 themeUri: '/mycontext/VAADIN/themes/example',
 versionInfo : {
 vaadinVersion: "6.7.6",
 applicationVersion: "NONVERSIONED"
 }
 },
 'hello': {
 appUri:'/mycontext/HelloWorld',
 pathInfo: '/',
 themeUri: '/mycontext/VAADIN/themes/example',
 versionInfo : {}
 }
 }};
</script>

2. Loading the Vaadin Client-Side Engine, that is, the widget set, is done with the following
kind of line in the <head> element:

<script language='javascript'
src='/mycontext/VAADIN/widgetsets/com.vaadin.terminal.gwt.DefaultWidgetSet/com.vaadin.terminal.gwt.DefaultWidgetSet.nocache.js'></script>

The engine URI consists of the context of the web application, mycontext above, fol-
lowed by the path to the JavaScript (.js) file of the widget set, relative to the web ap-
plication root (the WebContent directory in Eclipse). The line above assumes the use
of the default widget set in Vaadin. If you have made custom widgets that are defined
in a custom widget set, you need to use the path to the compiled widget set file. Widget
sets must be compiled under the WebContent/VAADIN/widgetsets directory.

293Embedding Inside a div Element

Advanced Web Application Topics

3. In the <html> element, you need to do a routine inclusion of GWT history iframe
element as follows:

<iframe id="__gwt_historyFrame"
 style="width:0;height:0;border:0"></iframe>

4. The location of the Vaadin application is defined with a div placeholder element having
id="calc", where the identifier is the same as in the vaadinConfigurations
parameter, as follows:

<div id="calc"></div>

The embedding element should not be self-closing.

Below is a complete example of embedding an application.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=UTF-8" />

 <title>Embedding a Vaadin Application in HTML Page</title>

 <!-- Define the application configuration -->
 <script type="text/javascript">
 var vaadin = {
 vaadinConfigurations: {
 helloworld: {
 appUri:'/book-examples/helloworld',
 pathInfo: '/',
 themeUri:'/book-examples/VAADIN/themes/book-examples',
 versionInfo : {}}
 }};
 </script>

 <!-- Load the widget set, that is, the Client-Side Engine -->
 <script language='javascript'
src='/book-examples/VAADIN/widgetsets/com.vaadin.book.widgetset.BookExamplesWidgetSet/com.vaadin.book.widgetset.BookExamplesWidgetSet.nocache.js'></script>

 <!-- Load the style sheet -->
 <link rel="stylesheet"
 type="text/css"
 href="/book-examples/VAADIN/themes/book-examples/styles.css"/>
</head>

<body>
 <!-- GWT requires an invisible history frame is needed for -->
 <!-- page/fragment history in the browser -->
 <iframe tabIndex="-1" id="__gwt_historyFrame"
style="position:absolute;width:0;height:0;border:0;overflow:hidden;"
src="javascript:false"></iframe>

 <h1>Embedding a Vaadin Application</h1>

 <p>This is a static web page that contains an embedded Vaadin
 application. It's here:</p>

 <!-- So here comes the div element in which the Vaadin -->
 <!-- application is embedded. -->
 <div id="helloworld" style="border: 2px solid green;"></div>

Embedding Inside a div Element294

Advanced Web Application Topics

 <p>Please view the page source to see how embedding works.</p>

 <noscript>You have to enable javascript in your browser to
 use an application built with Vaadin.</noscript>
</body>
</html>

You can style the embedded application with themes, as described in Chapter 8, Themes. The
Client-Side Engine loads the theme required by the application. In addition, you can do styling
with CSS in the embedding page. In the above example, we added some styling directly to the
element.

12.3.2. Embedding Inside an iframe Element

Embedding a Vaadin application inside an <iframe> element is even easier than the method
described above, as it does not require definition of any Vaadin specific definitions. The use of
<iframe> makes it possible to embed multiple web applications or two different views to the
same application on the same page.

You can embed an application with an element such as the following:

<iframe src="/vaadin-examples/Calc"></iframe>

The problem with <iframe> elements is that their size of is not flexible depending on the content
of the frame, but the content must be flexible to accommodate in the frame.You can set the size
of an <iframe> element with height and width attributes.

Below is a complete example of using the <iframe> to embed two applications in a web page.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
 <head>
 <title>Embedding in IFrame</title>
 </head>

 <body style="background: #d0ffd0;">
 <h1>This is a HTML page</h1>
 <p>Below are two Vaadin applications embedded inside
 a table:</p>

 <table align="center" border="3">
 <tr>
 <th>The Calculator</th>
 <th>The Color Picker</th>
 </tr>
 <tr valign="top">
 <td>
 <iframe src="/vaadin-examples/Calc" height="200"
 width="150" frameborder="0"></iframe>
 </td>
 <td>
 <iframe src="/vaadin-examples/colorpicker"
 height="330" width="400"
 frameborder="0"></iframe>
 </td>
 </tr>
 </table>
 </body>
</html>

295Embedding Inside an iframe Element

Advanced Web Application Topics

The page will look as shown in Figure 12.5, “Vaadin Applications Embedded Inside IFrames”
below.

Figure 12.5. Vaadin Applications Embedded Inside IFrames

You can embed almost anything in an iframe, which essentially acts as a browser window.
However, this creates various problems. The iframe must have a fixed size, inheritance of CSS
from the embedding page is not possible, and neither is interaction with JavaScript, which makes
mashups impossible, and so on. Even bookmarking with URI fragments will not work.

Note also that websites can forbid iframe embedding by specifying an X-Frame-Options:
SAMEORIGIN header in the HTTP response.

12.3.3. Cross-Site Embedding with the Vaadin XS Add-on

In the previous sections, we described the two basic methods for embedding Vaadin applications:
in a <div> element and in an <iframe>. One problem with div embedding is that it does not
work between different Internet domains, which is a problem if you want to have your website
running in one server and your Vaadin application in another. The security model in browsers
effectively prevents such cross-site embedding of Ajax applications by enforcing the same origin
policy for XmlHttpRequest calls, even if the server is running in the same domain but different
port. While iframe is more permissive, allowing embedding almost anything in anywhere, it has
many disadvantanges, as described earlier.

The Vaadin XS (Cross-Site) add-on works around the limitation in div embedding by using JSONP-
style communication instead of the standard XmlHttpRequests.

Embedding is done simply with:

Cross-Site Embedding with the Vaadin XS Add-on296

Advanced Web Application Topics

 <script src="http://demo.vaadin.com/xsembed/getEmbedJs"
 type="text/javascript"></script>

This includes an automatically generated embedding script in the page, thereby making embedding
effortless.

This assumes that the main layout of the application has undefined height. If the height is 100%,
you have to wrap it inside an element with a defined height. For example:

 <div style="height: 500px;">
 <script src="http://demo.vaadin.com/xsembed/getEmbedJs"
 type="text/javascript"></script>
</div>

It is possible to restrict where the application can be embedded by using a whitelist. The add-on
also encrypts the client-server communication, which is more important for embedded applications
than usual.

You can get the Vaadin XS add-on from Vaadin Directory. It is provided as a Zip package.
Download and extract the installation package to a local folder. Instructions for installation and
further information is given in the README.html file in the package.

Some restrictions apply. You can have only one embedded application in one page. Also, some
third-party libraries may interfere with the communication. Other notes are given in the README.

12.4. Debug and Production Mode

Vaadin applications can be run in two modes: debug mode and production mode. The debug
mode, which is on by default, enables a number of built-in debug features for the developers.
The features include:

• Debug Window for accessing debug functionalities

• Display debug information in the Debug Window and server console.

• Analyze layouting button that analyzes the layout for possible problems.

All applications are run in the debug mode by default (since IT Mill Toolkit version 5.3.0). The
production mode can be enabled, and debug mode thereby disabled, by adding a
productionMode=true parameter to the servlet context in the web.xml deployment descriptor:

<context-param>
 <description>Vaadin production mode</description>
 <param-name>productionMode</param-name>
 <param-value>true</param-value>
</context-param>

Enabling the production mode disables the debug features, thereby preventing users from easily
inspecting the inner workings of the application from the browser.

12.4.1. Debug Mode

Running an application in the debug mode enables the client-side Debug Window in the browser.
You can open the Debug Window by adding "?debug" to the application URL, for example,
http://localhost:8080/myapp/?debug.The Debug Window, shown in Figure 12.6, “Debug
Window”, consists of buttons controlling the debugging features and a scrollable log of debug
messages.

297Debug and Production Mode

Advanced Web Application Topics

Figure 12.6. Debug Window

Clear console Clears the log in the Debug Window.

Restart app Restarts the application.

Force layout Causes all currently visible layouts to recalculate their appearance.
Layout components calculate the space required by all child com-
ponents, so the layout appearance must be recalculated whenever
the size of a child component is changed. In normal applications,
this is done automatically, but when you do themeing or alter the
CSS with Firebug, you may need to force all layouts to recalculate
themselves, taking into account the recently made changes.

Analyze layouts This is described in the following section.

If you use the Firebug plugin in Mozilla Firefox, the log messages will also be printed to the
Firebug console. In such a case, you may want to enable client-side debugging without showing
the Debug Window with "?debug=quiet" in the URL. In the quiet debug mode, log messages
will only be printed to the Firebug console.

12.4.2. Analyzing Layouts

The Analyze layouts button analyzes the currently visible layouts and makes a report of possible
layout related problems. All detected layout problems are displayed in the log and also printed
to the console.

The most common layout problem is caused by placing a component that has a relative size inside
a container (layout) that has undefined size, for example, adding a 100% wide Panel inside a
HorizontalLayout with no width specification. In such a case, the error will look as shown below:

Vaadin DEBUG
- Window/1a8bd74 "My window" (width: MAIN WINDOW)
 - HorizontalLayout/1cf243b (width: UNDEFINED)
 - Panel/12e43f1 "My panel" (width: RELATIVE, 100.0 %)
Layout problem detected: Component with relative width inside a HorizontalLayout with no
 width defined
Relative sizes were replaced by undefined sizes, components may not render as expected.

This particular error tells that the Panel "My panel" is 100% wide while the width of the containing
HorizontalLayout is undefined. The components will be rendered as if the the width of the con-
tained Panel was undefined, which might not be what the developer wanted. There are two
possible fixes for this case: if the Panel should fill the main window horizontally, set a width for

Analyzing Layouts298

Advanced Web Application Topics

the HorizontalLayout (for example 100% wide), or set the width of the Panel to "undefined" to
render the it as it is currently rendered but avoiding the warning message.

The same error is shown in the Debug Window in a slightly different form and with an additional
feature (see Figure 12.7, “Debug Window Showing the Result of Analyze layouts.”). Checking
the Emphasize component in UI box will turn red the background of the component that caused
a warning, making it easy for the developer to figure out which component each warning relates
to.The messages will also be displayed hierarchically, as a warning from a containing component
often causes more warnings from its child components. A good rule of thumb is to work on the
upper-level problems first and only after that worry about the warnings from the children.

Figure 12.7. Debug Window Showing the Result of Analyze layouts.

12.4.3. Custom Layouts

CustomLayout components can not be analyzed in the same way as other layouts. For custom
layouts, the Analyze layouts button analyzes all contained relative-sized components and checks
if any relative dimension is calculated to zero so that the component will be invisible. The error
log will display a warning for each of these invisible components. It would not be meaningful to
emphasize the component itself as it is not visible, so when you select such an error, the parent
layout of the component is emphasized if possible.

12.4.4. Debug Functions for Component Developers

You can take advantage of the debug mode when developing client-side components. The static
function ApplicationConnection.getConsole() will return a reference to a Console object
which contains logging methods such as log(String msg) and error(String msg).These
functions will print messages to the Debug Window and Firebug console in the same way as
other debugging functionalities of Vaadin do. No messages will be printed if the Debug Window
is not open or if the application is running in production mode.

12.5. Resources

In addition to high-level resource classes described in Section 4.5, “Referencing Resources”,
Vaadin provides low-level facilities for retrieving the URI and other parameters of HTTP requests.
In the following, we will look into low-level interfaces for handling URIs and parameters to provide
resources and functionalities.

Notice that using URI or parameter handlers to create "pages" is not meaningful in Vaadin or in
AJAX applications generally. See Section 12.1, “Special Characteristics of AJAX Applications”
for reasons.

299Custom Layouts

Advanced Web Application Topics

12.5.1. URI Handlers

The URI parameter for the application is useful mainly for two purposes: for providing some
special functionality according to the URI or for providing dynamic content. Dynamic content can
also be provided with StreamResource.

You can retrieve the URI for the HTTP request made for your application by implementing the
com.vaadin.terminal.URIHandler interface. The handler class needs to be registered in the
main window object of your application with the addURIHandler() method. You then get the
URI by implementing the handleURI() method. The method gets two parameters: a context
and a URI relative to the context. The context is the base URI for your application.

public void init() {
 final Window main = new Window("Hello window");
 setMainWindow(main);

 URIHandler uriHandler = new URIHandler() {
 public DownloadStream handleURI(URL context,
 String relativeUri) {
 // Do something here
 System.out.println("handleURI=" + relativeUri);

 // Should be null unless providing dynamic data.
 return null;
 }
 };
 main.addURIHandler(uriHandler);

}

If you have multiple URI handlers attached to a window, they are executed after one another.
The URI handlers should return null, unless you wish to provide dynamic content with the call.
Other URI handlers attached to the window will not be executed after some handler returns non-
null data.The combined parameter and URI handler example below shows how to create dynamic
content with a URI handler.

Notice that if you do provide dynamic content with a URI handler, the dynamic content is returned
in the HTTP response. If the handler makes any changes to the UI state of the application, these
changes are not rendered in the browser, as they are usually returned in the HTTP response
made by the Application object and now the custom URI handler overrides the default behaviour.
If your client-side code makes a server call that does update the UI state, the client-side must
initiate an update from the server. For example, if you have an integration situation where you
make a JavaScript call to the server, handle the request with a URI handler, and the server state
changes as a side-effect, you can use the vaadin.forceSync() method to force the update.

12.5.2. Parameter Handlers

You can retrieve the parameters passed to your application by implementing the com.vaadin.ter-
minal.ParameterHandler interface.The handler class needs to be registered in the main window
object of your application with the addParameterHandler() method. You then get the para-
meters in the handleParameters() method.The parameters are passes as a map from string
key to a vector of string values.

class MyParameterHandler implements ParameterHandler {
 public void handleParameters(Map parameters) {
 // Print out the parameters to standard output
 for (Iterator it = parameters.keySet().iterator();
 it.hasNext();) {
 String key = (String) it.next();

URI Handlers300

Advanced Web Application Topics

 String value = ((String[]) parameters.get(key))[0];
 System.out.println("Key: "+key+", value: "+value);
 }
 }
}

The parameter handler is not called if there are no parameters. Parameter handler is called before
the URI handler, so if you handle both, you might typically want to just store the URI parameters
in the parameter handler and do actual processing in URI handler. This allows you, for example,
to create dynamic resources based on the URI parameters.

import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.*;
import java.net.URL;
import java.util.Map;
import javax.imageio.ImageIO;
import com.vaadin.terminal.*;

/**
 * Demonstrates handling URI parameters and the URI itself to
 * create a dynamic resource.
 */
public class MyDynamicResource implements URIHandler,
 ParameterHandler {
 String textToDisplay = "- no text given -";

 /**
 * Handle the URL parameters and store them for the URI
 * handler to use.
 */
 public void handleParameters(Map parameters) {
 // Get and store the passed HTTP parameter.
 if (parameters.containsKey("text"))
 textToDisplay =
 ((String[])parameters.get("text"))[0];
 }

 /**
 * Provides the dynamic resource if the URI matches the
 * resource URI. The matching URI is "/myresource" under
 * the application URI context.
 *
 * Returns null if the URI does not match. Otherwise
 * returns a download stream that contains the response
 * from the server.
 */
 public DownloadStream handleURI(URL context,
 String relativeUri) {
 // Catch the given URI that identifies the resource,
 // otherwise let other URI handlers or the Application
 // to handle the response.
 if (!relativeUri.startsWith("myresource"))
 return null;

 // Create an image and draw some background on it.
 BufferedImage image = new BufferedImage (200, 200,
 BufferedImage.TYPE_INT_RGB);
 Graphics drawable = image.getGraphics();
 drawable.setColor(Color.lightGray);
 drawable.fillRect(0,0,200,200);
 drawable.setColor(Color.yellow);
 drawable.fillOval(25,25,150,150);
 drawable.setColor(Color.blue);
 drawable.drawRect(0,0,199,199);

301Parameter Handlers

Advanced Web Application Topics

 // Use the parameter to create dynamic content.
 drawable.setColor(Color.black);
 drawable.drawString("Text: "+textToDisplay, 75, 100);

 try {
 // Write the image to a buffer.
 ByteArrayOutputStream imagebuffer =
 new ByteArrayOutputStream();
 ImageIO.write(image, "png", imagebuffer);

 // Return a stream from the buffer.
 ByteArrayInputStream istream =
 new ByteArrayInputStream(
 imagebuffer.toByteArray());
 return new DownloadStream (istream,null,null);
 } catch (IOException e) {
 return null;
 }
 }
}

When you use the dynamic resource class in your application, you obviously need to provide the
same instance of the class as both types of handler:

MyDynamicResource myresource = new MyDynamicResource();
mainWindow.addParameterHandler(myresource);
mainWindow.addURIHandler(myresource);

Figure 12.8. Dynamic Resource with URI Parameters

12.6. Shortcut Keys

Vaadin provides simple ways for defining shortcut keys for field components and a default button,
and a lower-level generic shortcut key binding API based on actions.

12.6.1. Click Shortcuts for Default Buttons

You can add or set a click shortcut to a button to set it as "default" button; pressing the defined
key, typically Enter, in any component in the window causes a click event for the button.

You can define a click shortcut with the setClickShortcut() shorthand method:

// Have an OK button and set it as the default button
Button ok = new Button("OK");
ok.setClickShortcut(KeyCode.ENTER);
ok.addStyleName("primary");

Shortcut Keys302

Advanced Web Application Topics

The primary style name highlights a button to show the default button status; usually with a
bolder font than usual, depending on the theme. The result can be seen in Figure 12.9, “Default
Button with Click Shortcut”.

Figure 12.9. Default Button with Click Shortcut

12.6.2. Field Focus Shortcuts

You can define a shortcut key that sets the focus to a field component (any component that in-
herits AbstractField) by adding a FocusShortcut as a shortcut listener to the field.

// A field with Alt+N bound to it
TextField name = new TextField("Name (Alt+N)");
name.addShortcutListener(
 new AbstractField.FocusShortcut(name, KeyCode.N,
 ModifierKey.ALT));
layout.addComponent(name);

// A field with Alt+A bound to it
TextField address = new TextField("Address (Alt+A)");
address.addShortcutListener(
 new AbstractField.FocusShortcut(address, KeyCode.A,
 ModifierKey.ALT));
layout.addComponent(address);

The constructor of the FocusShortcut takes the field component as its first parameter, followed
by the key code, and an optional list of modifier keys, as listed in Section 12.6.4, “Supported Key
Codes and Modifier Keys”.

12.6.3. Generic Shortcut Actions

Shortcut keys can be defined as actions using the ShortcutAction class. ShortcutAction extends
the generic Action class that is used for example in Tree and Table for context menus. Currently,
the only classes that accept ShortcutActions are Window and Panel.

To handle key presses, you need to define an action handler by implementing the Handler inter-
face. The interface has two methods that you need to implement: getActions() and
handleAction().

The getActions() method must return an array of Action objects for the component, specified
with the second parameter for the method, the sender of an action. For a keyboard shortcut,
you use a ShortcutAction. The implementation of the method could be following:

// Have the unmodified Enter key cause an event
Action action_ok = new ShortcutAction("Default key",
 ShortcutAction.KeyCode.ENTER, null);

// Have the C key modified with Alt cause an event
Action action_cancel = new ShortcutAction("Alt+C",
 ShortcutAction.KeyCode.C,
 new int[] { ShortcutAction.ModifierKey.ALT });

Action[] actions = new Action[] {action_cancel, action_ok};

public Action[] getActions(Object target, Object sender) {
 if (sender == myPanel)

303Field Focus Shortcuts

Advanced Web Application Topics

 return actions;

 return null;
}

The returned Action array may be static or you can create it dynamically for different senders
according to your needs.

The constructor of ShortcutAction takes a symbolic caption for the action; this is largely irrelevant
for shortcut actions in their current implementation, but might be used later if implementors use
them both in menus and as shortcut actions.The second parameter is the key code and the third
a list of modifier keys, which are listed in Section 12.6.4, “Supported Key Codes and Modifier
Keys”.

The following example demonstrates the definition of a default button for a user interface, as well
as a normal shortcut key, Alt+C for clicking the Cancel button.

public class DefaultButtonExample extends CustomComponent
 implements Handler {
 // Define and create user interface components
 Panel panel = new Panel("Login");
 FormLayout formlayout = new FormLayout();
 TextField username = new TextField("Username");
 TextField password = new TextField("Password");
 HorizontalLayout buttons = new HorizontalLayout();

 // Create buttons and define their listener methods.
 Button ok = new Button("OK", this, "okHandler");
 Button cancel = new Button("Cancel", this, "cancelHandler");

 // Have the unmodified Enter key cause an event
 Action action_ok = new ShortcutAction("Default key",
 ShortcutAction.KeyCode.ENTER, null);

 // Have the C key modified with Alt cause an event
 Action action_cancel = new ShortcutAction("Alt+C",
 ShortcutAction.KeyCode.C,
 new int[] { ShortcutAction.ModifierKey.ALT });

 public DefaultButtonExample() {
 // Set up the user interface
 setCompositionRoot(panel);
 panel.addComponent(formlayout);
 formlayout.addComponent(username);
 formlayout.addComponent(password);
 formlayout.addComponent(buttons);
 buttons.addComponent(ok);
 buttons.addComponent(cancel);

 // Set focus to username
 username.focus();

 // Set this object as the action handler
 System.out.println("adding ah");
 panel.addActionHandler(this);

 System.out.println("start done.");
 }

 /**
 * Retrieve actions for a specific component. This method
 * will be called for each object that has a handler; in
 * this example just for login panel. The returned action
 * list might as well be static list.
 */

Generic Shortcut Actions304

Advanced Web Application Topics

 public Action[] getActions(Object target, Object sender) {
 System.out.println("getActions()");
 return new Action[] { action_ok, action_cancel };
 }

 /**
 * Handle actions received from keyboard. This simply directs
 * the actions to the same listener methods that are called
 * with ButtonClick events.
 */
 public void handleAction(Action action, Object sender,
 Object target) {
 if (action == action_ok) {
 okHandler();
 }
 if (action == action_cancel) {
 cancelHandler();
 }
 }

 public void okHandler() {
 // Do something: report the click
 formlayout.addComponent(new Label("OK clicked. "
 + "User=" + username.getValue() + ", password="
 + password.getValue()));
 }

 public void cancelHandler() {
 // Do something: report the click
 formlayout.addComponent(new Label("Cancel clicked. User="
 + username.getValue() + ", password="
 + password.getValue()));
 }
}

Notice that the keyboard actions can currently be attached only to Panels and Windows. This
can cause problems if you have components that require a certain key. For example, multi-line
TextField requires the Enter key.There is currently no way to filter the shortcut actions out while
the focus is inside some specific component, so you need to avoid such conflicts.

12.6.4. Supported Key Codes and Modifier Keys

The shortcut key definitions require a key code to identify the pressed key and modifier keys,
such as Shift, Alt, or Ctrl, to specify a key combination.

The key codes are defined in the ShortcutAction.KeyCode interface and are:

Keys A to Z Normal letter keys

F1 to F12 Function keys

BACKSPACE, DELETE, ENTER,
ESCAPE, INSERT, TAB

Control keys

NUM0 to NUM9 Number pad keys

ARROW_DOWN, ARROW_UP,
ARROW_LEFT, ARROW_RIGHT

Arrow keys

HOME, END, PAGE_UP,
PAGE_DOWN

Other movement keys

305Supported Key Codes and Modifier Keys

Advanced Web Application Topics

Modifier keys are defined in ShortcutAction.ModifierKey and are:

ModifierKey.ALT Alt key

ModifierKey.CTRL Ctrl key

ModifierKey.SHIFT Shift key

All constructors and methods accepting modifier keys take them as a variable argument list fol-
lowing the key code, separated with commas. For example, the following defines a Ctrl+Shift+N
key combination for a shortcut.

TextField name = new TextField("Name (Ctrl+Shift+N)");
name.addShortcutListener(
 new AbstractField.FocusShortcut(name, KeyCode.N,
 ModifierKey.CTRL,
 ModifierKey.SHIFT));

Supported Key Combinations

The actual possible key combinations vary greatly between browsers, as most browsers have a
number of built-in shortcut keys, which can not be used in web applications. For example, Mozilla
Firefox allows binding almost any key combination, while Opera does not even allow binding Alt
shortcuts. Other browsers are generally in between these two. Also, the operating system can
reserve some key combinations and some computer manufacturers define their own system key
combinations.

12.7. Printing

Vaadin does not currently have any special support for printing. Printing on the server-side is, in
any case, largely independent from the web UI of an application.You just have to take care that
the printing does not block server requests, possibly by running printing in another thread.

For client-side printing, most browsers support printing the web page. Vaadin does not explicitly
support launching the printing in browser, but you can easily use the JavaScript print()
method that opens the print window of the browser.

final Button print = new Button("Print This Page");
print.addListener(new ClickListener() {
 public void buttonClick(ClickEvent event) {
 print.getWindow().executeJavaScript("print();");
 }
});

This button would print the current page, including the button itself. Often, you want to be able
to print a report or receipt and it should not have any visible UI components. In such a case, you
could offer it as a PDF resource, or you could open a new window, as is done below, and auto-
matically launch printing.

// A button to open the printer-friendly page.
Button print = new Button("Click to Print");

print.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 // Create a window that contains what you want to print
 Window window = new Window("Window to Print");

 // Have some content to print
 window.addComponent(new Label(
 "<h1>Here's some dynamic content</h1>\n" +

Printing306

Advanced Web Application Topics

 "<p>This is to be printed to the printer.</p>",
 Label.CONTENT_XHTML));

 // Add the printing window as a new application-level
 // window
 getApplication().addWindow(window);

 // Open it as a popup window with no decorations
 getWindow().open(new ExternalResource(window.getURL()),
 "_blank", 500, 200, // Width and height
 Window.BORDER_NONE); // No decorations

 // Print automatically when the window opens.
 // This call will block until the print dialog exits!
 window.executeJavaScript("print();");

 // Close the window automatically after printing
 window.executeJavaScript("self.close();");
 }
});

How the browser opens the window, as an actual (popup) window or just a tab, depends on the
browser. Notice that calling the print() method in the window will block the entire application
until the print dialog exits. After printing, we automatically close the window with another
JavaScript call, as there is no close() method in Window.

Printing as PDF would not require creating a Window object, but you would need to provide the
content as a static or a dynamic resource for the open() method. Printing a PDF file would ob-
viously require a PDF viewer cabability (such as Adobe Reader) in the browser.

12.8. Google App Engine Integration

Vaadin includes support to run Vaadin applications in the Google App Engine (GAE). The most
essential requirement for GAE is the ability to serialize the application state. Vaadin applications
are serializable through the java.io.Serializable interface.

To run as a GAE application, an application must use GAEApplicationServlet instead of Applic-
ationServlet in web.xml, and of course implement the java.io.Serializable interface for all
persistent classes.You also need to enable session support in appengine-web.xml with:

<sessions-enabled>true</sessions-enabled>

The Vaadin Project wizard can create the configuration files needed for GAE deployment. See
Section 2.3.1, “Creating the Project”. When the Google App Engine deployment configuration is
selected, the wizard will create the project structure following the GAE Servlet convention instead
of the regular Servlet convention. The main differences are:

• Source directory: src/main/java

• Output directory: war/WEB-INF/classes

• Content directory: war

Rules and Limitations

Running Vaadin applications in Google App Engine has the following rules and limitations:

• Avoid using the session for storage, usual App Engine limitations apply (no synchroniz-
ation, that is, it is unreliable).

307Google App Engine Integration

Advanced Web Application Topics

• Vaadin uses memcache for mutex, the key is of the form _vmutex<sessionid>.

• The Vaadin WebApplicationContext class is serialized separately into memcache and
datastore; the memcache key is _vac<sessionid> and the datastore entity kind is
_vac with identifiers of the type _vac<sessionid>.

• Do not update the application state when serving an ApplicationResource (such as
ClassResource.getStream()).

• Avoid (or be very careful when) updating application state in a TransactionListener -
it is called even when the application is not locked and won't be serialized (such as with
ApplicationResource), and changes can therefore be lost (it should be safe to update
things that can be safely discarded later, that is, valid only for the current request).

• The application remains locked during uploads - a progress bar is not possible.

12.9. Common Security Issues

12.9.1. Sanitizing User Input to Prevent Cross-Site Scripting

You can put raw XHTML content in many components, such as the Label and CustomLayout,
as well as in tooltips and notifications. In such cases, you should make sure that if the content
has any possibility to come from user input, the input is well sanitized before displaying it. Other-
wise, a malicious user can easily make a cross-site scripting attack by injecting offensive
JavaScript code in such components.

Offensive code can easily be injected with <script> markup or in tag attributes as events, such
as onLoad. Cross-site scripting vulnerabilities are browser dependent, depending on the situations
in which different browsers execute scripting markup.

There is no generic way to sanitize user input as different applications can allow different kinds
of input. Pruning (X)HTML tags out is somewhat simple, but some applications may need to allow
(X)HTML. It is therefore the responsibility of the application to sanitize the input.

Character encoding can make sanitization more difficult, as offensive tags can be encoded so
that they are not recognized by a sanitizer. This can be done, for example, with HTML character
entities and with variable-width encodings such as UTF-8 or various CJK encodings, by abusing
multiple representations of a character. Most trivially, you could input < and > with < and
>, respectively.The input could also be malformed and the sanitizer must be able to interpret
it exactly as the browser would, and different browsers can interpret malformed HTML and variable-
width character encodings differently.

Notice that the problem applies also to user input from a RichTextArea is transmitted as XHTML
from the browser to server-side and is not sanitized. As the entire purpose of the RichTextArea
component is to allow input of formatted text, you can not just remove all HTML tags. Also many
attributes, such as style, should pass through the sanitization.

12.10. URI Fragment and History Management with UriFragmen-
tUtility

A major issue in AJAX applications is that as they run in a single web page, bookmarking the
application URL (or more generally the URI) can only bookmark the application, not an application
state. This is a problem for many applications such as product catalogs and forums, in which it

Common Security Issues308

Advanced Web Application Topics

would be good to provide links to specific products or messages. Consequently, as browsers
remember the browsing history by URI, the history and the Back button do not normally work.
The solution is to use the fragment part of the URI, which is separated from the primary part
(address + path + optional query parameters) of the URI with the hash (#) character. For example:

http://example.com/path#myfragment

The exact syntax of the fragment part is defined in RFC 3986 (Internet standard STD 66) that
defines the URI syntax. A fragment may only contain the regular URI path characters (see the
standard) and additionally the slash and the question mark.

The UriFragmentUtility is a special-purpose component that manages the URI fragment; it allows
setting the fragment and to handle user-made changes to it. As it is a regular component, though
invisible, you must add it to a layout in an application window with the addComponent(), as
usual.

public void init() {
 Window main = new Window("URI Fragment Example");
 setMainWindow(main);

 // Create the URI fragment utility
 final UriFragmentUtility urifu = new UriFragmentUtility();
 main.addComponent(urifu);

Notice that the utility component can work only when it is attached to the window, so in practice
it must be added in the init() method of the application and must afterwards always remain
in the application's user interface.

You can set the URI fragment with the setFragment() method of the UriFragmentUtility object.
The method takes the fragment as a string parameter. In the following example, we have a menu,
from which the user can select the URI fragment.

// Application state menu
final ListSelect menu = new ListSelect("Select a URI Fragment");
menu.addItem("mercury");
menu.addItem("venus");
menu.addItem("earth");
menu.addItem("mars");
menu.setImmediate(true);
main.addComponent(menu);

// Set the URI Fragment when menu selection changes
menu.addListener(new Property.ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 String itemid = (String) event.getProperty().getValue();
 urifu.setFragment(itemid);
 }
});

The URI fragment and any changes to it are passed to an application as Frag-
mentChangedEvents, which you can handle with a FragmentChangedListener. You can get
the new fragment value with the getFragment() method from the URI fragment utility component.

// When the URI fragment is given, use it to set menu selection
urifu.addListener(new FragmentChangedListener() {
 public void fragmentChanged(FragmentChangedEvent source) {
 String fragment =
 source.getUriFragmentUtility().getFragment();
 if (fragment != null)
 menu.setValue(fragment);
 }
});

309URI Fragment and History Management with UriFragmentUtility

Advanced Web Application Topics

Figure 12.10, “Application State Management with URI Fragment Utility” shows an application
that allows specifying the menu selection with a URI fragment and correspondingly sets the
fragment when the user selects a menu item, as done in the code examples above.

Figure 12.10. Application State Management with URI Fragment Utility

12.11. Capturing HTTP Requests

Behind the event-driven processing model of Vaadin lies the Java Servlet API, which is based
on processing HTTP requests. These requests are normally hidden from Vaadin applications,
but can be caught using the HttpServletRequestListener interface. You must implement the
interface in your application class.The two methods defined in the interface, onRequestStart()
and onRequestEnd(), allow processing the request before and after other processing.

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.vaadin.Application;
import com.vaadin.terminal.gwt.server.HttpServletRequestListener;
import com.vaadin.ui.*;

public class HttpServletRequestApplication extends Application
 implements HttpServletRequestListener {

 @Override
 public void init() {
 System.out.println(" Application.init() called.");

 Window main = new Window("URI Fragment Example");
 setMainWindow(main);
 setTheme("book-examples");

 // Does nothing but causes a request
 Button button = new Button ("Make a request");
 main.addComponent(button);
 }

 public void onRequestStart(HttpServletRequest request,
 HttpServletResponse response) {
 System.out.println("[Start of request");
 System.out.println(" Query string: " +
 request.getQueryString());
 System.out.println(" Path: " +
 request.getPathInfo());
 }

 public void onRequestEnd(HttpServletRequest request,
 HttpServletResponse response) {
 System.out.println(" End of request]");

Capturing HTTP Requests310

Advanced Web Application Topics

 }
}

The onRequestStart() is called for the first time when the application class is loaded but the
init() is not yet called. This can be seen in the output of the above code example:

[Start of request
 Query string: null
 Path: null
 Application.init() called.
 End of request]
[Start of request
 Query string: repaintAll=1&sh=1050&sw=1680&cw=500&ch=300&vw=500
 Path: /UIDL/
 End of request]
[Start of request
 Query string: windowName=1071684214
 Path: /UIDL/
 End of request]

The first call is a regular HTML page load, so the URL path is simply the application path. The
subsequent calls are AJAX calls made using the UIDL protocol, so the request path includes the
/UIDL/ part. This is important to know when using cookies, as explained later.

12.11.1. Using Request and Response Objects

The HttpServletRequest object provides access to the request data, such as request headers,
path info, and query string, as well as to some higher-level information such as cookies.

The HttpServletResponse object is somewhat different, as most write operations write data
directly to the output stream of the server request. It is therefore possible to add new headers
and cookies in the onRequestStart(), and make other settings, but not later on, especially
not in the onRequestEnd(), as all the UIDL response data has already been written to the
output stream. The framework writes the UIDL response to the output stream of the response
before calling onRequestEnd().You therefore have to be careful when writing to the response
object.You can usually write to it when handling component events in listeners, as is done in the
cookie example later.

While it is theoretically possible to redirect the output stream of the response object to write
custom data to the response, you should never need to do that, as it would break the UIDL
communication protocol.

The servlet request and response objects are defined in the Java Servlet API. Please refer to its
documentation for more detailed information.

12.11.2. Managing Cookies

Setting and reading cookies is one of the typical uses of HttpServletRequestListener. The ap-
plication gets the HttpServletRequest object containing the cookies in the onRequestStart()
method.

Setting a Cookie

You normally set a cookie in an event listener. As the request object is a transient object that
exists only for the duration of the request, it is not accessible from the Application object. The
only way to access it is to store it in onRequestStart(), as done in the following example.

311Using Request and Response Objects

Advanced Web Application Topics

public class CookieExampleApplication extends Application
 implements HttpServletRequestListener {
 HttpServletResponse response;

 public void onRequestStart(HttpServletRequest request,
 HttpServletResponse response) {
 // Store the reference to the response object for
 // using it in event listeners
 this.response = response;
 ...
 }
 ...

We can then use the reference to set or delete cookies in event listeners. Notice that the cookie
path property is automatically set to the application path (such as /book-examples/cookies)
on the first request, but contains the UIDL subpath on subsequent calls (such as
/book-examples/cookies/UIDL). As the cookies are matched against this path, you may
need to set the path explicitly with setPath().

newuser = new TextField ("Give a user name");
login = new Button("Login");
login.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 Object value = newuser.getValue();
 if (value != null &&
 ! "".equals((String)value)) {
 username = (String) value;

 Cookie cookie = new Cookie("username",
 username);
 // Use a fixed path
 cookie.setPath("/book-examples");
 cookie.setMaxAge(3600); // One hour
 response.addCookie(cookie);
 System.out.println("Set cookie.");

 newuser.setEnabled(false);
 login.setEnabled(false);
 restart.setEnabled(true);
 logout.setEnabled(true);
 }
 }
});
loginrow.addComponent(newuser);
loginrow.addComponent(login);

Removing cookie can be set in similar way by setting the maxAge property to zero.

// Delete the cookie
Cookie cookie = new Cookie("username", username);
cookie.setPath("/book-examples");
cookie.setMaxAge(0); // Delete
response.addCookie(cookie);

Reading a Cookie

Reading a cookie can be done in the onRequestStart() event. As this method is called also
on the first client request before the application is initialized, it is possible to read user identification
cookies and such on the first request.

public class CookieExampleApplication extends Application
 implements HttpServletRequestListener {
 String username;

Managing Cookies312

Advanced Web Application Topics

 public void onRequestStart(HttpServletRequest request,
 HttpServletResponse response) {
 if (username == null) {
 Cookie[] cookies = request.getCookies();
 for (int i=0; i<cookies.length; i++) {
 if ("username".equals(cookies[i].getName()))
 // Log the user in automatically
 username = cookies[i].getValue();
 }
 }
 }
 ...

Notice that the request path is the application path (such as /book-examples/cookies) on
the first request, but contains the UIDL subpath on subsequent AJAX calls (such as
/book-examples/cookies/UIDL). So, if you have set the cookie in an AJAX request without
setting the cookie path explicitly to such that does not contain the UIDL subpath, the cookie will
be filtered out on the initial onRequestStart() call.

12.12. Drag and Drop

Dragging an object from one location to another by grabbing it with mouse, holding the mouse
button pressed, and then releasing the button to "drop" it to the other location is a common way
to move, copy, or associate objects. For example, most operating systems allow dragging and
dropping files between folders or dragging a document on a program to open it. In Vaadin, it is
possible to drag and drop components and parts of certain components.

Dragged objects, or transferables, are essentially data objects. You can drag and drop rows in
Table and nodes in Tree components, either within or between the components. You can also
drag entire components by wrapping them inside DragAndDropWrapper.

Dragging starts from a drag source, which defines the transferable. Transferables implement the
Transferable interfaces. For trees and tables, which are bound to Container data sources, a
node or row transferable is a reference to an Item in the Vaadin Data Model. Dragged components
are referenced with a WrapperTransferable. Starting dragging does not require any client-
server communication, you only need to enable dragging. All drag and drop logic occurs in two
operations: determining (accepting) where dropping is allowed and actually dropping. Drops can
be done on a drop target, which implements the DropTarget interface.Three components imple-
ment the interface: Tree, Table, and DragAndDropWrapper. These accept and drop operations
need to be provided in a drop handler. Essentially all you need to do to enable drag and drop is
to enable dragging in the drag source and implement the getAcceptCriterion() and drop()
methods in the DropHandler interface.

The client-server architecture of Vaadin causes special requirements for the drag and drop
functionality.The logic for determining where a dragged object can be dropped, that is, accepting
a drop, should normally be done on the client-side, in the browser. Server communications are
too slow to have much of such logic on the server-side.The drag and drop feature therefore offers
a number of ways to avoid the server communications to ensure a good user experience.

12.12.1. Handling Drops

Most of the user-defined drag and drop logic occurs in a drop handler, which is provided by im-
plementing the drop() method in the DropHandler interface. A closely related definition is the
drop accept criterion, which is defined in the getAcceptCriterion() method in the same in-
terface. It is described in Section 12.12.4, “Accepting Drops” later.

313Drag and Drop

Advanced Web Application Topics

The drop() method gets a DragAndDropEvent as its parameters. The event object provides
references to two important object: Transferable and TargetDetails.

A Transferable contains a reference to the object (component or data item) that is being dragged.
A tree or table item is represented as a TreeTransferable or TableTransferable object, which
carries the item identifier of the dragged tree or table item. These special transferables, which
are bound to some data in a container, are DataBoundTransferable. Dragged components are
represented as WrapperTransferable objects, as the components are wrapped in a DragAnd-
DropWrapper.

The TargetDetails object provides details regarding the exact location where the transferable
object is being dropped. If the target is a tree or a table, the TreeTargetDetails and TableTar-
getDetails objects provide the tree or table item on which the drop is being made. For entire
components, the information is provided in a WrapperDropDetails object. In addition to the target
item or component, the details objects provide a drop location. For selection components, the
location can be obtained with the getDropLocation() and for wrapped components with
verticalDropLocation() and horizontalDropLocation(). The locations are specified
as either VerticalDropLocation or HorizontalDropLocation objects. The drop location objects
specify whether the transferable is being dropped above, below, or directly on (at the middle of)
a component or item.

Dropping on a Tree, Table, and a wrapped component is explained further in the following sections.

12.12.2. Dropping Items On a Tree

You can drag items from, to, or within a Tree. Making tree a drag source requires simply setting
the drag mode with setDragMode(). Tree currently supports only one drag mode,
TreeDragMode.NODE, which allows dragging single tree nodes. While dragging, the dragged
node is referenced with a TreeTransferable object, which is a DataBoundTransferable. The
tree node is identified by the item ID of the container item.

When a transferable is dropped on a tree, the drop location is stored in a TreeTargetDetails
object, which identifies the target location by item ID of the tree node on which the drop is made.
You can get the item ID with getItemIdOver() method in AbstractSelectTargetDetails, which
the TreeTargetDetails inherits. A drop can occur directly on or above or below a node; the exact
location is a VerticalDropLocation, which you can get with the getDropLocation() method.

In the example below, we have a Tree and we allow reordering the tree items by drag and drop.

final Tree tree = new Tree("Inventory");
tree.setContainerDataSource(TreeExample.createTreeContent());
layout.addComponent(tree);

// Expand all items
for (Iterator<?> it = tree.rootItemIds().iterator(); it.hasNext();)
 tree.expandItemsRecursively(it.next());

// Set the tree in drag source mode
tree.setDragMode(TreeDragMode.NODE);

// Allow the tree to receive drag drops and handle them
tree.setDropHandler(new DropHandler() {
 public AcceptCriterion getAcceptCriterion() {
 return AcceptAll.get();
 }

 public void drop(DragAndDropEvent event) {
 // Wrapper for the object that is dragged

Dropping Items On a Tree314

Advanced Web Application Topics

 Transferable t = event.getTransferable();

 // Make sure the drag source is the same tree
 if (t.getSourceComponent() != tree)
 return;

 TreeTargetDetails target = (TreeTargetDetails)
 event.getTargetDetails();

 // Get ids of the dragged item and the target item
 Object sourceItemId = t.getData("itemId");
 Object targetItemId = target.getItemIdOver();

 // On which side of the target the item was dropped
 VerticalDropLocation location = target.getDropLocation();

 HierarchicalContainer container = (HierarchicalContainer)
 tree.getContainerDataSource();

 // Drop right on an item -> make it a child
 if (location == VerticalDropLocation.MIDDLE)
 tree.setParent(sourceItemId, targetItemId);

 // Drop at the top of a subtree -> make it previous
 else if (location == VerticalDropLocation.TOP) {
 Object parentId = container.getParent(targetItemId);
 container.setParent(sourceItemId, parentId);
 container.moveAfterSibling(sourceItemId, targetItemId);
 container.moveAfterSibling(targetItemId, sourceItemId);
 }

 // Drop below another item -> make it next
 else if (location == VerticalDropLocation.BOTTOM) {
 Object parentId = container.getParent(targetItemId);
 container.setParent(sourceItemId, parentId);
 container.moveAfterSibling(sourceItemId, targetItemId);
 }
 }
});

Accept Criteria for Trees

Tree defines some specialized accept criteria for trees.

