
Book of Vaadin
Vaadin 6

Book of Vaadin: Vaadin 6
Oy IT Mill Ltd
Marko Grönroos

Vaadin 6.1.0

Published: 2009-09-09
Copyright © 2000-2009 Oy IT Mill Ltd.

Abstract

Vaadin is a server-side AJAX web application development framework that enables developers to build
high-quality user interfaces with Java. It provides a library of ready-to-use user interface components and
a clean framework for creating your own components.The focus is on ease-of-use, re-usability, extensibility,
and meeting the requirements of large enterprise applications. Vaadin has been used in production since
2001 and it has proven to be suitable for building demanding business applications.
All rights reserved.

Table of Contents
Preface .. ix

1. Introduction ... 1
1.1. Overview .. 1
1.2. Example Application Walkthrough .. 3
1.3. Support for the Eclipse IDE ... 4
1.4. Goals and Philosophy ... 4
1.5. Background .. 5

2. Getting Started with Vaadin ... 9
2.1. Installing Vaadin ... 9

2.1.1. Installing the Distribution Package ... 10
2.1.2. Starting the Content Browser .. 10
2.1.3. Package Contents .. 11
2.1.4. Demo Applications ... 13

2.2. Setting up the Development Environment ... 13
2.2.1. Installing Java SDK .. 14
2.2.2. Installing Eclipse IDE .. 15
2.2.3. Installing Apache Tomcat .. 16
2.2.4. Firefox and Firebug .. 16
2.2.5. Vaadin Plugin for Eclipse .. 17

2.3. QuickStart with Eclipse .. 20
2.3.1. Starting Eclipse .. 20
2.3.2. Importing Vaadin as a Project ... 20
2.3.3. Running the Demo Applications in Eclipse ... 21
2.3.4. Debugging the Demo Applications in Eclipse ... 24
2.3.5. Using QuickStart as a Project Skeleton ... 25

2.4. Your First Project with Vaadin ... 25
2.4.1. Creating the Project ... 25
2.4.2. Exploring the Project .. 29
2.4.3. Setting Up and Starting the Web Server .. 31
2.4.4. Running and Debugging ... 33

3. Architecture ... 35
3.1. Overview .. 35
3.2. Technological Background ... 38

3.2.1. AJAX ... 38
3.2.2. Google Web Toolkit .. 38
3.2.3. JSON .. 39

3.3. Applications as Java Servlet Sessions .. 39
3.4. Client-Side Engine .. 39
3.5. Events and Listeners ... 40

4. Writing a Web Application .. 43
4.1. Overview .. 43
4.2. Managing the Main Window ... 46
4.3. Child Windows .. 46

4.3.1. Opening and Closing a Child Window .. 47
4.3.2. Window Positioning .. 49
4.3.3. Modal Windows .. 49

4.4. Handling Events with Listeners .. 50
4.5. Referencing Resources ... 52

4.5.1. Resource Interfaces and Classes .. 53

iiiBook of Vaadin

4.5.2. File Resources ... 54
4.5.3. Class Loader Resources .. 54
4.5.4. Theme Resources .. 54
4.5.5. Stream Resources ... 54

4.6. Shutting Down an Application .. 56
4.6.1. Closing an Application .. 56
4.6.2. Handling the Closing of a Window ... 56

4.7. Handling Errors ... 57
4.7.1. Error Indicator and message ... 57
4.7.2. Notifications ... 58
4.7.3. Handling Uncaught Exceptions .. 60

4.8. Setting Up the Application Environment .. 61
4.8.1. Creating Deployable WAR in Eclipse ... 61
4.8.2. Web Application Contents ... 62
4.8.3. Deployment Descriptor web.xml .. 62

5. User Interface Components ... 65
5.1. Overview .. 66
5.2. Interfaces and Abstractions ... 67

5.2.1. Component Interface ... 68
5.2.2. AbstractComponent ... 69
5.2.3. Field Components (Field and AbstractField) .. 70

5.3. Common Component Features .. 72
5.3.1. Description and Tooltips .. 72
5.3.2. Sizing Components .. 73
5.3.3. Managing Input Focus .. 74

5.4. Label ... 75
5.5. Link ... 78
5.6. TextField ... 78
5.7. RichTextArea .. 79
5.8. Date and Time Input .. 80

5.8.1. Calendar ... 81
5.8.2. DateField Locale .. 81

5.9. Button ... 81
5.10. CheckBox .. 82
5.11. Selecting Items ... 83

5.11.1. Basic Select Component .. 86
5.11.2. Native Selection Component NativeSelect .. 87
5.11.3. Radio Button and Check Box Groups with OptionGroup 88
5.11.4. Twin Column Selection with TwinColSelect ... 89
5.11.5. Allowing Adding New Items ... 89
5.11.6. Multiple Selection Mode .. 90

5.12. Table ... 91
5.12.1. Selecting Items in a Table ... 92
5.12.2. CSS Style Rules .. 93
5.12.3. Table Features ... 95
5.12.4. Generated Table Columns ... 99

5.13. Tree ... 102
5.14. MenuBar .. 103
5.15. Embedded ... 105

5.15.1. Embedded Objects ... 106
5.15.2. Embedded Images ... 106
5.15.3. Browser Frames ... 107

5.16. Upload ... 107

iv

Book of Vaadin

5.17. Form .. 109
5.17.1. Form as a User Interface Component .. 110
5.17.2. Binding Form to Data .. 112
5.17.3. Validating Form Input .. 114
5.17.4. Buffering Form Data ... 116

5.18. ProgressIndicator ... 117
5.18.1. Doing Heavy Computation .. 117

5.19. Component Composition with CustomComponent ... 118

6. Managing Layout ... 121
6.1. Overview .. 122
6.2. Window and Panel Root Layout .. 124
6.3. VerticalLayout and HorizontalLayout ... 124

6.3.1. Sizing Contained Components .. 125
6.4. GridLayout .. 128

6.4.1. Sizing Grid Cells .. 129
6.5. FormLayout ... 132
6.6. Panel ... 133
6.7. SplitPanel .. 135
6.8. TabSheet ... 137
6.9. Accordion ... 140
6.10. Layout Formatting ... 141

6.10.1. Layout Size .. 141
6.10.2. Layout Cell Alignment ... 143
6.10.3. Layout Cell Spacing .. 145
6.10.4. Layout Margins ... 146

6.11. Custom Layouts .. 148

7. Visual User Interface Design with Eclipse (experimental) .. 151
7.1. Overview .. 151
7.2. Creating a New CustomComponent ... 152
7.3. Using The Visual Editor ... 154

7.3.1. Adding New Components ... 154
7.3.2. Setting Component Properties .. 155
7.3.3. Editing an AbsoluteLayout .. 158

7.4. Structure of a Visually Editable Component .. 159
7.4.1. Sub-Component References ... 160
7.4.2. Sub-Component Builders .. 160
7.4.3. The Constructor ... 161

8. Themes .. 163
8.1. Overview .. 163
8.2. Introduction to Cascading Style Sheets .. 165

8.2.1. Basic CSS Rules .. 165
8.2.2. Matching by Element Class ... 166
8.2.3. Matching by Descendant Relationship ... 167
8.2.4. Notes on Compatibility .. 169

8.3. Creating and Using Themes .. 170
8.3.1. Styling Standard Components ... 170
8.3.2. Built-in Themes .. 172
8.3.3. Using Themes .. 172
8.3.4. Theme Inheritance ... 173

8.4. Creating a Theme in Eclipse .. 173

9. Binding Components to Data ... 177

v

Book of Vaadin

9.1. Overview .. 177
9.2. Properties .. 178
9.3. Holding properties in Items .. 179
9.4. Collecting items in Containers .. 179

9.4.1. Iterating Over a Container ... 180

10. Developing Custom Components .. 183
10.1. Overview .. 184
10.2. Doing It the Simple Way in Eclipse ... 185

10.2.1. Creating a Widget Set ... 186
10.2.2. Creating a Widget ... 188
10.2.3. Recompiling the Widget Set .. 190

10.3. Google Web Toolkit Widgets ... 191
10.3.1. Extending a Vaadin Widget ... 191
10.3.2. Example: A Color Picker GWT Widget ... 192
10.3.3. Styling GWT Widgets .. 194

10.4. Integrating a GWT Widget .. 195
10.4.1. Deserialization of Component State from Server 196
10.4.2. Serialization of Component State to Server .. 197
10.4.3. Example: Integrating the Color Picker Widget 199

10.5. Defining a Widget Set .. 200
10.5.1. GWT Module Descriptor ... 201

10.6. Server-Side Components ... 201
10.6.1. Component Tag Name .. 202
10.6.2. Server-Client Serialization ... 202
10.6.3. Client-Server Deserialization ... 202
10.6.4. Extending Standard Components .. 203
10.6.5. Example: Color Picker Server-Side Component 203

10.7. Using a Custom Component .. 204
10.7.1. Example: Color Picker Application ... 204
10.7.2. Web Application Deployment ... 205

10.8. GWT Widget Development ... 206
10.8.1. Creating a Widget Project in Eclipse .. 206
10.8.2. Importing GWT Installation Package .. 207
10.8.3. Creating a GWT Module ... 208
10.8.4. Compiling GWT Widget Sets ... 209
10.8.5. Ready to Run ... 211
10.8.6. Hosted Mode Browser .. 212
10.8.7. Out of Process Hosted Mode (OOPHM) ... 217

11. Advanced Web Application Topics ... 219
11.1. Special Characteristics of AJAX Applications .. 219
11.2. Application-Level Windows .. 220

11.2.1. Creating New Application-Level Windows ... 221
11.2.2. Creating Windows Dynamically ... 222
11.2.3. Closing Windows .. 225
11.2.4. Caveats in Using Multiple Windows ... 226

11.3. Embedding Applications in Web Pages ... 227
11.3.1. Embedding Inside a div Element .. 227
11.3.2. Embedding Inside an iframe Element .. 230

11.4. Debug and Production Mode .. 232
11.4.1. Debug Mode .. 232
11.4.2. Analyzing Layouts .. 233
11.4.3. Custom Layouts ... 234

vi

Book of Vaadin

11.4.4. Debug Functions for Component Developers .. 234
11.5. Resources .. 234

11.5.1. URI Handlers ... 235
11.5.2. Parameter Handlers .. 235

11.6. Shortcut Keys ... 237
11.7. Printing ... 240
11.8. Portal Integration ... 241

11.8.1. Deploying to a Portal .. 241
11.8.2. Portlet Deployment Descriptors ... 242
11.8.3. Portlet Hello World .. 245
11.8.4. Installing Widget Sets and Themes in Liferay .. 245
11.8.5. Handling Portlet Events .. 247

A. User Interface Definition Language (UIDL) .. 249
A.1. API for Painting Components ... 250
A.2. JSON Rendering .. 251

B. Songs of Vaadin .. 255

vii

Book of Vaadin

viii

Preface
This book provides an overview of Vaadin and covers the most important topics which you might
encounter when developing applications with it. A more detailed documentation of individual
classes, interfaces, and methods is given in the Java API Reference.

You can browse an online version of this book at the Vaadin website http://vaadin.com/.
A PDF version is also included in the Vaadin installation package and if you install the Vaadin
Plugin for Eclipse, you can browse it in the Eclipse Help. You may find the HTML or the Eclipse
Help plugin version more easily searchable than this printed book or the PDF version, but the
content is the same. Just like the rest of Vaadin, this book is open source.

Writing this manual is ongoing work and this first edition represents a snapshot around the release
of Vaadin 6.1. A preview edition of this book was published in May 2009, just before the first re-
lease of Vaadin 6. This edition contains a large number of additions and corrections related to
Vaadin 6. While much of the book has been reviewed by the development team, it is possible if
not probable that errors and outdated sections still remain. Many sections are under work and
will be expanded in future.

Who is This Book For?

This book is intended for software developers who use, or are considering to use, Vaadin to de-
velop web applications.

The book assumes that you have some experience with programming in Java, but if not, it is as
easy to begin learning Java with Vaadin as with any other UI framework if not easier. No knowledge
of AJAX is needed as it is well hidden from the developer.

You may have used some desktop-oriented user interface frameworks for Java, such as AWT,
Swing, or SWT. Or a library such as Qt for C++. Such knowledge is useful for understanding the
scope of Vaadin, the event-driven programming model, and other common concepts of UI
frameworks, but not necessary.

If you don't have a web graphics designer at hand, knowing the basics of HTML and CSS can
help, so that you can develop presentation themes for your application. A brief introduction to
CSS is provided. Knowledge of Google Web Toolkit (GWT) may be useful if you develop or integ-
rate new client-side components.

Organization of This Book

The Book of Vaadin gives an introduction to what Vaadin is and how you use it to develop web
applications.

Chapter 1, Introduction The chapter gives introduction to the application archi-
tecture supported by Vaadin, the core design ideas
behind the framework, and some historical background.