TargetInSubtree (client-side) Accepts if the target item is in the specified sub-tree.
The sub-tree is specified by the item ID of the root of
the sub-tree in the constructor.The second constructor
includes a depth parameter, which specifies how deep
from the given root node are drops accepted.Value -1
means infinite, that is, the entire sub-tree, and is
therefore the same as the simpler constructor.

TargetItemAllowsChildren (cli-
ent-side)

A c c e p t s a d r o p i f t h e t r e e h a s
setChildrenAllowed() enabled for the target item.
The criterion does not require parameters, so the class
is a singleton and can be acquired with
Tree.TargetItemAllowsChildren.get(). For
example, the following composite criterion accepts
drops only on nodes that allow children, but between
all nodes:

315Dropping Items On a Tree

Advanced Web Application Topics

return new Or (Tree.TargetItemAllowsChildren.get(),
 new Not(VerticalLocationIs.MIDDLE));

TreeDropCriterion (server-side) Accepts drops on only some items, which as specified
by a set of item IDs.You must extend the abstract class
and implement the getAllowedItemIds() to return
the set. While the criterion is server-side, it is lazy-
loading, so that the list of accepted target nodes is
loaded only once from the server for each drag opera-
tion. See Section 12.12.4, “Accepting Drops” for an
example.

In addition, the accept criteria defined in AbstractSelect are available for a Tree, as listed in
Section 12.12.4, “Accepting Drops”.

12.12.3. Dropping Items On a Table

You can drag items from, to, or within a Table. Making table a drag source requires simply setting
the drag mode with setDragMode(). Table supports dragging both single rows, with
TableDragMode.ROW, and multiple rows, with TableDragMode.MULTIROW. While dragging,
the dragged node or nodes are referenced with a TreeTransferable object, which is a
DataBoundTransferable. Tree nodes are identified by the item IDs of the container items.

When a transferable is dropped on a table, the drop location is stored in a AbstractSelectTar-
getDetails object, which identifies the target row by its item ID. You can get the item ID with
getItemIdOver() method. A drop can occur directly on or above or below a row; the exact
location is a VerticalDropLocation, which you can get with the getDropLocation() method
from the details object.

Accept Criteria for Tables

Table defines one specialized accept criterion for tables.

TableDropCriterion (server-side) Accepts drops only on (or above or below) items that
are specified by a set of item IDs.You must extend the
abstract c lass and implement the
getAllowedItemIds() to return the set. While the
criterion is server-side, it is lazy-loading, so that the list
of accepted target items is loaded only once from the
server for each drag operation.

12.12.4. Accepting Drops

You can not drop the objects you are dragging around just anywhere. Before a drop is possible,
the specific drop location on which the mouse hovers must be accepted. Hovering a dragged
object over an accepted location displays an accept indicator, which allows the user to position
the drop properly. As such checks have to be done all the time when the mouse pointer moves
around the drop targets, it is not feasible to send the accept requests to the server-side, so drops
on a target are normally accepted by a client-side accept criterion.

A drop handler must define the criterion on the objects which it accepts to be dropped on the
target.The criterion needs to be provided in the getAcceptCriterion() method of the DropHandler
interface. A criterion is represented in an AcceptCriterion object, which can be a composite of
multiple criteria that are evaluated using logical operations. There are two basic types of criteria:

Dropping Items On a Table316

Advanced Web Application Topics

client-side and server-side criteria. The various built-in criteria allow accepting drops based on
the identity of the source and target components, and on the data flavor of the dragged objects.

To allow dropping any transferable objects, you can return a universal accept criterion, which
you can get with AcceptAll.get().

tree.setDropHandler(new DropHandler() {
 public AcceptCriterion getAcceptCriterion() {
 return AcceptAll.get();
 }
 ...

Client-Side Criteria

The client-side criteria, which inherit the ClientSideCriterion, are verified on the client-side, so
server requests are not needed for verifying whether each component on which the mouse
pointer hovers would accept a certain object.

The following client-side criteria are define in com.vaadin.event.dd.acceptcriterion:

AcceptAll Accepts all transferables and targets.

And Logical AND operation on two client-side criterion; accepts
the transferable if all the defined sub-criteria accept it.

ContainsDataFlavour The transferable must contain the defined data flavour.

Not Logical NOT operation on two client-side criterion; accepts
the transferable if and only if the sub-criterion does not accept
it.

Or Logical OR operation on two client-side criterion; accepts the
transferable if any of the defined sub-criteria accept it.

SourceIs Accepts all transferables from any of the given source com-
ponents

SourceIsTarget Accepts the transferable only if the source component is the
same as the target. This criterion is useful for ensuring that
items are dragged only within a tree or a table, and not from
outside it.

TargetDetailIs Accepts any transferable if the target detail, such as the item
of a tree node or table row, is of the given data flavor and has
the given value.

In addition, target components such as Tree and Table define some component-specific client-
side accept criteria. See Section 12.12.2, “Dropping Items On a Tree” for more details.

AbstractSelect defines the following criteria for all selection components, including Tree and
Table.

AcceptItem Accepts only specific items from a specific selection
component. The selection component, which must in-
herit AbstractSelect, is given as the first parameter for
the constructor. It is followed by a list of allowed item
identifiers in the drag source.

317Accepting Drops

Advanced Web Application Topics

AcceptItem.ALL Accepts all transferables as long as they are items.

TargetItemIs Accepts all drops on the specified target items. The
constructor requires the target component (AbstractSe-
lect) followed by a list of allowed item identifiers.

VerticalLocationIs.MIDDLE,
TOP, and BOTTOM

The three static criteria accepts drops on, above, or
below an item. For example, you could accept drops
only in between items with the following:

public AcceptCriterion getAcceptCriterion() {
 return new Not(VerticalLocationIs.MIDDLE);
}

Server-Side Criteria

The server-side criteria are verified on the server-side with the accept() method of the
ServerSideCriterion class. This allows fully programmable logic for accepting drops, but the
negative side is that it causes a very large amount of server requests. A request is made for
every target position on which the pointer hovers. This problem is eased in many cases by the
component-specific lazy loading criteria TableDropCriterion and TreeDropCriterion. They do
the server visit once for each drag and drop operation and return all accepted rows or nodes for
current Transferable at once.

The accept() method gets the drag event as a parameter so it can perform its logic much like
in drop().

public AcceptCriterion getAcceptCriterion() {
 // Server-side accept criterion that allows drops on any other
 // location except on nodes that may not have children
 ServerSideCriterion criterion = new ServerSideCriterion() {
 public boolean accept(DragAndDropEvent dragEvent) {
 TreeTargetDetails target = (TreeTargetDetails)
 dragEvent.getTargetDetails();

 // The tree item on which the load hovers
 Object targetItemId = target.getItemIdOver();

 // On which side of the target the item is hovered
 VerticalDropLocation location = target.getDropLocation();
 if (location == VerticalDropLocation.MIDDLE)
 if (! tree.areChildrenAllowed(targetItemId))
 return false; // Not accepted

 return true; // Accept everything else
 }
 };
 return criterion;
}

The server-side criteria base class ServerSideCriterion provides a generic accept() method.
The more specific TableDropCriterion and TreeDropCriterion are conveniency extensions that
allow definiting allowed drop targets as a set of items. They also provide some optimization by
lazy loading, which reduces server communications significantly.

public AcceptCriterion getAcceptCriterion() {
 // Server-side accept criterion that allows drops on any
 // other tree node except on node that may not have children
 TreeDropCriterion criterion = new TreeDropCriterion() {
 @Override
 protected Set<Object> getAllowedItemIds(

Accepting Drops318

Advanced Web Application Topics

 DragAndDropEvent dragEvent, Tree tree) {
 HashSet<Object> allowed = new HashSet<Object>();
 for (Iterator<Object> i =
 tree.getItemIds().iterator(); i.hasNext();) {
 Object itemId = i.next();
 if (tree.hasChildren(itemId))
 allowed.add(itemId);
 }
 return allowed;
 }
 };
 return criterion;
}

Accept Indicators

When a dragged object hovers on a drop target, an accept indicator is displayed to show
whether or not the location is accepted. For MIDDLE location, the indicator is a box around the
target (tree node, table row, or component). For vertical drop locations, the accepted locations
are shown as horizontal lines, and for horizontal drop locations as vertical lines.

For DragAndDropWrapper drop targets, you can disable the accept indicators or drag hints with
the no-vertical-drag-hints, no-horizontal-drag-hints, and no-box-drag-hints
styles.You need to add the styles to the layout that contains the wrapper, not to the wrapper itself.

// Have a wrapper
DragAndDropWrapper wrapper = new DragAndDropWrapper(c);
layout.addComponent(wrapper);

// Disable the hints
layout.addStyleName("no-vertical-drag-hints");
layout.addStyleName("no-horizontal-drag-hints");
layout.addStyleName("no-box-drag-hints");

12.12.5. Dragging Components

Dragging a component requires wrapping the source component within a DragAndDropWrapper.
You can then allow dragging by putting the wrapper (and the component) in drag mode with
setDragStartMode(). The method supports two drag modes: DragStartMode.WRAPPER
and DragStartMode.COMPONENT, which defines whether the entire wrapper is shown as the
drag image while dragging or just the wrapped component.

// Have a component to drag
final Button button = new Button("An Absolute Button");

// Put the component in a D&D wrapper and allow dragging it
final DragAndDropWrapper buttonWrap = new DragAndDropWrapper(button);
buttonWrap.setDragStartMode(DragStartMode.COMPONENT);

// Set the wrapper to wrap tightly around the component
buttonWrap.setSizeUndefined();

// Add the wrapper, not the component, to the layout
layout.addComponent(buttonWrap, "left: 50px; top: 50px;");

The default height of DragAndDropWrapper is undefined, but the default width is 100%. If you
want to ensure that the wrapper fits tightly around the wrapped component, you should call
setSizeUndefined() for the wrapper. Doing so, you should make sure that the wrapped
component does not have a relative size, which would cause a paradox.

319Dragging Components

Advanced Web Application Topics

Dragged components are referenced in the WrapperTransferable. You can get the reference
to the dragged component with getDraggedComponent(). The method will return null if the
transferable is not a component. Also HTML 5 drags (see later) are held in wrapper transferables.

12.12.6. Dropping on a Component

Drops on a component are enabled by wrapping the component in a DragAndDropWrapper.
The wrapper is an ordinary component; the constructor takes the wrapped component as a
parameter.You just need to define the DropHandler for the wrapper with setDropHandler().

In the following example, we allow moving components in an absolute layout. Details on the drop
handler are given later.

// A layout that allows moving its contained components
// by dragging and dropping them
final AbsoluteLayout absLayout = new AbsoluteLayout();
absLayout.setWidth("100%");
absLayout.setHeight("400px");

... put some (wrapped) components in the layout ...

// Wrap the layout to allow handling drops
DragAndDropWrapper layoutWrapper =
 new DragAndDropWrapper(absLayout);

// Handle moving components within the AbsoluteLayout
layoutWrapper.setDropHandler(new DropHandler() {
 public AcceptCriterion getAcceptCriterion() {
 return AcceptAll.get();
 }

 public void drop(DragAndDropEvent event) {
 ...
 }
});

Target Details for Wrapped Components

The drop handler receives the drop target details in a WrapperTargetDetails object, which im-
plements the TargetDetails interface.

public void drop(DragAndDropEvent event) {
 WrapperTransferable t =
 (WrapperTransferable) event.getTransferable();
 WrapperTargetDetails details =
 (WrapperTargetDetails) event.getTargetDetails();

The wrapper target details include a MouseEventDetails object, which you can get with
getMouseEvent(). You can use it to get the mouse coordinates for the position where the
mouse button was released and the drag ended. Similarly, you can find out the drag start position
from the transferable object (if it is a WrapperTransferable) with getMouseDownEvent().

// Calculate the drag coordinate difference
int xChange = details.getMouseEvent().getClientX()
 - t.getMouseDownEvent().getClientX();
int yChange = details.getMouseEvent().getClientY()
 - t.getMouseDownEvent().getClientY();

// Move the component in the absolute layout
ComponentPosition pos =
 absLayout.getPosition(t.getSourceComponent());

Dropping on a Component320

Advanced Web Application Topics

pos.setLeftValue(pos.getLeftValue() + xChange);
pos.setTopValue(pos.getTopValue() + yChange);

You can get the absolute x and y coordinates of the target wrapper with getAbsoluteLeft()
and getAbsoluteTop(), which allows you to translate the absolute mouse coordinates to co-
ordinates relative to the wrapper. Notice that the coordinates are really the position of the wrapper,
not the wrapped component; the wrapper reserves some space for the accept indicators.

The verticalDropLocation() and horizontalDropLocation() return the more detailed
drop location in the target.

12.12.7. Dragging Files from Outside the Browser

The DragAndDropWrapper allows dragging files from outside the browser and dropping them
on a component wrapped in the wrapper. Dropped files are automatically uploaded to the applic-
ation and can be acquired from the wrapper with getFiles(). The files are represented as
Html5File objects as defined in the inner class. You can define an upload Receiver to receive
the content of a file to an OutputStream.

Dragging and dropping files to browser is supported in HTML 5 and requires a compatible browser,
such as Mozilla Firefox 3.6 or newer.

12.13. Logging

You can do logging in Vaadin application using the standard java.util.logging facilities. Configuring
logging is as easy as putting a file named logging.properties in the default package of your
Vaadin application (src in an Eclipse project or src/main/java or src/main/resources in
a Maven project). This file is read by the Logger class when a new instance of it is initialize.

Logging in Apache Tomcat

For logging Vaadin applications deployed in Apache Tomcat, you do not need to do anything
special to log to the same place as Tomcat itself. If you need to write the Vaadin application related
messages elsewhere, just add a custom logging.properties file to the default package of
your Vaadin application.

If you would like to pipe the log messages through another logging solution, see the section called
“Piping to Log4j using SLF4J” below.

Logging in Liferay

Liferay mutes logging through java.util.logging by default. In order to enable logging, you need
to add a logging.properties file of your own to the default package of your Vaadin application.
This file should define at least one destination where to save the log messages.

You can also log through SLF4J, which is used in and bundled with Liferay. Follow the instructions
in the section called “Piping to Log4j using SLF4J”.

Piping to Log4j using SLF4J

Piping output from java.util.logging to Log4j is easy with SLF4J (http://slf4j.org/). The basic way
to go about this is to add the SLF4J JAR file as well as the jul-to-slf4j.jar file, which im-
plements the bridge from java.util.logging, to SLF4J. You will also need to add a third logging

321Dragging Files from Outside the Browser

Advanced Web Application Topics

http://slf4j.org/

implementation JAR file, that is, slf4j-log4j12-x.x.x.jar, to log the actual messages using
Log4j. For more info on this, please visit the SLF4J site.

In order to get the java.util.logging to SLF4J bridge installed, you need to add the following
snippet of code to your Application class at the very top:

 static {
 SLF4JBridgeHandler.install();
 }

This will make sure that the bridge handler is installed and working before Vaadin starts to process
any logging calls.

Please note!

This can seriously impact on the cost of disabled logging statements (60-fold increase)
and a measurable impact on enabled log statements (20% overall increase). However,
Vaadin doesn't log very much, so the effect on performance will be negligible.

Using Logger

You can do logging with a simple pattern where you register a static logger instance in each class
that needs logging, and use this logger wherever logging is needed in the class. For example:

public class MyClass {
 private final static Logger logger =
 Logger.getLogger(MyClass.class.getName());

 public void myMethod() {
 try {
 // do something that might fail
 } catch (Exception e) {
 logger.log(Level.SEVERE, "FAILED CATASTROPHICALLY!", e);
 }
 }
}

Having a static logger instance for each class needing logging saves a bit of memory and time
compared to having a logger for every logging class instance. However, it could cause the applic-
ation to leak PermGen memory with some application servers when redeploying the application.
The problem is that the Logger may maintain hard references to its instances. As the Logger
class is loaded with a classloader shared between different web applications, references to
classes loaded with a per-application classloader would prevent garbage-collecting the classes
after redeploying, hence leaking memory. As the size of the PermGen memory where class object
are stored is fixed, the leakage will lead to a server crash after many redeployments. The issue
depends on the way how the server manages classloaders, on the hardness of the back-refer-
ences, and may also be different between Java 6 and 7. So, if you experience PermGen issues,
or want to play it on the safe side, you should consider using non-static Logger instances.

12.14. Accessing Session-Global Data

Applications typically need to access some objects from practically all user interface code, such
as a user object, a business data model, or a database connection.This data is typically initialized
and managed in the application class. Some such data is built-in into the Application class, such
as the locale.

Using Logger322

Advanced Web Application Topics

You can access the application object from any user interface component using the
getApplication() method. For example:

class MyApplication extends Application {
 UserData userData;

 public void init() {
 userData = new UserData();
 }

 public UserData getUserData() {
 return userData;
 }
}

...
data = ((MyApplication)component.getApplication()).getUserData();

The Problem

The basic problem in accessing session-global data is that the getApplication() method
works only after the component has been attached to the application. Before that, it returns null.
This is the case in constructors of components, such as a CustomComponent:

class MyComponent extends CustomComponent {
 public MyComponent() {
 // This fails with NullPointerException
 Label label = new Label("Country: " +
 getApplication().getLocale().getCountry());

 setCompositionRoot(label);
 }
}

Using a static variable or a singleton implemented with such to give a global access to user
session data is not possible, because static variables are global in the entire web application,
not just the user session. This can be handy for communicating data between the concurrent
sessions, but creates a problem within a session.

For example, the following would not work:

class MyApplication extends Application {
 static UserData userData;

 public void init() {
 userData = new UserData();
 }

 public static UserData getUserData() {
 return userData;
 }
}

The data would be shared by all users and be reinitialized every time a new user opens the ap-
plication.

Overview of Solutions

To get the application object or any other global data, you have the following solutions:

• Pass a reference to the global data as a parameter.

323The Problem

Advanced Web Application Topics

• Initialize components in attach() method.

• Store a reference to global data using the ThreadLocal Pattern.

Each solution is described in the following sections.

12.14.1. Passing References Around

You can pass references to objects as parameters. This is the normal way in object-oriented
programming.

class MyApplication extends Application {
 UserData userData;

 public void init() {
 Window mainWindow = new Window("My Window");
 setMainWindow(mainWindow);

 userData = new UserData();

 mainWindow.addComponent(new MyComponent(this));
 }

 public UserData getUserData() {
 return userData;
 }
}

class MyComponent extends CustomComponent {
 public MyComponent(MyApplication app) {
 Label label = new Label("Name: " +
 app.getUserData().getName());

 setCompositionRoot(label);
 }
}

If you need the reference in other methods, you either have to pass it again as a parameter or
store it in a member variable.

The problem with this solution is that practically all constructors in the application need to get a
reference to the application object, and passing it further around in the classes is another hard
task.

12.14.2. Overriding attach()

The attach() method is called when the component is attached to the application component
through containment hierarchy. The getApplication() method always works.

class MyComponent extends CustomComponent {
 public MyComponent() {
 // Must set a dummy root in constructor
 setCompositionRoot(new Label(""));
 }

 @Override
 public void attach() {
 Label label = new Label("Name: " +
 ((MyApplication)component.getApplication())
 .getUserData().getName());

 setCompositionRoot(label);

Passing References Around324

Advanced Web Application Topics

 }
}

While this solution works, it is slightly messy. You may need to do some initialization in the con-
structor, but any construction requiring the global data must be done in the attach() method.
Especially, CustomComponent requires that the setCompositionRoot() method is called
in the constructor. If you can't create the actual composition root component in the constructor,
you need to use a temporary dummy root, as is done in the example above.

Using getApplication() also needs casting if you want to use methods defined in your ap-
plication class.

12.14.3.ThreadLocal Pattern

The ThreadLocal pattern gives a solution to the global access problem by solving two sub-prob-
lems.

As the first problem, the servlet container processes requests for many users (sessions) sequen-
tially, so if a static variable is set in a request belonging one user, it could be read or re-set by
the next incoming request belonging to another user. This can be solved by setting the global
reference at the beginning of each HTTP request to point to data of the current user, as illustrated
in Figure 12.11.

Figure 12.11. Switching a static (or ThreadLocal) reference during sequential
processing of requests

You can implement such switching either with the TransactionListener or HttpServletRequest-
Listener interface by setting the reference in transactionStart() or onRequestStart(),
respectively.We use the former interface in the example code in this section, as the latter interface
has to be implemented in the application class.

The second problem is that servlet containers typically do thread pooling with multiple worker
threads that process requests.Therefore, setting a static reference would change it in all threads
running concurrently, possibly just when another thread is processing a request for another user.
The solution is to store the reference in a thread-local variable instead of a static.You can do so
by using the ThreadLocal class in Java for the switch reference.

325ThreadLocal Pattern

Advanced Web Application Topics

Figure 12.12. Switching ThreadLocal references during concurrent
processing of requests

Notice that if you use a TransactionListener, the listeners are attached to the web application
context (in practice a user session), not the application instance.The problem is that an application
context can have multiple different Vaadin applications that share the same user session. If two
of these applications add a transaction listener to the context to listen for requests, both are called
and without any checks they would both set the reference to themselves.Therefore, the application
data object needs to know which application it belongs to and check that when the transaction
begins and ends. Using the HttpServletRequestListener frees you from these checks.

While you may not absolutely need to clear the reference in transactionEnd(), you are
probably on the safer side if you do. Setting such unneeded references to null can help avoid
memory leaks and it could also be a good security precaution not to leave a reference to session
data so that it could be seen by another user session in the next request.

We end up with the following code. As we put the application data to a class separate from the
application class, we have to make it a TransactionListener.

/** Holds data for one user session. */
public class AppData
 implements TransactionListener, Serializable {
 private ResourceBundle bundle;
 private Locale locale; // Current locale
 private String userData; // Trivial data model for the user

 private Application app; // For distinguishing between apps

 private static ThreadLocal<AppData> instance =
 new ThreadLocal<AppData>();

 public AppData(Application app) {
 this.app = app;

 // It's usable from now on in the current request
 instance.set(this);
 }

 @Override

ThreadLocal Pattern326

Advanced Web Application Topics

 public void transactionStart(Application application,
 Object transactionData) {
 // Set this data instance of this application
 // as the one active in the current thread.
 if (this.app == application)
 instance.set(this);
 }

 @Override
 public void transactionEnd(Application application,
 Object transactionData) {
 // Clear the reference to avoid potential problems
 if (this.app == application)
 instance.set(null);
 }

 public static void initLocale(Locale locale,
 String bundleName) {
 instance.get().locale = locale;
 instance.get().bundle =
 ResourceBundle.getBundle(bundleName, locale);
 }

 public static Locale getLocale() {
 return instance.get().locale;
 }

 public static String getMessage(String msgId) {
 return instance.get().bundle.getString(msgId);
 }

 public static String getUserData() {
 return instance.get().userData;
 }

 public static void setUserData(String userData) {
 instance.get().userData = userData;
 }
}

We can then use it in the application as follows. Observe that we do not have a reference to the
application object in the constructor of the MyComponent class.

/**
 * We can now nicely access the session-global data
 * in the constuctor of this class.
 */
class MyComponent extends CustomComponent {
 public MyComponent() {
 VerticalLayout layout = new VerticalLayout();

 // Get stuff from the application data object
 layout.addComponent(new Label("Hello, " +
 AppData.getUserData()));

 layout.addComponent(new Label("Your locale is " +
 AppData.getLocale().getDisplayLanguage()));

 layout.addComponent(new Button(
 AppData.getMessage(MyAppCaptions.CancelKey)));

 setCompositionRoot(layout);
 }
}

/** The application class. */
public class ThreadLocalApplication extends Application {

327ThreadLocal Pattern

Advanced Web Application Topics

 public void init() {
 Window main = new Window("Hello window");
 setMainWindow(main);

 // Create the application data instance
 AppData sessionData = new AppData(this);

 // Register it as a listener in the application context
 getContext().addTransactionListener(sessionData);

 // Initialize the session-global data
 AppData.initLocale(getLocale(),
 MyAppCaptions.class.getName());

 // Also set the user data model
 AppData.setUserData("Billy");

 // Now, we do not pass this application object
 // in the constructor, so it couldn't access the
 // app data otherwise.
 main.addComponent(new MyComponent());
 }
}

ThreadLocal Pattern328

Advanced Web Application Topics

Chapter 13

Portal Integration

13.1. Deploying to a Portal ... 330
13.2. Creating a Portal Application Project in Eclipse 330
13.3. Portlet Deployment Descriptors ... 332
13.4. Portlet Hello World ... 337
13.5. Installing Vaadin in Liferay ... 337
13.6. Handling Portlet Requests ... 339
13.7. Handling Portlet Mode Changes .. 340
13.8. Non-Vaadin Portlet Modes ... 342
13.9. Vaadin Control Panel for Liferay ... 344
13.10. Vaadin IPC for Liferay .. 346
13.11. Remote Portlets with WSRP .. 353

Vaadin supports running applications as portlets, as defined in the JSR-168 (Java Portlet API)
and JSR-286 (Java Portlet API 2.0) standards. While providing generic support for all portals
implementing the standards, Vaadin especially supports the Liferay portal and the needed portal-
specific configuration is given below for Liferay.

You can deploy the Vaadin demo package WAR (available from the download site) directly to a
portal such as Liferay. It contains all the necessary portlet configuration files. For optimal perform-
ance with Liferay, you can install the Vaadin library and other needed resources in Liferay as
described later in this section.

You can find more documentation and examples from the Vaadin Developer's Site at
http://dev.vaadin.com/.

329Book of Vaadin

13.1. Deploying to a Portal

Deploying a Vaadin application as a portlet is essentially just as easy as deploying a regular ap-
plication to an application server.You do not need to make any changes to the application itself,
but only the following:

• Application packaged as a WAR
• WEB-INF/portlet.xml descriptor
• WEB-INF/web.xml descriptor for Portlet 1.0 portlets
• WEB-INF/liferay-portlet.xml descriptor for Liferay
• WEB-INF/liferay-display.xml descriptor for Liferay
• WEB-INF/liferay-plugin-package.properties for Liferay

• Widget set installed to portal (optional)
• Themes installed to portal (optional)
• Vaadin library installed to portal (optional)
• Portal configuration settings (optional)

Installing the widget set and themes to the portal is required for running two or more Vaadin
portlets simultaneously in a single portal page. As this situation occurs quite easily, we recommend
installing them in any case.

In addition to the Vaadin library, you will need to copy the portlet.jar to your project. Notice
that you must not put the portlet.jar in the same WebContent/WEB-INF/lib directory as
the Vaadin JAR or otherwise include it in the WAR to be deployed, because it would create a
conflict with the internal portlet library of the portal. The conflict would cause errors such as
"ClassCastException: ...ApplicationPortlet2 cannot be cast to
javax.portlet.Portlet".

How you actually deploy a WAR package depends on the portal. In Liferay, you simply drop it to
the deploy subdirectory under the Liferay installation directory. The deployment depends on
the application server under which Liferay runs; for example, if you use Liferay bundled with
Tomcat, you will find the extracted package in the webapps directory under the Tomcat installation
directory included in Liferay.

13.2. Creating a Portal Application Project in Eclipse

While you can create the needed deployment descriptors manually for any existing Vaadin ap-
plication, as described in subsequent sections, the Vaadin Plugin for Eclipse provides a wizard
for easy creation of portal application projects.

Creation of a portal application project is almost identical to the creation of a regular application
project. For a full treatment of the New Project Wizard and the possible options, please see
Section 2.3.1, “Creating the Project”.

1. Start creating a new project by selecting from the menu File New Project....

Deploying to a Portal330

Portal Integration

2. In the New Project window that opens, select Web Vaadin Project and click Next.

3. In the Vaadin Project step, you need to set the basic web project settings. You need
to give at least the project name, the runtime, and select Generic Portlet for the deploy-
ment configuration; the default values should be good for the other settings.

You can click Finish here to use the defaults for the rest of the settings, or click Next.

4. The settings in the Web Module step define the basic servlet-related settings and the
structure of the web application project. All the settings are pre-filled, and you should
normally accept them as they are and click Next.

5. The Vaadin project step page has various Vaadin-specific application settings. These
are largely the same as for regular applications.You should not need to change anything
as you can change the application titles and other details afterwards.The Create portlet
template option should be automatically selected. You can give another portlet title of
you want.You can change most of the settings afterward.

331Creating a Portal Application Project in Eclipse

Portal Integration

Create project template Creates an application class and all the needed portlet
deployment descriptors.

Application name The application name is used in the title of the main
window (which is usually invisible in portlets) and as
an identifier, either as is or with a suffix, in various
deployment descriptors.

Base package name Java package for the application class.

Application class name Name of the application class. The default is derived
from the project name.

Portlet version Same as in the project settings.

Portlet title The portlet title, defined in portlet.xml, can be
used as the display name of the portlet (at least in
Liferay). The default value is the project name. The
title is also used as a short description in
liferay-plugin-package.properties.

Vaadin version Same as in the project settings.

Finally, click Finish to create the project.

6. Eclipse may ask you to switch to J2EE perspective. A Dynamic Web Project uses an
external web server and the J2EE perspective provides tools to control the server and
manage application deployment. Click Yes.

13.3. Portlet Deployment Descriptors

To deploy a portlet WAR in a portal, you need to provide the basic portlet.xml descriptor
specified in the Java Portlet standard. In addition, you may need to include possible portal vendor
specific deployment descriptors. The ones required by Liferay are described below.

Portlet 2.0 Deployment Descriptor

The por tlet WAR must include a por tlet descr iptor located at
WebContent/WEB-INF/portlet.xml. A portlet definition includes the portlet name, mapping
to a servlet in web.xml, modes supported by the portlet, and other configuration. Below is an
example of a simple portlet definition in portlet.xml descriptor.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<portlet-app
 xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 version="2.0"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd
 http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd">

 <portlet>
 <portlet-name>Portlet Example portlet</portlet-name>
 <display-name>Vaadin Portlet Example</display-name>

 <!-- Map portlet to a servlet. -->
 <portlet-class>
 com.vaadin.terminal.gwt.server.ApplicationPortlet2

Portlet Deployment Descriptors332

Portal Integration

 </portlet-class>
 <init-param>
 <name>application</name>

 <!-- The application class with package name. -->
 <value>com.example.myportlet.MyportletApplication</value>
 </init-param>

 <!-- Supported portlet modes and content types. -->
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 <portlet-mode>edit</portlet-mode>
 <portlet-mode>help</portlet-mode>
 </supports>

 <!-- Not always required but Liferay requires these. -->
 <portlet-info>
 <title>Vaadin Portlet Example</title>
 <short-title>Portlet Example</short-title>
 </portlet-info>
 </portlet>
</portlet-app>

Listing supported portlet modes in portlet.xml enables the corresponding portlet controls in
the portal user interface that allow changing the mode, as described later.

Portlet 1.0 Deployment Descriptor

The portlet deployment descriptor for Portlet 1.0 API is largely the same as for Portlet 2.0. The
main differences are:

1. XML namespace and schema names

2. Portlet-class: ApplicationPortlet vs ApplicationPortlet2

3. The application parameter is a name of the servlet (defined in web.xml in Portlet
1.0, but name of the application class in Portlet 2.0. There is no longer a separate
web.xml file in Servlet 2.0.

4. The portlet-name must not be same as the servlet name in Portlet 1.0; in Portlet 2.0
this does not matter.

Below is an example of a complete deployment descriptor for Portlet 1.0:

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app
 version="1.0"
 xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd
 http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd">

 <portlet>
 <!-- Must not be the same as servlet name. -->
 <portlet-name>Portlet Example portlet</portlet-name>
 <display-name>Vaadin Portlet Example</display-name>

 <!-- Map portlet to a servlet. -->
 <portlet-class>
 com.vaadin.terminal.gwt.server.ApplicationPortlet
 </portlet-class>

333Portlet 1.0 Deployment Descriptor

Portal Integration

 <init-param>
 <name>application</name>

 <!-- Must match the servlet URL mapping in web.xml. -->
 <value>portletexample</value>
 </init-param>

 <!-- Supported portlet modes and content types. -->
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 <portlet-mode>edit</portlet-mode>
 <portlet-mode>help</portlet-mode>
 </supports>

 <!-- Not always required but Liferay requires these. -->
 <portlet-info>
 <title>Vaadin Portlet Example</title>
 <short-title>Portlet Example</short-title>
 </portlet-info>
 </portlet>
</portlet-app>

The value of the application parameter must match the context in the <url-pattern> element
in the <servlet-mapping> in the web.xml deployment descriptor, without the path qualifiers
in the pattern. The above example would match the following servlet mapping in web.xml:

 <servlet-mapping>
 <servlet-name>Portlet Example</servlet-name>
 <url-pattern>/portletexample/*</url-pattern>
 </servlet-mapping>

In fact, it would also match the /* mapping.

Using a Single Widget Set

If you have just one Vaadin application that you ever need to run in your portal, you can just deploy
the WAR as described above and that's it. However, if you have multiple applications, especially
ones that use different custom widget sets, you run into problems, because a portal window can
load only a single Vaadin widget set at a time. You can solve this problem by combining all the
different widget sets in your different applications into a single widget set using inheritance or
composition.

For example, the portal demos defined in the portlet.xml in the demo WAR have the following
setting for all portlets so that they will all use the same widget set:

<portlet>
 ...
 <!-- Use the portal default widget set for all portal demos. -->
 <init-param>
 <name>widgetset</name>
 <value>com.vaadin.portal.gwt.PortalDefaultWidgetSet</value>
 </init-param>
 ...

The PortalDefaultWidgetSet extends SamplerWidgetSet, which extends the DefaultWidgetSet.
The DefaultWidgetSet is therefore essentially a subset of PortalDefaultWidgetSet, which
contains also the widgets required by the Sampler demo. Other applications that would otherwise
require only the regular DefaultWidgetSet, and do not define their own widgets, can just as well
use the larger set, making them compatible with the demos. The PortalDefaultWidgetSet will
also be the default Vaadin widgetset bundled in Liferay 5.3 and later.

Using a Single Widget Set334

Portal Integration

If your portlets are contained in multiple WARs, which can happen quite typically, you need to
install the widget set and theme portal-wide so that all the portlets can use them. See Section 13.5,
“Installing Vaadin in Liferay” on configuring the widget sets in the portal itself.

Liferay Portlet Descriptor

Liferay requires a special liferay-portlet.xml descriptor file that defines Liferay-specific
parameters. Especially, Vaadin portlets must be defined as "instanceable", but not "ajaxable".

Below is an example descriptor for the earlier portlet example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE liferay-portlet-app PUBLIC
 "-//Liferay//DTD Portlet Application 4.3.0//EN"
 "http://www.liferay.com/dtd/liferay-portlet-app_4_3_0.dtd">

<liferay-portlet-app>
 <portlet>
 <!-- Matches definition in portlet.xml. -->
 <!-- Note: Must not be the same as servlet name. -->
 <portlet-name>Portlet Example portlet</portlet-name>

 <instanceable>true</instanceable>
 <ajaxable>false</ajaxable>
 </portlet>
</liferay-portlet-app>

See Liferay documentation for further details on the liferay-portlet.xml deployment
descriptor.

Liferay Display Descriptor

The WEB-INF/liferay-display.xml file defines the portlet category under which portlets
are located in the Add Application window in Liferay. Without this definition, portlets will be or-
ganized under the "Undefined" category.

The following display configuration, which is included in the demo WAR, puts the Vaadin portlets
under the "Vaadin" category, as shown in Figure 13.1, “Portlet Categories in Add Application
Window”.

<?xml version="1.0"?>
<!DOCTYPE display PUBLIC
 "-//Liferay//DTD Display 4.0.0//EN"
 "http://www.liferay.com/dtd/liferay-display_4_0_0.dtd">

<display>
 <category name="Vaadin">
 <portlet id="Portlet Example portlet" />
 </category>
</display>

335Liferay Portlet Descriptor

Portal Integration

Figure 13.1. Portlet Categories in Add Application Window

See Liferay documentation for further details on how to configure the categories in the
liferay-display.xml deployment descriptor.

Liferay Plugin Package Properties

The liferay-plugin-package.properties file defines a number of settings for the portlet,
most importantly the Vaadin JAR to be used.

name=Portlet Example portlet
short-description=myportlet
module-group-id=Vaadin
module-incremental-version=1
#change-log=
#page-uri=
#author=
license=Proprietary
portal-dependency-jars=\

vaadin.jar

name The plugin name must match the portlet name.

short-description A short description of the plugin. This is by default the
project name.

module-group-id The application group, same as the category id defined
in liferay-display.xml.

license The plugin license type; "proprietary" by default.

portal-dependency-jars The JAR libraries on which this portlet depends. This
should have value vaadin.jar, unless you need to use
a specific version.The JAR must be installed in the portal,

Liferay Plugin Package Properties336

Portal Integration

for example, in Liferay bundled with Tomcat to
tomcat-x.x.x/webapps/ROOT/WEB-INF/lib/vaadin.jar.

13.4. Portlet Hello World

The Hello World program that runs as a portlet is no different from a regular Vaadin application,
as long as it doesn't need to handle portlet actions, mode changes, and so on.

import com.vaadin.Application;
import com.vaadin.ui.*;

public class PortletExample extends Application {
 @Override
 public void init() {
 Window mainWindow = new Window("Portlet Example");

 Label label = new Label("Hello Vaadin user");
 mainWindow.addComponent(label);
 setMainWindow(mainWindow);
 }
}

In addition to the application class, you need the descriptor files, libraries, and other files as de-
scribed earlier. Figure 13.2, “Portlet Project Structure in Eclipse” shows the complete project
structure under Eclipse.

Installed as a portlet in Liferay from the Add Application menu, the application will show as illus-
trated in Figure 13.3, “Hello World Portlet”.

Figure 13.3. Hello World Portlet

13.5. Installing Vaadin in Liferay

Loading widget sets, themes, and the Vaadin JAR from a portlet is possible as long as you have
a single portlet, but causes a problem if you have multiple portlets. To solve this, Vaadin portlets
need to use a globally installed widget set, themes, and Vaadin JAR. They, and all the required
configuration, are bundled with Liferay 5.3 and later, but if you are using an earlier version of
Liferay or use a custom widget set, custom themes, or a later version of Vaadin, you need to install
them in Liferay.

The easiest way to install or upgrade Vaadin or compile the widget set in Liferay is to use the
Vaadin Control Panel for Liferay, as described in Section 13.9, “Vaadin Control Panel for Liferay”.
If you need to make the installation or compilation manually, read ahead.

337Portlet Hello World

Portal Integration

Figure 13.2. Portlet Project Structure in Eclipse

In these instructions, we assume that you use Liferay bundled with Apache Tomcat, although
you can use almost any other application server with Liferay just as well. The Tomcat installation
is included in the Liferay installation package, under the tomcat-x.x.x directory.

The Vaadin JAR should be put in tomcat-x.x.x/webapps/ROOT/WEB-INF/lib/vaadin.jar.
The Vaadin version number should normally be left out from the JAR.

The widget set needs to be located at /html/VAADIN/widgetsets/ and themes at
/html/VAADIN/themes/ path under the portal context.You simply need to copy the contents
f r o m u n d e r yo u r WebContent/VAADIN d i r e c t o r y t o t h e
tomcat-x.x.x/webapps/ROOT/html/VAADIN directory under the Liferay installation directory.
If you use a built-in widget set or theme included in the Vaadin JAR, such as the PortalDefaultWid-
getSet, you should extract it from the JAR, from under VAADIN/widgetsets.The default themes
are located under VAADIN/themes in the JAR.

You need to define the widget set, the theme, and the JAR in the portal-ext.properties
configuration file for Liferay, as described earlier.The file should normally be placed in the Liferay
installation directory. See Liferay documentation for details on the configuration file.

Below is an example of a portal-ext.properties file:

Path under which the VAADIN directory is located.
(/html is the default so it is not needed.)
vaadin.resources.path=/html

Portal-wide widget set
vaadin.widgetset=com.vaadin.portal.gwt.PortalDefaultWidgetSet

Installing Vaadin in Liferay338

Portal Integration

Theme to use
vaadin.theme=reindeer

The allowed parameters are:

vaadin.resources.path Specifies the resource root path under the portal context.
This is /html by default. Its actual location depends on the
portal and the application server; in Liferay with Tomcat it
would be located at webapps/ROOT/html under the
Tomcat installation directory.

vaadin.widgetset The widget set class to use. Give the full path to the class
name in the dot notation. If the parameter is not given, the
default widget set is used.

vaadin.theme Name of the theme to use. If the parameter is not given,
the default theme is used, which is reindeer in Vaadin 6.

You will need to restart Liferay after creating or modifying the portal-ext.properties file.

13.6. Handling Portlet Requests

Portals such as Liferay are not AJAX applications but reload the page every time a user interaction
requires data from the server.They consider a Vaadin application to be a regular web application
that works by HTTP requests. All the AJAX communications required by the Vaadin application
are done by the Vaadin Client-Side Engine (the widget set) past the portal, so that the portal is
unaware of the communications.

The only way a portal can interact with an application is to load it with a HTTP request; reloading
does not reset the application.The Portlet 2.0 API supports four types of requests: render, action,
resource, and event requests.The old Portlet 1.0 API supports only the render and action requests.
Requests can be caused by user interaction with the portal controls or by clicking action URLs
displayed by the portlet. You can handle portlet requests by implementing the PortletListener
interface and the handler methods for each of the request types.You can use the request object
passed to the handler to access certain portal data, such as user information, the portlet mode,
etc.

The PortletListener interface is defined in the PortletApplicationContext2 for Portlet 2.0 API
and com.vaadin.terminal.gwt.server.PortletApplicationContext class for the old Portlet 1.0
API. You can get the portlet application context with getContext() method of the application
class.

You need to have the portlet.jar in your class path during development. However, you must
not deploy the portlet.jar with the portlet, because it would create a conflict with the internal
portlet library of the portal. You should put it in a directory that is not deployed with the portlet,
for example, if you are using Eclipse, under the lib directory under the project root, not under
WebContent/WEB-INF/lib, for example.

You can also define portal actions that you can handle in the handleActionRequest()
method of the interface.

You add your portlet request listener to the application context of your application, which is a
PortletApplicationContext when (and only when) the application is being run as a portlet.

339Handling Portlet Requests

Portal Integration

// Check that we are running as a portlet.
if (getContext() instanceof PortletApplicationContext2) {
 PortletApplicationContext2 ctx =
 (PortletApplicationContext2) getContext();

 // Add a custom listener to handle action and
 // render requests.
 ctx.addPortletListener(this, new MyPortletListener());
} else {
 getMainWindow().showNotification(
 "Not initialized via Portal!",
 Notification.TYPE_ERROR_MESSAGE);
}

The handler methods receive references to request and response objects, which are defined in
the Java Servlet API. Please refer to the Servlet API documentation for further details.

The PortletDemo application included in the demo WAR package includes examples of processing
mode and portlet window state changes in a portlet request listener.

13.7. Handling Portlet Mode Changes

Portals support three portlet modes defined in the Portlet API: view, edit, and help modes. The
view mode is the default and the portal can have buttons to switch the portlet to the other modes.
In addition to the three predefined modes, the Portlet API standards allow custom portlet modes,
although portals may support custom modes to a varying degree.

You need to define which portlet modes are enabled in the portlet.xml deployment descriptor
as follows.

<!-- Supported portlet modes and content types. -->
<supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 <portlet-mode>edit</portlet-mode>
 <portlet-mode>help</portlet-mode>
</supports>

Changes in the portlet mode are received as resource requests, which you can handle with a
handleResourceRequest(), defined in the PortletListener interface. The current portlet
mode can be acquired with getPortletMode() from the request object.

The following complete example (for Portlet 2.0) shows how to handle the three built-modes in
a portlet application.

// Use Portlet 2.0 API
import com.vaadin.terminal.gwt.server.PortletApplicationContext2;
import com.vaadin.terminal.gwt.server.PortletApplicationContext2.PortletListener;

public class PortletModeExample extends Application
 implements PortletListener {
 Window mainWindow;
 ObjectProperty data; // Data to view and edit
 VerticalLayout viewContent = new VerticalLayout();
 VerticalLayout editContent = new VerticalLayout();
 VerticalLayout helpContent = new VerticalLayout();

 @Override
 public void init() {
 mainWindow = new Window("Myportlet Application");
 setMainWindow(mainWindow);

Handling Portlet Mode Changes340

Portal Integration

 // Data model
 data = new ObjectProperty("<h1>Heading</h1>"+
 "<p>Some example content</p>");

 // Prepare views for the three modes (view, edit, help)
 // Prepare View mode content
 Label viewText = new Label(data, Label.CONTENT_XHTML);
 viewContent.addComponent(viewText);

 // Prepare Edit mode content
 RichTextArea editText = new RichTextArea();
 editText.setCaption("Edit the value:");
 editText.setPropertyDataSource(data);
 editContent.addComponent(editText);

 // Prepare Help mode content
 Label helpText = new Label("<h1>Help</h1>" +
 "<p>This helps you!</p>",
 Label.CONTENT_XHTML);
 helpContent.addComponent(helpText);

 // Start in the view mode
 mainWindow.setContent(viewContent);

 // Check that we are running as a portlet.
 if (getContext() instanceof PortletApplicationContext2) {
 PortletApplicationContext2 ctx =
 (PortletApplicationContext2) getContext();

 // Add a custom listener to handle action and
 // render requests.
 ctx.addPortletListener(this, this);
 } else {
 mainWindow.showNotification("Not running in portal",
 Notification.TYPE_ERROR_MESSAGE);
 }
 }

 // Dummy implementations for the irrelevant request types
 public void handleActionRequest(ActionRequest request,
 ActionResponse response,
 Window window) {
 }
 public void handleRenderRequest(RenderRequest request,
 RenderResponse response,
 Window window) {
 }
 public void handleEventRequest(EventRequest request,
 EventResponse response,
 Window window) {
 }

 public void handleResourceRequest(ResourceRequest request,
 ResourceResponse response,
 Window window) {
 // Switch the view according to the portlet mode
 if (request.getPortletMode() == PortletMode.EDIT)
 window.setContent(editContent);
 else if (request.getPortletMode() == PortletMode.VIEW)
 window.setContent(viewContent);
 else if (request.getPortletMode() == PortletMode.HELP)
 window.setContent(helpContent);
 }
}

341Handling Portlet Mode Changes

Portal Integration

Figure 13.4, “Portlet Modes in Action” shows the resulting portlet in the three modes: view, edit,
and help. In Liferay, the edit mode is shown in the popup menu as a Preferences item.

Figure 13.4. Portlet Modes in Action

13.8. Non-Vaadin Portlet Modes

In some cases, it can be useful to implement certain modes of a portlet as pure HTML or JSP
pages instead of running the full Vaadin application user interface in them. Common reasons for
this are static pages (for example, a simple help mode), integrating legacy content to a portlet
(for example, a JSP configuration interface), and providing an ultra-lightweight initial view for a
portlet (for users behind slow connections).

Fully static modes that do not require the Vaadin server side application to be running can be
implemented by subclassing the portlet class ApplicationPortlet2 (Portlet 2.0). The subclass
can either create the HTML content directly or dispatch the request to, for example, a HTML or
JSP page via the portal. When using this approach, any Vaadin portlet and portlet request
listeners are not called.

Customizing the content for the standard modes (view, edit, and help) can be performed by
overriding the methods doView, doEdit and doHelp, respectively. Custom modes can be

Non-Vaadin Portlet Modes342

Portal Integration

handled by implementing similar methods with the @javax.portlet.RenderMode(name = "my-
mode") annotation.

You need to define which portlet modes are enabled in the portlet.xml deployment descriptor
as described in Section 13.7, “Handling Portlet Mode Changes”. Also, the portlet class in
portlet.xml should point to the customized subclass of ApplicationPortlet2.

The following example (for Portlet 2.0) shows how to create a static help page for the portlet.

portlet.xml:

<!-- Supported portlet modes and content types. -->
<supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 <portlet-mode>help</portlet-mode>
</supports>

HtmlHelpPortlet.java::

// Use Portlet 2.0 API
import com.vaadin.terminal.gwt.server.ApplicationPortlet2;

public class HtmlHelpPortlet extends ApplicationPortlet2 {
 // Override the help mode, let the Vaadin
 // application handle the view mode
 @Override
 protected void doHelp(RenderRequest request,
 RenderResponse response)
 throws PortletException, IOException {
 // Bypass the Vaadin application entirely
 response.setContentType("text/html");
 response.getWriter().println(
 "This is the help text as plain HTML.");

 // Alternatively, you could use the dispatcher for,
 // for example, JSP help pages as follows:
 // PortletRequestDispatcher dispatcher = getPortletContext()
 // .getRequestDispatcher("/html/myhelp.jsp");
 // dispatcher.include(request, response);
 }
}

To produce pure HTML portlet content from a running Vaadin application instead of statically
outside an application, the ApplicationPortlet2 method writeAjaxPage should be overridden.
This approach allows using the application state in HTML content generation, and all relevant
Vaadin portlet request and portlet listeners are called around the portlet content generation.
However, the client side engine (widgetset) is not loaded by the browser, which can shorten the
initial page display time.

<portlet-class>com.vaadin.demo.portlet.HtmlModePortlet</portlet-class>
<supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 <portlet-mode>help</portlet-mode>
</supports>

public class CountApplication extends Application {
 private int count = 0;

 public void init() {
 Window w = new Window("Portlet mode example");
 w.addComponent(new Label("This is the Vaadin app."));
 w.addComponent(new Label("Try opening the help mode."));

343Non-Vaadin Portlet Modes

Portal Integration

 setMainWindow(w);
 }

 public int incrementCount() {
 return ++count;
 }
}

// Use Portlet 2.0 API
public class HtmlModePortlet extends AbstractApplicationPortlet {

 @Override
 protected void writeAjaxPage(RenderRequest request,
 RenderResponse response, Window window,
 Application app)
 throws PortletException, IOException {
 if (PortletMode.HELP.equals(request.getPortletMode())) {
 CountApplication capp = (CountApplication) app;
 response.setContentType("text/html");
 response.getWriter().println(
 "This is the HTML help, shown "
 + capp.incrementCount() + " times so far.");
 } else {
 super.writeAjaxPage(request, response, window, app);
 }
 }

 @Override
 protected Class<? extends Application> getApplicationClass(){
 return CountApplication.class;
 }
}

The user can freely move between Vaadin and non-Vaadin portlet modes with the user interface
provided by the portal (for standard modes) or the portlet (for example, action links). Once the
server side application has been started, it continues to run as long as the session is alive. If
necessary, specific portlet mode transitions can be disallowed in portlet.xml.

In the case of Portlet 1.0, both a portlet and a servlet are involved. A render request is received
by ApplicationPortlet when the portlet mode is changed, and serving pure HTML in some modes
can be achieved by overriding the method render and handling the modes of interest separately
while calling super.render() for other modes. As always, when extending the portlet, the
reference to the portlet class in portlet.xml needs to be updated.

To serve HTML-only content in the Portlet 1.0 case after starting the server side application and
calling the relevant listeners, the servlet class ApplicationServlet should be subclassed instead
of the portlet.The method writeAjaxPage can be overridden to produce custom HTML content
for certain modes. However, it should be noted that some HTML content (for example, loading
the portal-wide Vaadin theme) is created by the portlet and not the servlet.

13.9. Vaadin Control Panel for Liferay

Vaadin portlets, just as all Vaadin applications, use a widget set to render the user interface in
the browser and to handle the Ajax communication with the server-side application.While regular
Vaadin applications use a widget set for each application, in portals the widget set is shared by
all Vaadin portlets running in the portal. Liferay actually comes preinstalled with a precompiled
version of the default portal widget set. However, many add-on components come with their own
widget set, which needs to be compiled into the portal widget set. The Vaadin Control Panel for
Liferay automates this compilation.You can also use it to just install a new version of the Vaadin
library.

Vaadin Control Panel for Liferay344

Portal Integration

13.9.1. Installing

Vaadin Control Panel for Liferay is available for download from Vaadin Directory. It is a WAR
package, which you need to simply drop into Liferay's deploy folder. Once the deployment is
done, the Vaadin Control Panel should show up in the Liferay Control Panel.

13.9.2. Using the Control Panel

Open the Vaadin section in the Liferay Control Panel. The initial state with is illustrated in Fig-
ure 13.5, “Initial State of Vaadin Control Panel for Liferay”.

Figure 13.5. Initial State of Vaadin Control Panel for Liferay

Upgrading Vaadin

Liferay comes with Vaadin preinstalled.To upgrade the preinstalled version to a newer one, follow
the following steps. Notice that the Vaadin library is upgraded for all Vaadin portlets, so they must
all be compatible with the new version.

1. Click Upgrade in the Vaadin Jar Version.

2. In the warning dialog that appears, read the message and if you want to go on with the
upgrade, click Change version to proceed.

3. Recompile the widget set as instructed below.

4. Redeploy all Vaadin portlets in Liferay, that is, copy the WARs to the deploy folder in
Liferay.

The Google Web Toolkit (GWT) libraries required for the widget set compilation are also upgraded
automatically.

345Installing

Portal Integration

Compiling Widget Set

When you need to compile the widget set, follow the following steps:

1. Place any add-on Jars containing widget sets, such as add-on Jars, in the WEB-INF/lib
folder of Liferay. Its exact location depends on the used server; for example in Tomcat
it is under the webapps/ROOT folder.

2. Click re-scan in the Add-on Directory to detect any new add-on libraries.

3. Select the add-ons which you wish to compile into the widget set.

4. Click Manage Additional Dependencies if the libraries require any special libraries
and add them.

5. Click Compile Widget Set to compile the widget set. The compilation can take several
minutes.

The compiled widget set is copied automatically to the proper folder and taken into use.

13.10. Vaadin IPC for Liferay

Portlets rarely live alone. A page can contain multiple portlets and when the user interacts with
one portlet, you may need to have the other portlets react to the change immediately. This is not
normally possible with Vaadin portlets, as Vaadin applications need to get an Ajax request from
the client-side to change their user interface. On the other hand, the regular inter-portlet commu-
nication (IPC) mechanism in Portlet 2.0 Specification requires a complete page reload, but that
is not appropriate with Vaadin or in general Ajax applications, which do not require a page reload.
One solution is to communicate between the portlets on the server-side and then use a server-
push mechanism to update the client-side.

The Vaadin IPC for Liferay Add-on takes another approach by communicating between the
portlets through the client-side. Events (messages) are sent through the LiferayIPC component
and the client-side widget relays them to the other portlets, as illustrated in Figure 13.6, “Vaadin
IPC for Liferay Architecture”.

Vaadin IPC for Liferay346

Portal Integration

Figure 13.6. Vaadin IPC for Liferay Architecture

Vaadin IPC for Liferay uses the Liferay JavaScript event API for client-side inter-portlet commu-
nication, so you can communicate just as easily with other Liferay portlets.

Notice that you can use this communication only between portlets on the same page.

Figure 13.7, “Vaadin IPC Add-on Demo with Two Portlets” shows Vaadin IPC for Liferay in action.
Entering a new item in one portlet is updated interactively in the other.

347Vaadin IPC for Liferay

Portal Integration

Figure 13.7. Vaadin IPC Add-on Demo with Two Portlets

13.10.1. Installing the Add-on

The Vaadin IPC for Liferay add-on is available from the Vaadin Directory as well as from a Maven
repository, as described in Chapter 15, Using Vaadin Add-ons.

The contents of the installation package are as follows:

vaadin-ipc-for-liferay-x.x.x.jar The add-on JAR in the installation package must be
installed in the WEB-INF/lib directory under the root
context. The location depends on the server - for ex-
ample in Liferay running in Tomcat it is located under
the webapps/ROOT folder of the server.

doc The documentation folder includes a README.TXT file
that describes the contents of the installation package
br ief ly, and licensing.txt and
license-asl-2.0.txt, which describe the licensing
under the Apache License 2.0. Under the doc/api
folder is included the complete JavaDoc API document-
ation for the add-on.

vaadin-ipc-for-liferay-x.x.x-demo.war A WAR containing demo portlets. After installing the
add-on library and compiling the widget set, as de-
scribed below, you can deploy the WAR to Liferay and
add the two demo portlets to a page, as shown in Fig-
ure 13.7, “Vaadin IPC Add-on Demo with Two Portlets”.
The source of the demo is available at dev.vaad-
i n . c o m / s v n / a d d o n s / I P C f o r L i f e r a y / t r u n k /
[http://dev.vaadin.com/svn/addons/IPCforLiferay/trunk/demo/src/com/vaadin/addon/ipcforliferay/demo/].

Installing the Add-on348

Portal Integration

http://dev.vaadin.com/svn/addons/IPCforLiferay/trunk/demo/src/com/vaadin/addon/ipcforliferay/demo/
http://dev.vaadin.com/svn/addons/IPCforLiferay/trunk/demo/src/com/vaadin/addon/ipcforliferay/demo/
http://dev.vaadin.com/svn/addons/IPCforLiferay/trunk/demo/src/com/vaadin/addon/ipcforliferay/demo/

Compiling the Widget Set

The add-on contains a widget set, which you must compile into the Vaadin widget set installed
in the portal. The easiest way you can do this is to use the Vaadin Control Panel for Liferay
[http://vaadin.com/directory#addon/vaadin-control-panel-for-liferay] add-on (also available from
Vaadin Directory) to compile the portal widget set, as described in Section 13.9, “Vaadin Control
Panel for Liferay”.

13.10.2. Basic Communication

LiferayIPC is an invisible user interface component that can be used to send messages between
two or more Vaadin portlets. You add it to an application layout as you would any regular user
interface component.

LiferayIPC liferayipc = new LiferayIPC();
layout.addComponent(liferayipc);

You should be careful not to remove the invisible component from the portlet later if you modify
the layout of the portlet.

The component can be used both for sending and receiving messages, as described next.

Sending Events

You can send an event (a message) with the sendEvent() method, which takes an event ID
and the message data as parameters. The event is broadcast to all listening portlets. The event
ID is a string that can be used to identify the recipient of an event or the event type.

liferayipc.sendEvent("hello", "This is Data");

If you need to send more complex data, you need to format or serialize it to a string representation
as described in Section 13.10.5, “Serializing and Encoding Data”.

Receiving Events

A portlet wishing to receive events (messages) from other portlets needs to register a listener in
the component with addListener().The listener receives the messages in a LiferayIPCEvent
object. Filtering events by the ID is built in into the listener handler, you give the listened event
ID as the first parameter for the addListener(). The actual message data is held in the data
property, which you can read with getData().

liferayipc.addListener("hello", new LiferayIPCEventListener() {
 public void eventReceived(LiferayIPCEvent event) {
 // Do something with the message data
 String data = event.getData();
 getWindow().showNotification(
 "Received hello: " + data);
 }
});

A listener added to a LiferayIPC can be removed with removeListener().

13.10.3. Considerations

Both security and efficiency should be considered with inter-portlet communications when using
the Vaadin IPC for Liferay.

349Basic Communication

Portal Integration

http://vaadin.com/directory#addon/vaadin-control-panel-for-liferay
http://vaadin.com/directory#addon/vaadin-control-panel-for-liferay

Browser Security

As the message data is passed through the client-side (browser), any code running in the browser
has access to the data. You should be careful not to expose any security-critical data in client-
side messaging. Also, malicious code running in the browser could alter or fake messages.
Sanitization can help with the latter problem and encryption to solve the both issues. You can
also share the sensitive data through session attributes or a database and use the client-side
IPC only to notify that the data is available.

Efficiency

Sending data through the browser requires loading and sending it in HTTP requests. The data
is held in the memory space of the browser, and handling large data in the client-side JavaScript
code can take time. Noticeably large message data can therefore reduce the responsiveness of
the application and could, in extreme cases, go over browser limits for memory consumption or
JavaScript execution time.

13.10.4. Communication Through Session Attributes

In many cases, such as when considering security or efficiency, it is better to pass the bulk data
on the server-side and use the client-side IPC only for notifying the other portlet(s) that the data
is available. Session attributes are a conveninent way of sharing data on the server-side. You
can also share objects through them, not just strings.

The session variables have a scope, which should be APPLICATION_SCOPE. The "application"
refers to the scope of the Java web application (WAR) that contains the portlets.

If the communicating portlets are in the same Java web application (WAR), no special configuration
is needed. You can also communicate between portlets in different WARs, in which case you
need to disable the private-session-attributes parameter in liferay-portlet.xml
by setting it to false. Please see Liferay documentation for more information regarding the
configuration.

You can also share Java objects between the portlets in the same WAR, not just strings. If the
portlets are in different WARs, they normally have different class loaders, which could cause in-
compatibilities, so you can only communicate with strings and any object data needs to be seri-
alized.

Session attributes are accessible through the PortletSession object, which you can access
through the portlet context from the Vaadin Application class.

Person person = new Person(firstname, lastname, age);
...

PortletSession session =
 ((PortletApplicationContext2)getContext()).
 getPortletSession();

// Share the object
String key = "IPCDEMO_person";
session.setAttribute(key, person,
 PortletSession.APPLICATION_SCOPE);

// Notify that it's available
liferayipc.sendEvent("ipc_demodata_available", key);

You can then receive the attribute in a LiferayIPCEventListener as follows:

Communication Through Session Attributes350

Portal Integration

public void eventReceived(LiferayIPCEvent event) {
 String key = event.getData();

 PortletSession session =
 ((PortletApplicationContext2)getContext()).
 getPortletSession();

 // Get the object reference
 Person person = (Person) session.getAttribute(key);

 // We can now use the object in our application
 BeanItem<Person> item = new BeanItem<Person> (person);
 form.setItemDataSource(item);
}

Notice that changes to a shared object bound to a user interface component are not updated
automatically if it is changed in another portlet. The issue is the same as with double-binding in
general.

13.10.5. Serializing and Encoding Data

The IPC events support transmitting only plain strings, so if you have object or other non-string
data, you need to format or serialize it to a string representation. For example, the demo applic-
ation formats the trivial data model as a semicolon-separated list as follows:

private void sendPersonViaClient(String firstName,
 String lastName, int age) {
 liferayIPC_1.sendEvent("newPerson", firstName + ";" +
 lastName + ";" + age);
}

You can use standard Java serialization for any classes that implement the Serializable in-
terface.The transmitted data may not include any control characters, so you also need to encode
the string, for example by using Base64 encoding.

// Some serializable object
MyBean mybean = new MyBean();
...

// Serialize
ByteArrayOutputStream baostr = new ByteArrayOutputStream();
ObjectOutputStream oostr;
try {
 oostr = new ObjectOutputStream(baostr);
 oostr.writeObject(mybean); // Serialize the object
 oostr.close();
} catch (IOException e) {
 getWindow().showNotification("IO PAN!"); // Complain
}

// Encode
BASE64Encoder encoder = new BASE64Encoder();
String encoded = encoder.encode(baostr.toByteArray());

// Send the IPC event to other portlet(s)
liferayipc.sendEvent("mybeanforyou", encoded);

You can then deserialize such a message at the receiving end as follows:

public void eventReceived(LiferayIPCEvent event) {
 String encoded = event.getData();

 // Decode and deserialize it
 BASE64Decoder decoder = new BASE64Decoder();

351Serializing and Encoding Data

Portal Integration

 try {
 byte[] data = decoder.decodeBuffer(encoded);
 ObjectInputStream ois =
 new ObjectInputStream(
 new ByteArrayInputStream(data));

 // The deserialized bean
 MyBean deserialized = (MyBean) ois.readObject();
 ois.close();

 ... do something with the bean ...

 } catch (IOException e) {
 e.printStackTrace(); // Handle somehow
 } catch (ClassNotFoundException e) {
 e.printStackTrace(); // Handle somehow
 }
}

13.10.6. Communicating with Non-Vaadin Portlets

You can use the Vaadin IPC for Liferay to communicate also between a Vaadin application and
other portlets, such as JSP portlets. The add-on passes the events as regular Liferay JavaScript
events. The demo WAR includes two JSP portlets that demonstrate the communication.

When sending events from non-Vaadin portlet, fire the event using the JavaScript
Liferay.fire() method with an event ID and message. For example, in JSP you could have:

<%@ taglib uri="http://java.sun.com/portlet_2_0"
 prefix="portlet" %>
<portlet:defineObjects />

<script>
function send_message() {
 Liferay.fire('hello', "Hello, I'm here!");
}
</script>

<input type="button" value="Send message"
 onclick="send_message()" />

You can receive events using a Liferay JavaScript event handler. You define the handler with
the on() method in the Liferay object. It takes the event ID and a callback function as its para-
meters. Again in JSP you could have:

<%@ taglib uri="http://java.sun.com/portlet_2_0"
 prefix="portlet" %>
<portlet:defineObjects />

<script>
Liferay.on('hello', function(event, data) {
 alert("Hello: " + data);
});
</script>

Communicating with Non-Vaadin Portlets352

Portal Integration

13.11. Remote Portlets with WSRP

Web Services for Remote Portlets (WSRP) is a way to deploy a portlet in one portal, a producer,
and use it in another, a consumer. This is done using a special WSRP portlet that relays the user
input from a consumer to an actual portlet running in a producer.The Vaadin WSRP add-on gives
you the ability to run Vaadin portlets as remote WSRP portlets. The basic WSRP architecture is
illustrated in Figure 13.8, “WSRP Architecture”.

Figure 13.8. WSRP Architecture

In this documentation, we give the instructions for Liferay, but the Vaadin WSRP add-on should
work in any other portal or non-portal server that supports WSRP. If you use other portal software,
please refer to its documentation for the relevant parts of WSRP configuration.

The add-on is licensed under the same Apache License 2.0 as the Vaadin Framework itself.

13.11.1. Installing the Add-on

The Vaadin WSRP add-on is available as a JAR from the Vaadin Directory as well as from a
Maven repository, as described in Chapter 15, Using Vaadin Add-ons. Vaadin 6.6.0 or later is
required.

You need to install the Vaadin WSRP JAR at least in the producer portals. A consumer only
needs the widget set, but no JARs related to your Vaadin portlet, not even the Vaadin JAR.

You should put the Vaadin WSRP JAR in the WEB-INF/lib folder under the root context in the
producer portal server. The location of the root context depends on the server, for example in
Tomcat it is in webapps/ROOT.

Compiling the Widget Set

The Vaadin WSRP add-on contains a widget set, which you must compile into the Vaadin widget
set installed in the portal. The widget set is needed in both the producer and consumer portals,
but you do not need the WSRP JAR (or any other Vaadin JARs) in the consumer portal.You can
avoid compiling the widget set by copying it (and the Vaadin themes) from the producer.

353Remote Portlets with WSRP

Portal Integration

If you use Liferay, the easiest way to compile the widget set is to use the Vaadin Control Panel
for Liferay [http://vaadin.com/directory#addon/vaadin-control-panel-for-liferay] add-on (also
available from Vaadin Directory). Its use is described in detail in Section 13.9, “Vaadin Control
Panel for Liferay”.You can use the Control Panel to upgrade Vaadin, if you need, then select the
Vaadin WSRP add-on, and compile the widget set. Once compiled in the producer, you can copy
the ROOT/html/VAADIN folder to the corresponding folder in a consumer, or do the same
compilation in the consumer separately.

For other portals than Liferay, a simple manual way to compile the widget set is to create a
Vaadin project in Eclipse, add the WSRP JAR and any other required JARs to the
WebContent/WEB-INF/lib folder, and click the Compile Vaadin widgets button. You need
the Vaadin Plugin for Eclipse to do this.

13.11.2. Configuring a Remote Portlet

A portlet needs some configuration to be used as a remote portlet.

Portlet Configuration

You need to replace the regular Vaadin application portlet in your project to a WSRP portlet. Edit
the WEB-INF/portlet.xml file and change the line:

<portlet-class>com.vaadin.terminal.gwt.server.ApplicationPortlet2</portlet-class>

to the following:

<portlet-class>com.vaadin.addon.wsrp.WSRPApplicationPortlet</portlet-class>

Other Portlet Configuration

WSRP support may need to be enabled in the portal-specific configuration. For example, to enable
WSRP in Liferay, you need to enable the remoteable property in the
WEB-INF/liferay-portlet.xml file for a portlet:

<remoteable>true</remoteable>

13.11.3. Producer Configuration

Once you have installed and Vaadin WSRP JAR in the producer portal, compiled the widget set,
and deployed your portlet, you can configure it as a producer.

In Liferay, you can configure a WSRP portlet in the Control Panel as follows.

1. Open the Control Panel as an administrator and select WSRP.

2. Open the Producers tab and click Add Producer to create a new producer.

Configuring a Remote Portlet354

Portal Integration

http://vaadin.com/directory#addon/vaadin-control-panel-for-liferay
http://vaadin.com/directory#addon/vaadin-control-panel-for-liferay
http://vaadin.com/directory#addon/vaadin-control-panel-for-liferay

Figure 13.9. WSRP Producer Configuration

3. Select your portlet from the Available portlets and click the left-arrow to select it as
current.

4. Give the producer a Name and click Save.

The producer portlet is shown in the list.You need to copy the URL shown in the list when creating
a consumer portlet in the consumer portal.

In other portals than Liferay, follow the instructions for the portal software to set up a portlet as
a producer.

13.11.4. Consumer Configuration

Once you have configured a portlet as a producer in the producer portal, you can add it as a
consumer portlet in a consumer portal.The consumer portlet is not a Vaadin portlet but a special
WSRP portlet that relays the user input to the producer portlet in the other portal.

This requires that you have copied or compiled the widget set (and themes) in the consumer, as
described earlier.

In Liferay, you first need to configure a WSRP consumer in the Control Panel as follows:

1. Open the Control Panel as an administrator and open the WSRP section.

2. Select the Consumers tab and click Add Consumer to create a new consumer. The
configuration window is shown in Figure 13.10, “WSRP Consumer Configuration”.

355Consumer Configuration

Portal Integration

Figure 13.10. WSRP Consumer Configuration

3. Copy and paste the URL for the producer portlet from the producer portal configuration.

4. Give the consumer a Name and click Save.

5. In the consumer list, click Actions Manage Portlets for the new consumer.

6. In the Manage Portlets view, click New Portlet.

7. Give the consumer portlet a Name, select the Remote Portlet, and click Save.

8. Go back to Liferay from the Control Panel by clicking Back to Liferay.

9. In the page where you want to add the portlet, click Add More... WSRP.

10. Your remote portlet should show up in the list. Click Add to add it to the page.You need
to reload the page for the portlet to show up.

In other portals than Liferay, follow the instructions for the portal software to set up the portlet as
a producer.

13.11.5. Advanced Configuration

Alternative Path for Vaadin Resources

The Vaadin WSRP implementation assumes that the widget set is located in /html/VAADIN
URL. If you need to change this default to serve the VAADIN resource directory from some other
URL, you have to extend the WSRPApplicationPortlet class and override the
getStaticFilesLocation() method, which normally returns "/html". It should return the
path under which the VAADIN directory is found.

If you extend the portlet class, you need to use your custom class in portlet.xml.

Advanced Configuration356

Portal Integration

Chapter 14

Rapid
Development

Using Vaadin and
Roo

14.1. Overview .. 358
14.2. Setting Up the Environment ... 358
14.3. Creating the Domain Model ... 360
14.4. Creating Vaadin Application and CRUD Views 361
14.5. Using Vaadin Add-ons in a Roo project ... 362
14.6. Customizing Views .. 364
14.7. Authentication and Authorization ... 366
14.8. Internationalization .. 368
14.9. Testing the Application ... 370
14.10. Exception Handling .. 373
14.11. Deploying to Cloud Foundry .. 375

357Book of Vaadin

This chapter presents a tutorial for developing a basic application using rapid application devel-
opment tools: Spring Roo and Vaadin Plugin for Eclipse. The application includes database
binding with JPAContainer, internationalization, and testing with Vaadin TestBench.

14.1. Overview

In this tutorial, we develop a simple application while demonstrating also the basic tasks of
making a typical business application:

• Creating a business data model using Roo

• Database binding using Java Persistence API (JPA) and the JPAContainer add-on

• Creating CRUD views using the Vaadin Plugin for Spring Roo

• Customizing views using Vaadin Plugin for Eclipse

• Using the Vaadin Calendar add-on

• User login with authentication and authorization

• Internationalization

• Using the Vaadin TestBench for regression testing

• Deploying the application to Cloud Foundry

Spring Roo is a rapid development tool for Java applications. It generates code that uses the
Spring Framework, Java Persistence API, and Apache Maven. It also allows extending its func-
tionality using add-ons, such as the Vaadin Plugin for Spring Roo. The Vaadin add-on can gen-
erate user interface views based on the data model definitions given to Roo. These views can
then be customized and combined with views made with the visual editor of the Vaadin Plugin
for Eclipse.

Vaadin JPAContainer is a Container that communicates with a JPA implementation of your
choice, which in turn usually communicates with virtually any SQL database you choose. Then
by binding the JPAContainer to a component such as a Table (in editable mode), you get a no-
brainer CRUD component. As the edited table data is updated to the JPAContainer, which is
linked to the JPA implementation, everything you do in the UI can immediately be reflected back
to the database. JPAContainer is dual-licensed with the open source AGPL for free projects and
CVAL for commercial applications.

Demo Application

For the purpose of this tutorial, we develop a simple business application.The work hour reporting
application allows an employee to report work done for different projects.

For authentication, the application will have a login screen, where the user can also select the
language. Business tasks are done in the main view, which will have a typical layout with a menu
bar.

14.2. Setting Up the Environment

Let us begin with setting up the environment and creating the project.The tutorial requires install-
ation of:

Overview358

Rapid Development Using Vaadin and Roo

• Spring Roo (bundled with the SpringSource Tool Suite)

• Vaadin Plugin for Eclipse

• Vaadin Plugin for Spring Roo

• Vaadin Calendar Add-on

• Vaadin TestBench Add-on

The installation of Vaadin add-ons is covered later in Section 14.5, “Using Vaadin Add-ons in a
Roo project” and Vaadin TestBench in Section 14.9, “Testing the Application”.

14.2.1. Installing Spring Roo

The easiest way to get Spring Roo is to install the SpringSource Tool Suite (STS), which is a
distribution of the Eclipse IDE packaged with Roo integration, among other things.You can also
install Spring Roo as a command-line tool.

You can download the SpringSource Tool Suite from http://www.springsource.com/developer/sts.
Please follow the installation instructions at the website. After installing, you can start STS by
running the STS executable in the installation folder.

You need to install the Vaadin Plugin for Eclipse in STS. Please follow the instructions given in
Section 2.2.1, “Vaadin Plugin for Eclipse”.

14.2.2. Creating the Project

You can create a new Spring Roo project as follows:

1. Select File New Spring Roo Project.

2. Give the project a Project name. The name must be a proper identifier, that is, no
spaces, etc.

3. Give the project a Top-level package name, such as com.example.rapid.

4. Make any other necessary project settings. None are required in this tutorial example.
Finally, click Next and Finish to create the project. Creating a project can take a few
seconds.

A Roo Shell is automatically opened for a new Roo project. If closed, you can open a new Roo
Shell by selecting Window Show View Roo Shell.

14.2.3. Installing Vaadin Plugin for Spring Roo

Installing the Vaadin Plugin for Spring Roo is done in the Roo Shell. While the plugin installation
is not project specific and it will work in all projects once installed, a Roo Shell can only be opened
for an existing project.

1. If the Roo Shell is not already open, right-click the project folder in the Package Explorer
and select Spring Tools Open Roo Shell.

2. In the Roo Shell view enter:

359Installing Spring Roo

Rapid Development Using Vaadin and Roo

http://www.springsource.com/developer/sts

roo> pgp trust --keyId 0xBF0451C0
roo> download accept terms of use
roo> addon install bundle --bundleSymbolicName
 com.vaadin.spring.roo.addon

14.2.4. Setting up the Roo Data Layer

Binding application data model to a database with Java Persistence API (JPA) is amazingly easy
with Roo.You simply need to set up persistence as follows:

roo> persistence setup --provider ECLIPSELINK
--database HYPERSONIC_IN_MEMORY

The above example sets up persistence using the EclipseLink JPA layer and an in-memory
HSQLDB database. Hitting Ctrl+Space completion shows the possible values for the --provider
and --database parameters.

When using a real database, you need to configure the database connection in
src/main/resources/META-INF/spring/database.properties.

14.3. Creating the Domain Model

Spring Roo automates the creation of a domain model. Using simple commands, it creates the
entity classes and their property fields. As we enabled persistence for the project earlier, creating
the entities also creates the JPA mappings between the domain objects and their underlying
database representation.

14.3.1. Domain Model Design

The domain model of the work hour reporting system consists of three entities, illustrated in Fig-
ure 14.1, “Entity Diagram of the Domain Model”. Employees working on projects, who are also
the users of the system, are represented as RapidUser entities. Authorization is managed simply
with an admin flag.

An employee uses the system to enter work entries, represented with the WorkEntry class. Each
entry has starts and ends at a specific date and time and has a comment. A work entry is always
associated with a project, represented in the Project class. A project has a name and ended
projects can be disabled so that they can no longer be selected.

Figure 14.1. Entity Diagram of the Domain Model

Setting up the Roo Data Layer360

Rapid Development Using Vaadin and Roo

14.3.2. Creating the Model in Roo

Roo Shell helps you in creating your model objects. The entity command creates a new entity
class, specified with the --class parameter.Tilde (~) can be used to refer to the project package.
The --testAutomatically option creates integration tests for the entity. As always with Roo
Shell, hitting CTRL-SPACE can hint or autocomplete your commands.

roo> entity --class ~.domain.RapidUser --testAutomatically

The field command in Roo creates class properties. The first parameter for the command is the
field type, such as string, boolean, or date. The name of the field is specified with the
--fieldName parameter. The --notNull specifies that the field value may not be null. The
string type as additional options, such as minimum (--sizeMin) and maximum (--sizeMax)
length.

roo> field string --fieldName username --notNull --sizeMin 2

To create the domain model described earlier, the following commands need to be issued in all
(including the ones explained above):

entity --class ~.domain.RapidUser --testAutomatically
field string --fieldName username --notNull --sizeMin 2
field string --fieldName password --notNull --sizeMin 4
field boolean --fieldName admin --primitive

entity --class ~.domain.Project --testAutomatically
field string --fieldName name --notNull --sizeMin 2 --sizeMax 255
field boolean --fieldName enabled --primitive

entity --class ~.domain.WorkEntry --testAutomatically
field string --fieldName comment --sizeMax 255
field reference --fieldName project --type ~.domain.Project --notNull
field reference --fieldName employee --type ~.domain.RapidUser --notNull
field date --fieldName startTime --type java.util.Date --notNull
field date --fieldName endTime --type java.util.Date --notNull

The reference field type is used for references to other entities. The entity type is given with
the --type option.

As we gave the --testAutomatically parameter when we created domain objects, Roo
should have generated some tests automatically.To validate the domain model, type the following
command in the Roo Shell:

roo> perform tests

14.4. Creating Vaadin Application and CRUD Views

Spring Roo is essentially a code generator. As already seen in the data model part of this tutorial,
it will write a whole bunch of boiler plate code for JPA entities.You get an even greater advantage
of Roo when you want a simple user interface around the domain models.

By default, Spring Roo uses JSP pages (Spring MVC to be more specific) to create basic CRUD
(Create, Remove, Update, Delete) views. This is covered in Roo's own tutorials. We choose a
bit different route and use the Vaadin plugin for Roo to create an advanced Vaadin-based server-
side RIA user interface for our backend.

361Creating the Model in Roo

Rapid Development Using Vaadin and Roo

14.4.1. Creating the Application Skeleton

First, we use the vaadin setup command to create the basic application skeleton, on which we
later build the user interface. Issue the following command in the Roo shell:

vaadin setup --applicationPackage ~.web --baseName RapidWorkHours --themeName rapid
--useJpaContainer true

The command creates everything that you need or might need later during development:

1. a "web" package where all your Vaadin related code will be added

2. an Application class

3. a web.xml file to configure Vaadin application for servlet containers

4. a theme

With --useJpaContainer true, we instruct the application to use JPAContainer later when
we create the CRUD views. As JPAContainer is lazy-loading, this will save some memory in our
application server in case the database grows a lot.

14.4.2. Generating CRUD Views

Next, we create the actual CRUD views. Issue the following command in the Roo Shell:

vaadin generate all --package ~.web.ui --visuallyComposable true

The command creates CRUD views for all the domain objects into web.ui package. The
--visuallyComposable parameter instructs the Roo plugin to build views in such a way that
we can later modify them with Vaadin Visual Designer. Without this parameter, the views are
constructed in bit different manner, which may be bit more maintainable for advanced Vaadin
users.

In case you add new domain objects later, you may issue this command again to create views
for new domain objects.

14.4.3. Deploying to Development Server

At this point, we have a working Vaadin application ready, so we naturally want to see it in action.
In the STS IDE, you can simply select the project and use Run Run as Run on Server. You
can use the VMware vFabric server bundled with STS, but any other servlet container (such as
the Jetty-based JEE Preview) should work fine as well.

In case you feel more comfortable in the Maven world, the project can also be deployed for
testing with, for example, the jetty:run target. The Jetty plugin is automatically installed for
the generated project.

14.5. Using Vaadin Add-ons in a Roo project

Complex Vaadin application often need to use some add-ons in addition to the core Vaadin. In
our example project, we need the Vaadin Calendar and JPAContainer add-ons.The JPAContainer
add-on is installed automatically by the Roo plugin, but the Calendar add-on needs to be installed
manually.

We will next:

Creating the Application Skeleton362

Rapid Development Using Vaadin and Roo

1. Install the Vaadin Calendar add-on

2. Compile the widget set

3. Configure the Deployment Assembly

The Vaadin Plugin for Roo supports installing add-ons from the Vaadin Directory and compiling
the included widget sets.

14.5.1. Installing Add-ons

Open or select a Roo Shell and enter:

roo> vaadin addon install --artifactId vaadin-calendar

You can type the beginning of the command up to the --artifactId, followed by a space, and
then hit Ctrl+Space for completion. It lists all the available add-ons in the Directory. If you enter
the beginning of an add-on name, such as vaadin-, before the completion, it shows just those
add-ons, as shown in Figure 14.2, “Getting List of Add-ons in Directory”.

Figure 14.2. Getting List of Add-ons in Directory

14.5.2. Compiling the Widget Set

Add-ons that include custom widgets, in this case the Vaadin Calendar component, require
compilation of a widget set, as described in detail in Chapter 15, Using Vaadin Add-ons. Roo
makes the compilation simple, you only have to enter the following command in the Roo Shell:

roo> vaadin widgetset create

Executing the command can take considerable time, as it downloads all the necessary Maven
dependencies on the first run. The actual widget set compilation takes usually between 20 to 60
seconds, depending on the hardware.

This creates a combining widget set that includes all the widget sets from different add-ons and
also the default widget set of the Vaadin core library. The compiled widget set should appear in
t h e
target/rapid-0.1.0-SNAPSHOT/VAADIN/widgetsets/com.vaadin.rapid.web.RapidWidgetset
folder and be referenced in the web.xml deployment descriptor of the application.

363Installing Add-ons

Rapid Development Using Vaadin and Roo

Generally, only add-ons that introduce entirely new user interface components include a widget
set that needs to be compiled. These are the majority of Vaadin add-ons. Add-ons providing a
theme or container implementation do not include a widget set.

If you later add other add-ons, you need to issue the vaadin widgetset update command,
which updates the combining widget set definition file. The vaadin widgetset compile
command simply recompiles the widget set without updating the combining widget set definition
file.

14.5.3. Configuring the Deployment Assembly

The widget set is compiled under the target/rapid-0.1.0.BUILD-SNAPSHOT folder, which
is not included in the deployment path by default.

1. Open the project properties for the project

2. Select Deployment Assembly

3. Click Add

4. Select Folder

5. Select target/rapid-0.1.0.BUILD-SNAPSHOT

6. Click Finish and OK to save the settings

If you are using Maven to debug your application, you will face the same issue. As a workaround,
use the jetty-run or jetty:run-exploded targets that use the target directory as the base
directory for the web app. Another option is to modify the gwt-maven-plugin to compile the
widget set to src/main/webapp with its inplace mode.

14.6. Customizing Views

For basic use, the entity views created by Roo work just fine. However in some cases, modifying
the form or changing visible properties in the table component may be needed to satisfy critical
end users. In this section, we discuss some methods how you can modify the application skeleton
generated by Roo.

14.6.1. Modifying Roo generated entity form

As discussed in Section 14.4.1, “Creating the Application Skeleton”, entity forms generated by
Roo can be made compatible with the visual editor of the Eclipse plugin. If you gave the
--visuallyComposable true parameter for Roo when creating the views, you can open for
example the WorkEntryForm.java file with the Visual Designer. For example, right-click on
the the file in the Project Explorer view. Then, choosing the Design view from the bottom of the
screen opens the form generated by Roo in a graphical editor. Use the editor to organize the
view according to your preferences. Also, add a Label component to the view and name it as
hoursLabel.

When you switch back to the source view, you can immediately see the changes made by the
visual mode. To fill proper value for the newly created hoursLabel, modify the
setItemDataSource() method to call an updateDuration() method that you create to
calculate the duration between start and the end times. The resulting value should be shown in

Configuring the Deployment Assembly364

Rapid Development Using Vaadin and Roo

the label. You might also call this method from a value change listener hooked to start and end
time fields.

At any time you may switch between the source code editor and the visual editor without losing
changes done on the other side. Just make sure not to modify parts of the code (methods and
field declarations) that are marked with @AutoGenerated annotation.

14.6.2. Creating a Calendar View for Filling Work Entries

In this section, we build an alternative view for WorkEntry entities built around the Vaadin Cal-
endar add-on.The Calendar displays filled entries for the end user in a nice graphical presentation.
User can get a quick overview of what he has done during the week and it is also easy to spot if
there is some missing entries. The user can also select and modify time ranges visually with the
calendar, which speeds up the daily tasks.

Start by sketching the view with the Visual Designer.

1. Choose File New Vaadin Composite

2. Fill in the proper package and class name (such as ~web.ui and CalendarView). The
Vaadin Plugin for Eclipse creates a class that extends CustomComponent.

3. Switch to the Design tab using the tab selector below the source code and the visual
editor opens.

For our view we need three components: two ComboBoxes to select the project and employee,
and a Calendar from the add-on that we installed previously. Filtering may help you in finding
them from the component list. Drag them to the the composite and sketch the view according to
your preferences. Also use the Properties tab to give components more meaningful names and
possibly fill in a suitable caption. When you return to the source code view, you can see the
generated code.

Customizing Generated Code

The constructor has a comment to indicate the place where you should add your custom code.
To make our view display some data, we need to connect the combo boxes to the data sources
and provide events to the Calendar component via its CalendarEventProvider interface. For
the project and employee selectors, the easiest option is to use the JPAContainer.

When implementing the CalendarEventProvider, you need to extend the data model with a
method that lists WorkEntry objects within a specific time ranges and also implement a light-
weight wrapper for WorkEntry to make them compatible with the Calendar component.

Using Custom Views

Once you have some data sources connected, you most probably want to check out how your
new view looks in the application. The Vaadin application skeleton generated by Roo uses the
Navigator add-on and a generated RapidEntityManagerView (where Rapid is the application
base name) class as the view controller. For complex applications, you might want to build your
own navigation system, but for this application we can just modify the RapidEntityManagerView
to include our custom views.

Let the composite implement the org.vaadin.navigator.Navigator.View interface and modify
addEntityViewsToList() method in RapidEntityManagerView to include your custom view
to the navigation. After that, deploy the application and verify the view is shown. You may add

365Creating a Calendar View for Filling Work Entries

Rapid Development Using Vaadin and Roo

some test data in the WorkEntry views generated by Roo and check that it is shown in the Cal-
endarView.

Adding New Entries

To allow users to add new entries via Calendar, implement a RangeSelectHandler and register
it to the Calendar. In the handler, you can create an new instance of WorkEntry. Fill in the time
range from the provided event object and default values for the project and employee fields that
you can find through the combo boxes that we created earlier.

The new WorkEntry object now contains the most essential information, but it still has the default
comment field.The user might also want to review the new entry. Here we can use the previously
fine-tuned WorkEntry form that was originally automatically created by the Roo. Wrap the
WorkEntry object in a BeanItem and pass it to a WorkEntryForm instance. As our Calendar
component consumes quite a lot of space on the screen, it is best to show the editor form in a
modal Window. Again, use your existing Java know-how and extract the recyclable parts to
helper methods (such as showEditorPopup(WorkEntry)).

To fine-tune the usability of the view, you may add more hooks in the Calendar:

• EventClickHandler to open editor for existing event

• EventMoveHandler to adjust the time range

• EventResizeHandler to adjust the time range

14.6.3. Creating a Custom View for Reporting

Our example project also has a report view for easy listing of work entries. The query can be
filtered by project, employee and the time range. Most of the process is similar to creating the
calendar view, but in the ReportView one can survive with just standard Vaadin components.
The table component at the bottom of the view lists entries matching the criteria defined by the
controls above it.

When you have sketched the view connect selects to the data sources. Also hook a JPAContainer
to the Table. Add ChangeListener to all fields and update filters in the JPAContainer instance
hooked to the result table.

14.7. Authentication and Authorization

The goals of authentication and authorization are preventing unauthorized viewing and editing
of data. In the case of our tutorial application, only administrators should be allowed to view and
edit hours and projects entered by users other than themselves.

14.7.1. Implementing Authentication and Authorization

Since the requirements of the example project are very simple, all authentication is handled with
a simple Authenticator class that checks if a certain user with a certain password exists in the
database.The Authenticator could just as easily be implemented using Spring Security or some
other security framework. The authenticator has two responsibilities:

1. Authenticate users based on a username / password pair

2. Keep track of views that require administrator privileges to access and answer the simple
question: "Is this view accessible in the current session?"

Creating a Custom View for Reporting366

Rapid Development Using Vaadin and Roo

This approach is too simplistic for a real project, but the basics should be fairly similar when in-
tegrating a framework such as Spring Security with Vaadin.