Chapter 2, Getting Started with
Vaadin

This chapter gives practical instructions for installing
Vaadin and the reference toolchain, including the
Vaadin Plugin for Eclipse, how to run and debug the
demos, and how to create your own application project
in the Eclipse IDE.

ixBook of Vaadin

Chapter 3, Architecture This chapter gives an introduction to the architecture
of Vaadin and its major technologies, including AJAX,
Google Web Toolkit, JSON, and event-driven program-
ming.

Chapter 4, Writing a Web Applic-
ation

This chapter gives all the practical knowledge required
for creating applications with Vaadin, such as window
management, application lifecycle, deployment in a
servlet container, and handling events, errors, and re-
sources.

Chapter 5, User Interface Com-
ponents

This chapter essentially gives the reference document-
ation for all the core user interface components in
Vaadin and their most significant features. The text
gives examples for using each of the components.

Chapter 6, Managing Layout This chapter describes the layout components, which
are used for managing the layout of the user interface,
just like in any desktop application frameworks.

Chapter 7, Visual User Interface
Design with Eclipse (experiment-
al)

This chapter gives instructions for using the visual editor
for Eclipse, which is included in the Vaadin Plugin for
the Eclipse IDE.

Chapter 8, Themes This chapter gives an introduction to Cascading Style
Sheets (CSS) and explains how you can use them to
build custom visual themes for your application.

Chapter 9, Binding Components
to Data

This chapter gives an overview of the built-in data
model of Vaadin, consisting of properties, items, and
containers.

Chapter 10, Developing Custom
Components

This chapter describes the process of creating new
client-side widgets with Google Web Toolkit (GWT) and
integrating them with server-side counterparts. The
chapter also gives practical instructions for creating
widget projects in Eclipse, and using the GWT Hosted
Mode Browser.

Chapter 11, Advanced Web Ap-
plication Topics

This chapter provides many special topics that are
commonly needed in applications, such as opening
new browser windows, embedding applications in reg-
ular web pages, low-level management of resources,
shortcut keys, debugging, etc.

Appendix A, User Interface
Definition Language (UIDL)

This chapter gives an outline of the low-level UIDL
messaging language, normally hidden from the de-
veloper. The chapter includes the description of the
serialization API needed for synchronizing the compon-
ent state between the client-side and server-side com-
ponents.

Appendix B, Songs of Vaadin Mythological background of the word Vaadin.

Organization of This Bookx

Preface

Supplementary Material

The Vaadin installation package and websites offer plenty of material that can help you understand
what Vaadin is, what you can do with it, and how you can do it.

Demo Applications The installation package of Vaadin includes a number of
demo applications that you can run and use with your web
browser.The content browser allows you to view the source
code of the individual demo applications. You should find
especially the Sampler demo a good friend of yours.

You can find the demo applications online at http://vaad-
in.com/.

Address Book Tutorial The Address Book is a sample application accompanied
with a tutorial that gives detailed step-by-step instructions
for creating a real-life web application with Vaadin.You can
find the tutorial from the product website.

Developer's Website Vaadin Developer's Site at http://dev.vaadin.com/ provides
various online resources, such as the ticket system, a de-
velopment wiki, source repositories, activity timeline, devel-
opment milestones, and so on.

The wiki provides instructions for developers, especially for
those who wish to check-out and compile Vaadin itself from
the source repository.The technical articles deal with integ-
ration of Vaadin applications with various systems, such as
JSP, Maven, Spring, Hibernate, and portals. The wiki also
provides answers to Frequently Asked Questions.

Online Documentation You can read this book online at http://vaadin.com/book.
Lots of additional material, including technical HOWTOs,
answers to Frequently Asked Questions and other docu-
mentation is also available on Vaadin web-site
[http://dev.vaadin.com/].

Support

Stuck with a problem? No need to lose your hair over it, the Vaadin developer community and
the IT Mill company offer support for all of your needs.

Community Support Forum You can find the user and developer community forum
for Vaadin at http://vaadin.com/forum. Please use the
forum to discuss any problems you might encounter,
wishes for features, and so on. The answer for your
problems may already lie in the forum archives, so
searching the discussions is always the best way to be-
gin.

Report Bugs If you have found a possible bug in Vaadin, the demo
applications, or the documentation, please report it by
filing a ticket at the Vaadin developer's site at ht-
tp://dev.vaadin.com/.You may want to check the existing

xiSupplementary Material

Preface

http://vaadin.com/
http://vaadin.com/
http://dev.vaadin.com/
http://vaadin.com/book
http://dev.vaadin.com/
http://dev.vaadin.com/
http://vaadin.com/forum
http://dev.vaadin.com/
http://dev.vaadin.com/

tickets before filing a new one. You can make a ticket to
make a request for a new feature as well, or to suggest
modifications to an existing feature.

Commercial Support IT Mill offers full commercial support and training services
for the Vaadin products. Read more about the commer-
cial products at http://vaadin.com/pro for details.

About the Author

Marko Grönroos is a professional writer and software developer working at IT Mill Ltd in Turku,
Finland. He has been involved in web application development since 1994 and has worked on
several application development frameworks in C, C++, and Java. He has been active in many
open source software projects and holds an M.Sc. degree in Computer Science from the University
of Turku.

Acknowledgements

Much of the book is the result of close work within the development team at IT Mill. Joonas Le-
htinen, CEO of IT Mill Ltd, wrote the first outline of the book, which became the basis for the first
two chapters. Since then, Marko Grönroos has become the primary author. The development
team has contributed several passages, answered numerous technical questions, reviewed the
manual, and made many corrections.

The contributors are (in chronological order):

Joonas Lehtinen
Jani Laakso
Marko Grönroos
Jouni Koivuviita
Matti Tahvonen
Artur Signell
Marc Englund
Henri Sara

About Oy IT Mill Ltd

Oy IT Mill Ltd is a Finnish software company specializing in the design and development of Rich
Internet Applications. The company offers planning, implementation, and support services for
the software projects of its customers, as well as sub-contract software development. Vaadin,
originally IT Mill Toolkit, is the flagship open source product of the company, for which it provides
commercial development and support services.

About the Authorxii

Preface

http://vaadin.com/pro

Chapter 1

Introduction

1.1. Overview .. 1
1.2. Example Application Walkthrough ... 3
1.3. Support for the Eclipse IDE ... 4
1.4. Goals and Philosophy .. 4
1.5. Background .. 5

This chapter provides an introduction to software development with Vaadin, including installation
of Vaadin, the Eclipse development environment, and any other necessary or useful utilities. We
look into the design philosophy behind Vaadin, its history, and recent major changes.

1.1. Overview

The core piece of Vaadin is the Java library that is designed to make creation and maintenance
of high quality web-based user interfaces easy. The key idea in the server-driven programming
model of Vaadin is that it allows you to forget the web and lets you program user interfaces much
like you would program any Java desktop application with conventional toolkits such as AWT,
Swing, or SWT. But easier.

While traditional web programming is a fun way to spend your time learning new web technologies,
you probably want to be productive and concentrate on the application logic. With the server-
driven programming model, Vaadin takes care of managing the user interface in the browser and
AJAX communications between the browser and the server. With the Vaadin approach, you do
not need to learn and debug browser technologies, such as HTML or JavaScript.

1Book of Vaadin

Figure 1.1. General Architecture of Vaadin

Figure 1.1, “General Architecture of Vaadin” illustrates the basic architecture of web applications
made with Vaadin. Vaadin consists of the server-side framework and a client-side engine that
runs in the browser as a JavaScript program, rendering the user interface and delivering user
interaction to the server. As the application runs as a persistent Java Servlet session in an applic-
ation server, you can easily bind your application to data and logic tiers.

Because HTML, JavaScript, and other browser technologies are essentially invisible to the ap-
plication logic, you can think of the web browser as only a thin client platform. A thin client displays
the user interface and communicates user events to the server at a low level. The control logic
of the user interface runs on a Java-based web server, together with your business logic. By
contrast, a normal client-server architecture with a dedicated client application would include a
lot of application specific communications between the client and the server. Essentially removing
the user interface tier from the application architecture makes our approach a very effective one.

As the Client-Side Engine is executed as JavaScript in the browser, no browser plugins are
needed for using applications made with Vaadin. This gives it a sharp edge over frameworks
based on Flash, Java Applets, or other plugins. Vaadin relies on the support of GWT for a wide
range of browsers, so that the developer doesn't need to worry about browser support.

Behind the server-driven development model, Vaadin makes the best use of AJAX (Asynchronous
JavaScript and XML) techniques that make it possible to create Rich Internet Applications (RIA)
that are as responsive and interactive as desktop applications. If you're a newcomer to AJAX,
see Section 3.2.1, “AJAX” to find out what it is and how AJAX applications differ from traditional
web applications.

Hidden well under the hood, Vaadin uses GWT, the Google Web Toolkit, for rendering the user
interface in the browser. GWT programs are written in Java, but compiled into JavaScript, thus
freeing the developer from learning JavaScript and other browser technologies. GWT is ideal for
implementing advanced user interface components (or widgets in GWT terminology) and interaction

Overview2

Introduction

logic in the browser, while Vaadin handles the actual application logic in the server. Vaadin is
designed to be extensible, and you can indeed use any 3rd-party GWT components easily, in
addition to the component repertoire offered in Vaadin. The use of GWT also means that all the
code you need to write is pure Java.

The Vaadin library defines a clear separation between user
interface presentation and logic and allows you to develop
them separately. Our approach to this is themes, which dictate
the visual appearance of applications. Themes control the
appearance of the user interfaces using CSS and (optional)
HTML page templates. As Vaadin provides excellent default
themes, you do not usually need to make much customization,
but you can if you need to. For more about themes, see
Chapter 8, Themes.

We hope that this is enough about the basic architecture and
features of Vaadin for now. You can read more about it later
in Chapter 3, Architecture, or jump straight to more practical
things in Chapter 4, Writing a Web Application.

1.2. Example Application Walkthrough

Let us follow the long tradition of first saying "Hello World!" when learning a new programming
environment. After that, we can go through a more detailed example that implements the model-
view-controller architecture.The two examples given are really simple, but this is mostly because
Vaadin is designed to make things simple.

Example 1.1. HelloWorld.java

import com.vaadin.ui.*;

public class HelloWorld extends com.vaadin.Application {

 public void init() {
 Window main = new Window("Hello window");
 setMainWindow(main);
 main.addComponent(new Label("Hello World!"));
 }
}

The first thing to note is that the example application extends com.vaadin.Application class.
The Application class is used as the base class for all user applications. Instances of the Ap-
plication are essentially user sessions, and one is created for each user using the application.
In the context of our HelloWorld application, it is sufficient to know that the application is started
when the user first accesses it and at that time init method is invoked.

Initialization of the application first creates a new window object and sets "Hello window" as its
caption.The window is then set as the main window of the application; an application can actually
have many windows. This means that when a user launches the application, the contents of the
"main window" are shown to the user in the web page. The caption is shown as the title of the
(browser) window.

A new user interface component of class com.vaadin.ui.Label is created. The label is set to
draw the text "Hello World!". Finally, the label is added to the main window. And here we are,
when the application is started, it draws the text "Hello World!" to the browser window.

3Example Application Walkthrough

Introduction

The following screenshot shows what the "Hello World!" program will look like in a web browser.

Before going into details, we should note that this example source code is complete and does
not need any additional declaratively defined template files to be run. To run the program, you
can just add it to your web application, as explained in Section 4.8, “Setting Up the Application
Environment”.

1.3. Support for the Eclipse IDE

While Vaadin is not bound to any specific IDE, and you can in fact easily use it without any IDE
altogether, we provide special support for the Eclipse IDE, which has become the standard envir-
onment for Java development. The support includes:

• Import the installation package as a QuickStart demo project in Eclipse

• Install the Vaadin Plugin for Eclipse, which allows you to:

• Create new Vaadin projects

• Create custom themes

• Create custom client-side widgets and widget sets

• Edit components with a visual (WYSIWYG) editor

• Easily upgrade to a newer version of the Vaadin library

The Vaadin Plugin for Eclipse is our recommended way of installing Vaadin; the actual installation
package contains demos and documentation that are available also from the website, so you do
not normally need to download and install it, unless you want to experiment with the demos or
try debugging.

Installing and updating the plugin is covered in Section 2.2.5, “Vaadin Plugin for Eclipse” and the
creation of a new Vaadin project using the plugin in Section 2.4.1, “Creating the Project”. See
Section 8.4, “Creating a Theme in Eclipse”, Section 10.2, “Doing It the Simple Way in Eclipse”,
and Chapter 7, Visual User Interface Design with Eclipse (experimental) for instructions on using
the different features of the plugin.

1.4. Goals and Philosophy

Simply put, Vaadin's ambition is to be the best possible tool when it comes to creating web user
interfaces for business applications. It is easy to adopt, as it is designed to support both entry-
level and advanced programmers, as well as usability experts and graphical designers.

Support for the Eclipse IDE4

Introduction

When designing Vaadin, we have followed the philosophy inscribed in the following rules.