To authenticate users, the system needs to show a login view before letting users view any
possibly sensitive data. For the example project, the Vaadin composite LoginView was created
using Vaadin Visual Designer. By default the Visual Designer creates a AbsoluteLayout as the
root layout. This was changed into a VerticalLayout and a LoginForm was placed inside of it.
The login form was then aligned to the middle center, making it appear in the middle of the browser
window when the login view is the only visible layout in the main window.

In order to display the login view before anything else, the main window, which is defined by the
RapidWindow class has to be edited. Instead of setting the content of the window to a new
RapidEntityManagerView, the content is set to the login view, unless a user is already logged
in, and a LoginListener is registered to the login view. The login listener is called when the
"Login" button is clicked, and passed the values of the text fields in the login form. By default, a
username and a password is passed in and these are passed off to the authenticator for authen-
tication. If the authentication succeeds, the content of the RapidWindow is replaced with a new
RapidEntityManagerView, just as before introducing the login view.

public class RapidWindow extends Window
 implements LoginListener {

 public RapidWindow() {
 if (RapidApplication.get().getUser() == null) {
 setContent(new LoginView(this));
 } else {
 showMainUI();
 }

 // select window theme
 setTheme("rapid");
 }

 public void showMainUI() {
 // entity manager
 setContent(new RapidEntityManagerView());
 }

 @Override
 public void onLogin(LoginEvent event) {
 String username = event.getLoginParameter("username");
 String password = event.getLoginParameter("password");
 if (Authenticator.login(username, password)) {
 showMainUI();
 }
 }
}

The check whether a user is already logged in is important, because of the multi-window support
that is automatically enabled in all Vaadin projects created with Spring Roo. Without the check,
a user could first log in as one user and then open a new window and log in as another user,
causing both windows to be logged in as the latter user. This is because all windows open to the
same application in the same browser share the same session, and only the last user to be logged
in is stored in the session.

Authorization is handled in the addEntityViewsToList() method in RapidEntityManagerView
class. Before the view is added to the list, the authenticator is asked whether the user is allowed
access the view and only adds the view if the answer is true.

if (Authenticator.isViewAccessible(viewClass) &&
 Navigator.View.class.isAssignableFrom(viewClass)) {

367Implementing Authentication and Authorization

Rapid Development Using Vaadin and Roo

 navigator.addView(key, viewClass);
 ...
}

14.8. Internationalization

We want to have the user interface to be available in different languages. Details such as the
formatting of dates has to change depending on the selected language.

The login view has a drop-down select that allows the user to choose the language. The applic-
ation attempts to detect the preferred language reported by the browser, and defaults to English
if the preferred language is not available. The preferred language is detected and the locale set
in the application class, as follows:

public void init() {
 ...
 // Use the locale from the request as default.
 // Login uses this setting later.
 setLocale(((WebApplicationContext)getContext())
 .getBrowser().getLocale());
 ...
}

Now that we know the preferred language of the user, we can start internationalizing the applic-
ation. Vaadin does not have a preferred way of doing internationalization, so you are free to
choose whichever method you prefer. Quite often, the common Java practice of using Resource-
Bundles and .properties files is sufficient, and this suits our application perfectly. Please
refer to Java documentation for more details regarding internationalization in Java.

The Externalize Strings feature in the Eclipse IDE (and STS) will handle most of the boilerplate
generation. In the Package Explorer, select the package that holds the UI classes (com.vaad-
in.rapid.web) and select Source Externalize Strings.The dialog shows a list of files that contains
strings that are yet to be translated - you need to open one at a time and externalize the strings.
In the externalize dialog, first make sure the location of the messages.properties is suitable
(and stays the same for all files you go trough), in our case we want it in the com.vaadin.rapid.web
package. The IDE will generate the messages.properties and a Messages class the first
time you run it. In the String to externalize list, make sure that strings that do not need to be
translated have an X mark and that strings that should be translated have a check mark. Also,
change all keys for translated strings to something descriptive.

Internationalization368

Rapid Development Using Vaadin and Roo

Figure 14.3.The Externalize Strings Dialog

Externalize Strings marks strings that should not be translated using a special comment in the
code, so that the next time you run the function, it will only show the new strings or strings you
have forgotten.

Note that if you externalize strings from a visually editable component, the Visual Editor can no
longer open the component, because the generated code has been changed. This will probably
be fixed in a future release of the Visual Editor, but for now you can go ahead and move the code
rows that contain translations to the constructor.

Next, we will translate the names of the Views. We'll do this dynamically in the RapidEntityMan-
agerView by prefixing the translation key with "View." and appending the view name (with
spaces removed).

final String viewCaption = Messages.getString("View." + viewName);

In this application we do not want to translate the URI fragment that is shown in the browser, so
we make some small changes to keep the viewName and the translated viewCaption separate
throughout the code. Whether or not one wants to translate depends on the application - if you
translate the fragment, it will be more descriptive in the users own language, but users with dif-
ferent language settings will not be able to share deep links.

To translate the column headers of the various tables, we add some code to the end of the
refresh() in AbstractEntityView. This will allow us to translate the headers after the content
has been set:

protected void refresh() {
 ...
 // Translate column headers

369Internationalization

Rapid Development Using Vaadin and Roo

 Object[] columns = getTableColumns();
 String[] headers = new String[columns.length];
 for (int i = 0; i < headers.length; i++)
 headers[i] = Messages.getString(getClass().getSimpleName()
 + "." + columns[i].toString());
 table.setColumnHeaders(headers);
 ...
}

To translate boolean values and localize dates in the various tables, we modify the
createTable() in AbstractEntityView so that it returns our own RapidTable, which overrides
formatPropertyValue():

protected String formatPropertyValue(Object rowId, Object colId,
 Property property) {
 Object value = property.getValue();
 if (value instanceof Boolean) {
 // Translate boolean values
 return Messages.getString("Boolean."
 + ((Boolean) value).toString());
 } else if (value instanceof Date) {
 // Localize date/time
 return DateFormat.getDateTimeInstance(DateFormat.SHORT,
 DateFormat.SHORT, RapidApplication.get().getLocale())
 .format((Date) value);
 }
 return super.formatPropertyValue(rowId, colId, property);
}

There is one more translation task to do: BeansValidation (JSR 303) is used for validating values
according to annotations on the entities. This process produces some messages that originate
from the BeansValidation, and need to be translated separately. BeansValidation also uses
property files, namely ValidationMessages.properties, that should be placed in the
src/main/resources folder. To tell BeansValidation which locale to use we currently need
some boilerplate - this will hopefully be fixed soon. In each Form class (ProjectForm, Rapid-
UserForm, WorkEntryForm) we need to call a helper that goes trough our validators and sets
the locale:

public void setItemDataSource(Item item) {
 ...
 for (Object propertyId : getBeanPropertyIds())
 ValidatorMessageUtil.updateValidators(
 getField(propertyId));
 ...
}

The helper method in ValidatorMessageUtil iterates trough the validators for the field, updating
the locale.

14.9.Testing the Application

In the data model section, we already discussed briefly about automatic integration tests that
Roo generates for the domain objects. They are a good start, but only ensure that simple CRUD
methods work from domain model to the persistency layer. In serious application development,
you should write tests for any additional business logic, as well for the UI layers.

14.9.1. Overview of Testing

Writing unit tests for the user interface layer of an application can be a time consuming task.Yet,
they do not necessary ensure that the UI works properly. Deployment problems, timing issues,

Testing the Application370

Rapid Development Using Vaadin and Roo

and the browser layer may still cause issues that break the UI. In this step of the tutorial, we will
use the Vaadin TestBench to test the user interface layer. TestBench executes tests with real
browsers, by simulating user actions in the browser. This way, we do not just test the UI layer,
but the entire stack from JavaScripts running in the browser down to the database.

Vaadin TestBench tests are normally recorded with a browser plugin. Advanced users may fine
tune the tests by hand and, for example, configure tests with parameters. Tests scripts are then
converted into JUnit test cases, which can be integrated into an existing testing environment.
Roo projects are based on the Maven build system, so we will configure the pom.xml of the
project so that TestBench tests are run automatically.The TestBench setup and usage is discussed
briefly. Please refer to Chapter 20, Vaadin TestBench in case you face problems.

To help the integration tests, we use the Maven Failsafe plugin. It is a testing plugin that automat-
ically runs all tests named, for example, *ITCase.java in the test sources with the verify
goal.The Failsafe plugin also provides necessary hooks where we can configure how our applic-
ation server is started and stopped. If you want to test on a separate server, you can do just deploy
and un-deploy at these phases. The necessary Maven snippet can be found from the Failsafe
project page.

14.9.2. Running the Test Server

The Jetty plugin should be already installed in your pom.xml, but we will configure Jetty to start
automatically before the integration test phase and close cleanly when the tests have been run.
Add the following XML snippet inside the definition of your Jetty plugin:

<executions>
 <!-- start and stop jetty (running our app) when running
 integration tests -->
 <execution>
 <id>start-jetty</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>run-exploded</goal>
 </goals>
 <configuration>
 <scanIntervalSeconds>0</scanIntervalSeconds>
 <daemon>true</daemon>
 <stopKey>STOP</stopKey>
 <stopPort>8866</stopPort>
 </configuration>
 </execution>
 <execution>
 <id>stop-jetty</id>
 <phase>post-integration-test</phase>
 <goals>
 <goal>stop</goal>
 </goals>
 <configuration>
 <stopPort>8866</stopPort>
 <stopKey>STOP</stopKey>
 </configuration>
 </execution>
</executions>

To verify that the integration test system works, you can create a simple smoke test. Create a
JUnit test case and name it as SmokeTestITCase.java and create a test method that connects
to the test server. Verify that a proper kickstart page is returned. This verifies that the application
is properly deployed for more advanced tests. Run your integration test with mvn verify. If this
basic integration test passes fine, you are ready to continue setting up the TestBench.

371Running the Test Server

Rapid Development Using Vaadin and Roo

14.9.3. Installing TestBench with Maven

TestBench is not available in any public Maven repository. Unless you have TestBench already
installed, download it from vaadin.com/directory. Install the JAR to your local repository (or Maven
proxy) by executing the following command in the install directory of TestBench:

mvn install::install-file -Dfile=vaadin-testbench-2.2.2.jar
-DgroupId=com.vaadin -DartifactId=testbench -Dversion=2.2.2
-Dpackaging=jar -DgeneratePom=true

You also need to specify the dependency pom.xml file of the project. Use the test scope as
the JAR file is not needed in the actual application execution. We will need it when compiling test
scripts from HTML to JUnit test cases, and also when executing the actual JUnit tests.

Notice that Vaadin TestBench is licensed with the Commercial Vaadin Add-on License. You can
download the product for a 30-day free trial period with Maven, after which you need a license
which you can buy from the Vaadin Directory.

14.9.4. Generating JUnit Tests

The test cases for Vaadin TestBench are recorded as HTML files and need to be compiled as
JUnit tests, as described in Section 20.9, “Compiling and Executing JUnit Tests”. This needs to
be automated.

Native scripts are kept in source repository as they are more maintainable than the compiled
JUnit tests. The conversion is done by com.vaadin.testbenc.DirectoryTestConverter tool.You
can use it most conveniently through the Maven Exec plugin. Configure it to be run at, for example,
generate-test-sources and add generated java files to test sources. The Exec plugin has
an option to do this, but you may need to use build-helper-maven-plugin instead.

14.9.5. Configuring System Properties

The test setup is now almost ready. As the last step, we need to provide some system properties
to be defined for the JUnit tests generated by TestBench. Add the following configuration snippet
to the configuration of the Failsafe plugin:

<configuration>
 <!-- Define some necessary system properties for -->
 <!-- TestBench JUnit tests. -->
 <systemPropertyVariables>
 <com.vaadin.testbench.tester.host>
 ${testbench.hubhost}
 </com.vaadin.testbench.tester.host>
 <com.vaadin.testbench.deployment.url>
 ${testbench.appurl}
 </com.vaadin.testbench.deployment.url>
 <com.vaadin.testbench.screenshot.directory>
 ${project.build.directory}/testbench-generated
 </com.vaadin.testbench.screenshot.directory>
 </systemPropertyVariables>
 <encoding>UTF-8</encoding>
</configuration>

The parameters are described in Section 20.9.1, “Configuring the Ant Script”. Define the used
parameters and you are ready to go. The localhost and
http://localhost:8080/${project.name} will work fine for local testing. Save your scripts
under src/test/resources/ with the filenames ending with ITCase.html, and they will be

Installing TestBench with Maven372

Rapid Development Using Vaadin and Roo

automatically executed when you issue mvn verify.Your first test can simply login as the admin
user and then assert some text to verify that the initial screen gets rendered.

14.9.6. Notes

Notice that we did not configure the TestBench hub (nor a remote control) to start and stop from
Maven. Instead, we just defined the host where the hub is running. So, before actually executing
the integration tests, make sure that the TestBench is up and running, as described in Chapter 20,
Vaadin TestBench. Commonly, TestBench is used so that the hub and its slaves are running in
a separate cluster, rather than on developer's workstations. If you have access to this kind of
external hub, you can give its address as com.vaadin.testbench.tester.host. The
localhost does not work as the deployment URL in this case, but you should use an URL
which the test machines can access. If no separate test cluster is used, you might want to cus-
tomize your Maven build to start and stop TestBench in a way similar to Jetty.

Your more advanced tests can then use the login test as a base and test various features. Record
tests for at least basic CRUD actions for all entity types. To verify authorization code to work,
you can also create a non-admin user in one test and verify with the new user that admin only
features are not visible. Most actions can be recorded with the TestBench Recorder automatically,
but there are some limitations. For example, selecting a time range in the Calendar view needs
to be manually built using Selenium methods. (The TestBench version 2.2.0 also has a regression
that adds an excess selectWindow command when logging in with LoginForm, so remove that
command manually in case your test seems to fail in the very beginning.)

When building tests, notice that integration tests use the same database by default, so the data
filled in the previous test will be visible during the next test. Tests are run in alphabetical order,
so you may use a naming convention to control the test execution order.

14.10. Exception Handling

When something goes wrong in a Vaadin application, a small error indicator icon is shown on
the control that was interacted with. When hovering over the icon, a tooltip containing the entire
stacktrace of the exception is shown. No normal person (that is, other than a software developer)
understands what this means and knows what to do.

In this section, we will remove the stack traces and replace them with error messages in terms
that a normal user would understand.

14.10.1. Preventing Stacktraces in the UI

The autogenerated code lets the exceptions fall all the way through to the user interface. This
can easily be changed by overriding the terminalError() method in the Application subclass.

@Override
public void terminalError(Terminal.ErrorEvent event) {
 Window errorWindow = findWindowForError(event);
 // Shows an error notification
 if (errorWindow != null) {
 errorWindow.showNotification(
 "An internal error has occurred, please " +
 "contact the administrator!",
 Notification.TYPE_ERROR_MESSAGE);
 }

 // print the error
 logger.log(Level.SEVERE,
 "An uncaught exception occurred: ",

373Notes

Rapid Development Using Vaadin and Roo

 event.getThrowable());
}

14.10.2. Where to Catch Exceptions

The most likely places for errors to occur in the example application are when interacting with
the database. Validation errors are already handled in the generated code, but errors due to
constraint violations on the database level and communication failures need to be caught and
handled correctly.

Almost all saving and deleting of entities is handled through the AbstractEntityView, which is
the super type of all but one view. CalendarView is the custom view that does not extend Ab-
stractEntityView, and thus needs to catch the exceptions separately. Almost all exceptions can
be handled in a good way by handling them in AbstractEntityView and CalendarView. When
an exception occurs, an error notification should be displayed to the user.

Handling Exceptions in AbstractEntityView

The Vaadin plug-in for Spring Roo generates the AbstractEntityView class for handling CRUD
for all different entities in the application. This means that the methods that handle saving and
deleting of entities can be changed to include customized exception handling. Roo generates an
aspect, AbstractEntityView_Roo_AbstractEntityView containing the doCommit() and
doDelete() methods. These methods can be changed by moving them to the Ab-
stractEntityView, which will cause Roo to stop autogenerating the methods in the Ab-
stractEntityView_Roo_AbstractEntityView aspect.

Move the methods to AbstractEntityView and surround the method contents with a try...catch
block, catching all Exceptions and showing a notification about which operation failed.

@Transactional
public void doDelete() {
 try {
 Object id = getIdForEntity(getEntityForItem(
 getForm().getItemDataSource()));
 if (id != null) {
 getTable().removeItem(id);
 }
 } catch (Exception e) {
 logger.log(Level.SEVERE, "Could not delete entity", e);
 getWindow().showNotification(
 "Deletion of the item failed.",
 Notification.TYPE_ERROR_MESSAGE);
 }
}

Handling Exceptions in CalendarView

Since CalendarView is a custom view which doesn't extend AbstractEntityView, it also needs
to handle exceptions. The calendar view does the same things as the other entity views, but with
a different layout and logic.

Exception handling needs to be added to all code that persists or deletes data from the database.
The CalendarView does this in several locations: When creating a new entry, when editing an
entry, when moving an entry and when resizing an entry. E.g. the range select handler, which
persists a work entry when it is first created should be changed to wrap the call to
workEntry.persist() in a try...catch block.

@Override
public void rangeSelect(RangeSelectEvent event) {

Where to Catch Exceptions374

Rapid Development Using Vaadin and Roo

 ...
 // Build a work entry
 ...

 try {
 workEntry.persist();
 showEditorPopup(workEntry, true);
 } catch (Exception e) {
 logger.log(Level.SEVERE, "Could not store entity", e);
 getWindow().showNotification("Could not create a new " +
 work entry due to an internal error.",
 Notification.TYPE_ERROR_MESSAGE);
 }
}

In the rest of the code, all calls to persist(), merge() or delete() are wrapped in
try...catch blocks and a notification with a suitable message for each of the cases is displayed.

14.11. Deploying to Cloud Foundry

Cloud Foundry (http://cloudfoundry.com/) is a new platform-as-a-service solution from
SpringSource. Cloud Foundry makes it extremely easy to deploy applications created with Spring
Roo and Vaadin to the cloud.

Before you can deploy to Cloud Foundry, you must register an account at
http://cloudfoundry.com/. The activation might take some time, so you should do the re-
gistration several days before you need the account.

14.11.1. Installing the Cloud Foundry Plug-in in STS

Installing the Cloud Foundry plug-in is easy. Open the STS Dashboard and select the Extensions
tab in the lower-left corner of the dashboard view. Scroll down to the Server and Clouds section
and choose the Cloud Foundry integration plug-in from there. Click Install and follow the on-
screen instructions.

14.11.2. Deploying the Application

Deploying the application is also very simple.

1. Open the Servers view, right-click somewhere in it, and create a New Server.

2. In the New Server window, choose VMWare Cloud Foundry and click Next.

3. Fill in the account information that you received by email from cloudfoundry.com and
choose VMware Cloud Foundry - http://api.cloudfoundry.com from the URL drop-
down.

4. You can click 'Validate Account' to make sure that you filled in your password correctly.

5. Click 'Finish' to finish the installation of the Cloud Foundry server.

Once the new server is installed, you can add your project to it, just like you would add your
project to any other server using the Servers view. Once added, right-click on the project and
choose Start. This will ask for a name that identifies your project in the cloud as well as the URL
to deploy to. After giving this information, the project will be uploaded and started in the cloud.

375Deploying to Cloud Foundry

Rapid Development Using Vaadin and Roo

After a few seconds, you should be able to visit the URL you provided and see your project in
action.

14.11.3. Binding to the MySQL Service

The final part of our demonstration is to bind the application deployed in the Cloud Foundry to a
real DBMS. In the following, we describe how you can bind the application to a MySQL database.

1. Bind a MySQL database to the application in Eclipse. In the Cloud Foundry view:

a. Double-click the application deployed in Cloud Foundry

b. Select Services and click Add in the upper-right corner

c. Give the connection a name and choose a MySQL database

d. Drag the created service from the Services panel to the Services table in the applic-
ation

2. Remove the dependency to the HSQLDB that we used at first from pom.xml

3. Add the MySQL connector dependency as follows:

<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.15</version>
</dependency>

4. Add the Cloud Foundry runtime dependency as follows:

<dependency>
 <groupId>org.cloudfoundry</groupId>
 <artifactId>cloudfoundry-runtime</artifactId>
 <version>0.6.1</version>
</dependency>

5. Edit the persistence.xml file and change the org.eclipse.persistence.platform.data-
base.HSQLPlatform class name to org.eclipse.persistence.platform.database.MySQL-
Platform.

6. Edit the applicationContext.xml file and change the following line:

<beans xmlns="http://www.springframework.org/schema/beans" xmlns:aop= ...

to the following:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cloud="http://schema.cloudfoundry.org/spring"
 xsi:schemaLocation="http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd

Binding to the MySQL Service376

Rapid Development Using Vaadin and Roo

http://www.springframework.org/schema/jee
http://www.springframework.org/schema/jee/spring-jee-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://schema.cloudfoundry.org/spring
http://schema.cloudfoundry.org/spring/cloudfoundry-spring.xsd">

7. Also in the applicationContext.xml replace the following:

<bean class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close" id="dataSource">
 <property name="driverClassName"
 value="${database.driverClassName}"/>
 <property name="url" value="${database.url}"/>
 <property name="username" value="${database.username}"/>
 <property name="password" value="${database.password}"/>
</bean>

with the following:

<cloud:data-source id="dataSource" />

377Binding to the MySQL Service

Rapid Development Using Vaadin and Roo

378

Part II. Vaadin Add-ons
The Vaadin core library is just the beginning. Vaadin is designed to be highly extendable with third-party
components, themes, data binding implementations, and tools. The add-ons are an important part of the
Vaadin ecosystem, supporting also different business models for different needs.

Chapter 15

Using Vaadin
Add-ons

15.1. Overview .. 381
15.2. Downloading Add-ons from Vaadin Directory 381
15.3. Compiling Add-on Widget Sets .. 382
15.4. Removing Add-ons .. 384
15.5. Using Add-ons in a Maven Project .. 384

This chapter describes the installation of add-on components, themes, containers, and other
tools from the Vaadin Directory and the use of commercial add-ons offered by Vaadin.

15.1. Overview

In addition to the components, layouts, themes, and data sources built in into the core Vaadin
library, many others are available as add-ons, either from the Vaadin Directory or from independent
sources. Both commercial and free components exist under various licenses.

Installation of themes, data sources, and components built with server-side component compos-
ition is simple, just dropping a JAR package in a project and, usually, compiling the included
widget set (the client-side implementation).

15.2. Downloading Add-ons from Vaadin Directory

Vaadin Directory at http://vaadin.com/directory/ provides a rich collection of add-ons
for Vaadin.You can download Directory add-on packages from the details page of an add-on.

381Book of Vaadin

1. Select the version; some add-ons have several versions available. The latest is shown
by default, but you can choose another the version to download from the dropdown
menu in the header of the details page.

2. Click Download Now and save the JAR or Zip file on your computer.

3. If the add-on is packaged in a Zip package, unzip the package and follow any instructions
provided inside the package. Typically, you just need to copy a JAR file to your web
project under the WEB-INF/lib directory.

4. Update and recompile your project. In Eclipse, select the project and press F5.

5. You need to compile the client-side implementations of the add-on components, that
is, a widget set. This is the case for majority of add-ons, except for pure server-side,
theme, or data binding add-ons. You must recompile the widget set if you install a new
version of the add-on or the Vaadin library. See the subsequent sections for detailed
instructions for compiling widget sets.

6. Update the project in web server and possibly restart the server.

After trying out an add-on, you can give some feedback to the author of the add-on by rating the
add-on with one to five stars and optionally leaving a comment.

Please note the add-on license. While most commercial add-ons can be downloaded directly,
you should note their license and other terms and conditions. Many are offered under a dual li-
censing agreement so that they can be used in open source projects for free, and many have a
trial period for closed-source development.

15.3. Compiling Add-on Widget Sets

15.3.1. Compiling Widget Sets in Eclipse

To be able to compile widget sets in Eclipse, you need to have the Vaadin Plugin for Eclipse in-
stalled, as instructed in Section 2.2.1, “Vaadin Plugin for Eclipse”.

An application can only have one widget set, so if you use multiple add-ons and possibly your
own custom widgets, they need to be combined to a single widget set that inherits them. You
can create the combining widget set manually and the Eclipse plugin simply update it when you
add new add-ons. Otherwise, the Eclipse plugin automatically creates a project-specific widget
set under the project root source folder.

The Eclipse plugin compiles widget sets automatically by default. They do not normally need to
be recompiled after changes to server-side classes, so if the automatic recompilation get annoying,
disable it from the project settings.

To compile the widget set(s) manually, click the Compile Vaadin widgets button in Eclipse
toolbar or press Ctrl+6. You must recompile the widget set(s) always when you install a new
version of the add-on or of the Vaadin library.

Figure 15.1.The Compile Vaadin widgets Button in Eclipse Toolbar

Compiling Add-on Widget Sets382

Using Vaadin Add-ons

Further information on defining and compiling widget sets is given in Section 11.2.2, “Recompiling
the Widget Set”, Section 11.5, “Defining a Widget Set”, and Section 11.8.4, “Compiling GWT
Widget Sets”.

15.3.2. Compiling Widget Sets with an Ant Script

If you need to compile the widget set with an Ant script, you can find a script template at the URL
https://vaadin.com/download/misc/build-widgetset.xml. You can copy the build script to your
project and, once configured, use it by entering:

$ ant -f build-widgetset.xml

See Section 11.8.4, “Compiling GWT Widget Sets” for details on configuring the build script and
the available build targets, and Section 11.5, “Defining a Widget Set” for information regarding
the widget set definition file.

If you are using an IDE such as Eclipse, always remember to refresh the project to synchronize
it with the filesystem after compiling the widget set outside Eclipse.

15.3.3.Troubleshooting

If you experience problems, do the following:

• Check the .gwt.xml widget set definition file under the widget set folder in the project
root package. For example, if the project root package is com.example.myproject,
t h e w i d g e t s e t d e f i n i t i o n f i l e w o u l d b e
com.example.myproject.widgetset.MyprojectWidgetset.gwt.xml. See
Section 11.5, “Defining a Widget Set” for details on the contents of the widget set
definition file.

• Check the WEB-INF/web.xml deployment descriptor and see that the servlet for your
application has a widget set parameter, such as the following:

<init-param>
 <description>Application widgetset</description>
 <param-name>widgetset</param-name>
 <param-value>com.example.myproject.widgetset.MyprojectWidgetset</param-value>
</init-param>

• See the VAADIN/widgetsets directory and check that the widget set appears there.
You can remove it and recompile to see that compilation works properly.

• Use the Net tab in Firebug to see that the widget set (and theme) is loaded properly.

• Use the ?debug parameter for the application to see if there is any version conflict
between the widget set and the Vaadin library, or the themes. See Section 12.4.1, “Debug
Mode” for details.

• Refresh and recompile the project. In Eclipse, select the project and press F5, stop the
server, clean the server temporary directories, and restart it.

• Check the Error Log view in Eclipse (or the IDE you use).

For more specific problems related to widget sets definition and compilation, see Section 11.8.8,
“Troubleshooting”.

383Compiling Widget Sets with an Ant Script

Using Vaadin Add-ons

https://vaadin.com/download/misc/build-widgetset.xml

15.4. Removing Add-ons

Version mismatch problems with custom widget sets are a common source of grief for many
beginners in Vaadin. If you need add-ons or your own custom components that include widget
sets, you of course need to compile them, but otherwise it is unnecessary.

If you do not use any such add-ons or your own custom components, do the following:

1. If you are using the Eclipse plugin, disable automatic widget set compilation from project
preferences, in the Vaadin category, by selecting Suspend automatic widgetset
builds. This prevents accidental compilation of the unnecessary widget sets. You may
want to do this anyhow as the automatic builds can be annoying. You can still always
build the widget set with the button in the toolbar.

2. Remove all widget set folders from under the VAADIN/widgetsets folder.

3. Edit the WEB-INF/web.xml file and remove the widgetset init parameter from the
servlet. It looks as follows:

<init-param>
 <description>Application widgetset</description>
 <param-name>widgetset</param-name>

<param-value>com.vaadin.demo.colorpicker.widgetset.ColorPickerWidgetSet</param-value>
</init-param>

4. Refresh the project. In Eclipse, select the project and press F5, stop the server, clean
the server temporary directories, and restart it.

At least in development environments, if you have extracted Vaadin themes to the
VAADIN/themes folder, you should remove them and let them be loaded dynamically from the
Vaadin JAR.

15.5. Using Add-ons in a Maven Project

To use add-ons in a project that uses Maven, you simply have to add them as dependencies in
the POM. If the add-ons includes widget sets, as at least most component add-ons do, you also
need to define and compile a project widget set.

Creating, compiling, and packaging a Vaadin project using Maven was described in Section 2.5,
“Creating a Project with Maven”.

15.5.1. Adding a Dependency

Vaadin Directory provides a Maven repository for all the add-ons in the Directory. You can view
needed Maven dependency definitions by clicking the Maven POM button at the right side of the
add-on view, as illustrated in Figure 15.2, “Maven POM Definitions in Vaadin Directory”.

Removing Add-ons384

Using Vaadin Add-ons

Figure 15.2. Maven POM Definitions in Vaadin Directory

You need to copy the dependency declaration to the pom.xml file in your project, under the
/project/dependencies element.

 ...
 <dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin</artifactId>
 <version>${vaadin.version}</version>
 </dependency>
 <dependency>
 <groupId>org.vaadin.addons</groupId>
 <artifactId>vaadin-sqlcontainer</artifactId>
 <version>1.1.0</version>
 </dependency>
 ...

You can use the exact version number, as is done in the example above, or LATEST to always
use the latest version of the add-on.

The POM excerpt given in Directory includes also a repository definition, but if you have used
the vaadin-archetype-clean archetype when creating your project, it should already include
the definition.

15.5.2. Enabling Widget Set Compilation

Most add-on components in Vaadin Directory include a widget set which must be compiled before
using the add-on. Some add-ons, such as data binding add-ons or themes, do not include a
widget set.

Configuring the POM

The configuration needed for compiling widget sets is included in the pom.xml created with the
vaadin-archetype-clean archetype, but the elements are commented out. You just need
to enable the configuration.

<!-- Compile custom GWT components or widget dependencies with the GWT compiler -->
<!--
<plugin>
 <groupId>org.codehaus.mojo</groupId>
 ...

385Enabling Widget Set Compilation

Using Vaadin Add-ons

</plugin>
-->

...

<!--
<pluginRepositories>
</pluginRepositories>
-->

...

<dependencies>
...
<!--

 <dependency>
 ...
 </dependency>
-->

</dependencies>

Creating a Widget Set Definition File

Your project needs a widget set that combines the default widget set in the Vaadin core library
with any widget sets from add-ons. This requires creating an empty widget set definition file (or
module file in GWT terminology). The actual content of the file is generated automatically by
searching the class path for widget sets (with the vaadin:update-widgetset as explained
later), but you need to create an empty file.

Create a widget set directory in your project source directory.

$ mkdir project-name/src/main/java/your/company/gwt

Then create a ProjectNameWidgetSet.gwt.xml file in the directory with an empty <module>
element as follows:

<module>
</module>

Enabling the Widget Set in the Application

The project widget set needs to be enabled in the web.xml deployment descriptor in the applic-
ation. Edit the src/main/webapp/WEB-INF/web.xml file and add or modify the widgetset
parameter for the servlet as follows.

<servlet>
 ...
 <init-param>
 <description>Widget Set to Use</description>
 <param-name>widgetset</param-name>
 <param-value>your.company.gwt.ProjectNameWidgetSet</param-value>
 </init-param>
</servlet>

The parameter is the class name of the widget set, that is, without the .gwt.xml extension and
with the Java dot notation for class names that include the package name.

This should complete the task of enabling a widget set compilation and use in your project. Next,
you need to update the project widget set, as described in the next section.

Enabling Widget Set Compilation386

Using Vaadin Add-ons

15.5.3. Updating and Compiling the Project Widget Set

If you have enabled widget set compilation as described earlier and created the project widget
set, you need to update the widget set to include the default widget set and any widget sets in-
cluded in add-ons.You can do this simply by running the vaadin:update-widgetset goal in
the project directory.

$ mvn vaadin:update-widgetset
...
[INFO] auto discovered modules [your.company.gwt.ProjectNameWidgetSet]
[INFO] Updating widgetset your.company.gwt.ProjectNameWidgetSet
[ERROR] 27.10.2011 19:22:34 com.vaadin.terminal.gwt.widgetsetutils.ClassPathExplorer
getAvailableWidgetSets
[ERROR] INFO: Widgetsets found from classpath:
[ERROR] your.company.gwt.ProjectNameWidgetSet in
file:/home/magi/itmill/maventest/project-name/src/main/java
[ERROR] com.vaadin.terminal.gwt.DefaultWidgetSet in
jar:file:/home/magi/.m2/repository/com/vaadin/vaadin/6.7.1/vaadin-6.7.1.jar!/
[ERROR]
[ERROR] 27.10.2011 19:22:34 com.vaadin.terminal.gwt.widgetsetutils.ClassPathExplorer
getAvailableWidgetSets
[ERROR] INFO: Search took 8ms
...

Do not mind the "ERROR" labels, they are just an issue with the Vaadin Plugin for Maven.

If you later add other add-ons in the project, or remove some, you need to run the widget set
update again.

The project widget set also needs to be compiled using the GWT Compiler. We enabled the
Maven add-ons for GWT compilation in the previous section. You can compile the widget set
with the gwt:compile goal as follows:

$ mvn gwt:compile

You need to recompile the widget set if you upgrade to a new version of Vaadin or any of the
included widget sets. It is not done automatically by the package goal. If you have added or re-
moved add-ons, you also need to run the vaadin:update-widgetset goal before the compil-
ation.

This concludes the compilation of add-on widget sets.You still need to compile and package the
actual application with the package goal, as described in Section 2.5, “Creating a Project with
Maven”.

387Updating and Compiling the Project Widget Set

Using Vaadin Add-ons

388

Chapter 16

Vaadin Calendar

16.1. Overview .. 389
16.2. Installing Calendar ... 392
16.3. Basic Use .. 392
16.4. Implementing an Event Provider .. 395
16.5. Configuring the Appearance .. 397
16.6. Drag and Drop ... 399
16.7. Using the Context Menu .. 400
16.8. Localization and Formatting .. 401
16.9. Customizing the Calendar ... 401

The Vaadin Calendar is a commercial add-on component for organizing and displaying calendar
events. It can be used to view and manage events in monthly, weekly, and daily views.

16.1. Overview

The main features of the Vaadin Calendar include:

• Monthly, weekly, and daily views

• Two types of events: all-day events and events with a time range

• Add events directly, from a Container, or with an event provider

• Control the range of the visible dates

• Selecting and editing date or time range by dragging

• Drag and drop events to calendar

389Book of Vaadin

• Support for localization and timezones

The data source of the calendar can be practically anything, as its events are queried dynamically
by the component.You can bind the calendar to a Vaadin container, or to any other data source
by implementing an event provider.

Monthly and Weekly Views

The Vaadin Calendar has two types of views that are shown depending on the date range of the
calendar. The weekly view displays a week by default. It can show anything between one to
seven days a week, and is also used as a single-day view. The view mode is determined from
the date range of the calendar, defined by a start and an end date. Calendar will be shown in a
monthly view when the date range is over than one week (seven days) long. The date range is
always calculated in an accuracy of one millisecond.

The monthly view, shown in Figure 16.1, “Monthly view with All-Day and Normal Events”, can
easily be used to control all types of events, but it is best suited for events that last for one or
more days. You can drag the events to move them. In the figure, you can see two longer events
that are highlighted with a blue and green background color. Other markings are shorter day
events that last less than a 24 hours. These events can not be moved by dragging in the monthly
view.

In Figure 16.2, “Weekly View”, you can see four normal day events and also all-day events at
the top of the time line grid.

Calendar Events

All occurrences in a calendar are represented as events. You have three ways to manage the
calendar events: add them to the calendar and manage them by its API, from a Vaadin
Container, or with an event provider.

Events are handled though the CalendarEvent interface. The concrete class of the event de-
pends on the specific CalendarEventProvider used in the calendar. By default, Calendar uses
a BasicEventProvider to provide events, which uses BasicEvent instances.

Vaadin Calendar does not depend on any particular data source implementation. Events are
queried by the Calendar from the provider that just has to implement the
CalendarEventProvider interface. It is up to the event provider that Calendar gets the correct
events.

You can bind any Vaadin Container to a calendar, in which case a ContainerEventProvider is
used transparently. The container must be ordered by start date and time of the events. See
Section 9.4, “Collecting Items in Containers” for basic information about containers.

A calendar event requires a start time and an end time.These are the only mandatory properties.
In addition, an event can also be set as an all-day event by setting the all-day property of the
event.You can also set the description of an event, which is displayed as a tooltip in the user
interface.

If the all-day field of the event is true, then the event is always rendered as an all-day event.
In the monthly view, this means that no start time is displayed in the user interface and the event
has an colored background. In the weekly view, all-day events are displayed in the upper part of
the screen, and rendered similarly to the monthly view. In addition, when the time range of an
event is 24 hours or longer, it is rendered as an all-day event in the monthly view.

Monthly and Weekly Views390

Vaadin Calendar

Figure 16.1. Monthly view with All-Day and Normal Events

Figure 16.2. Weekly View

When the time range of an event is equal or less than 24 hours, with the accuracy of one milli-
second, the event is considered as a normal day event. Normal event has a start and end times
that may be on different days.

391Calendar Events

Vaadin Calendar

Interaction

The date and week captions, as well as events, are clickable and the clicks can be listened for
by the server. Also date/time range selections, event dragging, and event resizing can be listened
by the server. Using the API, you have full control over the events caused by user interaction.

The weekly view has navigation buttons to navigate forward and backward in time.These actions
are also listened by the server. Custom navigation can be implemented using event handlers,
as described in Section 16.9, “Customizing the Calendar”.

16.2. Installing Calendar

Vaadin Calendar is available for download from Vaadin Directory and from a Maven repository.
Installing the add-on is the same as with Vaadin add-ons in general, so please refer to Chapter 15,
Using Vaadin Add-ons. Vaadin Calendar includes a widget set, which you need to compile to
your project widget set.

Licensing

When downloading the Vaadin Calendar add-on from Vaadin Directory, you need to choose the
license.

Vaadin Calendar is a commercial product licensed under a dual-licensing scheme. The AGPL
(GNU Affero General Public License) allows open-source development, while the CVAL (Com-
mercial Vaadin Add-On License) needs to be purchased for closed-source use, including web
deployments and internal use. With the CVAL license, you have a free 30-day trial period for
evaluating the product.

Commercial licenses can be purchased from the Vaadin Directory, where you can also find the
license details and download the Vaadin Calendar.

16.3. Basic Use

Use of Calendar requires two tasks after creating a Calendar instance: setting a time range for
it and providing the calendar events. The time range controls its view mode; whether it is a daily,
weekly, or monthly view.

16.3.1. Setting the Date Range

The view mode is controlled by the date range of the calendar. The weekly view is the default
view mode.You can change the range by setting start and end dates for the calendar. The range
must be between one and 60 days.

In the following, we set the calendar to show only one day, which is the current day.

cal.setStartDate(new Date());
cal.setEndDate(new Date());

Notice that although the range we set above is actually zero time long, the calendar still renders
the time from 00:00 to 23:59. This is normal, as the Vaadin Calendar is guaranteed to render at
least the date range provided, but may expand it. This behaviour is important to notice when we
implement our own event providers.

Interaction392

Vaadin Calendar

16.3.2. Adding and Managing Events

The first thing the you will probably notice about the Calendar is that it is rather empty at first.
The Calendar allows three different ways to add events:

• Add events directly to the Calendar object using the addEvent()

• Use a Container as a data source

• Use the event provider mechanism

The easiest way to add and manage events in a calendar is to use the basic event management
API in the Calendar. You can add events with addEvent() and remove them with the
removeEvent().These methods will use the underlying event provider to write the modifications
to the data source.

For example, the following adds a two-hour event starting from the current time. The standard
Java GregorianCalendar provides various ways to manipulate date and time.

// Add a short event
GregorianCalendar start = new GregorianCalendar();
GregorianCalendar end = new GregorianCalendar();
end.add(java.util.Calendar.HOUR, 2);
calendar.addEvent(new BasicEvent("Calendar study",
 "Learning how to use Vaadin Calendar",
 start.getTime(), end.getTime()));

Calendar uses by default a BasicEventProvider, which keeps the events in memory in an internal
reprensetation.

This adds a new event that lasts for 3 hours. As the BasicEventProvider and BasicEvent implement
some optional event interfaces provided by the calendar package, there is no need to refresh
the calendar. Just create events, set their properties and add them to the Event Provider.

16.3.3. Getting Events from a Container

You can use any Vaadin Container that implements the Indexed interface as the data source
for calendar events.The Calendar will listen to change events from the container as well as write
changes to the container. You can attach a container to a Calendar with
setContainerDataSource().

In the following example, we bind a BeanItemContainer that contains built-in BasicEvent events
to a calendar.

// Create the calendar
Calendar calendar = new Calendar("Bound Calendar");

// Use a container of built-in BasicEvents
final BeanItemContainer<BasicEvent> container =
 new BeanItemContainer<BasicEvent>(BasicEvent.class);

// Create a meeting in the container
container.addBean(new BasicEvent("The Event", "Single Event",
 new GregorianCalendar(2012,1,14,12,00).getTime(),
 new GregorianCalendar(2012,1,14,14,00).getTime()));

// The container must be ordered by the start time. You
// have to sort the BIC every time after you have added
// or modified events.
container.sort(new Object[]{"start"}, new boolean[]{true});

393Adding and Managing Events

Vaadin Calendar

calendar.setContainerDataSource(container, "caption",
 "description", "start", "end", "styleName");

The container must either use the default property IDs for event data, as defined in the
CalendarEvent interface, or provide them as parameters for the setContainerDataSource()
method, as we did in the example above.

Keeping the Container Ordered

The events in the container must be kept ordered by their start date/time. Failing to do so may
and will result in the events not showing in the calendar properly.

Ordering depends on the container. With some containers, such as BeanItemContainer, you
have to sort the container explicitly every time after you have added or modified events, usually
with the sort() method, as we did in the example above. Some container, such as JPACon-
tainer, keep the in container automatically order if you provide a sorting rule.

For example, you could order a JPAContainer by the following rule, assuming that the start
date/time is held in the startDate property:

// The container must be ordered by start date. For JPAContainer
// we can just set up sorting once and it will stay ordered.
container.sort(new String[]{"startDate"}, new boolean[]{true});

Delegation of Event Management

Setting a container as the calendar data source with setContainerDataSource() automatically
switches to ContainerEventProvider. You can manipulate the event data through the API in
Calendar and the user can move and resize event through the user interface.The event provider
delegates all such calendar operations to the container.

If you add events through the Calendar API, notice that you may be unable to create events of
the type held in the container or adding them requires some container-specific operations. In
such case, you may need to customize the addEvent() method.

For example, JPAContainer requires adding new items with addEntity().You could first add
the entity to the container or entity manager directly and then pass it to the addEvent(). That
does not, however, work if the entity class does not implement CalendarEvent. This is actually
the case always if the property names differ from the ones defined in the interface. You could
handle creating the underlying entity objects in the addEvent() as follows:

// Create a JPAContainer
final JPAContainer<MyCalendarEvent> container =
 JPAContainerFactory.make(MyCalendarEvent.class,
 "book-examples");

// Customize the event provider for adding events
// as entities
ContainerEventProvider cep =
 new ContainerEventProvider(container) {
 @Override
 public void addEvent(CalendarEvent event) {
 MyCalendarEvent entity = new MyCalendarEvent(
 event.getCaption(), event.getDescription(),
 event.getStart(), event.getEnd(),
 event.getStyleName());
 container.addEntity(entity);
 }
}

Getting Events from a Container394

Vaadin Calendar

// Set the container as the data source
calendar.setEventProvider(cep);

// Now we can add events to the database through the calendar
BasicEvent event = new BasicEvent("The Event", "Single Event",
 new GregorianCalendar(2012,1,15,12,00).getTime(),
 new GregorianCalendar(2012,1,15,14,00).getTime());
calendar.addEvent(event);

16.4. Implementing an Event Provider

If the two simple ways of storing and managing events for a calendar are not enough, you may
need to implement a custom event provider. It is the most flexible way of providing events. You
need to attach the event provider to the Calendar using the setEventProvider() method.

Event queries are done by asking the event provider for all the events between two given dates.
The range of these dates is guaranteed to be at least as long as the start and end dates set for
the component.The component can, however, ask for a longer range to ensure correct rendering.
In particular, all start dates are expanded to the start of the day, and all end dates are expanded
to the end of the day.

16.4.1. Custom Events

An event provider could use the built-in BasicEvent, but it is usually more proper to define a
custom event type that is bound directly to the data source. Custom events may be useful for
some other purposes as well, such as when you need to add extra information to an event or
customize how it is acquired.