Right tool for the right purpose

Because our goals are high, the focus must be clear. This toolkit is designed for creating web
applications. It is not designed for creating websites or advertisements demos. For such purposes,
you might find (for instance) JSP/JSF or Flash more suitable.

Simplicity and maintainability

We have chosen to emphasize robustness, simplicity, and maintainability. This involves following
the well-established best practices in user interface frameworks and ensuring that our implement-
ation represents an ideal solution for its purpose without clutter or bloat.

XML is not designed for programming

The Web is inherently document-centered and very much bound to the declarative presentation
of user interfaces. The Vaadin framework frees the programmer from these limitations. It is far
more natural to create user interfaces by programming them than by defining them in declarative
templates, which are not flexible enough for complex and dynamic user interaction.

Tools should not limit your work

There should not be any limits on what you can do with the framework: if for some reason the
user interface components do not support what you need to achieve, it must be easy to add new
ones to your application. When you need to create new components, the role of the framework
is critical: it makes it easy to create re-usable components that are easy to maintain.

1.5. Background

The library was not written overnight. After working with web user interfaces since the beginning
of the Web, a group of developers got together in 2000 to form IT Mill. The team had a desire to
develop a new programming paradigm that would support the creation of real user interfaces for
real applications using a real programming language.

The library was originally called Millstone Library.The first version was used in a large production
application that IT Mill designed and implemented for an international pharmaceutical company.
IT Mill made the application already in the year 2001 and it is still in use. Since then, the company
has produced dozens of large business applications with the library and it has proven its ability
to solve hard problems easily.

The next generation of the library, IT Mill Toolkit Release 4, was released in 2006. It introduced
an entirely new AJAX-based presentation engine. This allowed the development of AJAX applic-
ations without the need to worry about communications between the client and the server.

Release 5 Into the Open

IT Mill Toolkit 5, released at the end of 2007, took a significant step further into AJAX. The client-
side rendering of the user interface was completely rewritten using GWT, the Google Web Toolkit.
This allowed the use of Java for developing all aspects of the framework. It also allows easy in-
tegration of existing GWT components.

5Right tool for the right purpose

Introduction

The Release 5 was published under the Apache License 2, an unrestrictive open source license,
to create faster expansion of the user base and make the formation of a development community
possible.

Stabilization of the release 5 took over a year of work from the development team. It introduced
a number of changes in the API, the client-side customization layer, and the themes. Many signi-
ficant changes were done during the beta phase, until the stable version 5.3.0 was released in
March 2009.

IT Mill Toolkit 5 introduced many significant improvements both in the API and in the functionality.
Many of the user interface components in IT Mill Toolkit 4 and before were available as styles
for a basic set of components. For example, the Select class allowed selection of items from a
list. Normally, it would show as a dropdown list, but setting setStyle("optiongroup") would
change it to a radio button group. In Release 5, we have obsoleted the setStyle() method
and provided distinct classes for such variations. For example, we now have OptionGroup that
inherits the AbstractSelect component. In a similar fashion, the Button component had a
switchMode attribute, set with setSwitchMode(), that would turn the button into a check box.
Release 5 introduces a separate CheckBox component.The setStyle() method actually had
a dual function, as it was also used to set the HTML element class attribute for the components
to allow styling in CSS.This functionality has been changed to addStyle() and removeStyle()
methods.

The OrderedLayout was replaced (since the first stable version 5.3.0) with specific VerticalLayout
and HorizontalLayout classes.

Release 5 introduced expansion ratio for applicable layout components. It allows you to designate
one or more components as expanding and set their relative expansion ratios. The layout will
then distribute the left-over space between the expanded components according to the ratios.
The release also introduces a number of new user interface components: SplitPanel, Slider,
Notification, LoginForm, MenuBar, UriFragmentUtility and RichTextEditor.

The Client-Side Engine of IT Mill Toolkit was entirely rewritten with Google Web Toolkit. This did
not, by itself, cause any changes in the API of IT Mill Toolkit, because GWT is a browser techno-
logy that is well hidden behind the API. The transition from JavaScript to GWT makes the devel-
opment and integration of custom components and customization of existing components much
easier than before. It does, however, require reimplementation of any existing custom client-side
code with GWT. See Chapter 3, Architecture for more information on the impact of GWT on the
architecture and Chapter 10, Developing Custom Components for details regarding creation or
integration of custom client-side components with GWT.

The release introduced an entirely new, simplified architecture for themes. Themes control the
appearance of web applications with CSS and can include images, HTML templates for custom
layouts, and other related resources. The old themeing architecture in Release 4 required use
of some JavaScript even in the simplest themes, and definition of a theme XML descriptor. In
Release 5, you simply include the CSS file for the theme and any necessary graphics and HTML
templates for custom layouts. For more details on the revised theme architecture, see Chapter 8,
Themes. Old CSS files are not compatible with Release 5, as the HTML class style names of
components have changed. As GWT implements many components with somewhat different
HTML elements than what IT Mill Toolkit Release 4 used, styles may need to be updated also
in that respect.

Release 5 Into the Open6

Introduction

Birth of Vaadin Release 6

IT Mill Toolkit was renamed as Vaadin in spring 2009 to avoid common confusions with the name
(IT Mill is a company not the product) and to clarify the separation between the company and the
open source project. Vaadin means a female semi-domesticated mountain reindeer in Finnish.

The most notable enhancements in Vaadin 6 are the following external development tools:

• Eclipse Plugin

• Visual user interface editor under Eclipse (experimental)

The Eclipse Plugin allows easy creation of Vaadin projects and custom client-side widgets. See
Section 2.2.5, “Vaadin Plugin for Eclipse” for details. The visual editor, described in Chapter 7,
Visual User Interface Design with Eclipse (experimental) makes prototyping easy and new users
of Vaadin should find it especially useful for introducing oneself to Vaadin. Like Vaadin itself, the
tools are open source.

While the API in Vaadin 6 is essentially backward-compatible with IT Mill Toolkit 5.4, the package
names and some name prefixes were changed to comply with the new product name:

• Package name com.itmill.toolkit was renamed as com.vaadin.

• The static resource directory ITMILL was changed to VAADIN.

• Client-side widget prefix was changed from "I" to "V".

• CSS style name prefix was changed from "i-" to "v-".

Other enhancements in Vaadin 6 are listed in the Release Notes, which also gives detailed in-
structions for upgrading from IT Mill Toolkit 5.

7Birth of Vaadin Release 6

Introduction

8

Chapter 2

Getting Started
with Vaadin

2.1. Installing Vaadin ... 9
2.2. Setting up the Development Environment ... 13
2.3. QuickStart with Eclipse .. 20
2.4. Your First Project with Vaadin .. 25

This chapter gives practical instructions for installing Vaadin and the reference toolchain, installing
the Vaadin plugin in Eclipse, and running and debugging the demo applications.

2.1. Installing Vaadin

This section gives an overview of the Vaadin package and its installation. You have two options
for installing:

1. Install the installation package

2. If you use Eclipse, you can install the Vaadin plugin for Eclipse, as described in Sec-
tion 2.2.5, “Vaadin Plugin for Eclipse”

Even if you use Eclipse, you can install the installation package and import it under Eclipse as
the QuickStart project. It allows you to run and debug the demo applications.

9Book of Vaadin

2.1.1. Installing the Distribution Package

You can install the Vaadin installation package in a few simple steps:

1. Download the newest Vaadin installation package from the download page at http://vaad-
in.com/download/. Select the proper download package for your operating system:
Windows, Linux, or Mac OS X.

2. Unpack the installation package to a directory using an decompression program appro-
priate for the package type (see below) and your operating system.

• In Windows, use the default ZIP decompression program to unpack the package into
your chosen directory e.g. C:\dev.

Warning
At least the Windows XP default decompression program and some
versions of WinRAR cannot unpack the installation package properly in
certain cases. Decompression can result in an error such as "The system
cannot find the file specified." This happens because the decompression
program is unable to handle long file paths where the total length exceeds
256 characters.This occurs, for example, if you try to unpack the package
under Desktop. You should unpack the package directly into C:\dev or
some other short path or use another decompression program.

• In Linux, use GNU tar and BZIP2 decompression with tar jxf vaadin-linux-
6.x.x.tar.bz2 command.

• In Mac OS X, use tar and Gzip decompression with tar zxf vaadin-mac-6.x.x.tar.gz
command.

The files will be, by default, decompressed into a directory with the name
vaadin-<operatingsystem>-6.x.x.

2.1.2. Starting the Content Browser

The Content Browser is your best friend when using Vaadin. It allows you to browse documentation
and example source code, and run the demo applications. The demo applications demonstrate
most of the core features of Vaadin.You can find the demo applications also at the vaadin website:
http://vaadin.com/demo.

To start the Content Browser, run the start script in the Vaadin installation directory as instructed
below.The start script launches a stand-alone web server running on the local host at port 8888,
and a web browser at address http://localhost:8888/.

The Content Browser will open the default web browser configured in your system. If your default
browser is not compatible with Vaadin the demo applications may not work properly. In that case
launch a supported browser manually and navigate to http://localhost:8888/.

If the Content Browser fails to start, make sure that no other service is using port 8888.

Installing the Distribution Package10

Getting Started with Vaadin

http://vaadin.com/download/
http://vaadin.com/download/
http://vaadin.com/demo
http://localhost:8888/
http://localhost:8888/

JRE must be installed
You must have Java Runtime Environment (JRE) installed or the batch file will fail
and close immediately. A JRE can be downloaded from ht-
tp://java.sun.com/javase/downloads/index.jsp.

Firewall software
Executing the Content Browser locally may cause a security warning from your firewall
software because of the started web server. You need to allow connections to port
8888 for the Content Browser to work.

Windows

Run the start.bat batch file by double-clicking on the icon. Wait until the web server and web
browser has started, it can take a while.

Linux / UNIX

Open a shell window, change to the Vaadin installation directory, and run the start.sh shell
script.You have to run it with the following command:

$ sh start.sh

Starting Vaadin in Desktop Mode.
Running in http://localhost:8888

2007-12-04 12:44:55.657::INFO: Logging to STDERR via org.mortbay.log.StdErrLog
2007-12-04 12:44:55.745::INFO: jetty-6.1.5
2007-12-04 12:45:03.642::INFO: NO JSP Support for , did not find
org.apache.jasper.servlet.JspServlet
2007-12-04 12:45:03.821::INFO: Started SelectChannelConnector@0.0.0.0:8888

Wait until the web server and web browser has started, it can take a while.

Browser support
Vaadin supports the most commonly used web browsers, including Internet Explorer
6-8, Firefox 3, Safari 3 and Opera 9.6. In addition to these, most of the modern web
browsers also work event if they are not supported. The definitive list of supported
browsers can be found on http://vaadin.com/features.

Mac OS X

Double-click on the Start Vaadin icon. Wait until the web server and web browser has started,
it can take a while.

If the start icon fails in your environment for some reason, you can start the Content Browser by
following the instructions for Linux/UNIX above: open a shell window, change to the installation
directory, and execute sh start.sh.

2.1.3. Package Contents

At the root of installation directory, you can find the start.bat (Windows) or start.sh (Linux
and Mac) script that launches the Vaadin Content Browser, which allows you to run the demo
applications and read the documentation included in the package.

11Package Contents

Getting Started with Vaadin

http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp

Figure 2.1. Vaadin Package Contents

The WebContent directory contains all files related to Vaadin and the Content Browser. If you
do not wish to or can not run the Content Browser, you can open index.html in a web browser
to view the installation package contents and documentation. The demos will not be usable
though.The release-notes.html file contains information about changes in the latest release
and the release history. The license subdirectory contains licensing guidelines
(licensing-guidelines.html) for Vaadin and licenses for other libraries included in the in-
stallation package. The COPYING file in the installation root also contains license information.

The Vaadin Library itself is located at WebContent/vaadin-6.x.x.jar. The JAR package
contains, in addition to the compiled files, the full source code of the library.

The WebContent/docs directory contains full documentation for Vaadin, including JavaDoc
API Reference Documentation (api subdirectory) and this manual in both HTML and printable
PDF format.

The WebContent/WEB-INF directory contains source code for the demo applications in the src
subdirectory and the required libraries in the lib subdirectory.

The gwt folder contains the full Google Web Toolkit installation package, including runtime libraries
for the selected operating system, full documentation, and examples. You will need GWT if you
intend to compile custom client-side widgets for Vaadin (described in Chapter 10, Developing
Custom Components).

In addition, the installation directory contains project files to allow importing the installation
package as a project into the Eclipse IDE. See Section 2.3, “QuickStart with Eclipse” for details
on how to do this.

Package Contents12

Getting Started with Vaadin

2.1.4. Demo Applications

The Content Browser allows you to run several demo applications included in the installation
package. The applications demonstrate how you can use Vaadin for different tasks. Below is a
selection of the included demos. Notice that the source code for all demos is included in the in-
stallation package and you can directly modify them if you import the package as a project in
Eclipse, as instructed in Section 2.3, “QuickStart with Eclipse”.

Sampler Sampler demonstrates the various standard components
and features of Vaadin. Clicking on one of the available
sample icons will take you to the sample page, where
you can see a live version of the sample together with a
short description of feature. The Sampler allows you to
view the full source code of each sample and provides
links to the API documentation and to related samples.
Sampler is the best place to get an overview of what is
included in Vaadin.

Address Book Tutorial This step-by-step tutorial covers everything needed to
build a Vaadin application. The tutorial shows how you
create layouts/views, implement navigation between
views, bind components to a data source, use notifica-
tions, and much more. It also includes a section on how
to create a custom theme for your application.

Reservation Application The Reservation Application demonstrates the use of
various components in a semi-real application connected
to a local database. It also shows how to integrate a
Google Maps view inside an application.

Coverflow A simple example on how you can integrate Vaadin with
Flex.

VaadinTunes A non-functional application that demonstrates how you
can create complex layouts using Vaadin.

Note: starting the demo applications can take several seconds.

2.2. Setting up the Development Environment

This section gives a step-by-step guide for setting up a development environment.Vaadin supports
a wide variety of tools, so you can use any IDE for writing the code, most web browsers for
viewing the results, any operating system or processor supported by the Java 1.5 platform, and
almost any Java server for deploying the results.

In this example, we use the following toolchain:

• Windows XP [http://www.microsoft.com/windowsxp/] or Linux or Mac

• Sun Java 2 Standard Edition 6.0 [http://java.sun.com/javase/downloads/index.jsp] (Java
1.5 or newer is required)

• Eclipse IDE for Java EE Developers (Ganymede version)
[http://www.eclipse.org/downloads/]

13Demo Applications

Getting Started with Vaadin

http://www.microsoft.com/windowsxp/
http://www.microsoft.com/windowsxp/
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/

• Apache Tomcat 6.0 (Core) [http://tomcat.apache.org/]

• Firefox 3.0.7 [http://www.getfirefox.com/]

• Firebug 1.3.3 (optional) [http://www.getfirebug.com/]

• Vaadin 6.x.x [http://vaadin.com/download/]

The above is a good choice of tools, but you can use almost any tools you are comfortable with.

Figure 2.2. Development Toolchain and Process

Figure 2.2, “Development Toolchain and Process” illustrates the development environment and
process.You develop your application as an Eclipse project.The project must include, in addition
to your source code, the Vaadin Library. It can also include your project-specific themes.

You must compile and deploy a project to a web container before you can use use it. You can
deploy a project through the Web Tools Platform for Eclipse, which allows automatic deployment
of web applications from Eclipse. You can deploy a project also manually, by creating a web
application archive (WAR) and deploying it through the web container's interface.

2.2.1. Installing Java SDK

Java SDK is required by Vaadin and also by the Eclipse IDE. Vaadin is compatible with Java 1.5
and later editions.

Installing Java SDK14

Getting Started with Vaadin

http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.getfirefox.com/
http://www.getfirefox.com/
http://www.getfirebug.com/
http://www.getfirebug.com/
http://vaadin.com/download/
http://vaadin.com/download/

Windows

1. Download Sun Java 2 Standard Edition 6.0 from http://java.sun.com/javase/downloads/in-
dex.jsp [http://java.sun.com/javase/downloads/index.jsp]

2. Install the Java SDK by running the installer. The default options are fine.

Linux / UNIX

1. Download Sun Java 2 Standard Edition 6.0 from http://java.sun.com/javase/downloads/in-
dex.jsp [http://java.sun.com/javase/downloads/index.jsp]

2. Decompress it under a suitable base directory, such as /opt. For example, for Java
SDK, enter (either as root or with sudo in Linux):

cd /opt
sh (path-to-installation-package)/jdk-6u1-linux-i586.bin

and follow the instructions in the installer.

2.2.2. Installing Eclipse IDE

Windows

Eclipse is now installed in C:\dev\eclipse and can be started from there (by double clicking
eclipse.exe).

1. Download Eclipse IDE for Java EE Developers (Ganymede version) from http://www.ec-
lipse.org/downloads/ [http://www.eclipse.org/downloads/]

2. Decompress the Eclipse IDE package to a suitable directory.You are free to select any
directory and to use any ZIP decompressor, but in this example we decompress the
ZIP file by just double-clicking it and selecting "Extract all files" task from Windows
compressed folder task. In our installation example, we use C:\dev as the target dir-
ectory.

Linux / UNIX

You have two basic options for installing Eclipse in Linux and UNIX: you can either install it using
the package manager of your operating system or by downloading and installing the packages
manually. The manual installation method is recommended, because the latest versions of the
packages available in a Linux package repository may be incompatible with Eclipse plugins that
are not installed using the package manager.

1. Download Download Eclipse IDE for Java EE Developers (Ganymede version) from
http://www.eclipse.org/downloads/ [http://www.eclipse.org/downloads/]

2. Decompress the Eclipse package into a suitable base directory. It is important to make
sure that there is no old Eclipse installation in the target directory. Installing a new version
on top of an old one probably renders Eclipse unusable.

3. Eclipse should normally be installed as a regular user, as this makes installation of
plugins easier. Eclipse also stores some user settings in the installation directory. To
install the package, enter:

$ tar zxf (path-to-installation-package)/eclipse-jee-ganymede-SR2-linux-gtk.tar.gz

15Installing Eclipse IDE

Getting Started with Vaadin

http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/

This will extract the package to a subdirectory with the name eclipse.

4. You may wish to add the Eclipse installation directory and the bin subdirectory in the
installation directory of Java SDK to your system or user PATH.

An alternative to the above procedure is to use the package management system of your operating
system. For example, in Ubuntu Linux, which includes Sun Java SDK and Eclipse in its APT re-
pository, you can install the programs from a package manager GUI or from command-line with
a command such as:

$ sudo apt-get install sun-java6-jdk eclipse

This is, however, not recommended, because the Eclipse package may not include all the neces-
sary Java EE tools, most importantly the Web Standard Tools, and it may cause incompatibilities
with some components that are not installed with the package management system of your op-
erating system.

2.2.3. Installing Apache Tomcat

Apache Tomcat is a lightweight Java web server suitable for both development and production.
There are many ways to install it, but here we simply decompress the installation package.

Apache Tomcat should be installed with user permissions. During development, you will be running
Eclipse or some other IDE with user permissions, but deploying web applications to a Tomcat
server that is installed system-wide requires administrator or root permissions.

1. Download the installation package:

Apache Tomcat 6.0 (Core Binary Distribution) from http://tomcat.apache.org/

2. Decompress Apache Tomcat package to a suitable target directory, such as C:\dev
(Windows) or /opt (Linux or Mac OS X). The Apache Tomcat home directory will be
C:\dev\apache-tomcat-6.0.x or /opt/apache-tomcat-6.0.x, respectively.

2.2.4. Firefox and Firebug

Vaadin supports many web browsers and you can use any of them for development. If you plan
to create a custom theme, customized layouts or new user interface components, we recommend
that you use Firefox together with Firebug for debugging. Vaadin contains special support for
Firebug and can show debug information in its console.

If you do not have Firefox installed already, go to www.getfirefox.com [http://www.getfirefox.com/]
and download and run the installer.

Optional. After installing Firefox, use it to open http://www.getfirebug.com/
[http://www.getfirebug.com/]. Follow the instructions on the site to install the latest stable version
of Firebug available for the browser. You might need to tell Firefox to allow the installation by
clicking the yellow warning bar at the top of the browser-window.

When Firebug is installed, it can be enabled at any time from the bottom right corner of the Firefox
window. Figure 2.3, “Firebug Debugger for Firefox” shows an example of what Firebug looks like.

Installing Apache Tomcat16

Getting Started with Vaadin

http://www.getfirefox.com/
http://www.getfirefox.com/
http://www.getfirebug.com/
http://www.getfirebug.com/

Figure 2.3. Firebug Debugger for Firefox

Now that you have installed the development environment, you can proceed to creating your first
application.

2.2.5. Vaadin Plugin for Eclipse

If you are using the Eclipse IDE, using the Vaadin plugin should help greatly.The plugin includes:

• An integration plugin with wizards for creating new Vaadin-based projects, themes, and
client-side widgets and widget sets.

• A visual editor for editing custom composite user interface components in a WYSIWYG
fashion. With full round-trip support from source code to visual model and back, the ed-
itor integrates seamlessly with your development process.

• A version of Book of Vaadin that you can browse in the Eclipse Help system.

You can install the plugin as follows:

1. Start Eclipse.

2. Select Help → Software Updates....

3. Select the Available Software tab.

4. Add the Vaadin plugin update site by clicking Add Site....

17Vaadin Plugin for Eclipse

Getting Started with Vaadin

Enter the URL of the Vaadin Update Site: http://vaadin.com/eclipse and click OK. The
Vaadin site should now appear in the Software Updates window.

5. Select all the Vaadin plugins in the tree.

Finally, click Install.

Detailed and up-to-date installation instructions for the Eclipse plugin can be found at http://vaad-
in.com/eclipse.

Updating the Vaadin Plugin

If you have automatic updates enabled in Eclipse (see Window → Preferences → Install/Update
→ Automatic Updates), the Vaadin plugin will be updated automatically along with other plugins.
Otherwise, you can update the Vaadin plugin (there are actually multiple plugins) manually as
follows:

1. Select Help → Software Updates..., the Software Updates and Add-ons window will
open.

2. Select the Installed Software tab.

3. If you want to update only the Vaadin plugins, select them in the list by clicking the plugins
and holding the Ctrl key pressed for all but the first.

Vaadin Plugin for Eclipse18

Getting Started with Vaadin

http://vaadin.com/eclipse
http://vaadin.com/eclipse
http://vaadin.com/eclipse

4. Click Update.

Notice that updating the Vaadin plugin updates only the plugin and not the Vaadin library, which
is project specific. See below for instructions for updating the library.

Updating the Vaadin Library

Updating the Vaadin plugin does not update Vaadin library. The library is project specific, as a
different version might be required for different projects, so you have to update it separately for
each project. To change the library to a newer (or some other) version, do as follows:

1. Select the project in the Project Explorer and select Project → Preferences or press
Alt-Enter.

2. In the project preferences window that opens, select Vaadin → Vaadin Version.

3. If the version that you want to use is not included in the Vaadin version drop-down list,
click Download to open the download window.

If you want to use a development version, select Show pre-release versions and
nightly builds. Select the version that you want to download and click OK.

19Vaadin Plugin for Eclipse

Getting Started with Vaadin

4. Select the version that you want to use from the Vaadin version down-down list and
click Apply.

You can observe that the new library appears in the WebContent/WEB-INF/lib folder.

2.3. QuickStart with Eclipse

Eager to start developing you own applications using Vaadin? This section presents a QuickStart
into running and debugging Vaadin demos under Eclipse. The QuickStart includes a web server,
so you do not need to have a full-weight web container such as Apache Tomcat installed.

2.3.1. Starting Eclipse

If you have followed the instructions given in Section 2.2, “Setting up the Development Environ-
ment”, you can start Eclipse by running C:\dev\eclipse\eclipse.exe (Windows) or
/opt/eclipse/eclipse (Linux or OS X). Depending on your environment, you may need to
give additional memory settings for Eclipse, as the default values are known to cause problems
often in some systems.

When starting Eclipse for the first time, it asks where to save the workspace.You can select any
directory, but here we select C:\dev\workspace (Windows) or /home/<user>/workspace
(Linux or OS X). We suggest that you also set this as the default.

Close the Eclipse "Welcome" -screen when you are ready to continue.

2.3.2. Importing Vaadin as a Project

If you have not yet downloaded the Vaadin package, instructions for downloading and unpacking
are available at Section 2.1.1, “Installing the Distribution Package”.

The installation directory of Vaadin contains all necessary files to allow importing it as a ready-
to-run Eclipse project:

1. Start Eclipse with any workspace you like. Switch to the Java Perspective through
Window → Open Perspective → Java.

2. Select File → Import... to open the import dialog.

3. In the Import dialog, select General → Existing Projects into Workspace and click
Next.

4. In the Select root directory option, click the Browse button, and select the folder where
you unpacked Vaadin, e.g.c:/dev/vaadin-windows-6.x.x. Click OK in the selection
window. The Projects list now shows a project named vaadin-examples. Click Finish
in the Import window to finish importing the project.

The newly imported project should look like Figure 2.4, “Vaadin demo project imported
into Eclipse”.

QuickStart with Eclipse20

Getting Started with Vaadin

Figure 2.4. Vaadin demo project imported into Eclipse

You can now browse the source code of the demo applications in Eclipse. The next
section describes how you can run the demos.

2.3.3. Running the Demo Applications in Eclipse

Once the project is imported, as described above, you can run the Content Browser, including
the demo applications, as follows:

1. From the main menu, select Run → Run Configurations....

2. From the list on the left, select Java Application → Vaadin Web Mode.

3. Click Run.

Note that after the application has been launched once, it appears in the Favorites list. You can
then click on the small dropdown arrow on the right side of the Run button on Eclipse toolbar
and select Vaadin Web Mode.