Custom events must implement the CalendarEvent interface or extend an existing event class.
The built-in BasicEvent class should serve as a good example of implementing simple events.
It keeps the data in member variables.

public class BasicEvent
 implements CalendarEventEditor, EventChangeNotifier {
 ...

 public String getCaption() {
 return caption;
 }

 public String getDescription() {
 return description;
 }

 public Date getEnd() {
 return end;
 }

 public Date getStart() {
 return start;
 }

 public String getStyleName() {
 return styleName;
 }

 public boolean isAllDay() {
 return isAllDay;
 }

395Implementing an Event Provider

Vaadin Calendar

 public void setCaption(String caption) {
 this.caption = caption;
 fireEventChange();
 }

 public void setDescription(String description) {
 this.description = description;
 fireEventChange();
 }

 public void setEnd(Date end) {
 this.end = end;
 fireEventChange();
 }

 public void setStart(Date start) {
 this.start = start;
 fireEventChange();
 }

 public void setStyleName(String styleName) {
 this.styleName = styleName;
 fireEventChange();
 }

 public void setAllDay(boolean isAllDay) {
 this.isAllDay = isAllDay;
 fireEventChange();
 }

 public void addListener(EventChangeListener listener) {
 ...
 }

 public void removeListener(EventChangeListener listener) {
 ...
 }

 protected void fireEventChange() {...}
}

You may have noticed that there was some additional code in the BasicEvent that was not in
the CalendarEvent interface. Namely BasicEvent also implements two additional interfaces:

CalendarEditor This interface defines setters for all the fields, and is required
for some of the default handlers to work.

EventChangeNotifier This interface adds the possibility to listen for changes in the
event, and enables the Calendar to render the changes imme-
diately.

The start time and end time are mandatory, but caption, description, and style name are not.The
style name is used as a part of the CSS class name for the HTML DOM element of the event.

In addition to the basic event interfaces, you can enhance the functionality of your event and
event provider classes by using the EventChange and EventSetChange events. They let the
Calendar component to know about changes in events and update itself accordingly. The Ba-
sicEvent and BasicEventProvider examples given earlier include a simple implementation of
these interfaces.

Custom Events396

Vaadin Calendar

16.4.2. Implementing the Event Provider

An event provider needs to implement the CalendarEventProvider interface. It has only one
method to be implemented. Whenever the calendar is painted, getEvents(Date, Date)
method is called and it must return a list of events between the given start and end time.

The following example implementation returns only one example event. The event starts from
the current time and is five hours long.

public class MyEventProvider implements CalendarEventProvider{
 public List<Event> getEvents(Date startDate, Date endDate){
 List<Event> events = new ArrayList<Event>();
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(new Date());

 Date start = cal.getTime();
 cal.add(GregorianCalendar.HOUR, 5);
 Date end = cal.getTime();
 BasicEvent event = new BasicEvent();
 event.setCaption("My Event");
 event.setDescription("My Event Description");
 event.setStart(start);
 event.setEnd(end);
 events.add(event);

 return events;
 }
}

It is important to notice that the Calendar may query for dates beyond the range defined by start
date and end date. Particularly, it may expand the date range to make sure the user interface is
rendered correctly.

16.5. Configuring the Appearance

Configuring the appearance of the Vaadin Calendar component is one of the basic tasks. At the
least, you need to consider its sizing in your user interface. You also quite probably want to use
some color or colors for events.

16.5.1. Sizing

The Vaadin Calendar supports the dynamic size system of Vaadin, with both defined and undefined
sizes. When using defined sizes, the Calendar calculates the correct height for the cells so that
it fits to the size given.

When using an undefined size for the calendar, all the sizes come from CSS. In addition, when
the height is undefined, a scrollbar is displayed in the weekly view to better fit the cells to the
user interface. See the section called “Style for Undefined Size” for information about customizing
the undefined sizes.

16.5.2. Styling

The Calendar has a default theme defined in the widget set. You may choose to overwrite the
style names from the default theme file calendar.css. The file is located in a folder named
public under the src folder in the JAR file. Vaadin will find the CSS from inside the JAR
package.

397Implementing the Event Provider

Vaadin Calendar

Style for Undefined Size

Usually, you do not need to overwrite any of the default styles, but a Calendar with undefined
size is a exception. Below is a list of style names that define the size of a Calendar with undefined
size (these are the defaults from calendar.css):

.v-calendar-month-sizedheight .v-calendar-month-day {
 height: 100px;
}

.v-calendar-month-sizedwidth .v-calendar-month-day {
 width: 100px;
}

.v-calendar-header-month-Hsized .v-calendar-header-day {
 width: 101px;
}

/* for IE */
.v-ie6 .v-calendar-header-month-Hsized .v-calendar-header-day {
 width: 104px;
}

/* for others */
.v-calendar-header-month-Hsized td:first-child {
 padding-left: 21px;
}

.v-calendar-header-day-Hsized {
 width: 200px;
}

.v-calendar-week-numbers-Vsized .v-calendar-week-number {
 height: 100px;
 line-height: 100px;
}

.v-calendar-week-wrapper-Vsized {
 height: 400px;
 overflow-x: hidden !important;
}

.v-calendar-times-Vsized .v-calendar-time {
 height: 38px;
}

.v-calendar-times-Hsized .v-calendar-time {
 width: 42px;
}

.v-calendar-day-times-Vsized .v-slot,.v-calendar-day-times-Vsized .v-slot-even {
 height: 18px;
}

.v-calendar-day-times-Hsized, .v-calendar-day-times-Hsized

.v-slot,.v-calendar-day-times-Hsized .v-slot-even {
 width: 200px;
}

Event Style

Events can be styled with CSS by setting them a style name suffix. The suffix is retrieved with
the getStyleName() method in CalendarEvent. If you use BasicEvent events, you can set
the suffix with setStyleName().

Styling398

Vaadin Calendar

BasicEvent event = new BasicEvent("Wednesday Wonder", ...);
event.setStyleName("mycolor");
calendar.addEvent(event);

Suffix mycolor would create v-calendar-event-mycolor class for regular events and
v-calendar-event-mycolor-add-day for all-day events. You could style the events with
the following rules:

.v-calendar .v-calendar-event-mycolor {}

.v-calendar .v-calendar-event-mycolor-all-day {}

.v-calendar .v-calendar-event-mycolor .v-calendar-event-caption {}

.v-calendar .v-calendar-event-mycolor .v-calendar-event-content {}

16.5.3. Visible Hours and Days

As we saw in Section 16.3.1, “Setting the Date Range”, you can set the range of dates that are
shown by the Calendar. But what if you wanted to show the entire month but hide the weekends?
Or show only hours from 8 to 16 in the weekly view? The setVisibleDays() and
setVisibleHours() methods allow you to do that.

calendar.setVisibleDays(1,5); // Monday to Friday
calendar.setVisibleHours(0,15); // Midnight until 4 pm

After the above settings, only weekdays from Monday to Friday would be shown. And when the
calendar is in the weekly view, only the time range from 00:00 to 16:00 would be shown.

Note that the excluded times are never shown so you should take care when setting the date
range. If the date range contains only dates / times that are excluded, nothing will be displayed.
Also note that even if a date is not rendered because these settings, the event provider may still
be queried for events for that date.

16.6. Drag and Drop

Vaadin Calendar can act as a drop target for drag and drop, described in Section 12.12, “Drag
and Drop”. With the functionality, the user could drag events, for example, from a table to a cal-
endar.

To support dropping, a Calendar must have a drop handler. When the drop handler is set, the
days in the monthly view and the time slots in the weekly view can receive drops. Other locations,
such as day names in the weekly view, can not currently receive drops.

Calendar uses its own implementation of TargetDetails: CalendarTargetdetails. It holds in-
formation about the the drop location, which in the context of Calendar means the date and time.
The drop target location can be retrieved via the getDropTime() method. If the drop is done
in the monthly view, the returned date does not have exact time information. If the drop happened
in the weekly view, the returned date also contains the start time of the slot.

Below is a short example of creating a drop handler and using the drop information to create a
new event:

private Calendar createDDCalendar() {
 Calendar calendar = new Calendar();
 calendar.setDropHandler(new DropHandler() {
 public void drop(DragAndDropEvent event) {
 CalendarTargetDetails details =
 (CalendarTargetDetails) event.getTargetDetails();

 TableTransferable transferable =
 (TableTransferable) event.getTransferable();

399Visible Hours and Days

Vaadin Calendar

 createEvent(details, transferable);
 removeTableRow(transferable);
 }

 public AcceptCriterion getAcceptCriterion() {
 return AcceptAll.get();
 }

 });

 return calendar;
}

protected void createEvent(CalendarTargetDetails details,
 TableTransferable transferable) {
 Date dropTime = details.getDropTime();
 java.util.Calendar timeCalendar = details.getTargetCalendar()
 .getInternalCalendar();
 timeCalendar.setTime(dropTime);
 timeCalendar.add(java.util.Calendar.MINUTE, 120);
 Date endTime = timeCalendar.getTime();

 Item draggedItem = transferable.getSourceComponent().
 getItem(transferable.getItemId());

 String eventType = (String)draggedItem.
 getItemProperty("type").getValue();

 String eventDescription = "Attending: "
 + getParticipantString(
 (String[]) draggedItem.
 getItemProperty("participants").getValue());

 BasicEvent newEvent = new BasicEvent();
 newEvent.setAllDay(!details.hasDropTime());
 newEvent.setCaption(eventType);
 newEvent.setDescription(eventDescription);
 newEvent.setStart(dropTime);
 newEvent.setEnd(endTime);

 BasicEventProvider ep = (BasicEventProvider) details
 .getTargetCalendar().getEventProvider();
 ep.addEvent(newEvent);
}

16.7. Using the Context Menu

Vaadin Calendar allows the use of context menu (mouse right-click) to manage events. As in
other context menus in Vaadin, the menu items are handled in Vaadin as actions by an action
handler. To enable a context menu, you have to implement a Vaadin Action.Handler and
add it to the calendar with addActionHandler().

An action handler must implement two methods: getActions() and handleAction(). The
getActions() is called for each day displayed in the calendar view. It should return a list of
allowed actions for that day, that is, the items of the context menu. The target parameter is the
context of the click - a CalendarDateRange that spans over the day.The sender is the Calendar
object.

The handleActions() receives the target context in the target. If the context menu was
opened on an event, the target is the Event object, otherwise it is a CalendarDateRange.

Using the Context Menu400

Vaadin Calendar

16.8. Localization and Formatting

16.8.1. Setting the Locale and Time Zone

Month and weekday names are shown in the language of the locale setting of the Calendar.The
translations are acquired from the standard Java locale data. By default, Calendar uses the
system default locale for its internal calendar, but you can change it with setLocale(Locale
locale). Setting the locale will update also other location specific date and time settings, such
as the first day of the week, time zone, and time format. However, time zone and time format can
be overridden by settings in the Calendar.

For example, the following would set the language to US English:

cal.setLocale(Locale.US);

The locale defines the default time zone. You can change it with the setTimeZone() method,
which takes a java.util.TimeZone object as its parameter. Setting timezone to null will reset
timezone to the locale default.

For example, the following would set the Finnish time zone, which is EET

cal.setTimeZone(TimeZone.getTimeZone("Europe/Helsinki"));

16.8.2.Time and Date Caption Format

The time may be shown either in 24 or 12 hour format.The default format is defined by the locale,
but you can change it with the setTimeFormat() method. Giving a null setting will reset the
time format to the locale default.

cal.setTimeFormat(TimeFormat.Format12H);

You can change the format of the date captions in the week view with the
setWeeklyCaptionFormat(String dateFormatPattern) method.The date format pattern
should follow the format of the standard Java java.text.SimpleDateFormat class.

For example:

cal.setWeeklyCaptionFormat("dd-MM-yyyy");

16.9. Customizing the Calendar

In this section, we give a tutorial for how to make various basic customizations of the Vaadin
Calendar. The event provider and styling was described earlier, so now we concentrate on other
features of the Calendar API.

We use example code to demonstrate the customizations. You can find the source code of the
example application on-line with the name CustomizedCalendarDemo at
http://dev.vaadin.com/svn/addons/Calendar. Some of the less important code for this
document has been left out to make the code more readable and shorter.

16.9.1. Overview of Handlers

Most of the handlers related to calendar events have sensible default handlers. These are found
in the com.vaadin.ui.handler package.The default handlers and their functionalities are described
below.

401Localization and Formatting

Vaadin Calendar

• BasicBackwardHandler. Handles clicking the back-button of the weekly view so that
the viewed month is changed to the previous one.

• BasicForwardHandler. Handles clicking the forward-button of the weekly view so that
the viewed month is changed to the next one.

• BasicWeekClickHandler. Handles clicking the week numbers int the monthly view so
that the viewable date range is changed to the clicked week.

• BasicDateClickHandler. Handles clicking the dates on both the monthly view and the
weekly view. Changes the viewable date range so that only the clicked day is visible.

• BasicEventMoveHandler. Handles moving the events in both monthly view and the
weekly view. Events can be moved and their start and end dates are changed correctly,
but only if the event implements CalendarEventEditor (implemented by BasicEvent).

• BasicEventResizeHandler. Handles resizing the events in the weekly view. Events can
be resized and their start and end dates are changed correctly, but only if the event im-
plements CalendarEventEditor (implemented by the BasicEvent).

All of these handlers are automatically set when creating a new Calendar. If you wish to disable
some of the default functionality, you can simply set the corresponding handler to null. This will
prevent the functionality from ever appearing on the user interface. For example, if you set the
EventMoveHandler to null, the user will be unable to move events in the browser.

16.9.2. Creating a Calendar

Let us first create a new Calendar instance. Here we use our own event provider, the MyEvent-
Provider described in Section 16.4.2, “Implementing the Event Provider”.

Calendar cal = new Calendar(new MyEventProvider());

This initializes the Calendar. To customize the viewable date range, we must set a start and end
date to it.

There is only one visible event in the timeline, starting from the current time. That is what our
event provider passes to the client.

It would be nice to also be able to control the navigation forward and backward. The default
navigation is provided by the default handlers, but perhaps we want to restrict the users so they
can only navigate dates in the current year. Maybe we also want to pose some other restrictions
to the clicking week numbers and dates.

These restrictions and other custom logic can be defined with custom handlers.You can find the
handlers in the com.vaadin.addon.calendar.ui.handler package and they can be easily extended.
Note that if you don not want to extend the default handlers, you are free to implement your own.
The interfaces are described in CalendarComponentEvents.

16.9.3. Backward and Forward Navigation

Vaadin Calendar has only limited built-in navigation support. The weekly view has navigation
buttons in the top left and top right corners.

You can handle backward and forward navigation with a BackwardListener and
ForwardListener.

Creating a Calendar402

Vaadin Calendar

cal.setHandler(new BasicBackwardHandler() {
 protected void setDates(BackwardEvent event,
 Date start, Date end) {

 java.util.Calendar calendar = event.getComponent()
 .getInternalCalendar();
 if (isThisYear(calendar, end)
 && isThisYear(calendar, start)) {
 super.setDates(event, start, end);
 }
 }});

The forward navigation handler can be implemented in the same way. The example handler re-
stricts the dates to the current year.

16.9.4. Date Click Handling

By default, clicking a date either in month or week view switches single-day view. The date click
event is handled by a DateClickHandler.

The following example handles click events so that when the user clicks the date header in the
weekly view, it will switch to single-day view, and in the single-day view switch back to the weekly
view.

cal.setHandler(new BasicDateClickHandler() {
 public void dateClick(DateClickEvent event) {
 Calendar cal = event.getComponent();
 long currentCalDateRange = cal.getEndDate().getTime()
 - cal.getStartDate().getTime();

 if (currentCalDateRange < VCalendar.DAYINMILLIS) {
 // Change the date range to the current week
 cal.setStartDate(cal.getFirstDateForWeek(event.getDate()));
 cal.setEndDate(cal.getLastDateForWeek(event.getDate()));

 } else {
 // Default behaviour, change date range to one day
 super.dateClick(event);
 }
 }
});

16.9.5. Handling Week Clicks

The monthly view displays week numbers for each week row on the left side of the date grid.The
week number are clickable and you can handle the click events by setting a WeekClickHandler
for the Calendar object. The default handler changes the date range to be the clicked week.

In the following example, we add a week click handler that changes the date range of the calendar
to one week only if the start and end dates of the week are in the current month.

cal.setHandler(new BasicWeekClickHandler() {
 protected void setDates(WeekClick event,
 Date start, Date end) {
 java.util.Calendar calendar = event.getComponent()
 .getInternalCalendar();
 if (isThisMonth(calendar, start)
 && isThisMonth(calendar, end)) {
 super.setDates(event, start, end);
 }
 }
});

403Date Click Handling

Vaadin Calendar

16.9.6. Handling Event Clicks

The calendar events in all views are are clickable. There is no default handler. Just like the date
and week click handlers, event click handling is enabled by setting an EventClickHandler
for the Calendar object.

You can get hold of the clicked event by the getCalendarEvent() method in the EventClick
object passed to the handler, as shown in the following example.

cal.addListener(new EventClickListener() {
 public void eventClick(EventClick event) {
 BasicEvent e = (BasicEvent) event.getCalendarEvent();
 getMainWindow().showNotification(
 "Event clicked: " + e.getCaption(),
 e.getDescription());
 }
});

16.9.7. Event Dragging

The user can drag an event to change its position in time. The default handler sets the start and
end time of the event accordingly. You can do many things with a custom move handler, such
as restrict moving events.

In the following example, we add a EventMoveHandler to a Calendar. The event handler up-
dates the new position to the datasource, but only if the new dates are in the current month. This
requires making some changes to the event provider class.

cal.setHandler(new BasicEventMoveHandler() {
 private java.util.Calendar javaCalendar;

 public void eventMove(MoveEvent event) {
 javaCalendar = event.getComponent().getInternalCalendar();
 super.eventMove(event);
 }

 protected void setDates(CalendarEventEditor event,
 Date start, Date end) {
 if (isThisMonth(javaCalendar, start)
 && isThisMonth(javaCalendar, end)) {
 super.setDates(event, start, end);
 }
 }
});

For the above example to work, the example event provider presented earlier needs to be changed
slightly so that it doesn't always create a new event when getEvents() is called.

public static class MyEventProvider
 implements CalendarEventProvider {
 private List<CalendarEvent> events =
 new ArrayList<CalendarEvent>();

 public MyEventProvider() {
 events = new ArrayList<CalendarEvent>();
 GregorianCalendar cal = new GregorianCalendar();
 cal.setTime(new Date());

 Date start = cal.getTime();
 cal.add(GregorianCalendar.HOUR, 5);
 Date end = cal.getTime();
 BasicEvent event = new BasicEvent();

Handling Event Clicks404

Vaadin Calendar

 event.setCaption("My Event");
 event.setDescription("My Event Description");
 event.setStart(start);
 event.setEnd(end);
 events.add(event);
 }

 public void addEvent(CalendarEvent BasicEvent) {
 events.add(BasicEvent);
 }

 public List<CalendarEvent> getEvents(Date startDate,
 Date endDate) {
 return events;
 }
}

After these changes, the user can move events around as earlier, but dropping an event, the
start and end dates are checked by the server. Note that as the server-side must move the event
in order for it to render to the place it was dropped.The server can also reject moves by not doing
anything when the event is received.

16.9.8. Handling Drag Selection

Drag selection works both in the monthly and weekly views. To listen for drag selection, you can
add a RangeSelectListener to the Calendar. There is no default handler for range select.

In the code example below, we create an new event when any date range is selected. Drag se-
lection opens a window where the user is asked for a caption for the new event. After confirming,
the new event is be passed to the event provider and calendar is updated. Note that as our ex-
ample event provider and event classes do not implement the event change interface, we must
refresh the Calendar manually after changing the events.

cal.setHandler(new RangeSelectHandler() {
 public void rangeSelect(RangeSelectEvent event) {
 BasicEvent calendarEvent = new BasicEvent();
 calendarEvent.setStart(event.getStart());
 calendarEvent.setEnd(event.getEnd());

 // Create popup window and add a form in it.
 VerticalLayout layout = new VerticalLayout();
 layout.setMargin(true);
 layout.setSpacing(true);

 final Window w = new Window(null, layout);
 ...

 // Wrap the calendar event to a BeanItem
 // and pass it to the form
 final BeanItem<CalendarEvent> item =
 new BeanItem<CalendarEvent>(myEvent);

 final Form form = new Form();
 form.setItemDataSource(item);
 ...

 layout.addComponent(form);

 HorizontalLayout buttons = new HorizontalLayout();
 buttons.setSpacing(true);
 buttons.addComponent(new Button("OK", new ClickListener() {

 public void buttonClick(ClickEvent event) {

405Handling Drag Selection

Vaadin Calendar

 form.commit();
 // Update event provider's data source
 provider.addEvent(item.getBean());
 // Calendar needs to be repainted
 cal.requestRepaint();
 getMainWindow().removeWindow(w);
 }
 }));

 ...
 }
});

16.9.9. Resizing Events

The user can resize an event by dragging from both ends to change its start or end time. This
offers a convenient way to change event times without the need to type anything. The default
resize handler sets the start and end time of the event according to the resize.

In the example below, we set a custom handler for resize events.The handler prevents any event
to be resized over 12 hours in length. Note that this does not prevent the user from resizing an
event over 12 hours in the client. The resize will just be corrected by the server.

cal.setHandler(new BasicEventResizeHandler() {
 private static final long twelveHoursInMs = 12*60*60*1000;

 protected void setDates(CalendarEventEditor event,
 Date start, Date end) {
 long eventLength = end.getTime() - start.getTime();
 if (eventLength <= twelveHoursInMs) {
 super.setDates(event, start, end);
 }
 }
});

Resizing Events406

Vaadin Calendar

Chapter 17

Vaadin Timeline

17.1. Graph types ... 409
17.2. Interaction Elements .. 409
17.3. Event Markers .. 411
17.4. Efficiency ... 411

Vaadin Timeline is an add-on component that gives the user an intuitive understanding of events
and trends. A timeline consists of a time-axis depicting a desired time range and some events
or values mapped to the time range.

407Book of Vaadin

Figure 17.1. Vaadin Timeline Add-On Component

A timeline allows representing time-related data visually as graphs instead of numerical values.
They are used commonly in almost all fields of business, science, and technology, such as in
project management to map out milestones and goals, in geology to map out historical events,
and perhaps most prominently in the stock market.

With Vaadin Timeline, you can represent almost any time-related statistical data that has a time-
value mapping. Even several data sources can be used for comparison between data.This allows
the user to better grasp of changes in the data and antipate forthcoming trends and problems.

Vaadin Timeline can be easily included in a Vaadin application and is highly customizable to suit
almost any purpose. Timeline supports multiple graph types as well as events and markers. The
user interaction with the Timeline is straight-forward and simple.

Book of Vaadin currently includes only an introduction to Vaadin Timeline. Please refer to the
product documentation included in the installation package for further details.

Licensing

Vaadin Timeline is a commercial product licensed under a dual-licensing scheme. The AGPL
(GNU Affero General Public License) allows open-source development. CVAL (Commercial
Vaadin Add-On License) needs to be purchased for closed-source use, including web deployments
as well as intranet use.

Commercial licenses can be purchased from the Vaadin Directory, where you can also find the
license details and download the Vaadin Timeline.

Licensing408

Vaadin Timeline

17.1. Graph types

The Vaadin Timeline supports three graph types:

Line graphs Useful for representing continuous data, such as temperature changes
or changes in stock price.

Bar graphs Useful for representing discrete or discontinuous data, such as market
share or forum posts.

Scatter graphs Useful for representing discrete or discontinuous data.

If you have several graphs in the timeline, you can also stack them on top of each other instead
of drawing them on top of each other by setting setGraphStacking() in Timeline to true.

17.2. Interaction Elements

The user can interact with the Vaadin Timeline in several ways.

On the bottom of the timeline there is a scrollbar area where you can move the time forward or
backward in time by dragging the time range box or by clicking the left and right arrow buttons.
You can change the time range by resizing the range box in the scrollbar area. You can also
zoom with the mouse wheel when the pointer is inside the component.

Figure 17.2. Scrollbar Area

The middle area of the timeline is the main area where the selected time range is displayed.Time
scale is shown below the main area. The time scale used depends on the zoom level and can
be a time unit from hours to years. Value scale is displayed on the right side of the main area.
The scale can be either a static value range or a range calculated from the displayed data set.
The user can move in time by dragging the main area with the mouse left and right and zoom in
and out by using the mouse wheel.

409Graph types

Vaadin Timeline

Figure 17.3. Main Area

You can select a preset zoom level with the buttons on the top the Timeline. This will change the
displayed time range to match the zoom level. The zoom levels are fully customizable to suit the
time range in the API.

Figure 17.4. Preset Zoom Buttons

The current time range is shown at the top-right corner of the component. Clicking the dates
makes them editable, so that you can manually change them. Graph legend is shown below the
time range. The legend explains what is represented by each bar on the graph and displays the
current value when the user moves the mouse cursor over the graph.

Figure 17.5. Current Time Range and Graph Legend

Finally, the available chart modes are shown below the preset zoom levels options.The available
graph modes can be set from the API.

Figure 17.6. Chart Mode

You can use or hide any of the features above can be shown or hidden depending on your needs.
For example, if you only need to display a graph without any controls, you can hide all them from
the API.

Interaction Elements410

Vaadin Timeline

17.3. Event Markers

In addition to graphs, the timeline can have events. An event can be, for example, the time of a
published advertisement in a graph that displays website hits. Combining the event data with the
graphs enables the user to observe the relevance of the advertisement to the website hits visually.

Vaadin Timeline provides two types of event markers, as illustrated in Figure 17.7, “Timeline
Event Markers”.

Figure 17.7.Timeline Event Markers

(On left) Marker with a customizable marker sign, for example, letter 'E'. The marker displays a
caption which appears when the user hovers the pointer over the event.

(On right) Marker with button-like appearance with a marker sign and a caption.

17.4. Efficiency

Vaadin Timeline reduces the traffic between the server and the client by using two methods.

First of all, all the data that is presented in the component is dynamically fetched from the server
as needed.This means that when the user scrolls the timeline view, the component continuously
fetches data from the server. Also, only data that is visible to the user is transferred to the client.
For example, if the timeline has data that has been measured once a second for an entire year,
not all the data will be sent to the client. Only the data which can be rendered on the screen
without overlapping is sent. This ensures that, even for large data sets, the loading time is small
and only the necessary data is actually transferred over the network.

Second, Vaadin Timeline caches the data received from the server in the browser, so that the
data is transferred over the network only once, if possible. This speeds up the time-range
browsing when data can be fetched from the cache instead of reloading it over the network.

411Event Markers

Vaadin Timeline

412

Chapter 18

Vaadin
JPAContainer

18.1. Overview .. 413
18.2. Installing .. 415
18.3. Defining a Domain Model .. 420
18.4. Basic Use of JPAContainer .. 423
18.5. Entity Providers ... 428
18.6. Filtering JPAContainer ... 431
18.7. Querying with the Criteria API ... 431
18.8. Automatic Form Generation ... 433
18.9. Using JPAContainer with Hibernate ... 435

This chapter describes the use of the Vaadin JPAContainer add-on.

18.1. Overview

Vaadin JPAContainer add-on makes it possible to bind user interface components to a database
easily using the Java Persistence API (JPA). It is an implementation of the Container interface
described in Section 9.4, “Collecting Items in Containers”. It supports a typical three-layer applic-
ation architecture with an intermediate domain model between the user interface and the data
access layer.

413Book of Vaadin

Figure 18.1.Three-Layer Architecture Using JPAContainer And JPA

The role of Java Persistence API is to handle persisting the domain model in the database. The
database is typically a relational database. Vaadin JPAContainer binds the user interface com-
ponents to the domain model and handles database access with JPA transparently.

JPA is really just an API definition and has many alternative implementations. Vaadin JPACon-
tainer supports especially EclipseLink, which is the reference implementation of JPA, and Hibern-
ate. Any other compliant implementation should work just as well. The architecture of an applic-
ation using JPAContainer is shown in Figure 18.2, “JPAContainer Architecture”.

Figure 18.2. JPAContainer Architecture

Vaadin JPAContainer also plays together with the Vaadin Bean Validation add-on, which brings
Java Bean Validation (JSR 303) to Vaadin applications.

Java Persistence API

Java Persistence API (JPA) is an API for object-relational mapping (ORM) of Java objects to a
relational database. In JPA and entity-relationship modeling in general, a Java class is considered
an entity. Class (or entity) instances correspond with a row in a database table and member
variables of a class with columns. Entities can also have relationships with other entities.

The object-relational mapping is illustrated in Figure 18.3, “Object-Relational Mapping” with two
entities with a one-to-many relationship.

Java Persistence API414

Vaadin JPAContainer

Figure 18.3. Object-Relational Mapping

The entity relationships are declared with metadata. With Vaadin JPAContainer, you provide the
metadata with annotations in the entity classes. The JPA implementation uses reflection to read
the annotations and defines a database model automatically from the class definitions. Definition
of the domain model and the annotations are described in Section 18.3.1, “Persistence Metadata”.

The main interface in JPA is the EntityManager, which allows making different kinds of queries
either with the Java Persistence Query Language (JPQL), native SQL, or the Criteria API in JPA
2.0.You can always use the interface directly as well, using Vaadin JPAContainer only for binding
the data to the user interface.

Vaadin JPAContainer supports JPA 2.0 (JSR 317).

JPAContainer Concepts

The JPAContainer is an implementation of the Vaadin Container interface that you can bind
to user interface components such as Table, Select, etc.

The data access to the persistent entities is handled with a entity provider, as defined in the
EntityProvider interface. JPAContainer provides a number of different entity providers for
different use cases and optimizations.The built-in providers are described in Section 18.5, “Entity
Providers”.

Documentation and Support

In addition to this chapter in the book, the installation package includes the following document-
ation about JPAContainer:

• API Documentation

• JPAContainer Tutorial

• JPAContainer AddressBook Demo

• JPAContainer Demo

18.2. Installing

Vaadin JPAContainer can be installed either as an installation package, downloaded from the
Vaadin Directory, or as a Maven dependency.You can also create a new JPAContainer-enabled
Vaadin project using a Maven archetype.

415JPAContainer Concepts

Vaadin JPAContainer

18.2.1. Downloading the Package

Vaadin JPAContainer is available for download from the Vaadin Directory
[http://vaadin.com/directory]. Please see Section 15.2, “Downloading Add-ons from Vaadin Dir-
ectory” for basic instructions for downloading from Directory. The download page also gives the
dependency declaration needed for retrieving the library with Maven.

JPAContainer is a purely server-side component, so it does not include a widget set that you
would need to compile.

Choosing the License

Vaadin JPAContainer is available under two licenses: Affero General Public License (AGPL) and
Commercial Vaadin Add-on License (CVAL). If your project is compatible with the open-source
AGPL, you can use the add-on for free. Otherwise you must acquire a sufficient number of CVAL
licenses before the 30-day trial period ends. Vaadin JPAContainer is distributed as a separate
installation package for each license.

Use of Vaadin JPAContainer with the CVAL license is included in the Vaadin PRO subscription.

18.2.2. Installation Package Content

Once extracted to a local folder, the contents of the installation directory are as follows:

README A readme file describing the package contents.

licensing.txt General information about licensing of JPAContainer.

license-xxxx-y.y.txt The full license text for the library.

vaadin-jpacontainer-xxxx-y.y-z.z.z.jar The actual Vaadin JPAContainer library. The xxxx is
the license name and y.y its version number. The final
z.z.z is the version number of the Vaadin JPAContainer.

vaadin-jpacontainer-xxxx-y.y-z.z.z-javadoc.jar JavaDoc documentation JAR for the library. You can
use it for example in Eclipse by associating the JavaDoc
JAR with the JPAContainer JAR in the build path set-
tings of your project.

apidocs A folder containing the JavaDoc API documentation in
plain HTML.

jpacontainer-tutorial.pdf The tutorial in PDF format.

jpacontainer-tutorial The tutorial in HTML format. The online version of the
tutorial is always available at vaadin.com/download/jpa-
c o n t a i n e r - t u t o r i a l /
[http://vaadin.com/download/jpacontainer-tutorial/].

jpacontainer-addressbook-demo The JPAContainer AddressBook Demo project covered
in this tutorial.You can compile and package the applic-
ation as a WAR with "mvn package" or launch it in the
Jetty web browser with "mvn jetty:run". You can
also import the demo project in Eclipse as described
in the tutorial.

Downloading the Package416

Vaadin JPAContainer

http://vaadin.com/directory
http://vaadin.com/directory
http://vaadin.com/download/jpacontainer-tutorial/
http://vaadin.com/download/jpacontainer-tutorial/
http://vaadin.com/download/jpacontainer-tutorial/

jpacontainer-demo-z.z.z.war The basic JPAContainer demo. It is somewhat more
extensive than the AddressBook Demo.

18.2.3. Downloading with Maven

The download page in Vaadin Directory [http://vaadin.com/directory] gives the dependency de-
claration needed for retrieving the Vaadin JPAContainer library with Maven. A separate depend-
ency declaration is given for both available licenses for Vaadin JPAContainer.

For the CVAL License:

<dependency>
 <groupId>com.vaadin.addon</groupId>
 <artifactId>jpacontainer-addon-cval-2.0</artifactId>
 <version>2.0.0</version>
</dependency>

For the AGPL License:

<dependency>
 <groupId>com.vaadin.addon</groupId>
 <artifactId>jpacontainer-addon-agpl-3.0</artifactId>
 <version>2.0.0</version>
</dependency>

Use the LATEST version tag to automatically download the latest stable release or use a specific
version number as done above.

See Section 15.5, “Using Add-ons in a Maven Project” for detailed instructions for using a
Vaadin add-on with Maven.

Using the Maven Archetype

If you wish to create a new JPAContainer-enabled Vaadin project with Maven, you can use the
vaadin-archetype-jpacontainer archetype. Please see Section 2.5, “Creating a Project
with Maven” for details on creating a Vaadin project with a Maven archetype.

18.2.4. Including Libraries in Your Project

The Vaadin JPAContainer JAR must be included in the library folder of the web application. It is
located in WEB-INF/lib path in a web application. In a normal Eclipse web projects the path is
WebContent/WEB-INF/lib. In Maven projects the JARs are automatically included in the
folder, as long as the dependencies are defined correctly.

You will need the following JARs:

• Vaadin Framework Library

• Vaadin JPAContainer

• Java Persistence API 2.0 (javax.persistence package)

• JPA implementation (EclipseLink, Hibernate, ...)

• Database driver or embedded engine (H2, HSQLDB, MySQL, PostgreSQL, ...)

If you use Eclipse, the Vaadin Framework library is automatically downloaded and updated by
the Vaadin Plugin for Eclipse.

417Downloading with Maven

Vaadin JPAContainer

http://vaadin.com/directory
http://vaadin.com/directory

Optionally, you may need to also install the Vaadin BeanValidation add-on. If you do so, you also
need an implementation of the Bean Validation, such as Hibernate Validator.

18.2.5. Persistence Configuration

Persistence configuration is done in a persistence.xml file. In a regular Eclipse project, it
should be located in WebContent/WEB-INF/classes/META-INF. In a Maven project, it should
be in src/main/resources/META-INF. The configuration includes the following:

• The persistence unit

• The persistence provider

• The database driver and connection

• Logging

The persistence.xml file is packaged as WEB-INF/classes/META-INF/persistence.xml
in the WAR. This is done automatically in a Maven build at the package phase.

Persistence XML Schema

The beginning of a persistence.xml file defines the used schema and namespaces:

<?xml version="1.0" encoding="UTF-8"?>
<persistence
 xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">

Defining the Persistence Unit

The root element of the persistence definition is persistence-unit. The name of the persistence
unit is needed for creating JPAContainer instances from a JPAContainerFactory, as described
in Section 18.4.1, “Creating JPAContainer with JPAContainerFactory” or when creating a JPA
entity manager.

<persistence-unit name="addressbook">

Persistence provider is the JPA provider implementation used. For example, the JPAContainer
AddressBook demo uses the EclipseLink JPA, which is defined as follows:

<provider>
 org.eclipse.persistence.jpa.PersistenceProvider
</provider>

The persistent classes need to be listed with a <class> element. Alternatively, you can allow
including unlisted classes for persistence by overriding the exclude-unlisted-classes default
as follows:

<exclude-unlisted-classes>false</exclude-unlisted-classes>

Persistence Configuration418

Vaadin JPAContainer

JPA provider specific parameters are given under the properties element.

<properties>
 ...

In the following section we give parameters for the EclipseLink JPA and H2 database used in
the JPAContainer AddressBook Demo. Please refer to the documentation of the JPA provider
you use for a complete reference of parameters.

Database Connection

EclipseLink allows using JDBC for database connection. For example, if we use the the H2
database, we define its driver here as follows:

<property name="eclipselink.jdbc.platform"
 value="org.eclipse.persistence.platform.database.H2Platform"/>
<property name="eclipselink.jdbc.driver"
 value="org.h2.Driver" />

Database connection is specified with a URL. For example, using an embedded H2 database
stored in the home directory it would be as follows:

<property name="eclipselink.jdbc.url"
 value="jdbc:h2:~/my-app-h2db"/>

A hint: when using an embedded H2 database while developing a Vaadin application in Eclipse,
you may want to add ;FILE_LOCK=NO to the URL to avoid locking issues when redeploying.

We can just use the default user name and password for the H2 database:

<property name="eclipselink.jdbc.user" value="sa"/>
<property name="eclipselink.jdbc.password" value="sa"/>

Logging Configuration

JPA implementations as well as database engines like to produce logs and they should be con-
figured in the persistence configuration. For example, if using EclipseLink JPA, you can get log
that includes all SQL statements with the FINE logging level:

<property name="eclipselink.logging.level"
 value="FINE" />

Other Settings

The rest is some Data Definition Language settings for EclipseLink. During development, when
we use generated example data, we want EclipseLink to drop tables before trying to create them.
In production environments, you should use create-tables.

<property name="eclipselink.ddl-generation"
 value="drop-and-create-tables" />

And there is no need to generate SQL files, just execute them directly to the database.

<property name="eclipselink.ddl-generation.output-mode"
 value="database"/>
 </properties>
 </persistence-unit>
</persistence>

419Persistence Configuration

Vaadin JPAContainer

18.2.6.Troubleshooting

Below are some typical errors that you might get when using JPA. These are not specific to
JPAContainer.

javax.persistence.Persist-
enceException: No Persistence
provider for EntityManager

The most typical cases for this error are that the persist-
ence unit name is wrong in the source code or in the
persistence.xml file, or that the persistence.xml
is at a wrong place or has some other problem. Make
sure that the persistence unit name matches and the
p e r s i s t e n c e . x m l i s i n
WEB-INF/classes/META-INF folder in the deploy-
ment.

java.lang.IllegalArgumentExcep-
tion: The class is not an entity

The class is missing from the set of persistent entities.
If the persistence.xml does not have
exclude-unlisted-classes defined as false,
the persistent entity classes should be listed with
<class> elements.

18.3. Defining a Domain Model

Developing a persistent application begins with defining a domain model. A domain model consists
of a number of entities (classes) and relationships between them.

Figure 18.4, “A Domain Model” illustrates a simple domain model as a UML class diagram. It has
two entities: Country and Person. They have a "country has persons" relationship. This is a
one-to-many relationship with one country having many persons, each of which belongs to just
one country.

Figure 18.4. A Domain Model

Realized in Java, the classes are as follows:

public class Country {
 private Long id;
 private String name;
 private Set<Person> persons;

 ... setters and getters ...
}

public class Person {
 private Long id;
 private String name;
 private Integer age;
 private Country country;

 ... setters and getters ...
}

You should make the classes proper beans by defining a default constructor and implementing
the Serializable interface. A default constructor is required by the JPA entity manager for

Troubleshooting420

Vaadin JPAContainer

instantiating entities. Having the classes serializable is not required but often useful for other
reasons.

After you have a basic domain model, you need to define the entity relationship metadata by
annotating the classes.

18.3.1. Persistence Metadata

The entity relationships are defined with metadata. The metadata can be defined in an XML
metadata file or with Java annotations defined in the javax.persistence package. With Vaadin
JPAContainer, you need to provide the metadata as annotations.

For example, if we look at the Person class in the JPAContainer AddressBook Demo, we define
various database-related metadata for the member variables of a class:

@Entity
public class Person {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;

 private String name;
 private Integer age;

 @ManyToOne
 private Country country;

The JPA implementation uses reflection to read the annotations and defines a database model
automatically from the class definitions.

Let us look at some of the basic JPA metadata annotations. The annotations are defined in the
javax.persistence package. Please refer to JPA reference documentation for the complete list of
possible annotations.

Annotation: @Entity

Each class that is enabled as a persistent entity must have the @Entity annotation.

@Entity
public class Country {

Annotation: @Id

Entities must have an identifier that is used as the primary key for the table. It is used for various
purposes in database queries, most commonly for joining tables.

@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;

The identifier is generated automatically in the database.The strategy for generating the identifier
is defined with the @GeneratedValue annotation. Any generation type should work.

Annotation: @OneToOne

The @OneToOne annotation describes a one-to-one relationship where each entity of one type
is associated with exactly one entity of another type. For example, the postal address of a person
could be given as such.

421Persistence Metadata

Vaadin JPAContainer

@OneToOne
private Address address;

When using the JPAContainer FieldFactory to automatically create fields for a form, the
@OneToOne relationship generates a nested Form to edit the data. See Section 18.8, “Automatic
Form Generation” for more details.

Annotation: @Embedded

Just as with the @OneToOne annotation, @Embedded describes a one-to-one relationship, but
says that the referenced entity should be stored as columns in the same table as the referencing
entity.

@Embedded
private Address address;

The referenced entity class must have @Embeddable annotation.

The JPAContainer FieldFactory generates a nested Form for @Embedded, just as with
@OneToOne.

Annotation: @OneToMany

The Country entity in the domain model has a one-to-many relationship with the Person entity
("country has persons"). This relationship is represented with the @OneToMany annotation. The
mappedBy parameter names the corresponding back-reference in the Person entity.

@OneToMany(mappedBy = "country")
private Set<Person> persons;

When using the JPAContainer FieldFactory to automatically create fields for a form, the
@OneToMany relationship generates a MasterDetailEditor for editing the items. See Section 18.8,
“Automatic Form Generation” for more details.

Annotation: @ElementCollection

The @ElementCollection annotation can be used for one-to-many relationships to a collection
of basic values such as String or Integer, or to entities annotated as @Embeddable. The refer-
enced entities are stored in a separate table defined with a @CollectionTable annotation.

@ElementCollection
@CollectionTable(
 name="OLDPEOPLE",
 joinColumns=@JoinColumn(name="COUNTRY_ID"))
private Set<Person> persons;

JPAContainer FieldFactory generates a MasterDetailEditor for the @ElementCollection
relationship, just as with @OneToMany.

Annotation: @ManyToOne

Many people can live in the same country. This would be represented with the @ManyToOne
annotation in the Person class.

@ManyToOne
private Country country;

JPAContainer FieldFactory generates a NativeSelect for selecting an item from the collection.
You can do so yourself as well in a custom field factory. Doing so you need to pay notice not to

Persistence Metadata422

Vaadin JPAContainer

confuse the container between the referenced entity and its ID, which could even result in insertion
of false entities in the database in some cases.You can translate between an entity and the entity
ID using the SingleSelectTranslator as follows:

@Override
public Field createField(Item item, Object propertyId,
 Component uiContext) {
 if (propertyId.equals("station")) {
 ComboBox box = new ComboBox("Station");

 // Translate between referenced entity and its ID
 box.setPropertyDataSource(
 new SingleSelectTranslator(box));

 box.setContainerDataSource(stationContainer);
 ...

The JPAContainer FieldFactory uses the translator internally, so using it also avoids the problem.

Annotation: @Transient

JPA assumes that all entity properties are persisted. Properties that should not be persisted
should be marked as transient with the @Transient annotation.

@Transient
private Boolean superDepartment;
...
@Transient
public String getHierarchicalName() {
...

18.4. Basic Use of JPAContainer

Vaadin JPAContainer offers a highly flexible API that makes things easy in simple cases while
allowing extensive flexibility in demanding cases. To begin with, it is a Container, as described
in Section 9.4, “Collecting Items in Containers”.

In this section, we look how to create and use JPAContainer instances. We assume that you
have defined a domain model with JPA annotations, as described in the previous section.

18.4.1. Creating JPAContainer with JPAContainerFactory

The JPAContainerFactory is the easy way to create JPAContainers. It provides a set of make...()
factory methods for most cases that you will likely meet. Each factory method uses a different
type of entity provider, which are described in Section 18.5, “Entity Providers”.

The factory methods take the class type of the entity class as the first parameter. The second
parameter is either a persistence unit name (persistence context) or an EntityManager instance.