Running the application in Web Mode will start an embedded web server and open a browser
window with the Content Browser. The default system web browser is opened; make sure that
the browser is compatible with Vaadin.The Console view in the lower pane of Eclipse will display
text printed to standard output by the application. Clicking on the red Terminate button will stop
the server.

21Running the Demo Applications in Eclipse

Getting Started with Vaadin

Figure 2.5. Vaadin Content Browser Started Under Eclipse

Running the Demo Applications in Eclipse22

Getting Started with Vaadin

Note that executing the web application locally may cause a security warning from your firewall
software because of the started web server. You need to allow connections to port 8888 for the
Content Browser to work. Also, if the web service fails to start, make sure that no other service
is using port 8888.

Launching the Hosted Mode Browser

The Hosted Mode Browser of Google Web Toolkit is a special web browser that runs the client-
side GWT Java code as Java runtime instead of JavaScript. This allows you to debug the client-
side components in an IDE such as Eclipse.

Hosted Mode Browser in Linux
The Hosted Mode Browser in Google Web Toolkit 1.5.62/Linux is not compatible
with Vaadin. If you want to debug client-side code in Linux you should download the
experimental OOPHM-version of Vaadin.This contains a newer GWT which supports
using a normal browser for debugging.This is explained more in Section 10.8.7, “Out
of Process Hosted Mode (OOPHM)”. Note that you should not use the OOPHM
version of Vaadin in production environments, only for debugging.

To run the demo applications in the Hosted Mode Browser of Google Web Toolkit, follow the
following steps:

1. If not already started, start the demo application in Web Mode as described above. We
only need the server so close the web browser which is automatically opened.

2. From the main menu, select Run → Debug Configurations... .

3. From the list select Java Application → Vaadin Hosted Mode.

4. Click Debug.

Starting demo applications under the Hosted Mode Browser can take considerable time!
This is especially true for the Reservation and Color Picker applications, which require compilation
of custom widget sets. During this time, the Hosted Mode Browser is unresponsive and does not
update its window. Compiling widget sets can take 5-30 seconds, depending on the hardware.

As with the Web Mode launcher, after you have run the Hosted Mode launcher once, you can
click the dropdown marker on right of the Debug button in the toolbar and select Vaadin Hosted
Mode.

To use the Hosted Mode Browser in other projects, you need to create a launch configuration in
Eclipse. See Section 10.8.6, “Hosted Mode Browser” for more detailed information about the
Hosted Mode Browser and how to create the launch configuration.

How to Stop the Run

To stop the launched Jetty web container that serves the Content Browser web application, select
the Console tab and click on the Terminate button.

Figure 2.6.Terminating a Launch

23Running the Demo Applications in Eclipse

Getting Started with Vaadin

To clean up all terminated launches from the Console window, click on the Remove All Termin-
ated Launches button.

Figure 2.7. Removing Terminated Launches

2.3.4. Debugging the Demo Applications in Eclipse

At some point when developing an application, you want to debug it. Running a web application
in debug mode is easy in Eclipse. Next, we will show you how to debug the demo applications
by inserting a breakpoint in the Calc example.

1. Make sure to stop any previous Run command as instructed above at the end of Sec-
tion 2.3.3, “Running the Demo Applications in Eclipse”.

2. Select Run → Debug Configurations... from the main menu and the Debug configur-
ation window will open.

3. Select Java Application → Vaadin Web Mode and click Debug. The server will start
and the web browser will open.

4. Open the source code for the Calc program. It is located in
WebContent/WEB-INF/src/com.vaadin.demo.Calc.WebContent/WEB-INF/src
is the project's source folder, shown right below the JRE System Library. Double-click
the class to open the source code in the editor.

5. Insert a breakpoint in the init() by right-clicking on the gray bar on the left of the ed-
itor window to open the context menu, and select Toggle Breakpoint.

6. Switch to the browser window and click the Calc link (below More Examples) to open
it.

7. Eclipse encouters the breakpoint and asks to switch to the Debug perspective. Click
Yes. The debug window will show the current line where the execution stopped as illus-
trated in Figure 2.8, “Execution Stopped at Breakpoint in Debug Perspective in Eclipse”:

Figure 2.8. Execution Stopped at Breakpoint in Debug Perspective
in Eclipse

8. You can now step forward or use any commands you would normally use when debug-
ging an application in Eclipse. Note that you can only debug the application code in this

Debugging the Demo Applications in Eclipse24

Getting Started with Vaadin

way. If you are running the Hosted Mode browser you can also insert break-points in
client side component code and debug it.

2.3.5. Using QuickStart as a Project Skeleton

If you like, you can also use the imported Vaadin demo project as a skeleton for your own project.
Just remove any unnecessary files or files related to the demo applications from the project. The
proper way of creating a new Vaadin project will be described in the next section: Section 2.4,
“Your First Project with Vaadin”.

2.4.Your First Project with Vaadin

This section gives instructions for creating a new Eclipse project using the Vaadin Plugin. The
task will include the following steps:

1. Create a new project

2. Write the source code

3. Configure and start Tomcat (or some other web server)

4. Open a web browser to use the web application

We also show how you can debug the application in the debug mode in Eclipse.

This walkthrough assumes that you have already installed the Vaadin Plugin and set up your
development environment, as instructed in Section 2.1.1, “Installing the Distribution Package”
and Section 2.2, “Setting up the Development Environment”.

2.4.1. Creating the Project

Let us create the first application project with the tools installed in the previous section. First,
launch Eclipse and follow the following steps:

1. Start creating a new project by selecting from the menu File → New → Project....
2. In the New Project window that opens, select Web → Vaadin Project and click Next.

25Using QuickStart as a Project Skeleton

Getting Started with Vaadin

3. In the Vaadin Project step, you need to set the basic web project settings. You need
to give at least the project name and the runtime; the default values should be good for
the other settings.

Project name Give the project a name. The name should be a
valid identifier usable cross-platform as a filename
and inside a URL, so using only lower-case alphanu-
merics, underscore, and minus sign is recommen-
ded.

Use default Defines the directory under which the project is cre-
ated. You should normally leave it as it is. You may
need to set the directory, for example, if you are
creating an Eclipse project on top of a version-con-
trolled source tree.

Target runtime Defines the application server to use for deploying
the application. The server that you have installed,
for example Apache Tomcat, should be selected
automatically. If not, click New to configure a new
server under Eclipse.

Configuration Select the configuration to use; you should normally
use the default configuration for the application
server. If you need to modify the project facets, click
Modify. For a Vaadin project, the Vaadin Eclipse
Integration facet is required.

Vaadin version Select the Vaadin version to use.The drop-down list
has, by default, the latest available version of Vaadin.
If you want to use another version, click Download.

Creating the Project26

Getting Started with Vaadin

The dialog that opens lists all official releases of
Vaadin.

If you want to use a pre-release version or a nightly
build, select Show pre-release versions and
nightly builds. Select a version and click Ok to
download it. It will appear as a choise in the drop-
down list.

If you want to change the project to use another
version of Vaadin, for example to upgrade to a
newer one, you can go to project settings and
download and select the other version.

Use Maven/Google directory
layout

This option creates the directory structure of the
project as required by Maven and Google Web
Toolkit plugins instead of the normal Eclipse web
application structure. The main differences are:

• Source directory: src/main/java

• Output directory: war/WEB-INF/classes

• Content directory: war

You can click Finish here to use the defaults for the rest of the settings, or click Next.

27Creating the Project

Getting Started with Vaadin

4. The settings in the Web Module step define the basic servlet-related settings and the
structure of the web application project. All the settings are pre-filled, and you should
normally accept them as they are.

Context Root The context root (of the application) identifies the
application in the URL used for accessing it. For ex-
ample, if the server runs in the apps context and the
application has myproject context, the URL would
be http://example.com/app/url. The wizard
will suggest myproject for the context name.

Content Directory The directory containing all the content to be included
in the servlet and served by the web server. The
directory is relative to the root directory of the project.

Java Source Directory The default source directory containing the applica-
tion sources.The src directory is suggested; anoth-
er convention common in web applications is to use
WebContent/WEB-INF/src, in which case the
sources are included in the servlet (but not served
in HTTP requests).

Generate deployment
descriptor

Should the wizard generate the web.xml deploy-
ment descriptor required for running the servlet in
the WebContent/WEB-INF directory. Strongly re-
commended. See Section 4.8.3, “Deployment
Descriptor web.xml” for more details.

T h i s w i l l b e t h e s u b - p a t h i n t h e U R L , fo r ex a m p l e
http://localhost:8080/myproject. The default for the application root will be /
(root).

You can just accept the defaults and click Next.

Creating the Project28

Getting Started with Vaadin

5. The Vaadin project step page has various Vaadin-specific application settings. If you
are trying Vaadin out for the first time, you should not need to change anything. You
can set most of the settings afterwards, except the creation of the portlet configuration.

Create project template Make the wizard create an application class stub.

Application Name The name of the application appears in the browser
window title.

Base package name The name of the Java package under which the ap-
plication class is to be placed.

Application class name Name of the Vaadin application class.

Create portlet configuration When this option is selected, the wizard will create
the files needed for running the application in a
portal. See Section 11.8, “Portal Integration” for more
information on portlets.

Finally, click Finish to create the project.

6. Eclipse may ask to switch to J2EE perspective. A Dynamic Web Project uses an external
web server and the J2EE perspective provides tools to control the server and manage
application deployment. Click Yes.

2.4.2. Exploring the Project

After the New Project wizard exists, it has done all the work for us: Vaadin libraries are installed
in the WebContent/WEB-INF/lib directory, an application class skeleton has been written to
src directory, and WebContent/WEB-INF/web.xml already contains a deployment descriptor.

29Exploring the Project

Getting Started with Vaadin

Figure 2.9. A New Dynamic Web Project

The application class created by the plugin contains the following code:

package com.example.myproject;

import com.vaadin.Application;
import com.vaadin.ui.*;
public class MyprojectApplication extends Application
{
 @Override
 public void init() {
 Window mainWindow =
 new Window("Myproject Application");
 Label label = new Label("Hello Vaadin user");
 mainWindow.addComponent(label);
 setMainWindow(mainWindow);
 }
}

Let us add a button to the application to make it a bit more interesting. The resulting init()
method could look something like:

public void init() {
 final Window mainWindow =
 new Window("Myproject Application");

 Label label = new Label("Hello Vaadin user");
 mainWindow.addComponent(label);

 mainWindow.addComponent(
 new Button("What is the time?",
 new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 mainWindow.showNotification(
 "The time is " + new Date());
 }
 }));

Exploring the Project30

Getting Started with Vaadin

 setMainWindow(mainWindow);
}

The deployment descriptor WebContent/WEB-INF/web.xml defines Vaadin framework servlet,
the application class, and servlet mapping:

Example 2.1. Web.xml Deployment Descriptor for our project

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 id="WebApp_ID" version="2.5">

 <display-name>myproject</display-name>

 <context-param>
 <description>Vaadin production mode</description>
 <param-name>productionMode</param-name>
 <param-value>false</param-value>
 </context-param>

 <servlet>
 <servlet-name>Myproject Application</servlet-name>
 <servlet-class>
 com.vaadin.terminal.gwt.server.ApplicationServlet
 </servlet-class>
 <init-param>
 <description>Vaadin application class to start</description>
 <param-name>application</param-name>
 <param-value>
 com.example.myproject.MyprojectApplication
 </param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>Myproject Application</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

For a more detailed treatment of the web.xml file, see Section 4.8.3, “Deployment Descriptor
web.xml”.

2.4.3. Setting Up and Starting the Web Server

Eclipse IDE for Java EE Developers has the Web Standard Tools package installed, which sup-
ports control of various web servers and automatic deployment of web content to the server when
changes are made to a project.

Make sure that Tomcat was installed with user permissions. Configuration of the web server in
Eclipse will fail if the user does not have write permissions to the configuration and deployment
directories under the Tomcat installation directory.

Follow the following steps.

1. Switch to the Servers tab in the lower panel in Eclipse. List of servers should be empty
after Eclipse is installed. Right-click on the empty area in the panel and select New →
Server.

31Setting Up and Starting the Web Server

Getting Started with Vaadin

2. Select Apache → Tomcat v6.0 Server and set Server's host name as localhost,
which should be the default. If you have only one Tomcat installed, Server runtime has
only one choice. Click Next.

3. Add your project to the server by selecting it on the left and clicking Add to add it to the
configured projects on the right. Click Finish.

4. The server and the project are now installed in Eclipse and are shown in the Servers
tab. To start the server, right-click on the server and select Debug. To start the server
in non-debug mode, select Start.

5. The server starts and the WebContent directory of the project is published to the server
on http://localhost:8080/myproject/.

Setting Up and Starting the Web Server32

Getting Started with Vaadin

2.4.4. Running and Debugging

Starting your application is as easy as selecting myproject from the Project Explorer and then
Run → Debug As → Debug on Server. Eclipse then opens the application in built-in web
browser.