// Create a persistent person container
JPAContainer<Person> persons =
 JPAContainerFactory.make(Person.class, "book-examples");

// You can add entities to the container as well
persons.addEntity(new Person("Marie-Louise Meilleur", 117));

// Set up sorting if the natural order is not appropriate
persons.sort(new String[]{"age", "name"},
 new boolean[]{false, false});

// Bind it to a component

423Basic Use of JPAContainer

Vaadin JPAContainer

Table personTable = new Table("The Persistent People", persons);
personTable.setVisibleColumns(new String[]{"id","name","age"});
layout.addComponent(personTable);

It's that easy. In fact, if you run the above code multiple times, you'll be annoyed by getting a new
set of persons for each run - that's how persistent the container is. The basic make() uses a
CachedMutableLocalEntityProvider, which allows modifying the container and its entities, as
we do above by adding new entities.

When using just the persistence unit name, the factory creates an instance of EntityManager-
Factory for the persistence unit and uses it to build entity managers. You can also create the
entity managers yourself, as described later.

The entity providers associated with the different factory methods are as follows:

Table 18.1. JPAContainerFactory Methods

CachingMutableLocalEntityProvidermake()

CachingLocalEntityProvidermakeReadOnly()

BatchableLocalEntityProvidermakeBatchable()

MutableLocalEntityProvidermakeNonCached()

LocalEntityProvidermakeNonCachedReadOnly()

JPAContainerFactory holds a cache of entity manager factories for the different persistence
units, making sure that any entity manager factory is created only once, as it is a heavy operation.
You can access the cache to get a new entity manager with the
createEntityManagerForPersistenceUnit() method.

// Get an entity manager
EntityManager em = JPAContainerFactory.
 createEntityManagerForPersistenceUnit("book-examples");

// Do a query
em.getTransaction().begin();
em.createQuery("DELETE FROM Person p").executeUpdate();
em.persist(new Person("Jeanne Calment", 122));
em.persist(new Person("Sarah Knauss", 119));
em.persist(new Person("Lucy Hannah", 117));
em.getTransaction().commit();

...

Notice that if you use update the persistent data with an entity manager outside a JPAContainer
bound to the data, you need to refresh the container as described in Section 18.4.2, “Creating
and Accessing Entities”.

Creating JPAContainer Manually

While it is normally easiest to use a JPAContainerFactory to create JPAContainer instances,
you may need to create them manually. It is necessary, for example, when you need to use a
custom entity provider or extend JPAContainer.

First, we need to create an entity manager and then the entity provider, which we bind to a
JPAContainer.

// We need a factory to create entity manager
EntityManagerFactory emf =

Creating JPAContainer with JPAContainerFactory424

Vaadin JPAContainer

 Persistence.createEntityManagerFactory("book-examples");

// We need an entity manager to create entity provider
EntityManager em = emf.createEntityManager();

// We need an entity provider to create a container
CachingMutableLocalEntityProvider<Person> entityProvider =
 new CachingMutableLocalEntityProvider<Person>(Person.class,
 em);

// And there we have it
JPAContainer<Person> persons =
 new JPAContainer<Person> (Person.class);
persons.setEntityProvider(entityProvider);

You could save the first step by asking the entity manager from the JPAContainerFactory.

18.4.2. Creating and Accessing Entities

JPAContainer integrates with the JPA entity manager, which you would normally use to create
and access entities with JPA. You can use the entity manager for any purposes you may have,
and then JPAContainer to bind entities to user interface components such as Table, Tree, any
selection components, or a Form.

You can add new entities to a JPAContainer with the addEntity() method. It returns the item
ID of the new entity.

Country france = new Country("France");
Object itemId = countries.addEntity(france);

The item ID used by JPAContainer is the value of the ID property (column) defined with the @Id
annotation. In our Country entity, it would have Long type. It is generated by the entity manager
when the entity is persisted and set with the setter for the ID proeprty.

Notice that the addEntity() method does not attach the entity instance given as the parameter.
Instead, it creates a new instance. If you need to use the entity for some purpose, you need to
get the actual managed entity from the container. You can get it with the item ID returned by
addEntity().

// Create a new entity and add it to a container
Country france = new Country("France");
Object itemId = countries.addEntity(france);

// Get the managed entity
france = countries.getItem(itemId).getEntity();

// Use the managed entity in entity references
persons.addEntity(new Person("Jeanne Calment", 122, france));

Entity Items

The getItem() method is defined in the normal Vaadin Container interface. It returns an
EntityItem, which is a wrapper over the actual entity object. You can get the entity object with
getEntity().

An EntityItem can have a number of states: persistent, modified, dirty, and deleted. The dirty
and deleted states are meaningful when using container buffering, while the modified state is
meaningful when using item buffering. Both levels of buffering can be used together - user input
is first written to the item buffer, then to the entity instance, and finally to the database.

425Creating and Accessing Entities

Vaadin JPAContainer

The isPersistent() method tells if the item is actually persistent, that is, fetched from a per-
sistent storage, or if it is just a transient entity created and buffered by the container.

The isModified() method checks whether the EntityItem has changes that are not yet com-
mitted to the entity instance. It is only relevant if the item buffering is enabled with
setWriteThrough(false) for the item.

The isDirty() method checks whether the entity object has been modified after it was fetched
from the entity provider.The dirty state is possible only when buffering is enabled for the container.

The isDeleted() method checks whether the item has been marked for deletion with
removeItem() in a buffered container.

Refreshing JPAContainer

In cases where you change JPAContainer items outside the container, for example by through
an EntityManager, or when they change in the database, you need to refresh the container.

The EntityContainer interface implemented by JPAContainer provides two methods to refresh
a container. The refresh() discards all container caches and buffers and refreshes all loaded
items in the container. All changes made to items provided by the container are discarded. The
refreshItem() refreshes a single item.

18.4.3. Nested Properties

If you have a one-to-one or many-to-one relationship, you can define the properties of the refer-
enced entity as nested in a JPAContainer. This way, you can access the properties directly
through the container of the first entity type as if they were its properties. The interface is the
same as with BeanContainer described in Section 9.4.1, “BeanContainer”. You just need to
add each nested property with addNestedContainerProperty() using dot-separated path
to the property.

// Have a persistent container
JPAContainer<Person> persons =
 JPAContainerFactory.make(Person.class, "book-examples");

// Add a nested property to a many-to-one property
persons.addNestedContainerProperty("country.name");

// Show the persons in a table, except the "country" column,
// which is an object - show the nested property instead
Table personTable = new Table("The Persistent People", persons);
personTable.setVisibleColumns(new String[]{"name","age",
 "country.name"});

// Have a nicer caption for the country.name column
personTable.setColumnHeader("country.name", "Nationality");

The result is shown in Figure 18.5, “Nested Properties”. Notice that the country property in the
container remains after adding the nested property, so we had to make that column invisible.
Alternatively, we could have redefined the toString() method in the country object to show
the name instead of an object reference.

Nested Properties426

Vaadin JPAContainer

Figure 18.5. Nested Properties

You can use the * wildcard to add all properties in a nested item, for example, "country.*".

18.4.4. Hierarchical Container

JPAContainer implements the Container.Hierarchical interface and can be bound to
hierarchical components such as a Tree or TreeTable. The feature requires that the hierarchy
is represented with a parent property that refers to the parent item. At database level, this would
be a column with IDs.

The representation would be as follows:

@Entity
public class CelestialBody implements Serializable {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 private String name;

 @ManyToOne
 private CelestialBody parent;
 ...
} ...

// Create some entities
CelestialBody sun = new CelestialBody("The Sun", null);
CelestialBody mercury = new CelestialBody("Mercury", sun);
CelestialBody venus = new CelestialBody("Venus", sun);
CelestialBody earth = new CelestialBody("Earth", sun);
CelestialBody moon = new CelestialBody("The Moon", earth);
CelestialBody mars = new CelestialBody("Mars", sun);
...

You set up a JPAContainer to have hierarchy by calling setParentProperty() with the name
of the property that refers to the parent. Coincidentally, it is named "parent" in the example:

// Create the container
JPAContainer<CelestialBody> bodies =
 JPAContainerFactory.make(CelestialBody.class, "my-unit");

// Set it up for hierarchical representation
bodies.setParentProperty("parent");

// Bind it to a hierarhical component
Tree tree = new Tree("Celestial Bodies", bodies);
tree.setItemCaptionMode(Tree.ITEM_CAPTION_MODE_PROPERTY);
tree.setItemCaptionPropertyId("name");

You can use the rootItemIds() to acquire the item IDs of the root elements with no parent.

427Hierarchical Container

Vaadin JPAContainer

// Expand the tree
for (Object rootId: bodies.rootItemIds())
 tree.expandItemsRecursively(rootId);

Unsupported Hierarchical Features

Using setParent() in the container to define parenthood is not supported.

Also, the current implementation does not support setChildrenAllowed(), which controls whether
the user can expand a node by clicking a toggle. The toggle is by default visible for all nodes,
even if they have no children. The method is not supported because it would require storing the
information outside the entities. You can override areChildrenAllowed() to implement the
functionality using a custom logic.

// Customize JPAContainer to define the logic for
// displaying the node expansion indicator
JPAContainer<CelestialBody> bodies =
 new JPAContainer<CelestialBody>(CelestialBody.class) {
 @Override
 public boolean areChildrenAllowed(Object itemId) {
 // Some simple logic
 return getChildren(itemId).size() > 0;
 }
};
bodies.setEntityProvider(
 new CachingLocalEntityProvider<CelestialBody>(
 CelestialBody.class, em));

18.5. Entity Providers

Entity providers provide access to entities persisted in a data store.They are essentially wrappers
over a JPA entity manager with optimizations and other features important when binding persistent
data to a user interface.

The choise and use of entity providers is largely invisible if you create your JPAContainer in-
stances with the JPAContainerFactory, which hides such details.

JPAContainer entity providers can be customized, which is necessary for some purposes. Entity
providers can be Enterprise JavaBeans (EJBs), which is useful when you use them in a Java EE
application server.

18.5.1. Built-In Entity Providers

JPAContainer includes various kinds of built-in entity providers: caching and non-caching, read-
write and read-only, and batchable.

Caching is useful for performance, but takes some memory for the cache and makes the provider
stateful. Batching, that is, running updates in larger batches, can also enhance performance and
be used together with caching. It is stateless, but doing updates is a bit more complex than oth-
erwise.

Using a read-only container is preferable if read-write capability is not needed.

All built-in providers as local in the sense that they provide access to entities using a local JPA
entity manager.

The CachingMutableLocalEntityProvider is usually recommended as the first choise for read-
write access and CachingLocalEntityProvider for read-only access.

Entity Providers428

Vaadin JPAContainer

LocalEntityProvider

A read-only, lazy loading entity provider that does not perform caching and reads its data directly
from an entity manager.

You can create the provider with makeNonCachedReadOnly() method in JPAContainerFactory.

MutableLocalEntityProvider

Extends LocalEntityProvider with write support. All changes are directly sent to the entity
manager.

Transactions can be handled either internally by the provider, which is the default, or by the
container. In the latter case, you can extend the class and annotate it, for example, as described
in Section 18.5.1, “Built-In Entity Providers”.

The provider can notify about updates to entities through the EntityProviderChangeNotifier
interface.

BatchableLocalEntityProvider

A simple non-caching implementation of the BatchableEntityProvider interface. It extends
MutableLocalEntityProvider and simply passes itself to the batchUpdate() callback method.
This will work properly if the entities do not contain any references to other entities that are
managed by the same container.

CachingLocalEntityProvider

A read-only, lazy loading entity provider that caches both entities and query results for different
filter/sortBy combinations.When the cache gets full, the oldest entries in the cache are removed.
The maximum number of entities and entity IDs to cache for each filter/sortBy combination can
be configured in the provider. The cache can also be manually flushed. When the cache grows
full, the oldest items are removed.

You can create the provider with makeReadOnly() method in JPAContainerFactory.

CachingMutableLocalEntityProvider

Just like CachingLocalEntityProvider, but with read-write access. For read access, caching
works just like in the read-only provider.When an entity is added or updated, the cache is flushed
in order to make sure the added or updated entity shows up correctly when using filters and/or
sorting. When an entity is removed, only the filter/sortBy-caches that actually contain the item
are flushed.

This is perhaps the most commonly entity provider that you should consider using for most tasks.
You can create it with the make() method in JPAContainerFactory.

CachingBatchableLocalEntityProvider

This provider supports making updates in batches. You need to implement a
BatchUpdateCallback that does all the updates and execute the batch by calling
batchUpdate() on the provider.

429Built-In Entity Providers

Vaadin JPAContainer

The provider is an extension of the CachingMutableLocalEntityProvider that implements the
BatchableEntityProvider interface.This will work properly if the entities do not contain any
references to other entities that are managed by the same container.

You can create the provider with makeBatchable() method in JPAContainerFactory.

18.5.2. Using JNDI Entity Providers in JEE6 Environment

JPAContainer 2.0 introduced a new set of entity providers specifically for working in a JEE6 en-
vironment. In a JEE environment, you should use an entity manager provided by the application
server and, usually, JTA transactions instead of transactions provided by JPA. Entity providers
in com.vaadin.addon.jpacontainer.provider.jndijta package work mostly the same way as the
normal providers discussed earlier, but use JNDI lookups to get reference to an EntityManager
and to a JTA transaction.

The JNDI providers work with almost no special configuration at all. The JPAContainerFactory
has factory methods for creating various JNDI provider types. The only thing that you commonly
need to do is to expose the EntityManager to a JNDI address. By default, the JNDI providers
look for the EntityManager from "java:comp/env/persistence/em". This can be done
with the following snippet in web.xml or with similar configuration with annotations.

<persistence-context-ref>
 <persistence-context-ref-name>
 persistence/em
 </persistence-context-ref-name>
 <persistence-unit-name>MYPU</persistence-unit-name>
</persistence-context-ref>

The "MYPU" is the identifier of your persistence unit defined in your persistence.xml file.

If you choose to annotate your servlets (instead of using the web.xml file as described above),
you can simply add the following annotation to your servlet.

@PersistenceContext(name="persistence/em",unitName="MYPU")

If you wish to use another address for the persistence context, you can define them with the
setJndiAddresses() method.You can also define the location for the JTA UserTransaction,
but that should be always accessible from "java:comp/UserTransaction" by the JEE6
specification.

18.5.3. Entity Providers as Enterprise Beans

Entity providers can be Enterprise JavaBeans (EJB).This may be useful if you use JPAContainer
in a Java EE application server. In such case, you need to implement a custom entity provider
that allows the server to inject the entity manager.

For example, if you need to use Java Transaction API (JTA) for JPA transactions, you can imple-
ment such entity provider as follows. Just extend a built-in entity provider of your choise and an-
notate the entity manager member as @PersistenceContext. Entity providers can be either
stateless or stateful session beans. If you extend a caching entity provider, it has to be stateful.

@Stateless
@TransactionManagement
public class MyEntityProviderBean extends
 MutableLocalEntityProvider<MyEntity> {

 @PersistenceContext
 private EntityManager em;

Using JNDI Entity Providers in JEE6 Environment430

Vaadin JPAContainer

 protected LocalEntityProviderBean() {
 super(MyEntity.class);
 setTransactionsHandledByProvider(false);
 }

 @Override
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 protected void runInTransaction(Runnable operation) {
 super.runInTransaction(operation);
 }

 @PostConstruct
 public void init() {
 setEntityManager(em);
 /*
 * The entity manager is transaction-scoped, which means
 * that the entities will be automatically detached when
 * the transaction is closed. Therefore, we do not need
 * to explicitly detach them.
 */
 setEntitiesDetached(false);
 }
}

If you have more than one EJB provider, you might want to create an abstract super class of the
above and only define the entity type in implementations. You can implement an entity provider
as a managed bean in Spring Framefork the same way.

18.6. Filtering JPAContainer

Normally, a JPAContainer contains all instances of a particular entity type in the persistence
context. Hence, it is equivalent to a database table or query. Just like with database queries, you
often want to narrow the results down. JPAContainer implements the Filterable interface in
Vaadin containers, described in Section 9.4.4, “Filterable Containers”. All filtering is done at the
database level with queries, not in the container.

For example, let us filter all the people older than 117:

Filter filter = new Compare.Greater("age", 117);
persons.addContainerFilter(filter);

This would create a JPQL query somewhat as follows:

SELECT id FROM Person WHERE (AGE > 117)

The filtering implementation uses the JPA 2.0 Criteria API transparently. As the filtering is done
at the database-level, custom filters that use the Filterable API do not work.

When using Hibernate, note that it does not support implicit joins. See Section 18.9.3, “Joins in
Hibernate vs EclipseLink” for more details.

18.7. Querying with the Criteria API

When the Filterable API is not enough and you need to have more control, you can make
queries directly with the JPA Criteria API. You may also need to customize sorting or joins, or
otherwise modify the query in some way. To do so, you need to implement a
QueryModifierDelegate that the JPAContainer entity provider calls when making a query.
The easiest way to do this is to extend DefaultQueryModifierDelegate, which has empty imple-
mentations of all the methods so that you can only override the ones you need.

431Filtering JPAContainer

Vaadin JPAContainer

The entity provider calls specific QueryModifierDelegate methods at different stages while
making a query. The stages are:

1. Start building a query

2. Add "ORDER BY" expression

3. Add "WHERE" expression (filter)

4. Finish building a query

Methods where you can modify the query are called before and after each stage as listed in the
following table:

Table 18.2. QueryModifierDelegate Methods

queryWillBeBuilt()

orderByWillBeAdded()

orderByWasAdded()

filtersWillBeAdded()

filtersWereAdded()

queryHasBeenBuilt()

All the methods get two parameters. The CriteriaBuilder is a builder that you can use to
build queries. The CriteriaQuery is the query being built.

You can use the getRoots().iterator().next() in CriteriaQuery to get the "root" that
is queried, for example, the PERSON table, etc.

18.7.1. Filtering the Query

Let us consider a case where we modify the query for a Person container so that it includes only
people over 116. This trivial example is identical to the one given earlier using the Filterable in-
terface.

persons.getEntityProvider().setQueryModifierDelegate(
 new DefaultQueryModifierDelegate () {
 @Override
 public void filtersWillBeAdded(
 CriteriaBuilder criteriaBuilder,
 CriteriaQuery<?> query,
 List<Predicate> predicates) {
 Root<?> fromPerson = query.getRoots().iterator().next();

 // Add a "WHERE age > 116" expression
 Path<Integer> age = fromPerson.<Integer>get("age");
 predicates.add(criteriaBuilder.gt(age, 116));
 }
});

18.7.2. Compatibility

When building queries, you should consider the capabilities of the different JPA implementations.
Regarding Hibernate, see Section 18.9.3, “Joins in Hibernate vs EclipseLink”.

Filtering the Query432

Vaadin JPAContainer

18.8. Automatic Form Generation

The JPAContainer FieldFactory is an implementation of the FormFieldFactory and
TableFieldFactory interfaces that can generate fields based on JPA annotations in a POJO.
It goes further than the DefaultFieldFactory, which only creates simple fields for the basic data
types. This way, you can easily create forms to input entities or enable editing in tables.

The result is bit similar to what you can achieve with Spring Roo, as described in Section 14.4,
“Creating Vaadin Application and CRUD Views”. However, the form views are generated dynam-
ically at run-time, whereas Roo generates static form views.

The generated defaults are as follows:

Class MappingAnnotation

NativeSelect@ManyToOne

Nested Form@OneToOne, @Embedded

MasterDetailEditor (see below)@OneToMany, @ElementCollection

Selectable Table@ManyToMany

The field factory is recusive, so that you can edit a complex object tree with one form.

18.8.1. Configuring the Field Factory

The FieldFactory is highly configurable with various configuration settings and by extending.
You need to make the configuration before

The setMultiSelectType() and setSingleSelectType() allow you to specify a selection
component that is used instead of the default for a field with @ManyToMany and @ManyToOne
annotation, respectively. The first parameter is the class type of the field, and the second para-
meter is the class type of a selection component. It must be a sub-class of AbstractSelect.

The setVisibleProperties() controls which properties (fields) are visible in generated
forms, subforms, and tables. The first paramater is the class type for which the setting should be
made, followed by the IDs of the visible properties.

The configuration should be done before binding the form to a data source as that is when the
field generation is done.

Further configuration must be done by extending the many protected methods. Please see the
API documentation for the complete list.

18.8.2. Using the Field Factory

The most basic use case for the JPAContainer FieldFactory is with a Form bound to a container
item:

// Have a persistent container
final JPAContainer<Country> countries =
 JPAContainerFactory.make(Country.class, "book-examples");

// For selecting an item to edit
final Select countrySelect = new Select("Select a Country",
 countries);
countrySelect.setItemCaptionMode(Select.ITEM_CAPTION_MODE_PROPERTY);

433Automatic Form Generation

Vaadin JPAContainer

countrySelect.setItemCaptionPropertyId("name");

// Country Editor
final Form countryForm = new Form();
countryForm.setCaption("Country Editor");
countryForm.addStyleName("bordered"); // Custom style
countryForm.setWidth("420px");
countryForm.setWriteThrough(false); // Enable buffering
countryForm.setEnabled(false);

// When an item is selected from the list...
countrySelect.addListener(new ValueChangeListener() {
 @Override
 public void valueChange(ValueChangeEvent event) {
 // Get the item to edit in the form
 Item countryItem =
 countries.getItem(event.getProperty().getValue());

 // Use a JPAContainer field factory
 // - no configuration is needed here
 final FieldFactory fieldFactory = new FieldFactory();
 countryForm.setFormFieldFactory(fieldFactory);

 // Edit the item in the form
 countryForm.setItemDataSource(countryItem);
 countryForm.setEnabled(true);

 // Handle saves on the form
 final Button save = new Button("Save");
 countryForm.getFooter().removeAllComponents();
 countryForm.getFooter().addComponent(save);
 save.addListener(new ClickListener() {
 @Override
 public void buttonClick(ClickEvent event) {
 try {
 countryForm.commit();
 countryForm.setEnabled(false);
 } catch (InvalidValueException e) {
 }
 }
 });
 }
});
countrySelect.setImmediate(true);
countrySelect.setNullSelectionAllowed(false);

This would create a form shown in Figure 18.6, “Using FieldFactory with One-to-Many Relation-
ship”.

Using the Field Factory434

Vaadin JPAContainer

Figure 18.6. Using FieldFactory with One-to-Many Relationship

If you use Hibernate, you also need to pass an EntityManagerPerRequestHelper, either for the
constructor or with setEntityManagerPerRequestHelper(), as described in Section 18.9.2,
“The EntityManager-Per-Request pattern”.

18.8.3. Master-Detail Editor

The MasterDetailEditor is a field component that allows editing an item property that has one-
to-many relationship.The item can be a row in a table or bound to a form. It displays the referenced
collection as an editable Table and allows adding and removing items in it.

You can use the MasterDetailEditor manually, or perhaps more commonly use a JPAContainer
FieldFactory to create it automatically. As shown in the example in Figure 18.6, “Using FieldFact-
ory with One-to-Many Relationship”, the factory creates a MasterDetailEditor for all properties
with a @OneToMany or an @ElementCollection annotation.

18.9. Using JPAContainer with Hibernate

Hibernate needs special handling in some cases.

18.9.1. Lazy loading

In order for lazy loading to work automatically, an entity must be attached to an entity manager.
Unfortunately, Hibernate can not keep entity managers for long without problems.To work around
the problem, you need to use a special lazy loading delegate for Hibernate.

JPAContainer entity providers handle lazy loading in delegates defined by the
LazyLoadingDelegate interface. The default implementation for Hibernate is defined in Hi-
bernateLazyLoadingDelegate. You can instantiate one and use it in an entity provider with
setLazyLoadingDelegate().

435Master-Detail Editor

Vaadin JPAContainer

The default implementation works so that whenever a lazy property is accessed through the
Vaadin Property interface, the value is retrieved with a separate (JPA Criteria API) query using
the currently active entity manager. The value is then manually attached to the entity instance,
which is detached from the entity manager. If this default implementation is not good enough,
you may need to make your own implementation.

18.9.2.The EntityManager-Per-Request pattern

One issue with Hibernate is that it is designed for short-lived sessions. The lifetime of an entity
manager is roughly that of a session. However, if an error occurs in a session or entity manager,
the manager becomes unuseable. This causes big problems with long-lived sessions that would
work fine with EclipseLink.

The recommended solution is to the EntityManager-per-Request pattern. It is highly recommended
always when using Hibernate.

An entity manager can only be open during the request-response cycle of the Vaadin application
servlet, so that one is created at the beginning of the request and closed at the end.

You can use the EntityManagerPerRequestHelper as follows:

1. Create a new instance in the constructor or init() method of your Vaadin application
class.

2. Override onRequestStart() in the application class and call requestStart() in
the helper instance.

3. Override onRequestEnd() in the application class and call requestEnd() in the
helper.

4. Whenever a new JPAContainer instance is created in the application, register it in the
helper by calling addContainer() with the container.

5. If you use the JPAContainer FieldFactory, as described in Section 18.8, “Automatic
Form Generation”, you need to set the helper for the factory either by passing it in the
constructor (new FieldFactory(myEMPRH)) or with
setEntityManagerPerRequestHelper().The FieldFactory creates JPAContainers
internally and these instances need to be updated with the entity manager instances
when they change between requests.

18.9.3. Joins in Hibernate vs EclipseLink

EclipseLink supports implicit joins, while Hibernate requires explicit joins. In SQL terms, an explicit
join is a "FROM a INNER JOIN b ON a.bid = b.id" expression, while an implicit join is
done in a WHERE clause, such as: "FROM a,b WHERE a.bid = b.id".

In a JPAContainer filter with EclipseLink, an implicit join would have form:

new Equal("skills.skill", s)

In Hibernate you would need to use JoinFilter for the explicit join:

new JoinFilter("skills", new Equal("skill", s))

The EntityManager-Per-Request pattern436

Vaadin JPAContainer

Chapter 19

Mobile
Applications with

TouchKit

19.1. Overview .. 437
19.2. Considerations Regarding Mobile Browsing .. 438
19.3. Creating a Project Targeting Multiple Devices 439
19.4. Mobile User Interface Components ... 440
19.5. Mobile Features ... 447
19.6. Testing and Debugging on Mobile Devices .. 447

This chapter describes how to write mobile applications using the Vaadin TouchKit.

19.1. Overview

Web browsing is becoming ever increasingly mobile and web applications need to satisfy users
with both desktop computers and mobile devices, such as phones and tablets. While the mobile
browsers can show the pages just like in regular browsers, the screen size, finger accuracy, and
mobile browser features need to be considered to make the experience more pleasant. Vaadin
TouchKit gives the power of Vaadin for creating mobile user interfaces that complement the
regular web user interfaces of your applications. Just like the purpose of the Vaadin Framework

437Book of Vaadin

is to make desktop-like web applications, the purpose of TouchKit is to allow creation of web
applications that give the look and feel akin to native mobile applications.

In this chapter, we first look into the special considerations of mobile browsing. Then, we look
how to create a project that uses TouchKit. TouchKit offers a number of specialized mobile
components, which are described in a dedicated section. We treat phone and tablet applications
separately, and discuss testing briefly. Finally, we discuss the limitations of TouchKit briefly. In
the chapter, we use a Mobile Mail application as an example for creating a web application that
looks very much like a native mobile application.

Vaadin TouchKit is a commercial product licensed under a dual-licensing scheme. The AGPL li-
cense allows open-source development, while the CVAL license needs to be purchased for
closed-source use, including web deployments and internal use. Commercial licenses can be
purchased from the Vaadin Directory, where you can also find the license details and download
Vaadin TouchKit.

19.2. Considerations Regarding Mobile Browsing

When developing applications that support mobile browsing, you need to consider various issues
that are different from non-mobile use.

19.2.1. Mobile Human Interface

Mobile devices use very different human interfaces than regular computers. Perhaps the most
evident feature is that the user can easily change the orientation of the display to switch between
portrait and landscape views. This may change not just the dimensions of the display, but also
the most useful layout.

There is often no physical but a virtual keyboard.You need to ensure that, when the virtual key-
board pops up, it does not hide the input field to which the user is trying to enter data.This should
be handled by the browser, but you should in any case check that it does.This is largely a testing
issue.

There is no "right-finger-button" and double-tap is not normally used in mobile user interfaces
unlike the double-click with mouse. Instead, a "long tap" usually has the same meaning as the
double click. Finger gestures also play a large role, such as using a vertical swipe gesture for
scrolling instead of a scroll bar.

TouchKit helps with many of these special requirements for mobile applications.

19.2.2. Bandwidth

Mobile Internet connections are often significantly slower than with fixed lines. With a common
384 kbps connection, just loading the Vaadin client-side engine can take several seconds. This
can be helped by compiling a widget set that includes only the used components.

Even with mobile broadband, the latency can be significant factor, especially with highly interactive
rich applications. The latency is usually almost unnoticeable in fixed lines, typically less than 100
ms, while mobile Edge connections typically have latency around 500 ms, and sometimes much
higher during hiccups.You may need to limit the use of the immediate mode, text change events,
and polling.

Considerations Regarding Mobile Browsing438

Mobile Applications with TouchKit

19.2.3. Mobile Features

Phones and tablets have many integrated features that are often available in the browser interface
as well. Location-awareness is one of the most recent features. And of course, you can also
make phone calls.

19.2.4. Compatibility

The mobile browsing field is currently evolving at fast pace and the special conventions that are
introduced by leading manufacturers may, in the next few years, stabilize as new web standards.
The browser support in TouchKit concentrates on WebKit, which appears to be emerging as the
leading mobile browser core. In addition to Apple's products, also the default browser in Android
uses WebKit as the layout engine.Yet there are differences, as the Android's JavaScript engine,
which is highly relevant for Vaadin, is the Google Chrome's V8 engine.

TouchKit aims to follow the quickly evolving APIs of these major platforms, with the assumption
that other browsers will follow their lead in standardization. Other platforms will be supported if
they rise in popularity.

Back Button

Some mobile devices, especially Android devices, have a dedicated back button, while iOS
devices particularly do not. TouchKit does not provide any particular support for the button, but
as it is a regular browser back button, you can handle it with URI fragments, as described in
Section 12.10, “URI Fragment and History Management with UriFragmentUtility”. For iOS, the
browser back button is hidden if the user adds the application to the home screen, in which case
you need to implement application-specific logic for the back-navigation.

19.3. Creating a Project Targeting Multiple Devices

19.3.1. Using TouchKit Add-on in a Project

You can install TouchKit as a Vaadin add-on or use it with Maven with the vaadin-touchkit
dependency.

Deployment Descriptor

You need to use the special TouchKitApplicationServlet class instead of the regular Applica-
tionServlet in the web.xml deployment descriptor.

As TouchKit comes with a custom widget set, you need to define a combining widget set for your
project. The combining widget set descriptor is automatically generated by the Vaadin Plugin for
Eclipse and in Maven when you install or define the TouchKit add-on.

<servlet>
 <servlet-name>Vaadin Application Servlet</servlet-name>

<servlet-class>com.vaadin.addon.touchkit.server.TouchKitApplicationServlet</servlet-class>

 <init-param>
 <description>Vaadin application class to start</description>
 <param-name>application</param-name>
 <param-value>com.vaadin.demo.mobilemail.MobileMailApplication</param-value>
 </init-param>
 <init-param>
 <param-name>widgetset</param-name>

439Mobile Features

Mobile Applications with TouchKit

 <param-value>com.vaadin.demo.mobilemail.gwt.MobileMailWidgetSet</param-value>
 </init-param>
</servlet>

19.3.2. Application

Mobile applications must extend the TouchKitApplication instead of the regular Application
class. Because much of the browser information is not yet available when the init() method
is called, you should only set basic things like the main window and theme there.The main window
must be set and must be a TouchKitWindow, not a Window as in regular Vaadin applications.

public class MobileMailApplication extends TouchKitApplication {
 @Override
 public void init() {
 setMainWindow(new TouchKitWindow());

 // Using mobile mail theme
 setTheme("mobilemail");
 }

Most initialization has to be be done in onBrowserDetailsReady(), including the decision to
use a regular or a mobile browser interface. The decision is usually made using the user-agent
information available in the WebBrowser class and the width and height of the main window.

public void onBrowserDetailsReady() {
 WebBrowser browser = getBrowser();
 float viewPortWidth = getMainWindow().getWidth();

 if (viewPortWidth < 600) {
 getMainWindow().setContent(new SmartphoneMainView());
 } else {
 getMainWindow().setContent(new TabletMainView());
 }
}

The demo application does not actually support regular browsers, just notifies about the situation.
The special mobile components in TouchKit are not guaranteed to work at all in regular browsers.
It does give separate user interfaces for phones and tablets, as described in detail later.

19.4. Mobile User Interface Components

TouchKit introduces a number of components special to mobile device user interfaces.

19.4.1. NavigationView

The NavigationView is a layout component that consists of a navigation bar and a content area.
The content area is scrollable, so there is no need to use an inner panel component. In addition,
there can be an optional toolbar component at the bottom of the view. NavigationView is often
used inside a NavigationManager to get view change animations.

Application440

Mobile Applications with TouchKit

Figure 19.1. Layout of the NavigationView

NavigationView has a full size by default. The content area is expanding, so that it takes all the
space left over from the navigation bar and toolbar.

Navigation Bar

The navigation bar at the top of NavigationView is a NavigationBar component. It has two
component slots, with one on the left and one on the right. On the middle, there is a caption.You
can use the NavigationBar elsewhere as well, such as for the toolbar.

The left slot is automatically filled with a Back button if you set the previous component with
setPreviousComponent(). If you use the NavigationView inside a NavigationManager, the
manager automaticaly sets the previous view when you navigate to it from another managed
view.

You can get access to the navigation bar component with getNavigationBar() to use its
manipulator methods directly, but NavigationView also offers some shorthand methods:
setLeftComponent(), setRightComponent(), and a setter and a getter for the caption.

Toolbar

A slot for an optional toolbar is located at the bottom of the NavigationView. The toolbar can be
any component, but a Toolbar component made for this purpose is included in TouchKit. It is
described in Section 19.4.2, “Toolbar”.You could also use a HorizontalLayout or CssLayout.

441NavigationView

Mobile Applications with TouchKit

You usually fill the tool bar with Button components with an icon and no textual caption.You set
the toolbar with setToolbar().

Styling with CSS

.v-touchkit-navview { }
 .v-touchkit-navview-wrapper {}
 .v-touchkit-navview-toolbar {}
.v-touchkit-navview .v-touchkit-navview-notoolbar {}

The root element has the v-touchkit-navview class. The content area is wrapped inside a
v-touchkit-navview-wrapper element. If the view has a toolbar, the toolbar slot has the
v-touchkit-navview-toolbar style, but if not, the top-level element has the
v-touchkit-navview-notoolbar style.

19.4.2. Toolbar

The Toolbar is a layout component that extends CssLayout, usually containing Button compon-
ents. The toolbar has by default 100% horizontal width and a fixed height. The components are
spread evenly in the horizontal direction. Toolbar is typically used in a NavigationView, as de-
scribed in Section 19.4.1.

For a description of the inherited features, please refer to Section 6.3, “VerticalLayout and Ho-
rizontalLayout”.

Styling with CSS

.v-touchkit-toolbar { }

The component has an overall v-touchkit-toolbar style in addition to the v-csslayout
style of the superclass. Other style names are as for CssLayout.

19.4.3. NavigationManager

The NavigationManager is a visual effect component that gives sliding animation when switching
between views. You can register three components: the currently displayed component, the
previous one on the left, and the next component on the right. You can set these components
with setCurrentComponent(), setPreviousComponent(), and setNextComponent(),
respectively.

The NavigationManager component is illustrated in Figure 19.2, “NavigationManager with
Three NavigationViews”.

Toolbar442

Mobile Applications with TouchKit

Figure 19.2. NavigationManager with Three NavigationViews

The navigation manager is important for responsiveness, because the previous and next com-
ponents are cached and the slide animation started before server is contacted to load the new
next or previous views.

Switching between the views is done programmatically according to user interaction; swipe
gestures are not supported at the moment.

Handling View Changes

While you can put any components in the manager, some special features are enabled when
using the NavigationView.When a view becomes visible, the onBecomingVisible() method
in the view is called.You can override it, just remember to call the superclass method.

@Override
protected void onBecomingVisible() {
 super.onBecomingVisible();

 ...
}

Tracking Breadcrumbs

NavigationManager also handles breadcrumb tracking.The navigateTo() pushes the current
view on the top of the breadcrumb stack and navigateBack() can be called to return to the
previous breadcrumb level.

Notice that calling navigateTo() with the "previous" component is equivalent to calling
navigateBack().

443NavigationManager

Mobile Applications with TouchKit

19.4.4. NavigationButton

The NavigationButton is a special version of the regular Button designed for navigation inside
a NavigationManager, as described in Section 19.4.3. Clicking the button will automatically
navigate to the defined target view. The view change animation does not need to make a server
request first, but starts immediately after clicking the button. If you leave the target view empty,
an empty placeholder view is shown in the animation. The view is filled after it gets the content
from the server.

You can give the target view either in the constructor or with setTargetView().

NavigationView view = new NavigationView("A View");
...
NavigationButton button = new NavigationButton("Click");
button.setTargetView(view);
...

Notice that the automatic navigation will only work if the button is inside a NavigationManager
(in a view inside it). If you just want to use the button as a visual element, you can use it like a
regular Button and handle the click events with a ClickListener.

Styling with CSS

.v-touchkit-navbutton { }
 .v-touchkit-navbutton-desc { }

The component has an overall v-touchkit-navbutton style. If the component description is
set with setDescription(), it is shown in a separate element with the
v-touchkit-navbutton-desc style.

19.4.5. Popover

Popover is much like a regular Vaadin sub-window, useful for quickly displaying some options
or a small form related to an action. Unlike regular sub-windows, it does not support dragging or
resizing by the user. It can have a caption, but usually does not. As sub-windows usually require
a rather large screen size, the Popover is mainly applicable to tablet devices, but can be used
also in phones with full size with setSizeFull().

In the following, we extend Popover to use it. It is modal by default. Notice that the screen size
is not available in the constructor, so we have to postpone using it to the attach() method.

public class ComposeView extends Popover {
 ...
 public ComposeView(boolean smartphone) {
 setClosable(false);

 ...

 // In phones use all space, in tablets just vertically
 if (smartphone) {
 setSizeFull();
 } else {
 setHeight("100%");
 center();
 }
 }

 @Override
 public void attach() {

NavigationButton444

Mobile Applications with TouchKit

 super.attach();

 // If tablet is wide, leave some space horizontally
 if (!smartphone) {
 if (getParent().getWidth() > 800) {
 setWidth("80%");
 } else {
 setWidth("100%");
 }
 }
 }
 ...
}

You add popover windows to an application-level Window object with addWindow(), just like
sub-windows in a regular Vaadin application.

if (event.getButton() == emailButton) {
 ComposeView composeView = new ComposeView(smartphone);
 getWindow().addWindow(composeView);
 return;
}

The resulting user interface in a tablet device is shown in Figure 19.3, “Popover in a Tablet
Device”.

Figure 19.3. Popover in a Tablet Device

Alternatively, you can call the showRelativeTo(), which displays the sub-window relative to
an existing component in the user interface.

Popover popover = new Popover();
popover.setContent(mailboxHierarchyView);
popover.setClosable(true);
popover.showRelativeTo(showMailboxHierarchyButton);
popover.setHeight(getParent().getHeight() - 100, UNITS_PIXELS);

In this case, you should not call addWindow() explicitly.

Styling with CSS

.v-touchkit-popover .v-touchkit-fullscreen { }
 .v-touchkit-popover .v-touchkit-relative { }
 .v-touchkit-popover .v-touchkit-plain { }

445Popover

Mobile Applications with TouchKit

The component has an overall v-touchkit-popover style. If full-screen, it also has the
v-touchkit-fullscreen style, if positioned relatively it has v-touchkit-relative, and
if not, the v-touchkit-plain style.

19.4.6. Switch

The Switch component is a CheckBox that looks like the switch button in Apple iOS.

Switch switch = new Switch();
switch.setCaption("Do I look like iOS?");
layout.addComponent(switch);

Styling with CSS

.v-touchkit-switch { }
 .v-touchkit-switch-slider { }

The component has an overall v-touchkit-switch style. The slider element has
v-touchkit-switch-slider style.

19.4.7. ComponentGroup

The ComponentGroup is a layout component for grouping components. It uses margins, back-
ground color, and rounded corners to visualize the grouping. It extends CssLayout and behaves
otherwise as such, except in having 100% default width. There is a vertical and a horizontal
version of the component.

VerticalComponentGroup componentGroup = new VerticalComponentGroup();

// Name field
Component textField = new TextField("Name");
textField.setWidth("100%");
componentGroup.addComponent(textField);

// Email field
EmailField emailField = new EmailField("Email");
emailField.setWidth("100%");
componentGroup.addComponent(emailField);

// Number field
NumberField numberField = new NumberField("Age");
numberField.setWidth("100%");
componentGroup.addComponent(numberField);

Styling with CSS

.v-touchkit-componentgroup { }

.v-touchkit-componentgroup-h { }

The component has an overall v-touchkit-componentgroup style if vertical and
v-touchkit-componentgroup-h if horizontal. If the component has a caption, the
v-touchkit-has-caption style is added.

19.4.8. EmailField

The EmailField is just like the regular TextField, except that it has automatic capitalization and
correction turned off. Mobile devices also recognize the field as an email field and can offer a
virtual keyboard for the purpose, so that it includes the at (@) and period (.) characters, and
possibly a shorthand for .com.

Switch446

Mobile Applications with TouchKit

19.4.9. NumberField

The NumberField is just like the regular TextField, except that it is marked as a numeric input
field for mobile devices, so that they will show a numeric virtual keyboard rather than the default
alphanumeric.

19.5. Mobile Features

19.5.1. Geolocation

The geolocation feature in TouchKit allows receiving the geographical location from the mobile
device. The browser will ask the user to confirm that the web site is allowed to get the location
information. Tapping Share Location gives the permission. The browser will give the position
acquired by GPS, cellular positioning, or Wi-Fi positioning, as enabled in the device.

Geolocation is requested by calling detectCurrentPosition() in the TouchKitWindow
main window of the application. You need to give a PositionCallback handler that receives the
location in onSuccess() if acquired from the device successfully. The position is given in a
Position object.

mainWindow.detectCurrentPosition(new PositionCallback() {
 public void onSuccess(Position position) {
 double latitude = position.getLatitude();
 double longitude = position.getLongitude();
 double accuracy = position.getAccuracy();

 ...
 }

 public void onFailure(int errorCode) {
 ...
 }
});

The position is given as degrees with fractions. The longitude is positive to East and negative to
West of the Prime Meridian passing through Greenwich, following the convention for coordinate
systems. The accuracy is given in meters.

The onFailure() is called if the positioning fails for some reason. The errorCode explains
the reason. Error 1 is returned if the permission was denied, 2 if the position is unavailable, 3 on
positioning timeout, and 0 on an unknown error.

Notice that geolocation can take significant time, depending on the location method used by the
device. With Wi-Fi and cellular positioning, the time is usually less than 30 seconds. With GPS,
it can reach minutes or longer, especially if the reception is bad.

19.6.Testing and Debugging on Mobile Devices

Testing places special challenges for mobile devices. The mobile browsers may not have much
debugging features and you may not be able to install third-party debugging add-ons, such as
Firebug.

19.6.1. Debugging

The debug mode, as described in Section 12.4, “Debug and Production Mode”, works on mobile
browsers as well, even if it is a bit harder to use.

447NumberField

Mobile Applications with TouchKit

The lack of FireBug and similar tools can be helped with simple client-side coding. For example,
you can dump the HTML content of the page with the innerHTML property in the HTML DOM.

TouchKit supports especially WebKit-based browsers, which are used in iOS and Android devices.
You can therefore reach a good compatibility by using a desktop browser based on WebKit.
Features such as geolocation are also supported by desktop browsers. If you make your
phone/tablet-detection and orientation detection using screen size, you can easily emulate the
modes by resizing the browser.

Debugging448

Mobile Applications with TouchKit

Chapter 20

Vaadin TestBench

20.1. Overview .. 449
20.2. TestBench Components ... 450
20.3. Requirements .. 451
20.4. Installing Vaadin TestBench ... 452
20.5. Setting Up the Grid Hub .. 456
20.6. Setting Up Grid Nodes ... 459
20.7. Using Vaadin TestBench Recorder .. 462
20.8. Test Script Commands ... 466
20.9. Compiling and Executing JUnit Tests ... 468

This chapter describes the installation and use of the commercial Vaadin TestBench product.

20.1. Overview

Quality assurance is one of the cornerstones of modern software development. Extending
throughout the entire development process, quality assurance is the thread that binds the end
product to the requirements. In iterative development processes, with ever shorter release cycles
and continuous integration, the role of regression testing is central. The special nature of web
applications creates many unique requirements for regression testing.