Figure 2.10. Running a Vaadin Application

You can insert break points in the Java code by double-clicking on the left margin bar of the
source code window. For example, if you insert a breakpoint in the buttonClick() method
and click the What is the time? button, Eclipse will ask to switch to the Debug perspective. Debug
perspective will show where the execution stopped at the breakpoint. You can examine and
change the state of the application. To continue execution, select Resume from Run menu.

Figure 2.11. Debugging a Vaadin Application

33Running and Debugging

Getting Started with Vaadin

The procedure described above allows debugging the server-side application. For more inform-
ation on debugging client-side widgets, see Section 10.8.6, “Hosted Mode Browser”.

Running and Debugging34

Getting Started with Vaadin

Chapter 3

Architecture

3.1. Overview .. 35
3.2. Technological Background ... 38
3.3. Applications as Java Servlet Sessions .. 39
3.4. Client-Side Engine ... 39
3.5. Events and Listeners ... 40

This chapter provides an introduction to the architecture of Vaadin at somewhat technical level.

3.1. Overview

In Chapter 1, Introduction, we gave a short introduction to the general architecture of Vaadin. Let
us now look deeper into it. Figure 3.1, “Vaadin Architecture” below illustrates the architecture.

Vaadin consists of a web application API, a horde of user interface components, themes for
controlling the appearance, and a data model that allows binding the user interface components
directly to data. Behind the curtains it also employs a terminal adapter to receive requests from
web browsers and make responses by rendering the pages.

An application using Vaadin runs as a servlet in a Java web server, serving HTTP requests. The
terminal adapter receives client requests through the web server's Java Servlet API, and inteprets
them to user events for a particular session. An event is associated with a UI component and
delivered to the application. As the application logic makes changes to the UI components, the
terminal adapter renders them in the web browser by generating a response. In AJAX rendering
mode, a client-side JavaScript component receives the responses and uses them to make any
necessary changes to the page in the browser.

The top level of a user application consists of an application class that inherits com.vaadin.Ap-
plication. It creates the UI components (see below) it needs, receives events regarding them,

35Book of Vaadin

Figure 3.1. Vaadin Architecture

and makes necessary changes to the components. For detailed information about inheriting the
Application, see Chapter 4, Writing a Web Application.

The major parts of the architecture and their function are as follows:

User Interface Components The user interface consists of UI components that are
created and laid out by the application. Each server-
side component has a client-side counterpart, with
which the user interacts. The server-side components
can serialize themselves over the client connection
using a terminal adapter. The client-side components,
in turn, can serialize user interaction back to the applic-
ation, which is received in the server-side components
as events. The components relay these events to the
application logic. Most components are bound to a data
source (see below). For a complete description of UI
component architecture, see Chapter 5, User Interface
Components.

Client-Side Engine The Client-Side Engine of Vaadin manages the render-
ing in the web browser using Google Web Toolkit
(GWT). It communicates user interaction and UI
changes with the server-side Terminal Adapter using

Overview36

Architecture

the User Interface Definition Language (UIDL), a JSON-
based language. The communications are made using
asynchronous HTTP or HTTPS requests. See Sec-
tion 3.4, “Client-Side Engine”.

Terminal Adapter The UI components do not render themselves directly
as a web page, but use a Terminal Adapter. This ab-
straction layer allows users to use Vaadin applications
with practically any web browser. Releases 3 and 4 of
Vaadin supported HTML and simple AJAX based ren-
dering, while Release 5 supports advanced AJAX-
based rendering using Google Web Toolkit (GWT).You
could imagine some other browser technology, not even
based on HTML, and you - or we for that matter - could
make it work just by writing a new adapter.Your applic-
ation would still just see the Vaadin API. To allow for
this sort of abstraction, UI components communicate
their changes to the Terminal Adapter, which renders
them for the user's browser. When the user does
something in the web page, the events are communic-
ated to the terminal adapter (through the web server)
as asynchronous AJAX requests.The terminal adapter
delivers the user events to the UI components, which
deliver them to the application's UI logic.

Themes The user interface separates between presentation and
logic. While the UI logic is handled as Java code, the
presentation is defined in themes as CSS. Vaadin
provides a default themes. User themes can, in addition
to style sheets, include HTML templates that define
custom layouts and other resources, such as images.
Themes are discussed in detail in Chapter 8, Themes.

UIDL The Terminal Adapter draws the user interface to the
web page and any changes to it using a special User
Interface Definition Language (UIDL). The UIDL com-
munications are done using JSON (JavaScript Object
Notation), which is a lightweight data interchange format
that is especially efficient for interfacing with JavaScript-
based AJAX code in the browser. See Section 3.2.3,
“JSON” and Appendix A, User Interface Definition
Language (UIDL) for details.

Events User interaction with UI components creates events,
which are first processed on the client side with
JavaScript and then passed all the way through the
HTTP server, terminal adapter, and user component
layers to the application. See Section 3.5, “Events and
Listeners”.

Data Model In addition to the user interface model, Vaadin provides
a data model for interfacing data presented in UI com-
ponents. Using the data model, the user interface
components can update the application data directly,

37Overview

Architecture

without the need for any control code. All the UI com-
ponents use this data model internally, but they can be
bound to a separate data source as well. For example,
you can bind a table component to an SQL query re-
sponse. For a complete overview of the Vaadin Data
Model, please refer to Chapter 9, Binding Components
to Data.

3.2.Technological Background

This section provides an introduction to the various technologies and designs on which Vaadin
is based: AJAX-based web applications in general, Google Web Toolkit, and JSON data inter-
change format.This knowledge is not necessary for using Vaadin, but provides some background
if you need to make low-level extensions to Vaadin.

3.2.1. AJAX

AJAX (Asynchronous JavaScript and XML) is a technique for developing web applications with
responsive user interaction, similar to traditional desktop applications. While conventional
JavaScript-enabled HTML pages can receive new content only with page updates, AJAX-enabled
pages send user interaction to the server using an asynchronous request and receive updated
content in the response. This way, only small parts of the page data can be loaded. This goal is
archieved by the use of a certain set of technologies: XHTML, CSS, DOM, JavaScript, XMLHt-
tpRequest, and XML.

AJAX, with all the fuss and pomp it receives, is essentially made possible by a simple API, namely
the XMLHttpRequest class in JavaScript. The API is available in all major browsers and, as of
2006, the API is under way to become a W3C standard.

Communications between the browser and the server usually require some sort of serialization
(or marshalling) of data objects. AJAX suggests the use of XML for data representation in com-
munications between the browser and the server. While Vaadin Release 4 used XML for data
interchange, Release 5 uses the more efficient JSON. For more information about JSON and its
use in Vaadin, see Section 3.2.3, “JSON”.

If you're a newcomer to Ajax, Section 11.1, “Special Characteristics of AJAX Applications” dis-
cusses the history and motivations for AJAX-based web applications, as well as some special
characteristics that differ from both traditional web applications and desktop applications.

3.2.2. Google Web Toolkit

Google Web Toolkit is a software development kit for developing client-side web applications
easily, without having to use JavaScript or other browser technologies directly. Applications using
GWT are developed with Java and compiled into JavaScript with the GWT Compiler.

GWT is essentially a client-side technology, normally used to develop user interface logic in the
web browser. GWT applications still need to communicate with a server using RPC calls and by
serializing any data. Vaadin effectively hides all client-server communications, allows handling
user interaction logic in a server application, and allows software development in a single server-
side application. This makes the architecture of an AJAX-based web application much simpler.

Vaadin uses GWT to render user interfaces in the web browser and handle the low-level tasks
of user interaction in the browser. Use of GWT is largely invisible in Vaadin for applications that
do not need any custom GWT components.

Technological Background38

Architecture

See Section 3.4, “Client-Side Engine” for a description of how GWT is used in the Client-Side
Engine of Vaadin. Chapter 10, Developing Custom Components provides information about the
integration of GWT-based user interface components with Vaadin.

3.2.3. JSON

JSON is a lightweight data-interchange format that is easy and fast to generate and parse. JSON
messages are said to be possibly a hundred times faster to parse than XML with current browser
technology.The format is a subset of the JavaScript language, which makes it possible to evaluate
JSON messages directly as JavaScript expressions. This makes JSON very easy to use in
JavaScript applications and therefore also for AJAX applications.

The Client-Side Engine of Vaadin uses JSON through Google Web Toolkit, which supports JSON
communications in the com.google.gwt.json.client package. Together with advanced update
optimization and caching, Vaadin is able to update changes in the user interface to the browser
in an extremely efficient way.

The use of JSON is completely invisible to a developer using Vaadin. Implementation of client-
server serialization in custom widgets uses abstract interfaces that may be implemented as any
low-level interchange format, such as XML or JSON. Details on JSON communications are given
in Section A.2, “JSON Rendering”.

3.3. Applications as Java Servlet Sessions

Vaadin framework does basically everything it does on top of the Java Servlet API, which lies
hidden deep under the hood, with the terminal adapter being the lowest level layer for handling
requests from the web container.

When the web container gets the first request for a URL registered for an application, it creates
an instance of the ApplicationServlet class in Vaadin framework that inherits the HttpServlet
class defined in Java Servlet API. It follows sessions by using HttpSession interface and asso-
ciates an Application instance with each session. During the lifetime of a session, the framework
relays user actions to the proper application instance, and further to a user interface component.

3.4. Client-Side Engine

This section gives an overview of the client-side architecture of Vaadin. Knowledge of the client-
side technologies is generally not needed unless you develop or use custom GWT components.
The client-side engine is based on Google Web Toolkit (GWT), which allows the development
of the engine and client-side components solely with Java.

Chapter 10, Developing Custom Components provides information about the integration of GWT-
based user interface components with Vaadin.

39JSON

Architecture

Figure 3.2. Architecture of Vaadin Client-Side Engine

Figure 3.2, “Architecture of Vaadin Client-Side Engine” illustrates the architecture of the client-
side engine using a button component as an example. The user interface is managed by the
ApplicationConnection class, which handles AJAX requests to the server and renders the user
interface according to responses. Communications are done over HTTP(S) using the JSON data
interchange format and the User Interface Definition Language (UIDL). In the server-side applic-
ation, the button is used with the Button class of Vaadin. On the client-side, the user interface
consists of various GWT components that inherit Widget class. In the figure above, the GWT
class Button is used to render the button in the browser (the inheritance of Button is simplified
in the figure). Vaadin provides an VButton class, which implements the Paintable interface
needed for rendering the component with GWT.

The actual initial web page that is loaded in the browser is an empty page that loads the JavaScript
code of the Vaadin Client-Side Engine. After it is loaded and started, it handles the AJAX requests
to the server. All server communications are done through the ApplicationConnection class.

The communication with the server is done as UIDL (User Interface Definition Language) mes-
sages using the JSON message interchange format over a HTTP(S) connection. UIDL is described
in Appendix A, User Interface Definition Language (UIDL) and JSON in Section 3.2.3, “JSON”
and Section A.2, “JSON Rendering”.

3.5. Events and Listeners

When a user does something, such as clicks a button or selects an item, the application needs
to know about it. Many Java-based user interface frameworks follow the Observer design pattern
to communicate user input to the application logic. So does Vaadin. The design pattern involves

Events and Listeners40

Architecture

two kinds of elements: an object and a number of observers that listen for events regarding the
object.When an event related to the object occurs, the observers receive a notification regarding
the event. In most cases there is only one observer, defined in the application logic, but the pattern
allows for multiple observers. As in the event-listener framework of Java SE, we call the observing
objects listeners.

In the ancient times of C programming, callback functions filled largely the same need as listeners
do now. In object-oriented languages, we have only classes and methods, not functions, so the
application has to give a class interface instead of a callback function pointer to the framework.
However, Vaadin supports defining a method as a listener as well.

Events can serve many kinds of purposes. In Vaadin, the usual purpose of events is handling
user interaction in a user interface. Session management can require special events, such as
time-out, in which case the event is actually the lack of user interaction. Time-out is a special
case of timed or scheduled events, where an event occurs at a specific date and time or when
a set time has passed. Database and other asynchronous communications can cause events
too.

To receive events of a particular type, an application must include a class that implements the
corresponding listener interface. In small applications, the application class itself could implement
the needed listener interfaces. Listeners are managed by the AbstractComponent class, the
base class of all user interface components. This means that events regarding any component
can listened to. The listeners are registered in the components with addListener() method.

Most components that have related events define their own event class and corresponding
listener classes. For example, the Button has Button.ClickEvent events, which can be listened
to through the Button.ClickListener interface.This allows an application to listen to many different
kinds of events and to distinguish between them at class level. This is usually not enough, as
applications usually have many components of the same class and need to distinguish between
the particular components. We will look into that more closely later. The purpose of this sort of
class level separation is to avoid having to make type conversions in the handlers.

Notice that many listener interfaces inherit the java.util.EventListener superinterface, but it is
not generally necessary to inherit it.