Vaadin TestBench makes it possible to automate the regression testing of web applications that
use Vaadin. You record test cases by interacting with your application. After recording, you can
compile the tests as JUnit tests and run them for as many times as you want, on multiple platforms
and browsers. The test results can be collected for later analysis and quality assurance.

449Book of Vaadin

Figure 20.1.TestBench Workflow

The main features of Vaadin TestBench are:

• Recording and playing back test cases using a recorder in browser

• Validating UI state by assertion points and screen capture comparison

• Screen capture comparison with difference highlighting

• Execution of tests through JUnit

• Distributed test grid for running tests

• Integration with unit testing

Execution of tests can be distributed over a grid of test nodes, which speeds up testing. The grid
nodes can run different operating systems and have different browsers installed. In a minimal
setup, such as for recording the tests, you can use Vaadin TestBench on just a single computer.

Vaadin TestBench is based on the Selenium testing framework and Selenium Grid for distributed
testing. Selenium is augmented with Vaadin-specific extensions, such as the screen capture
feature.

Licensing and Trial Period

Vaadin TestBench is a commercial product sold under the Commercial Vaadin Add-On License
(CVAL).You can purchase and download TestBench from the Vaadin Directory.

You may try out the product for a free 30-day trial period, after which you are required to acquire
the needed licenses.

20.2.TestBench Components

The main components of Vaadin TestBench are:

• Vaadin TestBench Recorder

• Vaadin TestBench Library

• Vaadin TestBench Grid Hub

• Vaadin TestBench Grid Remote Control

The components and a basic setup are illustrated in Figure 20.2, “Vaadin TestBench Architecture”.

Licensing and Trial Period450

Vaadin TestBench

Figure 20.2. Vaadin TestBench Architecture

Recording test cases requires Vaadin TestBench Recorder, which is a Mozilla Firefox extension
that you install in your browser. It provides a control panel to record test cases and play them
back.You can play test cases right in the recorder and later automatically by the Grid Node Remote
Control, which opens a browser and starts the recorder in playback mode.

The test suite and results from test runs are stored on a test server. A test suite includes recorded
test cases and possible reference images for similarity tests.

Vaadin TestBench Library provides the central control logic for:

• Converting tests from recordings to JUnit tests

• Comparing screen captures with reference images

• Controlling the execution of tests on the VaadinTestBench Grid Hub

Vaadin TestBench Grid Hub is a service that distributes testing tasks to nodes on the test grid.
It contacts a Grid Node Controller on a node and asks it to open a browser to run the current test
on. The Grid Hub runs on a server which can be dedicated, one of the grid nodes, or the test
server itself.

Vaadin TestBench Grid Node Controller is a service that runs on each grid node. It is able to
open any of the browsers installed in a node and run commands for tests on the browsers. It re-
ceives requests to execute test commands from the Grid Hub and reports the results back.

A basic Vaadin TestBench environment consists of:

• A workstation with Firefox and the TestBench Recorder for recording tests

• A build/test server used to build, launch, and test the web application

• A server running the Grid Hub

• One or more servers running Grid Remote Controls

The workstation and servers can be separate computers or one computer can work in multiple
roles.

20.3. Requirements

Requirements for Vaadin TestBench Recorder

For recording and playback with Vaadin TestBench Recorder:

451Requirements

Vaadin TestBench

• Mozilla Firefox 3.x or newer

Requirements for Automated Testing

For running tests:

• Java JDK 1.5 or newer

• Browsers installed on test nodes

• Apache Ant or some other way to run Ant scripts (recommended)

Continuous Integration Compatibility

Vaadin TestBench works with continuous integration systems that support JUnit testing. It is
tested to work on the TeamCity build management and continuous integration server.

Known Compatibility Problems

Firebug should be disabled In some cases, Firebug injects a <div
id="_firebugConsole"> element under the <body>
element (the element is invisible in the Firebug's HTML
structure browser). This can disturb recording of test
cases, especially when closing notifications. Firebug
1.6 should fix this issue, but we still encourage Test-
Bench users to disable Firebug when recording or
playing test cases.

Screenshots when running Inter-
net Explorer 9 in Compatibility
Mode

Internet Explorer prior to version 9 adds a two-pixel
border around the content area. Version 9 no longer
does this and as a result screenshots taken using Inter-
net Explorer 9 running in compatibility mode (IE7/IE8)
will include the two pixel border, contrary to what the
older versions of Internet Explorer do.

20.4. Installing Vaadin TestBench

Installation of Vaadin TestBench covers the following tasks:

• Download and unpack the Vaadin TestBench installation package

• Install Vaadin TestBench Recorder

• Install Vaadin TestBench Library and launch scripts

• Install Vaadin TestBench Grid Hub

• Install Vaadin TestBench Grid Remote Controls

At first, you only need to install the Recorder. It allows you to record and play back tests in the
browser.The rest of the installation tasks are for running automated tests from a test server using
a grid.

Two basic installation types are covered in these instructions:

Requirements for Automated Testing452

Vaadin TestBench

• Test development installation on a workstation

• Distributed grid installation

20.4.1.Test Development Installation

In a typical small test development setup, you will install all the components on a single workstation.
See Section 20.4.5, “Quick Setup for Playback on a Workstation” for a quick test development
setup.

The default values in the example/test.xml Ant script in the installation package assumes
that the hub is installed on the localhost where the script is executed. With the base setup the
hub and remote control are launched on the localhost.

20.4.2. A Distributed Test Environment

A Vaadin TestBench grid consists of two categories of components:

• Vaadin TestBench Grid Hub service

• Grid nodes running Vaadin TestBench Grid Remote Control

The hub is a service that handles communication between the JUnit test runner and the node
controllers. The node controllers are services that can launch a browser and perform the actual
execution of test commands in the browser.

The hub requires very little resources, so you would typically run it either in the test server or on
one of the nodes.

In a fully distributed setup, you install the Vaadin TestBench components on separate hosts.

20.4.3. Downloading and Unpacking the Installation Package

First, download the installation package vaadin-testbench-2.x.x.zip and extract the in-
stallation package where you can find it.

Windows

In Windows, use the default ZIP decompression feature to extract the package into your chosen
directory, for example, C:\dev.

Warning

The default decompression program in Windows XP and Vista as well as some ver-
sions of WinRAR cannot unpack the installation package properly in certain cases.
Decompression can result in an error such as: "The system cannot find the file spe-
cified." This can happen because the default decompression program is unable to
handle long file paths where the total length exceeds 256 characters. This occurs,
for example, if you try to unpack the package under Desktop. You should unpack
the package directly into C:\dev or some other short path or use another decom-
pression program.

453Test Development Installation

Vaadin TestBench

Linux, MacOS X, and other UNIX

In Linux, Mac OS X, and other UNIX-like systems, use Info-ZIP or other ZIP software with the
command:

$ unzip vaadin-testbench-2.x.x.zip

The contents of the installation package will be extracted under the vaadin-testbench install-
ation directory in the chosen directory.

20.4.4. Installing the Recorder

You need the Vaadin TestBench Recorder in a test development environment for recording test
cases and to play them back.

After extracting the files from the installation package, do the following:

1. Change to the vaadin-testbench-recorder directory under the installation directory.

2. Open Mozilla Firefox

3. Either drag and drop the vaadin-testbench-recorder-2.x.x.xpi to an open
Firefox window or open it from the File menu.

4. Firefox will ask if you want to install the TestBench Recorder extension. Click Install
Now.

Figure 20.3. Installing Vaadin TestBench Recorder

5. After the installation of the add-on is finished, Firefox offers to restart. Click Restart
Now.

Installation of a new version of Vaadin TestBench Recorder will overwrite an existing previous
version.

After Firefox has restarted, navigate to a Vaadin application for which you want to record test
cases, such as http://demo.vaadin.com/colorpicker.

Installing the Recorder454

Vaadin TestBench

http://demo.vaadin.com/colorpicker

20.4.5. Quick Setup for Playback on a Workstation

You can run the grid hub and a remote control on your workstation when developing tests. The
configuration uses the localhost as default, so you do not need to edit the configuration files at
this point.

Windows

1. Navigate to grid/hub/ in the installation directory and run hub.bat to start the hub
on port 4444.

2. Navigate to grid/remote-control/ in the installation directory and run rc.bat to
start the remote control on the local machine and have it connect to the hub.

Linux, Mac OS X, and other UNIX

1. Open a terminal window and change to grid/hub/ under the installation directory

2. Edit hub configuration file grid_configuration.yml and check that it includes your
environment, as described in Section 20.5.2, “Predefined Target Environments”. Espe-
cially in Linux, if using Firefox, edit the path to the firefox-bin executable.

3. Run hub.sh to start the hub on port 4444.

$ cd vaadin-testbench-2.x.x/grid/hub
$ sh hub.sh

4. Open a second terminal window and change to grid/node-controller/ under the
installation directory

5. Edit the remote configuration file rc_configuration.xml, disable the Windows targets
and enable the targets for your environment, as described in Section 20.6.1, “Configuring
a Remote Control”.

6. Run rc.bat to start the node controller on the local machine and have it connect to
the hub.

$ cd vaadin-testbench-2.x.x/grid/remote-control
$ sh rc.sh

Check that the remote control registers correctly by opening http://localhost:4444/console in a
web browser.

Next, change to the example/ directory.

$ cd vaadin-testbench-2.x.x/example

Open the test.xml file in an editor and edit the list of browsers (target environment names) to
match your system and the installed browsers.

<property name="browsers"
 value="winxp-ie8,winxp-firefox3" />

The value must be a comma-separated list of target names. A complete list of predefined browsers
(target environments) is given in Section 20.5.2, “Predefined Target Environments”. If your envir-
onment is not included in the predefined entries, you need to edit the hub and remote control

455Quick Setup for Playback on a Workstation

Vaadin TestBench

http://localhost:4444/console

configurations before starting them. Notice that the target name is merely an alias for a browser
identifier, and you could use "winxp-firefox3" in Linux or Mac OS X as well, assuming that
Firefox is installed on the host.

When you feel that the configuration is OK, run the script:

$ ant -f test.xml

The script will convert, compile, run the recorded test and give a brief output on the success or
failure of the test.

20.5. Setting Up the Grid Hub

The grid hub can be installed in the same server where the tests are run, in one of the grid nodes,
or on a dedicated server. In a test development installation, you can install it on the same work-
station or server with all the other components.

You can find the grid hub from the full installation package and from the separate
vaadin-testbench-grid package.

20.5.1. Configuring the Hub

The hub is configured in the grid_configuration.yml file. You need to edit this file if the
predefined list of targets does not cover all the wanted targets, that is, the operating system +
browser combinations that you wish to test.

The first line contains the "hub" tag, after which should come the port definition. A hub uses the
port 4444 by default. After the "environments:" tag comes a list of name-browser pairs that
each define a target.

DescriptionParameter

Corresponds to the Target value in a remote
control in a node. The name can be defined as

name

anything, but may not contain commas, which
act as separator characters in the environment
variable of the remote control configuration.

Identifies a browser run by this target. The
browser identifiers are prefixed with an asterisk

browser

and can be appended with an exact path to the
browser executable. A list of allowed browser
identifiers and a description of the executable
paths is given in Section 20.5.3, “Browser
Identifiers”.

For example:

hub:
 port: 4444
 remoteControlPollingIntervalInSeconds: 120
 sessionMaxIdleTimeInSeconds: 90
 newSessionMaxWaitTimeInSeconds: 5
 environments:
 - name: "winxp-ie7"
 browser: "*iexplore"
 - name: "winxp-firefox3"
 browser: "*firefox"

Setting Up the Grid Hub456

Vaadin TestBench

 - name: "winxp-googlechrome4"
 browser: "*googlechrome"

 - name: "linux-firefox3"
 browser: "*firefox /usr/lib/firefox/firefox-bin"

 - name: "osx-firefox35"
 browser: "*firefox"
 - name: "osx-safari4"
 browser: "*safari"

A list of the predefined target environments is given in the next section.

20.5.2. Predefined Target Environments

The predefined targets are system-browser combinations mapped to a browser identifier. They
are as follows:

BrowserTarget Name

*iexplorewinxp-ie6

*iexplorewinxp-ie7

*iexplorewinxp-ie8

*firefoxwinxp-firefox3

*firefoxwinxp-firefox36

*safariwinxp-safari4

*safariproxywinxp-safari5

*operawinxp-opera10

*googlechromewinxp-googlechrome6

*firefoxlinux-firefox3

*firefoxlinux-firefox36

*operalinux-opera10

*firefoxosx-firefox35

*safariosx-safari4

*operaosx-opera10

20.5.3. Browser Identifiers

Vaadin TestBench supports the following browser identifiers:

BrowserBrowser Identifier

Mozilla Firefox 2 or 3 (prefers 2)*firefox

Mozilla Firefox 2.x*firefox2

Mozilla Firefox 3.x*firefox3

Mozilla Firefox*firefoxchrome

Mozilla Firefox (not Google Chrome!)*chromec

Internet Explorer*iexplore

Apple Safari and other WebKit based browsers*safari

457Predefined Target Environments

Vaadin TestBench

BrowserBrowser Identifier

Apple Safari 5 requires this identifier*safariproxy

Opera*opera

Google Chrome*googlechrome

The above list does not include incompatible or otherwise irrelevant browsers.

Notice that the target *firefox3 is defined so that, if both Firefox 2 and 3 are installed on the
system, preference is given to the version 2. This may cause an unexpected mix-up, as one
would expect Firefox 3 to be launched.

In cases where

• multiple browsers with the same name are installed, or

• the remote controller can not find the browser because it is not installed to the default
location,

the browser identifier can be appended with the absolute path to the browser executable, separated
by a space from the identifier. For example, "*firefox /opt/firefox3.6/firefox-bin".

If you specify the absolute path to the browser, it must be same on all grid nodes (remote controls)
that support the target environment. If such a browser is installed in a different location on different
nodes, you need to have a separate target environment specified for each.

In Linux, using the absolute path for Firefox is necessary, because the "firefox" program is just
a script that launches the actual executable. Stopping the launch script does not close the browser,
so the Firefox window will not close after the tests are done. If your Firefox installation directory
is /opt/firefox, for example, you need to use "*firefox /opt/firefox/firefox-bin"
in the configuration to start Firefox.

The exact installation directory of Firefox depends on the system and used installation method
(package management or manual installation). Typical locations include the following paths:

• /opt/firefox/firefox-bin

• /usr/lib/firefox/firefox-bin

• /usr/local/firefox/firefox-bin

• /usr/local/lib/firefox/firefox-bin

The binary itself can also be named something else that firefox-bin.

20.5.4. Starting the Hub

The grid hub is a service bound to a port, 4444 by default.

On Windows:

1. Navigate to grid/hub/ folder in the installation folder, and

2. Run hub.bat to start the hub on port 4444.

Closing the console window will stop the service.

Starting the Hub458

Vaadin TestBench

On Linux, Mac OS X, and other UNIX:

1. Open a terminal window and change to grid/hub/

2. Run hub.sh to start the hub on port 4444.

$ cd vaadin-testbench-2.x.x/grid/hub
$ sh hub.sh

The hub service starts attached to the terminal and writes its log to standard output. Press Ctrl+C
to stop the service.You can also daemonize the service.

20.6. Setting Up Grid Nodes

A grid node is a server, a desktop computer, or a virtual machine running a windowed operating
system. It needs to have:

• Java 1.5 JRE (or newer) installed

• One or more web browsers installed

• Vaadin TestBench Remote Control installed and configured

A remote control is a service running on a grid node. It acts as a "remote control" for controlling
the web browsers installed on the node: it can launch and stop browser applications and execute
test commands in them. A remote control is itself "remote controlled" by the grid hub, which del-
egates the tests to the available remote controls.

The installation of web browsers is not covered in this manual.

20.6.1. Configuring a Remote Control

A remote control should be configured before starting it. The configuration is done by editing the
rc_configuration.xml file. Values given in the XML configuration file override the default
values defined in the run script.

DescriptionParameter

The port this remote control listens to for com-
mands from the hub. Default port is 5555.

port

The address of the hub as a URL. Local host
by default.

hubURL

An environment target (system-browser combin-
ation) that this remote control supports. The

environment

target must match one of the target names
defined in the hub configuration.You can define
multiple environments. See 2.5.1: Configuring
the Hub for more information about the targets
and a list of predefined targets.

The host name or IP address of this node con-
troller. If the host name is not defined, the hub
tries to determine it from the registration request.

host

459Setting Up Grid Nodes

Vaadin TestBench

If the hub is running on the same host as the remote control, only the environment targets need
to be defined.

20.6.2. Configuring the Run Script

A remote control can also be configured in the run scripts (rc.sh or rc.bat) by defining:

DescriptionEnvironment Variable

Environment targets (system-browser combina-
tions) supported by this remote control. The

ENVIRONMENT

targets in the comma-separated list must match
one of the target names defined in the hub
configuration.

Where user-extensions.js is located.USEREXTENSIONS

In this case, you will also need to add the following parameters after the
SelfRegisteringRemoteControlLauncher.

DescriptionParameter

Address of the hub.hubUrl

The port that this node controller should listen
to.

port

On a Windows machine, you can put an -ensureCleanSession option in the rc.bat to have
the remote control close all running iexplore.exe processes.

20.6.3. Starting the Remote Control

A remote control is a service bound to a port, 5555 by default.

On Windows, navigate to grid/remote-control/ folder under the installation folder and run
rc.bat to start the remote control. Closing the console window will stop the service.

On Linux, Mac OS X, or other UNIX:

1. Open a terminal window and change to grid/remote-control/

2. Run rc.sh to start the remote control.

$ cd vaadin-testbench-2.x.x/grid/remote-control
$ sh rc.sh

The remote control service starts attached to the terminal and writes its log to standard output.
Press Ctrl+C to stop the service.You can make the service run in the background by daemonizing
it.

20.6.4. Running Tests Without a Grid Hub

You can run tests on a single testing node also without a grid hub, with just a remote control in-
stalled.The used remote control needs to be a clean Selenium remote control that is started with
the command:

$ java -jar selenium-server.jar -userExtensions user-extensions.js

Configuring the Run Script460

Vaadin TestBench

The user-extensions.js file can be found in the grid/remote-control/ folder.

When running the tests through JUnit, as described in Section 20.9, “Compiling and Executing
JUnit Tests”, you need to:

1. Set the com.vaadin.testbench.tester.host property to point to the server on
which the remote control runs instead of a hub host.

2. You need to list the browsers installed in the RC host in the browsers property, either
in the Ant script or in command-line. See the list of allowed browser identifiers in Sec-
tion 20.5.1, “Configuring the Hub”.

<property name="browsers" value="*firefox"/>

You can also specify the browser executable path here, as described in Section 20.5.1,
“Configuring the Hub”.

<property name="browsers"
 value="*firefox /opt/firefox/firefox-bin"/>

20.6.5. Browser settings

Turn off pop-up blockers for all browsers.

Internet Explorer Make the settings in Tools Pop-up Blocker Turn Off Pop-up
Blocker

Safari Make the settings in Edit Block Pop-up Windows

Also turn off default browser checks for all browsers.

20.6.6. Operating system settings

Make any operating system settings that might interfere with the browser and how it is opened
or closed. Typical problems include crash handler dialogs.

On Windows, disable error reporting in case a browser crashes as follows:

1. Open control panel System

2. Select Advanced tab

3. Select Error reporting

4. Check that Disable error reporting is selected

5. Check that But notify me when critical errors occur is not selected

20.6.7. Settings for Screenshots

The screenshot comparison feature requires that the user interface of the browser stays constant.
The exact features that interfere with testing depend on the browser and the operating system.

In general:

• Disable the auto-hide function for the toolbar

461Browser settings

Vaadin TestBench

• Check that the toolbar is either locked or unlocked on all test hosts

• Disable blinking cursor

• Use the same screen resolution on all test machines and check that the maximized
window is always the same size

• Configure browsers in the same manner on all machines (same toolbars visible, same
themes, etc)

• Use identical operating system themeing on every host

• Turn off any software that may suddenly pop up a new window

• Turn off screen saver

If using Windows and Internet Explorer, you should give also the following setting:

• Turn on Allow active content to run in files on My Computer under Security settings

20.7. Using Vaadin TestBench Recorder

Tests are recorded using the Vaadin TestBench Recorder.You can play back recoded test cases
and use the Recorder to make assertions and take screenshots for screen capture comparison.

Figure 20.4. Recorder Workflow

The Recorder is available only for Mozilla Firefox. To run the recorded tests in other browsers,
you need to compile them as JUnit tests and run them with JUnit, as described in Section 20.9,
“Compiling and Executing JUnit Tests”. It also allows automating the testing.

20.7.1. Starting the Recorder

To start the Recorder:

1. Open Mozilla Firefox

2. Open the page with the application that you want to test

3. Select Tools Vaadin TestBench Recorder in the Firefox menu

Using Vaadin TestBench Recorder462

Vaadin TestBench

Figure 20.5. Starting Vaadin TestBench Recorder

The Vaadin TestBench Recorder window will open, as shown in Figure 4.

Figure 20.6. Vaadin TestBench Recorder running with the Calc demo

Recording is automatically enabled when the Recorder starts. This is indicated by the pressed
Record button.

20.7.2. Recording

While recording, you can interact with the application in (almost) any way you like. The Recorder
records the interaction as commands in a test script, which is shown in tabular format in the Table
tab and as HTML source code in the Source tab.

463Recording

Vaadin TestBench

Figure 20.7. User interaction recorded as commands

Please note the following:

• Changing browser tabs or opening a new browser window is not recommended, as any
clicks and other actions will be recorded

• Passwords are considered to be normal text input and are stored in plain text

While recording, you can insert various commands such as assertions or take a screenshot by
selecting the command from the Command list.

When you are finished, click the Record button to stop recording.

20.7.3. Playing Back Tests

After you have stopped recording, reset the application to the initial state and press Play
current test to run the test again. You can use the &restartApplication parameter for an
application in the URL to restart it.

You can also play back saved tests by opening a target test in the Recorder with File Open.

You can use the slider to control the playback speed, click Pause to interrupt the
execution and Resume to continue. While paused, you can click Step to execute the script step-
by-step.

Check that the test works as intended and no unintended or invalid commands are found; a test
should run without errors.

20.7.4. Editing Tests

You can insert various commands, such as assertions or taking a screenshot, in the test script
during or after recording,

You insert a command by selecting an insertion point in the test script and right-clicking an element
in the browser. A context menu opens and shows a selection of Recorder commands at the
bottom. Selecting Show All Available Commands shows more commands. Commands inserted
from the sub-menu are automatically added to the top-level context menu.

Figure 20.8, “Inserting commands in a test script” shows adding an assertion after calculating
"6*7=" with the Calc demo.

Playing Back Tests464

Vaadin TestBench

Figure 20.8. Inserting commands in a test script

Inserting a command from the context menu automatically selects the command in the Command
field and fills in the target and value parameters.

You can also select the command manually from the Command list. The new command or
comment will be added at the selected location, moving the selected location down. If the command
requires a target element, click Select and then click an element in your application. A reference
to the element is shown in the Target field and you can highlight the element by clicking Find.
If the command expects some value, such as for comparing the element value, give it in the
Value field.

Commands in a test script can be changed by selecting a command and changing the command,
target, or value.

The commands specific to Vaadin TestBench are documented in Section 20.8, “Test Script
Commands”.

20.7.5. Saving Tests

Saving Individual Tests

You can save a test by selecting File Save Test. If you are just learning to use the Recorder,
give the example/testscripts/ folder below the Vaadin TestBench installation folder as the
target folder.

Vaadin TestBench stores the tests and test suites as HTML files. This makes it easy to review
saved test scripts with a web browser and edit them manually.

Saving Test Suites

You can save multiple tests as a test suite with File Save Test Suite. If you are just learning to
use the Recorder, give example/testscripts/ folder below the Vaadin TestBench installation
folder as the target folder.

An entire test suite is executed as a single JUnit test. However, the success or failure is reported
for the entire suite, which may be undesired. It is usually more useful to get the result for each
test separately.

Test suites are nevertheless useful for composing larger tests from separate test phases. For
example, you could have all your tests as test suites, and each would have a "login test" as the
first phase, followed by some test case specific phases. You can also use the includeTest
command for the same purpose

465Saving Tests

Vaadin TestBench

20.7.6. Invalid Tests

Tests can become invalid due to intentional changes to the application. Normally, it involves
changes in elements so that the Vaadin TestBench element locator can't find the correct element.

If the problem is that an element can not be found, press to play back the test. Find the problem
position and check with the Find button that the element can not be found (for example, it is a
problem with timing so that the element just is not available yet). You can re-select the element
easily with the Select button that will update the target.

20.8.Test Script Commands

Vaadin TestBench Recorder is based on the Selenium IDE, so the Selenium documentation
provides a complete reference of all the commands available in the Selenium IDE and therefore
in the Recorder.

Vaadin TestBench Recorder has the following special commands:

• screenCapture

• showTooltip

• assertText

• assertCSSClass

• includeTest

• expectDialog

• uploadFile

These special commands are described next.

20.8.1.Taking Screen Captures: screenCapture

The screenCapture command orders the Remote Control to take a screen capture of the browser
view and compare the result against a reference image, if one is available. If a reference image
is not available, the command will save the screen capture and fail the test. You can then later
copy the captured image as the reference image.

Observe that the screenshots are not taken by the Recorder, for example when you are playing
back a test case in the Recorder. They are taken by the Remote Control only afterward, when
you run the tests from the test server that controls the Remote Control (through the hub).

The Value field can be used to define an identifier string for the screenshot. If the value is empty,
a running number starting from 1 will be used as the identifier. Using a given identifier is more
reliable than the numbers if the test is changed and screenshots are added or removed.

The naming convention for screenshot file names is automated and has the following format:

TestName_OS_BrowserName_BrowserMajorNumber_ID.png

Comparison and storage of screenshots is described in Section 20.9.5, “Comparing Screenshots”.

Invalid Tests466

Vaadin TestBench

20.8.2. Recording Tooltips: showTooltip

Clicking switches Recorder to a tooltip mode that allows making a tooltip appear. Recording
is done by hovering over the target element until a tooltip appears and then moving the mouse
away from the element. This will insert a showTooltip command and disable the tooltip button.

After this command causes a tooltip to appear, its content can be asserted with other commands.

20.8.3. Recording Text Assertion: assertText

Clicking allows recording an assertText command on elements where the context menu does

not work for some reason. When the button is active, the Recorder will record an assertText
command for the next mouse click, with the clicked element as the target.

20.8.4. Asserting CSS Class: assertCSSClass

Making an assertion on the CSS class of an element can be useful, for example, for determining
if a row in a table is selected, and in other cases where the use of a normal assertion would be
inconvenient. The assertCSSClass needs to be manually added and the target selected.

Note that when selecting the target with the Select button, the selected target may be a child to
the wanted element. In this case the target needs to be edited or re-selected so that it points to
the correct element.

20.8.5. Asserting CSS Class: assertNotCSSClass

The assertNotCSSClass has the reverse function to assertCSSClass. This one is useful for
detecting cases where a class should have been removed from an element, but is not.

20.8.6. Connecting Tests Together: includeTest

Vaadin TestBench allows connecting tests together. This is done by inserting the includeTest
command, where Value is the path to the test to be inserted. The path can be relative to the dir-
ectory from which TestConverter is executed or an absolute path. Target test will be added in
full at the position with includeTest. Inclusion only works when converting to JUnit tests with
TestConverter.

20.8.7. Handling a Confirmation Box: expectDialog

The commands expectDialog + assertCommand are needed when a click event opens up a
Confirmation dialog.

20.8.8. Uploading Files: uploadFile

Vaadin TestBench supports uploading of files for the Firefox browser. File uploads are recorded
automatically in the recorder and can be replayed as such. The uploadFile command differs
from default behavior in Selenium in the way that there is no need to deploy the file to a URL that
is accessible from all remote controls, but the file is passed along to the remote controls, which
then use the local copy when running the test. The file can be placed in the same location as
your test scripts (see Section 20.7.5, “Saving Tests”) as long as the name is not changed. This
file is sent to the remote controls if found, otherwise the file is read from the absolute path given
in the Value property of the command.

467Recording Tooltips: showTooltip

Vaadin TestBench

Vaadin TestBench is not aware of when the upload has been completed, so you need to add a
command such as waitForElementVisible if there is a component that is added after the upload.
For example, the application might have a Label showing "Upload Finished". Otherwise, Vaadin
TestBench will continue with the next command before the upload has finished, which may cause
problems if it has not been taken into account.

Note

Playback of the uploadFile command in the TestBench Recorder will currently not
succeed if using Vaadin locators in Firefox 3.x due to security restrictions in the
browser. This is a restriction in Recorder only and uploadFile in TestBench Remote
Control works correctly also when using a Vaadin locator. In order for replay to work
in Recorder in Firefox 3.x, the Target should be changed to a standard XPath selector
string by choosing one from the Target drop down menu. This problem has been
fixed in Firefox 4.

20.8.9. Shortcut Keys: keyPressSpecial

For testing shortcut keys (Ctrl, Alt, Shift + key) the command keyPressSpecial can be used.
Combinations using arrow keys will be automatically recorded.

The value for keyPressSpecial should be a string with a space-separated list of modifier keys,
and finalle the target key. For example, "ctrl a" or "alt shift a".

Note that the alphabetical key names are case-dependent and that Vaadin ShortcutAction.Key-
Code responds to uppercase letters.

20.9. Compiling and Executing JUnit Tests

JUnit allows running tests remotely on a variety of different web browsers installed in grid nodes.
The test scripts need to be first compiled from the HTML scripts saved with Recorder to Java
classes. Vaadin TestBench Library includes a converter from the HTML format to Java source
files, which you can then compile with a Java compiler.

Figure 20.9. JUnit Workflow

The recommended way to compile and run JUnit tests is to use an Ant script, as described in
Section 20.9.1, “Configuring the Ant Script”.The subsequent sections give more details regarding
the tasks and their configuration options and describe how to use the tools from command-line.

A complete testing process involves the following tasks:

1. Start Vaadin TestBench Grid Hub

2. Start Vaadin TestBench Remote Control on each test node

3. Build the application to be tested

4. Convert and compile the tests

Shortcut Keys: keyPressSpecial468

Vaadin TestBench

5. Deploy the application to be tested (start the server)

6. Remove old error screens for screenshot directory

7. Run the compiled JUnit tests

8. Collect test results

9. Clean up temporary files (source and compiled java files)

10. Undeploy the application (stop the server)

11. Analyze test results

The exact order of the tasks may vary, especially for the conversion and compilation of tests,
which can be done also before the step 1 or somewhere between the steps 3 and 5. Also deploy-
ment and the collection of test results varies.

Building the application and how it is deployed is out of the context of this chapter. Java applica-
tions are typically built with build systems such as Ant or Maven. Such a build system can be in-
tegrated with a continuous integration system that not only builds the application, but also runs
tests and collects test results. Support for JUnit tests in Vaadin TestBench allows integration with
any continuous integration system that supports JUnit tests.

20.9.1. Configuring the Ant Script

The recommended way to compile and run JUnit tests is to use an Ant script. An example script
is given in the examples directory in the installation package. It will convert, compile, and run the
tests.

You can make the settings either by editing the Ant script or by giving the settings as property
definitions from the command-line, for example:

$ ant -Dcom.vaadin.testbench.tester.host=localhost ...

Mandatory Settings

Define required system property values to the java virtual machine:

com.vaadin.testbench.tester.host Host name or IP address of the Vaadin TestBench Grid
Hub. For example, "localhost. The port number
should not be given in this parameter. If you have just
a single test node and do not need the hub, you can
give the address of the node.

com.vaadin.testbench.deployment.url Base URL of the Vaadin application to be tested, for
example, "http://demo.vaadin.com/sampler/".

com.vaadin.testbench.screenshot.directory Base folder for screenshot reference and error images.
The reference images are expected to be stored under
the reference subfolder. Error images are stored by
JUnit under the error subfolder. On the first run, there
are no reference images; you should copy "accepted"
screenshots from the error directory to the
reference directory.

469Configuring the Ant Script

Vaadin TestBench

http://demo.vaadin.com/sampler/

browsers A comma-separated list of target environments on
which the tests should be run. The list entries must
match targets defined in the configuration of remote
controls in the grid nodes. They must also be listed in
the configuration of the hub. The predefined browser
names are system-browser pairs.

The default settings in the example test script are:

<!-- Host name or IP address of the host running -->
<!-- TestBench RemoteControl or TestBench Hub. -->
<property name="com.vaadin.testbench.tester.host"
 value="127.0.0.1" />

<!-- Base URL where the testable application is -->
<!-- deployed -->
<property name="com.vaadin.testbench.deployment.url"
 value="http://demo.vaadin.com/" />

<!-- Browsers to use for testing -->
<property name="browsers"
 value="winxp-ie8,winxp-firefox35" />

<!-- Base directory for screenshots. -->
<property name="com.vaadin.testbench.screenshot.directory"
 value="screenshots" />

Optional Settings

Optional property values that can be used:

com.vaadin.testbench.screenshot.softfail If "true", a test is allowed to continue even if a
screenshot comparison fails.

If "false", the test is interrupted and testing will contin-
ue with the next test.

com.vaadin.testbench.screenshot.onfail If "true" (default), a screenshot is automatically taken
when a test fails. If "false", no screenshot is taken.

com.vaadin.testbench.screenshot.cursor If "true", makes checks whether a comparison error
occurs because of a cursor. A blinking cursor can cause
unintentional differences in screenshots and this helps
with the problem.

com.vaadin.testbench.screenshot.block.error Sets the amount of difference that causes a screenshot
comparison to fail. Comparison is done by 16x16 pixel
blocks.The difference limit is given as a fraction (0<x 1)
of how much a block can differ from the reference block.
Default is 0.025, which means 2.5% difference.

com.vaadin.testbench.screenshot.reference.debug If "true", writes extra output for debugging purposes.

com.vaadin.testbench.screenshot.max.retries Defines how many times a screenshot should be taken
again if it contains differences from the reference image.
This setting tries to eliminate unnecessary differences
that are often caused by too slow rendering, so that the
screenshot may be taken from an unfinished rendering
state. The default is 2 retries.

Configuring the Ant Script470

Vaadin TestBench

com.vaadin.testbench.screenshot.resolution
(recommended)

Specifies the resolution of screenshots as
<width>x<height> pixels. For example, "1024x768".
The browser window will be resized so that the view
area has the given size.This setting does not work with
Opera, which requires a custom profile file
"profile-opera.txt" in the Remote Controller
folder.

If tests give faulty croppings and sizes on screenshots,
check that the browser canvas fits into the desktop.

20.9.2. Converting HTML Tests

The tests are stored in HTML format and need to be converted to Java source files before they
can be compiled as executable JUnit tests.

Converting tests is done by using the TestConverter in the Vaadin TestBench Library.

Using the TestConverter

The TestConverter is a utility class included in the Vaadin TestBench Library. You can use it
from the command line or with the create-tests target in the example Ant script.

To use the converter, you need to add the Vaadin TestBench Library into your build path:

• vaadin-testbench-2.x.x.jar

The library is located in the root directory of the Vaadin TestBench installation package.

Command-Line Interface

You can use the test converter from command-line as follows:

$ java com.vaadin.testbench.util.TestConverter <OutputDir> <Browsers> <HTMLTestFiles>...

You also need to add the vaadin-testbench-2.x.x.jar in the class path, either with the
-cp command-line parameter or with the CLASSPATH environment variable.

The parameters are:

DescriptionParameter

Output directory where the generated Java
source files should be written. The source files

OutputDir

are organized in Java packages by test name
and target environment name.

A comma-separated list of target environments.
The target names must match the entries in the
hub and remote control configurations.

Browsers

A space-separated list of test files in HTML
format.

HTMLTestFiles

For example, assuming that you have recorded and saved a test by name mytests/CalcTest.html,
as described in Section 20.7.5, “Saving Tests”, you could give the following command in the in-
stallation folder:

471Converting HTML Tests

Vaadin TestBench

$ java -cp vaadin-testbench-2.0.0.jar
com.vaadin.testbench.util.TestConverter
java/ linux-firefox36 mytests/CalcTest.html

Using output directory: src
Generating test CalcTest for linux-firefox36 in CalcTest.linux_firefox36
Creating src/CalcTest/linux_firefox36/CalcTest.java for CalcTest

Here, we assumed that we have a remote control capable of executing tests for the
linux-firefox36 target. The command would create the Java source file
src/CalcTest/linux_firefox36/CalcTest.java.

The Java package name is determined from the test name and the target environment.

Ant Script

The example Ant script located in the example/ folder in the installation package includes a
create-tests target, which runs the test converter for each HTML test file.

The target is called automatically by the default target in the script, but you can run it separately
as well. For example:

$ cd example
$ ant -f test.xml create-tests
Buildfile: test.xml

create-tests:
 [echo] Using test scripts:
'/opt/vaadin-testbench-2.0.0/example/testscripts/demo.vaadin.com.html'
 [java] Using output directory: temp-dir/src
 [java] Generating test demo_vaadin_com for winxp-ie8 in demo_vaadin_com.winxp_ie8
 [java] Creating temp-dir/src/demo_vaadin_com/winxp_ie8/demo_vaadin_com.java for
demo_vaadin_com
 [java] Generating test demo_vaadin_com for winxp-firefox35 in
demo_vaadin_com.winxp_firefox35
 [java] Creating temp-dir/src/demo_vaadin_com/winxp_firefox35/demo_vaadin_com.java
for demo_vaadin_com

BUILD SUCCESSFUL
Total time: 1 second

The example script writes the Java source files under temp-dir/src folder, as defined with
the temp-dir property in the script.

Optional conversion settings

com.vaadin.testbench.converter.parameterFile Defines a .properties file to be used for paramet-
rising TestBench test Values.

On command-line, the parameter should be given as
a s y s t e m p r o p e r t y
(-Dcom.vaadin....parameterFile=VALUE. In an
Ant script it should be given as <sysproperty
key="com.vaadin...parameterFile"
value="VALUE" />.

Converting HTML Tests472

Vaadin TestBench

20.9.3. Compiling JUnit tests

The Java source files for the JUnit tests need to be compiled. You need to include the Vaadin
TestBench Library vaadin-testbench-2.x.x.jar in your class path. The library is needed
also later when running the tests.

Command-Line Compilation

You can compile the tests with a Java compiler from the command-line, for example as follows:

$ javac -cp vaadin-testbench-2.0.0.jar -d classes
 src/CalcTest/linux_firefox36/CalcTest.java

In the above example, we assume that the source file is located in the src/ directory, where it
was written in the example in Section 20.9.2, “Converting HTML Tests” earlier. The compiled
class files are written to classes/.

Ant Build Script

The example Ant script located in the example/ folder in the installation package includes a
compile-tests target, which compiles all the JUnit test Java sources.

For example:

$ ant -f test.xml compile-tests
Buildfile: test.xml

create-tests:
 [echo] Using test scripts:
'/opt/vaadin-testbench-2.0.0/example/testscripts/demo.vaadin.com.html'
 [java] Using output directory: temp-dir/src
 [java] Generating test demo_vaadin_com for winxp-ie8 in demo_vaadin_com.winxp_ie8
 [java] Creating temp-dir/src/demo_vaadin_com/winxp_ie8/demo_vaadin_com.java for
demo_vaadin_com
 [java] Generating test demo_vaadin_com for winxp-firefox35 in
demo_vaadin_com.winxp_firefox35
 [java] Creating temp-dir/src/demo_vaadin_com/winxp_firefox35/demo_vaadin_com.java
for demo_vaadin_com

compile-tests:
 [mkdir] Created dir: /opt/vaadin-testbench-2.0.0/example/temp-dir/classes
 [javac] Compiling 2 source files to
/opt/vaadin-testbench-2.0.0/example/temp-dir/classes

BUILD SUCCESSFUL
Total time: 2 seconds

The example script writes the compiled classes under temp-dir/classes folder, as defined
with the temp-dir property in the script.

20.9.4. Executing JUnit Tests

Execution of JUnit tests requires:

• All tests have been compiled as Java classes (Section 20.9.3)

• Vaadin TestBench Grid Hub is running (Section 20.5)

• One or more Vaadin TestBench Remote Controls is running (Section 20.6)

473Compiling JUnit tests

Vaadin TestBench

• The Vaadin TestBench Library

JUnit and Selenium Remote Control Java Client are included in the Vaadin TestBench Library,
vaadin-testbench-2.x.x.jar.

Test Execution Parameters

The following parameters must be defined:

com.vaadin.testbench.tester.host Host name or IP address of the Vaadin TestBench Hub.
For example, "localhost", as you would have in a
test development setup. The address can also be the
address of a Remote Control in a single test node in-
stallation, as described in Section 20.6.4, “Running
Tests Without a Grid Hub”.

com.vaadin.testbench.deployment.url The URL address of the Vaadin application to be tested.
For example, "http://demo.vaadin.com/sampler/".

com.vaadin.testbench.screenshot.directory Directory path where the screenshots will be stored,
assuming that any are taken. The path may be relative
to the directory where JUnit is executed, or absolute.

Executing JUnit from Command-Line

Execution of JUnit requires the JUnit libraries, which are included in the Vaadin TestBench Library,
and the compiled tests.

In the following example, we assume that we have already converted and compiled a test case
for the Calc application and that we have a remote control running and capable of testing the
linux-firefox36 target.

$ java -cp vaadin-testbench-2.0.0.jar:classes
-Dcom.vaadin.testbench.tester.host=localhost
-Dcom.vaadin.testbench.deployment.url=http://demo.vaadin.com/Calc/
org.junit.runner.JUnitCore
CalcTest.linux_firefox36.CalcTest

JUnit version 4.5
Time: 17.964
There was 1 failure:
1) testlinux_firefox36(CalcTest.linux_firefox36.CalcTest)
junit.framework.AssertionFailedError: Test was missing reference images.
at junit.framework.Assert.fail(Assert.java:47)
...
FAILURES!!!
Tests run: 1, Failures: 1

In this example, the test failed because we did not have the reference images installed. See
Section 20.9.5, “Comparing Screenshots” for instructions on copying the reference images after
the first run.

Executing JUnit from an Ant Script

Apache Ant has an optional <junit> task, which makes it easier to run JUnit tests from Ant.

You need to:

• Include Vaadin TestBench Library and the compiled tests in the class path

Executing JUnit Tests474

Vaadin TestBench

http://demo.vaadin.com/sampler/
http://demo.vaadin.com/Calc/

• Define the required parameters with <jvmarg> elements

• List the source files of the tests in a <batchtest> element

See the run-tests target in example/test.xml for an example of using the task.

<junit fork="yes">
 <classpath>
 <fileset dir=".."
 includes="vaadin-testbench-*.jar" />
 <pathelement path="${temp-dir}/classes" />
 </classpath>

 <!-- Optional -->
 <formatter type="brief" usefile="false" />

 <!-- The required parameters -->
 <jvmarg value="-Dcom.vaadin.testbench.tester.host=${com.vaadi
n.testbench.tester.host}" />
 <jvmarg value="-Dcom.vaadin.testbench.deployment.url=${com.va
adin.testbench.deployment.url}" />
 <jvmarg value="-Dcom.vaadin.testbench.screenshot.directory=${
com.vaadin.testbench.screenshot.directory}" />

 <batchtest>
 <fileset dir="${temp-dir}/src">
 <include name="**/**.java" />
 </fileset>
 </batchtest>
</junit>

JUnit Output

The output of JUnit depends on how it was executed. When executed from command-line, it
writes output to standard output. Ant provides possibilities to format the output and to write it to
a file. Certain other build systems and continuous integration systems integrate with JUnit and
support collecting the results.

Screenshots with errors are written to the errors/ subdirectory under the screenshot directory
given as a parameter. See Section 20.9.5, “Comparing Screenshots” for more details.

20.9.5. Comparing Screenshots

Vaadin TestBench allows taking screenshots of the web browser window with the screenCapture
command, as described in Section 20.8.1, “Taking Screen Captures: screenCapture”.

When the tests are executed with JUnit, the captured images are compared to reference images.
If the images differ more than the allowed amount, as defined by the block error parameter (see
the optional settings in Section 20.9.1, “Configuring the Ant Script”), the test produces an Asser-
tionFailedError exception. The comparison results in the same error also when the reference
image is missing altogether.

Screenshot Comparison Error Images

Screenshots with errors are written to the errors/ subfolder under the screenshot folder that
given as a parameter to JUnit.

For example, the error caused by a missing reference image in the example in Section 20.9.4,
“ E x e c u t i n g J U n i t T e s t s ” i s w r i t t e n t o

475Comparing Screenshots

Vaadin TestBench

screenshot/errors/CalcTest_Linux_Firefox_3_CalcPicture.png. The image is
shown in Figure 20.10, “A screenshot taken by a test run”.

Figure 20.10. A screenshot taken by a test run

When taking screenshots, the browser is maximized to full screen. Only the page view area in
the browser is captured.

Reference Images

Reference images are expected to be found in the reference/ subfolder under the screenshot
folder given as a parameter for JUnit. To create a reference image, just copy a screenshot from
the errors/ directory to the reference/ directory.

For example:

$ cp screenshot/errors/CalcTest_Linux_Firefox_3_CalcPicture.png screenshot/reference/

Now, when the proper reference image exists, rerunning the test that was run the first time in
Section 20.9.4, “Executing JUnit Tests”, outputs success:

$ java ...
JUnit version 4.5
.
Time: 18.222

OK (1 test)

You can also supply multiple versions of the reference images by appending an underscore and
an index to the filenames. For example:

CalcTest_Linux_Firefox_3_CalcPicture.png
CalcTest_Linux_Firefox_3_CalcPicture_1.png
CalcTest_Linux_Firefox_3_CalcPicture_2.png

This can be useful in certain situations when there actually are more than one "correct" reference.

Visualization of Differences in Screenshots with Highlighting

Vaadin TestBench supports advanced difference visualization between a captured screenshot
and the reference image. A difference report is written to a HTML file that has the same name
as the failed screenshot, but with .html suffix. The reports are written to the same errors/
folder as the screenshots from the failed tests.

Comparing Screenshots476

Vaadin TestBench

The differences in the images are highlighted with blue squares. Moving the mouse pointer over
a square shows the difference area as it appears in the reference image. Clicking the image
switches the entire view to the reference image and back. Text "Image for this run" is displayed
in the top-left corner to identify the currently displayed screenshot.

Figure 20.11, “A highlighed error image and the reference image” shows a difference report with
three differences. Date fields are a typical cause of differences in screenshots.

Figure 20.11. A highlighed error image and the reference image

Practices for Handling Screenshots

Access to the screenshot reference image directory should be arranged so that a developer who
can view the results can copy the valid images to the reference directory. One possibility is to
store the reference images in a version control system and check-out them to the reference/
directory.

A build system or a continuous integration system can be configured to automatically collect and
store the screenshots as build artifacts.

477Comparing Screenshots

Vaadin TestBench

478

Appendix A

User Interface
Definition

Language (UIDL)

User Interface Definition Language (UIDL) is a language for serializing user interface contents
and changes in responses from web server to a browser. The idea is that the server-side com-
ponents "paint" themselves to the screen (a web page) with the language. The UIDL messages
are parsed in the browser and translated to GWT widgets.

The UIDL is used through both server-side and client-side APIs. The server-side API consists of
the PaintTarget interface, described in Section A.1, “API for Painting Components”. The client-
side interface depends on the implementation of the client-side engine. In Vaadin Release 5, the
client-side engine uses the Google Web Toolkit framework. Painting the user interface with a
GWT widget is described in Section 11.3, “Google Web Toolkit Widgets”.

UIDL supports painting either the entire user interface or just fragments of it.When the application
is started by opening the page in a web browser, the entire user interface is painted. If a user
interface component changes, only the changes are painted.

Since Vaadin Release 5, the UIDL communications are currently done using JSON (JavaScript
Object Notation), which is a lightweight data interchange format that is especially efficient for in-
terfacing with JavaScript-based AJAX code in the browser. The use of JSON as the interchange
format is largely transparent; IT Mill Toolkit version 4 (predecessor of Vaadin released in 2006)

479Book of Vaadin

the older versions used an XML-based UIDL representation with the same API. Nevertheless,
the UIDL API uses XML concepts such as attributes and elements. Below, we show examples
of a Button component in both XML and JSON notation.

With XML notation:

<button id="PID2" immediate="true"
 caption="My Button" focusid="1">
 <boolean id="v1" name="state"
 value="false"></boolean>
</button>

With JSON notation:

["button",
 {"id": "PID2",
 "immediate":true,
 "caption": "My Button",
 "focusid":1,
 "v":{"state":false}
 }
]

Components are identified with a PID or paintable identifier in the id attribute. Each component
instance has its individual PID, which is usually an automatically generated string, but can be set
manually with setDebugId() method.

Section A.2, “JSON Rendering” gives further details on JSON. For more information about
handling UIDL messages in the client-side components, see Chapter 11, Developing New
Components.

You can track and debug UIDL communications easily with the Firebug extension for Mozilla
Firefox, as illustrated in Section A.2, “JSON Rendering” below.

A.1. API for Painting Components

Serialization or "painting" of user interface components from server to the client-side engine
running in the browser is done through the PaintTarget interface. In Vaadin Release 5, the only
implementation of the interface is the JsonPaintTarget, detailed in Section A.2, “JSON Rendering”
below.

The abstract AbstractComponent class allows easy painting of user interface components by
managing many basic tasks, such as attributes common for all components. Components that
inherit the class need to implement the abstract getTag() method that returns the UIDL tag of
the component. For example, the implementation for the Button component is as follows:

public String getTag() {
 return "button";
}

AbstractComponent implements the paint() method of the Paintable interface to handle
basic tasks in painting, and provides paintContent() method for components to paint their
special contents.The method gets the PaintTarget interface as its parameter.The method should
call the default implementation to paint any common attributes.

/* Paint (serialize) the component for the client. */
public void paintContent(PaintTarget target)
 throws PaintException {
 // Superclass writes any common attributes in
 // the paint target.

API for Painting Components480

User Interface Definition Language (UIDL)

 super.paintContent(target);

 // Set any values as variables of the paint target.
 target.addVariable(this, "colorname", getColor());
}

Serialized data can be attributes or variables, serialized with the addAttribute() and
addVariable() methods, respectively. You must always serialize the attributes first and the
variables only after that.

The API provides a number of variations of the methods for serializing different basic data types.
The methods support the native Java data types and strings of the String class.addVariable()
also supports vectors of strings.

Contained components are serialized by calling the paint() method of a sub-component, which
will call the paintContent() for the sub-component, allowing the serialization of user interfaces
recursively. The paint() method is declared in the server-side Paintable interface and imple-
mented in the abstract base classes, AbstractComponent and AbstractComponentContainer
(for layouts).

Layout components have to serialize the essential attributes and variables they need, but not the
contained components. The AbstractComponentContainer and AbstractLayout baseclasses
manage the recursive painting of all the contained components in layouts.

The AbstractField provides an even higher-level base class for user interface components. The
field components hold a value or a property, and implement the Property interface to access
this property. For example the property of a Button is a Boolean value.

public void paintContent(PaintTarget target)
 throws PaintException {
 super.paintContent(target);

 // Serialize the switchMode as an attribute
 if (isSwitchMode())
 target.addAttribute("type", "switch");

 // Get the state of the Button safely
 boolean state;
 try {
 state = ((Boolean) getValue()).booleanValue();
 } catch (NullPointerException e) {
 state = false;
 }
 target.addVariable(this, "state", state);

}

A.2. JSON Rendering

Vaadin 5 uses JSON, a lightweight data-interchange format, to communicate UI rendering with
the browser, because it is very fast to parse compared to XML. JSON messages are essentially
JavaScript statements that can be directly evaluated by the browser. The client-side engine of
Vaadin parses and evaluates the UIDL messages with the JSON library that comes with the
Google Web Toolkit.

Section 3.2.3, “JSON” gave a general introduction to JSON as part of the architecture of Vaadin.
In this section, we look into the technical details of the format. The technical details of the JSON
messages are useful mainly for debugging purposes, for example using the Firebug plugin for
Mozilla Firefox.

481JSON Rendering

User Interface Definition Language (UIDL)

To view a UIDL message, open the Firebug panel in Firefox, select Net tab, select a "POST
UIDL" request, open the Response tab, and click Load Response.This displays the entire UIDL
message, as shown in Figure A.1, “Debugging UIDL Messages with Firebug” below.

Figure A.1. Debugging UIDL Messages with Firebug

JSON messages are represented as nested lists and associative arrays (objects with named
properties) in JavaScript syntax. At the top level, we can find an associative array with the following
fields:

changes Changes to the UI caused by the request.

meta Meta-information regarding the response and the application state.

resources Information about application resources.

locales Locale-specific data for locale-dependent components, such as names of
months and weekdays.

The "changes" field contains the actual UI changes as a list of components. Components that
can contain other components are represented in a recursive list structure.

A component is represented as a list that first contains the UIDL tag of the component, which
identifies its class, followed by data fields.The basic representation of component data as attributes
and variables is defined in the base classes of the framework. Attributes are represented as an
associative array and variables as a separate associative array inside the special "v" attribute.
For example, a Button component is communicated with a JSON representation such as the
following:

["button",
 {"id": "PID5",
 "immediate": true,
 "caption": "7",
 "v":{"state":false}}
]

JSON Rendering482

User Interface Definition Language (UIDL)

A component can give its data also in additional fields in the list instead of the attributes or vari-
ables, as is done for the Label component:

["label",
 {"id": "PID4",
 "width": "100.0%"},
 "Some text here"]

The meta-information field can contain certain types of information, which are not displayed in
the UI, but used by the client-side engine. The repaintAll parameter tells that the changes
include the entire window contents, not just partial changes. Other data includes redirection details
for expired sessions.

483JSON Rendering

User Interface Definition Language (UIDL)

484

Appendix B

Songs of Vaadin

Vaadin is a mythological creature in Finnish folklore, the goddess and divine ancestor of the
mountain reindeer. It appears frequently in the poetic mythos, often as the trustworthy steed of
either Seppo Ilmarinen or Väinämöinen, the two divine hero figures. In many of the stories, it is
referred to as Steed of Seppo or Seponratsu in Finnish. An artifact itself, according to most ac-
counts, Vaadin helped Seppo Ilmarinen in his quests to find the knowledge necessary to forge
magical artefacts, such as Sampo.

Some of the Vaadin poems were collected by Elias Lönnrot, but he left them out of Kalevala, the
Finnish epic poem, as they were somewhat detached from the main theme and would have created
inconsistencies with the poems included in the epos. Lönnrot edited Kalevala heavily and it rep-
resents a selection from a much larger and more diverse body of collected poems. Many of the
accounts regarding Vaadin were sung by shamans, and still are. A shamanistic tradition, centered
on the tales of Seppo and Vaadin, still lives in South-Western Finland, around the city of Turku.
Some research in the folklore suggests that the origin of Vaadin is as a shamanistic animal spirit
used during trance for voyaging to Tuonela, the Land of Dead, with its mechanical construction
reflecting the shamanistic tools used for guiding the trance. While the shamanistic interpretation
of the origins is disputed by a majority of the research community in a maximalist sense, it is
considered a potentially important component in the collection of traditions that preserve the
folklore.

Origin or birth poems, synnyt in Finnish, provide the most distinct accounts of mythological artefacts
in the Finnish folklore, as origin poems or songs were central in the traditional magical practices.
Vaadin is no exception and its origin poems are numerous. In many of the versions, Vaadin was
created in a mill, for which Seppo had built the millstone. After many a year, grinding the sacred
acorns of the Great Oak (a version of the World Tree in Finnish mythology), the millstone had
become saturated with the magical juices of the acorns. Seppo found that the stone could be
used to make tools. He cut it in many pieces and built a toolkit suitable for fashioning spider web
into any imaginable shape. When Seppo started making Sampo, he needed a steed that would

485Book of Vaadin

help him find the precious components and the knowledge he required.The magical tools became
the skeleton of Vaadin.

 "Lost, his mind was,
 gone, was his understanding,
 ran away, were his memories,
 in the vast land of hills of stone.
 Make a steed he had to,
 forge bone out of stone,
 flesh out of moss,
 and skin of bark of the birch.

The length of his hammer,
 he put as the spine and the hip,
 bellows as the lungs,
 tongs as the legs, paired.
 So woke Vaadin from the first slumber,
 lichen did Seppo give her for eating,
 mead did he give her for drinking,
 then mounted her for the journey."

Other versions associate the creation with Väinämöinen instead of Seppo Ilmarinen, and give
different accounts for the materials.This ambiguity can be largely explained through the frequent
cooperation between Väinämöinen and Seppo in the mythos.

The Kalevala associates a perverted Vaadin-like creature with the evil antagonist Hiisi. The
creature, Elk of Hiisi, is chased by Lemminkäinen, the third hero in Kalevala. While this is anti-
thetical to the other accounts of Vaadin, it is noteworthy in how it blurs the distinction between
the mountain reindeer and elk, and how it makes clear that the steed is an artificial construct.

But the boast was heard by Hiisi,
And by Juutas comprehended;
And an elk was formed by Hiisi,
And a reindeer formed by Juutas,
With a head of rotten timber,
Horns composed of willow-branches,
Feet of ropes the swamps which border,
Shins of sticks from out the marshes;
And his back was formed of fence-stakes,
Sinews formed of dryest grass-stalks,
Eyes of water-lily flowers,
Ears of leaves of water-lily,
And his hide was formed of pine-bark,
And his flesh of rotten timber.
(Translation by W. F. Kirby, 1907)

Nevertheless, proper names are rarely used, so the identity of the steed or steeds remains largely
implicit in the myths and, because of the differences in the origin myths, can not be unambiquously
associated with a unique identity.

The theme of animal ancestor gods is common in the Finnish myth, as we can see in the wide-
spread worship of Tapio, the lord of the bear and the forest. With respect to Vaadin, the identific-
ation of the animal is not completely clear. The Finnish word vaadin refers specifically to an adult
female of the semi-domesticated mountain reindeer, which lives in the Northern Finland in Lapland
as well as in the Northern Sweden and Norway. On the other hand, the Finnish folklore repres-
ented in Kalevala and other collections has been collected from Southern Finland, where the

486

Songs of Vaadin

mountain reindeer does not exist. Nevertheless, Southern Finnish folklore and Kalevala do include
many other elements as well that are distinctively from Lapland, such as the hunting of the Elk
of Hiisi, so we may assume that the folklore reflects a record of cultural interaction.The distinction
between the northern mountain reindeer and the deer species of Southern Finland, the forest
reindeer and the elk, is clear in the modern language, but may have been less clear in old Finnish
dialects, as is reflected in the Kalevala account. Peura, reindeer, may have been a generic word
for a wild animal, as can be seen in jalopeura, the old Finnish word for lion. Kalevala uses the
poropeura in the Lemminkäinen story to distinguish the specific sub-type of reindeer. The identi-
fication is further complicated by the fact that other lines of poems included in Kalevala often
refer to a horse in association with Seppo and Väinämöinen. To some extent, this could be due
to the use of the word for horse as a generic name for a steed. While a mountain reindeer is not
suitable for riding, animal gods are typically portrayed as uncommonly large in mythology, even
to the extremes, so the identification fits quite well in the variety of magical mounts.

The mythology related to Vaadin, especially as represented in Kalevala, locates some important
characters and people in Pohjola, a mythical land in the north from where all evil originates, ac-
cording to most accounts. For example, Louhi or Pohjolan emäntä, Queen of Pohjola, is the
primary antagonist in the Kalevala mythos. Both Seppo Ilmarinen and Väinämöinen make services
to Louhi to earn the hand of her daughters for marriage. Vaadin is often mentioned in connection
with these services, such as the making of Sampo. On the other hand, as Sampo can be identified
with the mill mentioned in creation stories of Vaadin, its identification in the stories becomes un-
clear.

While beginning its life as an artifact, Vaadin is later represented as an antropomorphic divine
being.This is in contrast with the Bride of Gold, another creation of Seppo, which failed to become
a fully living and thinking being. Finding magical ways around fundamental problems in life are
central in Kalevala. In some areas, magical solutions are morally acceptable, while in others they
are not and the successes and failures in the mythos reflect this ethic. Research in the folklore
regarding the Bride of Gold myth has provided support for a theory that creating a wife would go
against very fundamental social rules of courting and mating, paralleling the disapproval of
"playing god" in acts involving life and death (though "cheating death" is usually considered a
positive act). The main motivation of the protagonists in Kalevala is courting young daughters,
which always ends in failure, usually for similar reasons. Animals, such as Vaadin, are outside
the social context and considered to belong in the same category with tools and machines. The
Vaadin myths present a noteworthy example of this categorization of animals and tools in the
same category at an archetypal level.

The Vaadin myths parallel the Sleipnir myths in the Scandinavian mythology. This connection is
especially visible for the connection of Väinämöinen with Odin, who used Sleipnir in his journeys.
The use of tongs for the legs of Vaadin actually suggests eight legs, which is the distinguishing
attribute of Sleipnir.While Sleipnir is almost universally depicted as a horse, the exact identification
of the steed may have changed during the transmission between the cultures.

The Bridle of Vaadin is a special artifact itself. There is no headstall, but only the rein, detached
from the creature, kept in the hand of the rider. The rein is a chain or set of "gadgets" used for
controlling the creature. The rein was built of web with special tools, with Seppo wearing magni-
fying goggles to work out the small details.

The significance and cultural influence of Vaadin can be seen in its identification with a constel-
lation in the traditional Finnish constellation system. The famous French astronomer Pierre
Charles Le Monnier (1715-99), who visited Lapland, introduced the constellation to international
star charts with the name Tarandus vel Rangifer. The constellation was present in many star
charts of the time, perhaps most notably in the Uranographia published in 1801 by Johann Elert
Bode, as shown in Figure B.1, “Constellation of Tarandus vel Rangifer in Bode's Uranographia

487

Songs of Vaadin

(1801)”. It was later removed in the unification of the constellation system towards the Greek
mythology.

Figure B.1. Constellation of Tarandus vel Rangifer in Bode's Uranographia
(1801)

488

Songs of Vaadin

Index
A
AbstractComponent, 64, 67

paintContent(), 248
AbstractComponentContainer, 64
AbstractField, 64

paintContent(), 248
addContainerFilter(), 232
addNestedContainerProperty(), 229
AJAX, 7, 33, 34
Alignment, 184-186
And (filter), 233

C
caption property, 70
Client-Side Engine, 32, 35, 248
Color Picker, 249
compatibility, 211
Component, 64
Component interface, 66, 67

caption, 70
description, 71
enabled, 72
icon, 73
locale, 73
read-only, 76
style name, 77
visible, 77

Container, 227-234
Filterable, 119, 232-234

cookies, 311-313
CSS, 33, 34, 205-217, 248

compatibility, 211
introduction, 207-212

CustomComponent, 193-203

D
Data Model, 33
DefaultWidgetSet, 248
description property, 71
DOM, 34
Drag and Drop, 313-321

Accept Criteria, 316-319

E
Eclipse

widget development, 249-254
enabled property, 72
Equal (filter), 232
events, 33

executeJavaScript(), 306

F
Field, 67-70
Filter (in Container), 232-234

G
getLocale(), 74
Google Web Toolkit, 4, 7, 32, 33, 34, 35, 153, 248,
254, 479

GWT Compiler, 248, 249
GWT Module Descriptor, 248, 386
importing, 270
themeing, 208
widgets, 247-282

Greater (filter), 232
GreaterOrEqual (filter), 232
GWT Module Descriptor, 248

H
HorizontalSplitPanel, 172-173
HTML templates, 33
HTTP, 32
HttpServletRequest, 311
HttpServletRequestListener, 310-313
HttpServletResponse, 311

I
icon property, 73
IndexedContainer, 232
interfaces, 65
IPC add-on, 346-352
IsNull (filter), 232
IT Mill Toolkit, 7, 33

J
Java, 35, 248
JavaDoc, 65
JavaScript, 4, 34, 248

executeJavaScript(), 306
print(), 306-307

JPAContainer, 413-436
JSON, 32, 33

L
layout, 65
Layout, 65
Less (filter), 232
LessOrEqual (filter), 232
Liferay

display descriptor, 335-336
plugin properties, 336-337

489Book of Vaadin

portlet descriptor, 335
liferay-display.xml, 335-336
liferay-plugin-package.xml, 336-337
liferay-portlet.xml, 354
locale property

in Component, 73
Log4j, 321

M
Maven

compiling, 29
creating a project, 27-29
using add-ons, 29, 384-387

memory leak, 322
MethodProperty, 230

N
nested bean properties, 229-230, 231
NestedMethodProperty, 230
Not (filter), 233
Null representation, 88-89

O
Or (filter), 233
overflow, 45

P
Paintable, 66, 248
PDF, 307
PermGen, 322
portal integration, 329-356
portlet.xml, 354
print(), 306-307
printing, 306-307

R
read-only property, 76
remoteable, 354

S
Sampler, 65
Scrollable, 46, 171
scroll bars, 45-46, 135, 170-171
Serializable, 66
server-side component, 248
setComponentAlignment(), 184-186
setNullRepresentation(), 88
setNullSettingAllowed(), 88
setVisibleColumns(), 230
SimpleStringFilter, 232
Sizeable interface, 78
SLF4J, 321

SQL, 34
static, 322
style name property, 77

T
Table, 113-130, 232
Terminal Adapter, 33
Text change events, 89-90
TextField, 86-90
theme, 33, 205-217
ThreadLocal pattern, 325-328
tooltips, 71
TouchKit, 437-448

U
UIDL, 32, 33, 248, 479

V
Vaadin Data Model, 219-234
Vaadin Plugin for Eclipse

visual designer, 193-203
Vaadin WSRP, 353-356
VariableOwner, 66
VerticalSplitPanel, 172-173
visible property, 77

W
widget, definition, 248
widgets, 247
widget set, 248
Window, 65

closing, 307
WSRP, 353-356

X
XHTML, 34
XML, 34
XMLHttpRequest, 34

490

Index

	Book of Vaadin
	Table of Contents
	Preface
	Part I. Vaadin Core Framework
	Chapter 1. Introduction
	1.1. Overview
	1.2. Example Application Walkthrough
	1.3. Support for the Eclipse IDE
	1.4. Goals and Philosophy
	1.5. Background

	Chapter 2. Getting Started with Vaadin
	2.1. Setting up the Development Environment
	2.1.1. Installing Java SDK
	Windows
	Linux / UNIX

	2.1.2. Installing Eclipse IDE
	Windows
	Linux / UNIX

	2.1.3. Installing Apache Tomcat
	2.1.4. Firefox and Firebug

	2.2. Installing Vaadin
	2.2.1. Vaadin Plugin for Eclipse
	Updating the Vaadin Plugin
	Updating the Vaadin Library

	2.2.2. Installing the JAR Package

	2.3. Your First Project with Vaadin
	2.3.1. Creating the Project
	2.3.2. Exploring the Project
	2.3.3. Setting Up and Starting the Web Server
	2.3.4. Running and Debugging

	2.4. Creating a Project with NetBeans
	2.4.1. Regular Web Application Project
	2.4.2. Maven Project from Vaadin Archetype

	2.5. Creating a Project with Maven

	Chapter 3. Architecture
	3.1. Overview
	3.2. Technological Background
	3.2.1. AJAX
	3.2.2. Google Web Toolkit
	3.2.3. JSON

	3.3. Applications as Java Servlet Sessions
	3.4. Client-Side Engine
	3.5. Events and Listeners

	Chapter 4. Writing a Web Application
	4.1. Overview
	4.2. Managing the Main Window
	4.3. Sub-Windows
	4.3.1. Opening and Closing a Sub-Window
	4.3.2. Window Positioning
	4.3.3. Scrolling Sub-Window Content
	4.3.4. Modal Windows

	4.4. Handling Events with Listeners
	4.5. Referencing Resources
	4.5.1. Resource Interfaces and Classes
	4.5.2. File Resources
	4.5.3. Class Loader Resources
	4.5.4. Theme Resources
	4.5.5. Stream Resources

	4.6. Shutting Down an Application
	4.6.1. Closing an Application
	4.6.2. Handling the Closing of a Window

	4.7. Handling Errors
	4.7.1. Error Indicator and message
	4.7.2. Notifications
	4.7.3. Customizing System Messages
	4.7.4. Handling Uncaught Exceptions

	4.8. Setting Up the Application Environment
	4.8.1. Creating Deployable WAR in Eclipse
	4.8.2. Web Application Contents
	4.8.3. Deployment Descriptor web.xml
	Deployment Descriptor Parameters

	Chapter 5. User Interface Components
	5.1. Overview
	5.2. Interfaces and Abstractions
	5.2.1. Component Interface
	Component Tree Management

	5.2.2. AbstractComponent
	5.2.3. Field Components (Field and AbstractField)
	Field Interface
	Handling Field Value Changes
	AbstractField Base Class

	5.3. Common Component Features
	5.3.1. Caption
	5.3.2. Description and Tooltips
	5.3.3. Enabled
	5.3.4. Icon
	5.3.5. Locale
	5.3.6. Read-Only
	5.3.7. Style Name
	5.3.8. Visible
	5.3.9. Sizing Components
	5.3.10. Managing Input Focus

	5.4. Label
	5.4.1. Content Mode
	5.4.2. Making Use of the XHTML Mode
	5.4.3. Spacing with a Label
	5.4.4. CSS Style Rules

	5.5. Link
	5.6. TextField
	5.6.1. Data Binding
	5.6.2. String Length
	5.6.3. Handling Null Values
	5.6.4. Text Change Events
	5.6.5. CSS Style Rules

	5.7. TextArea
	5.8. PasswordField
	5.9. RichTextArea
	5.10. Date and Time Input with DateField
	5.10.1. PopupDateField
	5.10.2. InlineDateField
	5.10.3. Time Resolution
	5.10.4. DateField Locale

	5.11. Button
	5.12. CheckBox
	5.13. Selecting Items
	5.13.1. Binding Selection Components to Data
	Adding New Items
	Item Captions
	Getting and Setting Selection

	5.13.2. Basic Select Component
	Filtered Selection

	5.13.3. ListSelect
	5.13.4. Native Selection Component NativeSelect
	5.13.5. Radio Button and Check Box Groups with OptionGroup
	Disabling Items

	5.13.6. Twin Column Selection with TwinColSelect
	5.13.7. Allowing Adding New Items
	5.13.8. Multiple Selection Mode
	5.13.9. Other Common Features
	Item Icons

	5.14. Table
	5.14.1. Selecting Items in a Table
	5.14.2. Table Features
	Page Length and Scrollbar
	Resizing Columns
	Reordering Columns
	Collapsing Columns
	Components Inside a Table
	Iterating Over a Table
	Filtering Table Contents

	5.14.3. Editing the Values in a Table
	Field Factories
	Navigation in Editable Mode

	5.14.4. Column Headers and Footers
	Headers
	Footers
	Handling Mouse Clicks on Headers and Footers

	5.14.5. Generated Table Columns
	5.14.6. Formatting Table Columns
	5.14.7. CSS Style Rules
	Setting Individual Cell Styles

	5.15. Tree
	5.16. MenuBar
	5.17. Embedded
	5.17.1. Embedded Objects
	5.17.2. Embedded Images
	5.17.3. Browser Frames

	5.18. Upload
	5.19. Form
	5.19.1. Form as a User Interface Component
	5.19.2. Binding Form to Data
	Generating Proper Fields with a FormFieldFactory

	5.19.3. Validating Form Input
	Using Validators in Forms
	Required Fields in Forms

	5.19.4. Buffering Form Data

	5.20. ProgressIndicator
	5.20.1. Doing Heavy Computation

	5.21. Slider
	5.22. LoginForm
	5.22.1. Customizing LoginForm

	5.23. Component Composition with CustomComponent

	Chapter 6. Managing Layout
	6.1. Overview
	6.2. Window and Panel Root Layout
	6.3. VerticalLayout and HorizontalLayout
	6.3.1. Sizing Contained Components

	6.4. GridLayout
	6.4.1. Sizing Grid Cells

	6.5. FormLayout
	6.6. Panel
	6.6.1. Scrolling the Panel Content

	6.7. HorizontalSplitPanel and VerticalSplitPanel
	6.8. TabSheet
	6.9. Accordion
	6.10. AbsoluteLayout
	6.11. CssLayout
	6.12. Layout Formatting
	6.12.1. Layout Size
	Expanding Components

	6.12.2. Layout Cell Alignment
	Size of Aligned Components

	6.12.3. Layout Cell Spacing
	6.12.4. Layout Margins

	6.13. Custom Layouts

	Chapter 7. Visual User Interface Design with Eclipse
	7.1. Overview
	7.2. Creating a New Composite
	7.3. Using The Visual Designer
	7.3.1. Adding New Components
	7.3.2. Setting Component Properties
	Basic Properties
	Layout Properties

	7.3.3. Editing an AbsoluteLayout

	7.4. Structure of a Visually Editable Component
	7.4.1. Sub-Component References
	7.4.2. Sub-Component Builders
	7.4.3. The Constructor

	Chapter 8. Themes
	8.1. Overview
	8.2. Introduction to Cascading Style Sheets
	8.2.1. Basic CSS Rules
	8.2.2. Matching by Element Class
	8.2.3. Matching by Descendant Relationship
	8.2.4. Notes on Compatibility

	8.3. Creating and Using Themes
	8.3.1. Styling Standard Components
	8.3.2. Built-in Themes
	8.3.3. Using Themes
	8.3.4. Theme Inheritance

	8.4. Creating a Theme in Eclipse

	Chapter 9. Binding Components to Data
	9.1. Overview
	9.2. Properties
	9.2.1. Property Viewers and Editors
	9.2.2. ObjectProperty Implementation
	9.2.3. Implementing the Property Interface

	9.3. Holding properties in Items
	9.3.1. The PropertysetItem Implementation
	9.3.2. Wrapping a Bean in a BeanItem
	Nested Beans

	9.4. Collecting Items in Containers
	9.4.1. BeanContainer
	Nested Properties
	Defining a Bean ID Resolver

	9.4.2. BeanItemContainer
	9.4.3. Iterating Over a Container
	9.4.4. Filterable Containers
	Atomic and Composite Filters
	Built-In Filter Types
	Implementing Custom Filters

	Chapter 10. Vaadin SQLContainer
	10.1. Architecture
	10.2. Getting Started with SQLContainer
	10.2.1. Creating a connection pool
	10.2.2. Creating the TableQuery Query Delegate
	10.2.3. Creating the Container

	10.3. Filtering and Sorting
	10.3.1. Filtering
	10.3.2. Sorting

	10.4. Editing
	10.4.1. Adding items
	10.4.2. Fetching generated row keys
	10.4.3. Version column requirement
	10.4.4. Auto-commit mode
	10.4.5. Modified state

	10.5. Caching, Paging and Refreshing
	10.5.1. Container Size
	10.5.2. Page Length and Cache Size
	10.5.3. Refreshing the Container
	10.5.4. Cache Flush Notification Mechanism

	10.6. Referencing Another SQLContainer
	10.7. Using FreeformQuery and FreeformStatementDelegate
	10.8. Non-implemented methods of Vaadin container interfaces
	10.9. Known Issues and Limitations

	Chapter 11. Developing New Components
	11.1. Overview
	11.2. Doing It the Simple Way in Eclipse
	11.2.1. Creating a Widget
	11.2.2. Recompiling the Widget Set
	11.2.3. Plugin Related Project Settings

	11.3. Google Web Toolkit Widgets
	11.3.1. Extending a Vaadin Widget
	11.3.2. Example: A Color Picker GWT Widget
	11.3.3. Styling GWT Widgets

	11.4. Integrating a GWT Widget
	11.4.1. Deserialization of Component State from Server
	11.4.2. Serialization of Component State to Server
	Immediateness

	11.4.3. Example: Integrating the Color Picker Widget

	11.5. Defining a Widget Set
	11.6. Server-Side Components
	11.6.1. Binding to the Client-Side Widget
	11.6.2. Server-Client Serialization
	11.6.3. Client-Server Deserialization
	11.6.4. Example: Color Picker Server-Side Component

	11.7. Using a Custom Component
	11.7.1. Example: Color Picker Application
	11.7.2. Web Application Deployment

	11.8. GWT Widget Development
	11.8.1. Creating a Widget Project
	11.8.2. Importing GWT Installation Package
	11.8.3. Writing the Code
	Guidelines for the Project Structure
	Importing the ColorPicker Demo

	11.8.4. Compiling GWT Widget Sets
	Compiling a Custom Widget Set
	Generating Widget Set Definition

	11.8.5. Ready to Run
	11.8.6. GWT Development Mode
	Creating a GWT Development Mode Launch Configuration
	Creating a Launch Configuration Manually
	Debugging with GWT Development Mode

	11.8.7. Packaging a Widget Set
	11.8.8. Troubleshooting

	Chapter 12. Advanced Web Application Topics
	12.1. Special Characteristics of AJAX Applications
	12.2. Application-Level Windows
	12.2.1. Creating New Application-Level Windows
	12.2.2. Creation of Windows When Requested
	12.2.3. Dynamic Multi-Window Applications
	12.2.4. Closing Windows
	12.2.5. Caveats in Using Multiple Windows
	Communication Between Windows

	12.3. Embedding Applications in Web Pages
	12.3.1. Embedding Inside a div Element
	12.3.2. Embedding Inside an iframe Element
	12.3.3. Cross-Site Embedding with the Vaadin XS Add-on

	12.4. Debug and Production Mode
	12.4.1. Debug Mode
	12.4.2. Analyzing Layouts
	12.4.3. Custom Layouts
	12.4.4. Debug Functions for Component Developers

	12.5. Resources
	12.5.1. URI Handlers
	12.5.2. Parameter Handlers

	12.6. Shortcut Keys
	12.6.1. Click Shortcuts for Default Buttons
	12.6.2. Field Focus Shortcuts
	12.6.3. Generic Shortcut Actions
	12.6.4. Supported Key Codes and Modifier Keys
	Supported Key Combinations

	12.7. Printing
	12.8. Google App Engine Integration
	12.9. Common Security Issues
	12.9.1. Sanitizing User Input to Prevent Cross-Site Scripting

	12.10. URI Fragment and History Management with UriFragmentUtility
	12.11. Capturing HTTP Requests
	12.11.1. Using Request and Response Objects
	12.11.2. Managing Cookies
	Setting a Cookie
	Reading a Cookie

	12.12. Drag and Drop
	12.12.1. Handling Drops
	12.12.2. Dropping Items On a Tree
	Accept Criteria for Trees

	12.12.3. Dropping Items On a Table
	Accept Criteria for Tables

	12.12.4. Accepting Drops
	Client-Side Criteria
	Server-Side Criteria
	Accept Indicators

	12.12.5. Dragging Components
	12.12.6. Dropping on a Component
	Target Details for Wrapped Components

	12.12.7. Dragging Files from Outside the Browser

	12.13. Logging
	12.14. Accessing Session-Global Data
	12.14.1. Passing References Around
	12.14.2. Overriding attach()
	12.14.3. ThreadLocal Pattern

	Chapter 13. Portal Integration
	13.1. Deploying to a Portal
	13.2. Creating a Portal Application Project in Eclipse
	13.3. Portlet Deployment Descriptors
	13.4. Portlet Hello World
	13.5. Installing Vaadin in Liferay
	13.6. Handling Portlet Requests
	13.7. Handling Portlet Mode Changes
	13.8. Non-Vaadin Portlet Modes
	13.9. Vaadin Control Panel for Liferay
	13.9.1. Installing
	13.9.2. Using the Control Panel
	Upgrading Vaadin
	Compiling Widget Set

	13.10. Vaadin IPC for Liferay
	13.10.1. Installing the Add-on
	13.10.2. Basic Communication
	13.10.3. Considerations
	Browser Security
	Efficiency

	13.10.4. Communication Through Session Attributes
	13.10.5. Serializing and Encoding Data
	13.10.6. Communicating with Non-Vaadin Portlets

	13.11. Remote Portlets with WSRP
	13.11.1. Installing the Add-on
	Compiling the Widget Set

	13.11.2. Configuring a Remote Portlet
	Portlet Configuration
	Other Portlet Configuration

	13.11.3. Producer Configuration
	13.11.4. Consumer Configuration
	13.11.5. Advanced Configuration
	Alternative Path for Vaadin Resources

	Chapter 14. Rapid Development Using Vaadin and Roo
	14.1. Overview
	14.2. Setting Up the Environment
	14.2.1. Installing Spring Roo
	14.2.2. Creating the Project
	14.2.3. Installing Vaadin Plugin for Spring Roo
	14.2.4. Setting up the Roo Data Layer

	14.3. Creating the Domain Model
	14.3.1. Domain Model Design
	14.3.2. Creating the Model in Roo

	14.4. Creating Vaadin Application and CRUD Views
	14.4.1. Creating the Application Skeleton
	14.4.2. Generating CRUD Views
	14.4.3. Deploying to Development Server

	14.5. Using Vaadin Add-ons in a Roo project
	14.5.1. Installing Add-ons
	14.5.2. Compiling the Widget Set
	14.5.3. Configuring the Deployment Assembly

	14.6. Customizing Views
	14.6.1. Modifying Roo generated entity form
	14.6.2. Creating a Calendar View for Filling Work Entries
	Customizing Generated Code
	Using Custom Views
	Adding New Entries

	14.6.3. Creating a Custom View for Reporting

	14.7. Authentication and Authorization
	14.7.1. Implementing Authentication and Authorization

	14.8. Internationalization
	14.9. Testing the Application
	14.9.1. Overview of Testing
	14.9.2. Running the Test Server
	14.9.3. Installing TestBench with Maven
	14.9.4. Generating JUnit Tests
	14.9.5. Configuring System Properties
	14.9.6. Notes

	14.10. Exception Handling
	14.10.1. Preventing Stacktraces in the UI
	14.10.2. Where to Catch Exceptions
	Handling Exceptions in AbstractEntityView
	Handling Exceptions in CalendarView

	14.11. Deploying to Cloud Foundry
	14.11.1. Installing the Cloud Foundry Plug-in in STS
	14.11.2. Deploying the Application
	14.11.3. Binding to the MySQL Service

	Part II. Vaadin Add-ons
	Chapter 15. Using Vaadin Add-ons
	15.1. Overview
	15.2. Downloading Add-ons from Vaadin Directory
	15.3. Compiling Add-on Widget Sets
	15.3.1. Compiling Widget Sets in Eclipse
	15.3.2. Compiling Widget Sets with an Ant Script
	15.3.3. Troubleshooting

	15.4. Removing Add-ons
	15.5. Using Add-ons in a Maven Project
	15.5.1. Adding a Dependency
	15.5.2. Enabling Widget Set Compilation
	15.5.3. Updating and Compiling the Project Widget Set

	Chapter 16. Vaadin Calendar
	16.1. Overview
	16.2. Installing Calendar
	16.3. Basic Use
	16.3.1. Setting the Date Range
	16.3.2. Adding and Managing Events
	16.3.3. Getting Events from a Container
	Keeping the Container Ordered
	Delegation of Event Management

	16.4. Implementing an Event Provider
	16.4.1. Custom Events
	16.4.2. Implementing the Event Provider

	16.5. Configuring the Appearance
	16.5.1. Sizing
	16.5.2. Styling
	Style for Undefined Size
	Event Style

	16.5.3. Visible Hours and Days

	16.6. Drag and Drop
	16.7. Using the Context Menu
	16.8. Localization and Formatting
	16.8.1. Setting the Locale and Time Zone
	16.8.2. Time and Date Caption Format

	16.9. Customizing the Calendar
	16.9.1. Overview of Handlers
	16.9.2. Creating a Calendar
	16.9.3. Backward and Forward Navigation
	16.9.4. Date Click Handling
	16.9.5. Handling Week Clicks
	16.9.6. Handling Event Clicks
	16.9.7. Event Dragging
	16.9.8. Handling Drag Selection
	16.9.9. Resizing Events

	Chapter 17. Vaadin Timeline
	17.1. Graph types
	17.2. Interaction Elements
	17.3. Event Markers
	17.4. Efficiency

	Chapter 18. Vaadin JPAContainer
	18.1. Overview
	18.2. Installing
	18.2.1. Downloading the Package
	18.2.2. Installation Package Content
	18.2.3. Downloading with Maven
	Using the Maven Archetype

	18.2.4. Including Libraries in Your Project
	18.2.5. Persistence Configuration
	Persistence XML Schema
	Defining the Persistence Unit
	Database Connection
	Logging Configuration
	Other Settings

	18.2.6. Troubleshooting

	18.3. Defining a Domain Model
	18.3.1. Persistence Metadata
	Annotation: @Entity
	Annotation: @Id
	Annotation: @OneToOne
	Annotation: @Embedded
	Annotation: @OneToMany
	Annotation: @ElementCollection
	Annotation: @ManyToOne
	Annotation: @Transient

	18.4. Basic Use of JPAContainer
	18.4.1. Creating JPAContainer with JPAContainerFactory
	Creating JPAContainer Manually

	18.4.2. Creating and Accessing Entities
	Entity Items
	Refreshing JPAContainer

	18.4.3. Nested Properties
	18.4.4. Hierarchical Container
	Unsupported Hierarchical Features

	18.5. Entity Providers
	18.5.1. Built-In Entity Providers
	LocalEntityProvider
	MutableLocalEntityProvider
	BatchableLocalEntityProvider
	CachingLocalEntityProvider
	CachingMutableLocalEntityProvider
	CachingBatchableLocalEntityProvider

	18.5.2. Using JNDI Entity Providers in JEE6 Environment
	18.5.3. Entity Providers as Enterprise Beans

	18.6. Filtering JPAContainer
	18.7. Querying with the Criteria API
	18.7.1. Filtering the Query
	18.7.2. Compatibility

	18.8. Automatic Form Generation
	18.8.1. Configuring the Field Factory
	18.8.2. Using the Field Factory
	18.8.3. Master-Detail Editor

	18.9. Using JPAContainer with Hibernate
	18.9.1. Lazy loading
	18.9.2. The EntityManager-Per-Request pattern
	18.9.3. Joins in Hibernate vs EclipseLink

	Chapter 19. Mobile Applications with TouchKit
	19.1. Overview
	19.2. Considerations Regarding Mobile Browsing
	19.2.1. Mobile Human Interface
	19.2.2. Bandwidth
	19.2.3. Mobile Features
	19.2.4. Compatibility
	Back Button

	19.3. Creating a Project Targeting Multiple Devices
	19.3.1. Using TouchKit Add-on in a Project
	Deployment Descriptor

	19.3.2. Application

	19.4. Mobile User Interface Components
	19.4.1. NavigationView
	Navigation Bar
	Toolbar
	Styling with CSS

	19.4.2. Toolbar
	Styling with CSS

	19.4.3. NavigationManager
	Handling View Changes
	Tracking Breadcrumbs

	19.4.4. NavigationButton
	Styling with CSS

	19.4.5. Popover
	Styling with CSS

	19.4.6. Switch
	Styling with CSS

	19.4.7. ComponentGroup
	Styling with CSS

	19.4.8. EmailField
	19.4.9. NumberField

	19.5. Mobile Features
	19.5.1. Geolocation

	19.6. Testing and Debugging on Mobile Devices
	19.6.1. Debugging

	Chapter 20. Vaadin TestBench
	20.1. Overview
	20.2. TestBench Components
	20.3. Requirements
	20.4. Installing Vaadin TestBench
	20.4.1. Test Development Installation
	20.4.2. A Distributed Test Environment
	20.4.3. Downloading and Unpacking the Installation Package
	20.4.4. Installing the Recorder
	20.4.5. Quick Setup for Playback on a Workstation

	20.5. Setting Up the Grid Hub
	20.5.1. Configuring the Hub
	20.5.2. Predefined Target Environments
	20.5.3. Browser Identifiers
	20.5.4. Starting the Hub

	20.6. Setting Up Grid Nodes
	20.6.1. Configuring a Remote Control
	20.6.2. Configuring the Run Script
	20.6.3. Starting the Remote Control
	20.6.4. Running Tests Without a Grid Hub
	20.6.5. Browser settings
	20.6.6. Operating system settings
	20.6.7. Settings for Screenshots

	20.7. Using Vaadin TestBench Recorder
	20.7.1. Starting the Recorder
	20.7.2. Recording
	20.7.3. Playing Back Tests
	20.7.4. Editing Tests
	20.7.5. Saving Tests
	Saving Individual Tests
	Saving Test Suites

	20.7.6. Invalid Tests

	20.8. Test Script Commands
	20.8.1. Taking Screen Captures: screenCapture
	20.8.2. Recording Tooltips: showTooltip
	20.8.3. Recording Text Assertion: assertText
	20.8.4. Asserting CSS Class: assertCSSClass
	20.8.5. Asserting CSS Class: assertNotCSSClass
	20.8.6. Connecting Tests Together: includeTest
	20.8.7. Handling a Confirmation Box: expectDialog
	20.8.8. Uploading Files: uploadFile
	20.8.9. Shortcut Keys: keyPressSpecial

	20.9. Compiling and Executing JUnit Tests
	20.9.1. Configuring the Ant Script
	Mandatory Settings
	Optional Settings

	20.9.2. Converting HTML Tests
	Using the TestConverter
	Command-Line Interface
	Ant Script
	Optional conversion settings

	20.9.3. Compiling JUnit tests
	Command-Line Compilation
	Ant Build Script

	20.9.4. Executing JUnit Tests
	Test Execution Parameters
	Executing JUnit from Command-Line
	Executing JUnit from an Ant Script
	JUnit Output

	20.9.5. Comparing Screenshots
	Screenshot Comparison Error Images
	Reference Images
	Visualization of Differences in Screenshots with Highlighting
	Practices for Handling Screenshots

	Appendix A. User Interface Definition Language (UIDL)
	A.1. API for Painting Components
	A.2. JSON Rendering

	Appendix B. Songs of Vaadin
	Index