Figure 3.3. Class Diagram of a Button Click Listener

41Events and Listeners

Architecture

Figure 3.3, “Class Diagram of a Button Click Listener” illustrates an example where an application-
specific class inherits the Button.ClickListener interface to be able to listen for button click
events. The application must instantiate the listener class and register it with addListener().
When an event occurs, an event object is instantiated, in this case a ClickEvent.The event object
knows the related UI component, in this case the Button.

Section 4.4, “Handling Events with Listeners” goes into details of handling events in practice.

Events and Listeners42

Architecture

Chapter 4

Writing a Web
Application

4.1. Overview .. 43
4.2. Managing the Main Window .. 46
4.3. Child Windows ... 46
4.4. Handling Events with Listeners .. 50
4.5. Referencing Resources ... 52
4.6. Shutting Down an Application .. 56
4.7. Handling Errors .. 57
4.8. Setting Up the Application Environment .. 61

This chapter provides the fundamentals of web application development with Vaadin, concentrating
on the basic elements of an application from a practical point-of-view.

If you are a newcomer to AJAX development, you may benefit from Section 11.1, “Special
Characteristics of AJAX Applications”. It explains the role of pages in AJAX web applications,
and provides some basic design patterns for applications.

4.1. Overview

An application made with Vaadin runs as a Java Servlet in a Servlet container. The entry-point
is the application class, which needs to create and manage all necessary user interface compon-
ents, including windows. User interaction is handled with event listeners, simplified by binding
user interface components directly to data.Visual appearance is defined in themes as CSS files.

43Book of Vaadin

Icons, other images, and downloadable files are handled as resources, which can be external or
served by the application server or the application itself.

Figure 4.1. Application Architecture

Figure 4.1, “Application Architecture” above gives the basic architecture of an application made
with the Vaadin framework, with all the major elements, which are introduced below and discussed
in detail in this chapter.

First of all, an application that uses Vaadin must define an application class that inherits the ab-
stract com.vaadin.Application class.The application class must implement the init() method.

public class MyApp extends com.vaadin.Application {

 public void init() {
 ... initialization code goes here ...
 }
}

Besides acting as the entry-point in the servlet, the Application class provides facilities for window
access, execution control, and theme selection. The application API may seem similar to Java
Servlet API, but that is only superficial. Vaadin framework associates requests with sessions so
that an application class instance is really a session object. Because of this, you can develop
web applications much like you would develop desktop applications.

The most important thing in the initialization is the creation of the main window (see below), which
any application has. This, and the deployment of the application as a Java Servlet in the Servlet
container, as described in Section 4.8, “Setting Up the Application Environment”, are the minimal
requirements for an application.

Overview44

Writing a Web Application

Below is a short overview of the basic elements of an application:

Windows An application always has a main window, as described
in Section 4.2, “Managing the Main Window”. An applic-
ation can actually have a number of such application-
level windows, all bound to the same application ses-
sion, as described in Section 11.2, “Application-Level
Windows”. Application-level windows can contain non-
native sub-windows, which are essentially floating lay-
out components handled inside the browser.

User Interface Components The user interface consists of UI components that are
created and laid out by the application. User interaction
with the components causes events (see below) related
to the component, which the application must handle.
Most components are bound to some data using the
Data Model (see below). You can make your own UI
components through either inheritance or composition.
For a thorough reference of UI components, see
Chapter 5, User Interface Components, for layout
components, see Chapter 6, Managing Layout, and for
composing components, see Section 5.19, “Component
Composition with CustomComponent”.

Events and Listeners Events, and listeners that handle events, are the basis
of handling user interaction in an application. Sec-
tion 3.5, “Events and Listeners” gave an introduction
to events and listeners from an architectural point-of-
view, while Section 4.4, “Handling Events with Listen-
ers” later in this chapter takes a more practical view.

Resources A user interface can display images or have links to
web pages or downloadable documents. These are
resources, which can be external or provided by the
web server or the application itself. Section 4.5, “Refer-
encing Resources” gives a practical overview of the
different types of resources.

Themes The presentation and logic of the user interface are
separated. While the UI logic is handled as Java code,
the presentation is defined in themes as CSS. Vaadin
provides a default theme. User-defined themes can, in
addition to style sheets, include HTML templates that
define custom layouts and other theme resources, such
as images.Themes are discussed in detail in Chapter 8,
Themes, custom layouts in Section 6.11, “Custom
Layouts”, and theme resources in Section 4.5.4,
“Theme Resources”.

Data Binding Field components are essentially views to data, repres-
ented in a data model. Using the data model, the com-
ponents can update the application data directly, without
the need for any control code. A field component model
is always bound to a property, an item, or a container,
depending on the field type. While all the components

45Overview

Writing a Web Application

have a default data model, they can be bound to a user-
defined data source. For example, you can bind a table
component to an SQL query response. For a complete
overview of data binding in Vaadin, please refer to
Chapter 9, Binding Components to Data.

4.2. Managing the Main Window

As explained in Section 11.1, “Special Characteristics of AJAX Applications”, an AJAX web ap-
plication usually runs in a single "web page" in a browser window. The page is generally not re-
loaded after it is opened initially, but it communicates user interaction with the server through
AJAX communications. A window in an AJAX application is therefore more like a window in a
desktop application and less like a web page.

A Window is the top-level container of a user interface displayed in a browser window. As an
AJAX application typically runs on a single "page" (URL), there is usually just one window -- the
main window. The main window can be accessed using the URL of the application. You set the
main window with the setMainWindow() method of the Application class.

import com.vaadin.ui.*;

public class HelloWorld extends com.vaadin.Application {
 public void init() {
 Window main = new Window("The Main Window");
 setMainWindow(main);

... fill the main window with components ...
 }
}

You can add components to the main window, or to any other window, with the addComponent()
method, which actually adds the given component to the root layout component bound to the
window. If you wish to use other than the default root layout, you can set it with setContent(),
as explained in Section 6.2, “Window and Panel Root Layout”.

Vaadin has two basic kinds of windows: application-level windows, such as the main window,
and child windows (or sub-windows) inside the application-level windows. The child windows are
explained in the next section, while application-level windows are covered in Section 11.2, “Ap-
plication-Level Windows”.

4.3. Child Windows

An application-level window can have a number of floating child windows. They are managed by
the client-side JavaScript runtime of Vaadin using HTML features. Vaadin allows opening and
closing child windows, refreshing one window from another, resizing windows, and scrolling the
window content. Child windows are typically used for Dialog Windows and Multiple Document
Interface applications. Child windows are by default not modal; you can set them modal as de-
scribed in Section 4.3.3, “Modal Windows”.

As with all user interface components, the appearance of a window and its contents is defined
with themes.

User control of a child window is limited to moving, resizing, and closing the window. Maximizing
or minimizing are not yet supported.

Managing the Main Window46

Writing a Web Application

4.3.1. Opening and Closing a Child Window

You can open a new window by creating a new Window object and adding it to the main window
with addWindow() method of the Application class.

mywindow = new Window("My Window");
mainwindow.addWindow(mywindow);

You close the window in a similar fashion, by calling the removeWindow() of the Application
class:

myapplication.removeWindow (mywindow);

The user can, by default, close a child window by clicking the close button in the upper-right
corner of the window. You can disable the button by setting the window as read-only with
setReadOnly(true). Notice that you could disable the button also by making it invisible in
CSS with a "display: none" formatting. The problem with such a cosmetic disabling is that a
malicious user might re-enable the button and close the window, which might cause problems
and possibly be a security hole. Setting the window as read-only not only disables the close
button on the client side, but also prevents processing the close event on the server side.

The following example demonstrates the use of a child window in an application. The example
manages the window using a custom component that contains a button for opening and closing
the window.

/** Component contains a button that allows opening a window. */
public class WindowOpener extends CustomComponent
 implements Window.CloseListener {
 Window mainwindow; // Reference to main window
 Window mywindow; // The window to be opened
 Button openbutton; // Button for opening the window
 Button closebutton; // A button in the window
 Label explanation; // A descriptive text

 public WindowOpener(String label, Window main) {
 mainwindow = main;

 // The component contains a button that opens the window.
 final VerticalLayout layout = new VerticalLayout();

 openbutton = new Button("Open Window", this,
 "openButtonClick");
 explanation = new Label("Explanation");
 layout.addComponent(openbutton);
 layout.addComponent(explanation);

 setCompositionRoot(layout);
 }

 /** Handle the clicks for the two buttons. */
 public void openButtonClick(Button.ClickEvent event) {
 /* Create a new window. */
 mywindow = new Window("My Dialog");
 mywindow.setPositionX(200);
 mywindow.setPositionY(100);

 /* Add the window inside the main window. */
 mainwindow.addWindow(mywindow);

 /* Listen for close events for the window. */
 mywindow.addListener(this);

 /* Add components in the window. */

47Opening and Closing a Child Window

Writing a Web Application

 mywindow.addComponent(
 new Label("A text label in the window."));
 closebutton = new Button("Close", this, "closeButtonClick");
 mywindow.addComponent(closebutton);

 /* Allow opening only one window at a time. */
 openbutton.setEnabled(false);

 explanation.setValue("Window opened");
 }

 /** Handle Close button click and close the window. */
 public void closeButtonClick(Button.ClickEvent event) {
 /* Windows are managed by the application object. */
 mainwindow.removeWindow(mywindow);

 /* Return to initial state. */
 openbutton.setEnabled(true);

 explanation.setValue("Closed with button");
 }

 /** In case the window is closed otherwise. */
 public void windowClose(CloseEvent e) {
 /* Return to initial state. */
 openbutton.setEnabled(true);

 explanation.setValue("Closed with window controls");
 }
}

The example implements a custom component that inherits the CustomComponent class. It
consists of a Button that it uses to open a window and a Label to describe the state of the window.
When the window is open, the button is disabled.When the window is closed, the button is enabled
again.

You can use the above custom component in the application class with:

 public void init() {
 Window main = new Window("The Main Window");
 setMainWindow(main);

 addComponent(new WindowOpener("Window Opener", main));
}

When added to an application, the screen will look as illustrated in the following screenshot:

Opening and Closing a Child Window48

Writing a Web Application

Figure 4.2. Opening a Child Window

4.3.2. Window Positioning

When created, a window will have a default size and position.You can specify the size of a window
with setHeight() and setWidth() methods. You can set the position of the window with
setPositionX() and setPositionY() methods.

/* Create a new window. */
mywindow = new Window("My Dialog");

/* Set window size. */
mywindow.setHeight("200px");
mywindow.setWidth("400px");

/* Set window position. */
mywindow.setPositionX(200);
mywindow.setPositionY(50);

Notice that the size of the main window is unknown and the getHeight and getWidth methods
will return -1.

4.3.3. Modal Windows

A modal window is a child window that has to be closed by the user before the use of the parent
window can continue. Dialog windows are typically modal. The advantage of modal windows is
the simplification of user interaction, which may contribute to the clarity of the user interface.
Modal windows are also easy to use from a development perspective, because as user interaction
is isolated to them, changes in application state are more limited while the modal window is open.
The disadvantage of modal windows is that they can restrict workflow too much.

49Window Positioning

Writing a Web Application

Figure 4.3. Screenshot of the Modal Window Demo Application

Depending on theme settings, the parent window may be grayed while the modal window is open.

The demo application of Vaadin includes an example of using modal windows. Figure 4.3,
“Screenshot of the Modal Window Demo Application” above is from the demo application. The
example includes the source code.

Security Warning

Modality of child windows is purely a client-side feature and can be circumvented
with client-side attack code. You should not trust in the modality of child windows in
security-critical situations such as login windows.

4.4. Handling Events with Listeners

Let us put into practice what we learned of event handling in Section 3.5, “Events and Listeners”.
You can handle events in three basic ways, as shown below.

The following example follows a typical pattern where you have a Button component and a
listener that handles user interaction (clicks) communicated to the application as events. Here
we define a class that listens click events.

public class TheButton implements Button.ClickListener {
 Button thebutton;

 /** Creates button into given container. */
 public TheButton(AbstractComponentContainer container) {
 thebutton = new Button ("Do not push this button");
 thebutton.addListener(this);
 container.addComponent(thebutton);
 }

 /** Handle button click events from the button. */
 public void buttonClick (Button.ClickEvent event) {
 thebutton.setCaption ("Do not push this button again");

Handling Events with Listeners50

Writing a Web Application

 }
}

As an application often receives events for several components of the same class, such as multiple
buttons, it has to be able to distinguish between the individual components. There are several
techniques to do this, but probably the easiest is to use the property of the received event, which
is set to the object sending the event. This requires keeping at hand a reference to every object
that emits events.

public class TheButtons implements Button.ClickListener {
 Button thebutton;
 Button secondbutton;

 /** Creates two buttons in given container. */
 public TheButtons(AbstractComponentContainer container) {
 thebutton = new Button ("Do not push this button");
 thebutton.addListener(this);
 container.addComponent(thebutton);

 secondbutton = new Button ("I am a button too");
 secondbutton.addListener(this);
 container.addComponent (secondbutton);
 }

 /** Handle button click events from the two buttons. */
 public void buttonClick (Button.ClickEvent event) {
 if (event.getButton() == thebutton)
 thebutton.setCaption("Do not push this button again");
 else if (event.getButton() == secondbutton)
 secondbutton.setCaption("I am not a number");
 }
}

Another solution to handling multiple events of the same class involves attaching an event source
to a listener method instead of the class. An event can be attached to a method using another
version of the addListener() method, which takes the event handler method as a parameter
either as a name of the method name as a string or as a Method object. In the example below,
we use the name of the method as a string.

public class TheButtons2 {
 Button thebutton;
 Button secondbutton;

 /** Creates two buttons in given container. */
 public TheButtons2(AbstractComponentContainer container) {
 thebutton = new Button ("Do not push this button");
 thebutton.addListener(Button.ClickEvent.class, this,
 "theButtonClick");
 container.addComponent(thebutton);

 secondbutton = new Button ("I am a button too");
 secondbutton.addListener(Button.ClickEvent.class, this,
 "secondButtonClick");
 container.addComponent (secondbutton);
 }

 public void theButtonClick (Button.ClickEvent event) {
 thebutton.setCaption ("Do not push this button again");
 }

 public void secondButtonClick (Button.ClickEvent event) {
 secondbutton.setCaption ("I am not a number!");
 }
}

51Handling Events with Listeners

Writing a Web Application

Adding a listener method with addListener() is really just a wrapper that creates a
com.vaadin.event.ListenerMethod listener object, which is an adapter from a listener class to
a method. It implements the java.util.EventListener interface and can therefore work for any
event source using the interface. Notice that not all listener classes necessarily inherit the
EventListener interface.

The third way, which uses anonymous local class definitions, is often the easiest as it does not
require cumbering the managing class with new interfaces or methods. The following example
defines an anonymous class that inherits the Button.ClickListener interface and implements
the buttonClick() method.

public class TheButtons3 {
 Button thebutton;
 Button secondbutton;

 /** Creates two buttons in given container. */
 public TheButtons3(AbstractComponentContainer container) {
 thebutton = new Button ("Do not push this button");

 /* Define a listener in an anonymous class. */
 thebutton.addListener(new Button.ClickListener() {
 /* Handle the click. */
 public void buttonClick(ClickEvent event) {
 thebutton.setCaption (
 "Do not push this button again");
 }
 });
 container.addComponent(thebutton);

 secondbutton = new Button ("I am a button too");
 secondbutton.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 secondbutton.setCaption ("I am not a number!");
 }
 });
 container.addComponent (secondbutton);
 }
}

Other techniques for separating between different sources also exist. They include using object
properties, names, or captions to separate between them. Using captions or any other visible
text is generally discouraged, as it may create problems for internationalization. Using other
symbolic strings can also be dangerous, because the syntax of such strings is checked only
runtime.

Events are usually emitted by the framework, but applications may need to emit them too in some
situations, such as when updating some part of the UI is required. Events can be emitted using
the fireEvent(Component.Event) method of AbstractComponent.The event is then relayed
to all the listeners of the particular event class for the object. Some components have a default
event type, for example, a Button has a nested Button.ClickEvent class and a corresponding
Button.ClickListener interface.These events can be triggered with fireComponentEvent().

4.5. Referencing Resources

Web applications work over the web and have various resources, such as images or downloadable
files, that the web browser has to get from the server. These resources are typically used in
Embedded (images) or Link (downloadable files) user interface components.Various components,
such as TabSheet, can also include icons, which are also handled as resources.

Referencing Resources52

Writing a Web Application

A web server can handle many of such requests for static resources without having to ask them
from the application, or the Application object can provide them. For dynamic resources, the
user application must be able to create them dynamically. Vaadin provides resource request in-
terfaces for applications so that they can return various kinds of resources, such as files or dy-
namically created resources. These include the StreamResource class and URI and parameter
handlers described in Section 11.5.1, “URI Handlers” and Section 11.5.2, “Parameter Handlers”,
respectively.

Vaadin provides also low-level facilities for retrieving the URI and other parameters of a HTTP
request. We will first look into how applications can provide various kinds of resources and then
look into low-level interfaces for handling URIs and parameters to provide resources and func-
tionalities.

Notice that using URI or parameter handlers to create "pages" is not meaningful in Vaadin or in
AJAX applications generally. Please see Section 11.1, “Special Characteristics of AJAX Applica-
tions” for a detailed explanation.

4.5.1. Resource Interfaces and Classes

Vaadin has two interfaces for resources: a generic Resource interface and a more specific Ap-
plicationResource interface for resources provided by the application.

Figure 4.4. Resource Interface and Class Diagram

ApplicationResource resources are managed by the Application class.When you create such
a resource, you give the application object to the constructor. The constructor registers the re-
source in the application using the addResource method.

Application manages requests for the resources and allows accessing resources using a URI.
The URI consists of the base name of the application and a relative name of the resource. The
relative name is "APP/"+resourceid+"/"+filename, for example "APP/1/myimage.png".
The resourceid is a generated numeric identifier to make resources unique, and filename
is the file name of the resource given in the constructor of its class. However, the application
using a resource does not usually need to consider its URI. It only needs to give the resource to
an appropriate Embedded or Link or some other user interface component, which manages the
rendering of the URI.

53Resource Interfaces and Classes

Writing a Web Application

4.5.2. File Resources

File resources are files stored anywhere in the file system. The use of file resources generally
falls into two main categories: downloadable files and embedded images.

A file object that can be accessed as a file resource is defined with the standard java.io.File
class. You can create the file either with an absolute or relative path, but the base path of the
relative path depends on the installation of the web server. For example, in Apache Tomcat, the
default current directory is the installation path of Tomcat.

4.5.3. Class Loader Resources

The ClassResource allows resources to be loaded from the deployed package of the application
using Java Class Loader. The one-line example below loads an image resource from the applic-
ation package and displays it in an Embedded component.

mainwindow.addComponent(new Embedded ("",
 new ClassResource("smiley.jpg",
 mainwindow.getApplication())));

4.5.4.Theme Resources

Theme resources are files included in a theme, typically images. See Chapter 8, Themes for
more information on themes.

4.5.5. Stream Resources

Stream resources are application resources that allow creating dynamic resource content. Charts
are typical examples of dynamic images. To define a stream resource, you need to implement
the StreamResource.StreamSource interface and its getStream method. The method needs
to return an InputStream from which the stream can be read.

The following example demonstrates the creation of a simple image in PNG image format.

import java.awt.image.*;

public class MyImageSource
 implements StreamResource.StreamSource {
 ByteArrayOutputStream imagebuffer = null;
 int reloads = 0;

 /* We need to implement this method that returns
 * the resource as a stream. */
 public InputStream getStream () {
 /* Create an image and draw something on it. */
 BufferedImage image = new BufferedImage (200, 200,
 BufferedImage.TYPE_INT_RGB);
 Graphics drawable = image.getGraphics();
 drawable.setColor(Color.lightGray);
 drawable.fillRect(0,0,200,200);
 drawable.setColor(Color.yellow);
 drawable.fillOval(25,25,150,150);
 drawable.setColor(Color.blue);
 drawable.drawRect(0,0,199,199);
 drawable.setColor(Color.black);
 drawable.drawString("Reloads="+reloads, 75, 100);
 reloads++;

 try {
 /* Write the image to a buffer. */

File Resources54

Writing a Web Application

 imagebuffer = new ByteArrayOutputStream();
 ImageIO.write(image, "png", imagebuffer);

 /* Return a stream from the buffer. */
 return new ByteArrayInputStream(
 imagebuffer.toByteArray());
 } catch (IOException e) {
 return null;
 }
 }
}

The content of the generated image is dynamic, as it updates the reloads counter with every call.
The ImageIO.write() method writes the image to an output stream, while we had to return an
input stream, so we stored the image contents to a temporary buffer.

You can use resources in various ways. Some user interface components, such as Link and
Embedded, take their parameters as a resource.

Below we display the image with the Embedded component. The StreamResource constructor
gets a reference to the application and registers itself in the application's resources. Assume that
main is a reference to the main window and this is the application object.

// Create an instance of our stream source.
StreamResource.StreamSource imagesource = new MyImageSource ();

// Create a resource that uses the stream source and give it a name.
// The constructor will automatically register the resource in
// the application.
StreamResource imageresource =
 new StreamResource(imagesource, "myimage.png", this);

// Create an embedded component that gets its contents
// from the resource.
main.addComponent(new Embedded("Image title", imageresource));

The image will look as follows:

Figure 4.5. Screenshot of the stream resource example with an embedded
image

We named the resource as myimage.png. The application adds a resource key to the file name
of the resource to make i t un ique. The fu l l URI wi l l be l ike
http://localhost:8080/testbench/APP/1/myimage.png. The end
APP/1/myimage.png is the relative part of the URI.You can get the relative part of a resource's
URI from the application with Application.getRelativeLocation().

55Stream Resources

Writing a Web Application

Another solution for creating dynamic content is an URI handler, possibly together with a para-
meter handler. See Section 11.5.1, “URI Handlers” and Section 11.5.2, “Parameter Handlers”.

4.6. Shutting Down an Application

A user can log out or close the web page or browser, so a session and the associated application
instance can end. Ending an application can be initiated by the application logic. Otherwise, it
will be ended automatically when the Servlet session times out.

4.6.1. Closing an Application

If the user quits the application through the user interface, an event handler should call the
close() method in the Application class to shutdown the session.

In the following example, we have a Logout button, which ends the user session.

Button closeButton = new Button("Logout");

closeButton.addListener(new Button.ClickListener() {
 @Override
 public void buttonClick(ClickEvent event) {
 getMainWindow().getApplication().close();
 }
});

main.addComponent(closeButton);

You will soon notice that closing the application simply reloads the application with a new Applic-
ation instance. You can set the window to redirect to a different URL (that does not reload the
application) with setLogoutURL. In your application class, write:

setLogoutURL("/logout.html");

4.6.2. Handling the Closing of a Window

Closing the main window (or all application-level windows) does not close session and the applic-
ation instance will be left hanging. You need to program such behaviour by handling the close
events of the windows.

If the user closes a browser window, such as the main window or any other application-level
window, the window will send a final AJAX request to the server, which will fire a Win-
dow.CloseEvent for the closed window.You can handle the event with a Window.CloseListener.
In case the user closes the browser, the event is fired for every open window.

// Close the application if the main window is closed.
main.addListener(new Window.CloseListener(){
 @Override
 public void windowClose(CloseEvent e) {
 System.out.println("Closing the application");
 getMainWindow().getApplication().close();
 }
});

Notice that refreshing a window means closing and reopening it. Therefore, if you have a close
handler as above, the user loses the possibility to refresh the browser window.

In the likely case that the browser crashes, no close event is communicated to the server. As the
server has no way of knowing about the problem, and the session will be left hanging until the
session timeout expires. During this time, the user can restart the browser, open the application

Shutting Down an Application56

Writing a Web Application

URL, and the main window will be rendered where the user left off.This can be desired behaviour
in many cases, but sometimes it is not and can create a security problem.

4.7. Handling Errors

4.7.1. Error Indicator and message

All components have a built-in error indicator that can be set explicitly with
setComponentError() or can be turned on implicitly if validating the component fails. As with
component caption, the placement of the indicator is managed by the layout in which the com-
ponent is contained. Usually, the error indicator is placed right of the caption text. Hovering the
mouse pointer over the field displays the error message.

The following example shows how you can set the component error explicitly. The example es-
sentially validates field value without using an actual validator.

// Create a field.
final TextField textfield = new TextField("Enter code");
main.addComponent(textfield);

// Let the component error be initially clear.
textfield.setComponentError(null); // (actually the default)

// Have a button right of the field (and align it properly).
final Button button = new Button("Ok!");
main.addComponent(button);
((VerticalLayout)main.getLayout())
 .setComponentAlignment(button, Alignment.BOTTOM_LEFT);

// Handle button clicks
button.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 // If the field value is bad, set its error.
 // (Allow only alphanumeric characters.)
 if (! ((String) textfield.getValue()).matches("^\\w*$")) {
 // Put the component in error state and
 // set the error message.
 textfield.setComponentError(
 new UserError("Must be letters and numbers"));
 } else {
 // Otherwise clear it.
 textfield.setComponentError(null);
 }
 }
});

Figure 4.6. Error indicator active

The Form component handles and displays also the errors of its contained fields so that it displays
both the error indicator and the message in a special error indicator area. See Section 5.17,
“Form” and Section 5.17.3, “Validating Form Input” for details on the Form component and val-
idation of form input.

57Handling Errors

Writing a Web Application

4.7.2. Notifications

Notifications are error or information boxes that appear typically at the center of the screen. A
notification box has a caption and optional description and icon. The box stays on the screen
either for a defined time or until the user clicks it.The notification type defines the default appear-
ance and behaviour of a notification.

Notifications are always associated with a window object, which can be a child window (the pos-
itioning is always relative to the entire browser view). The Window class provides a
showNotification() method for displaying notifications. The method takes the caption and
an optional description and notification type as parameters.The method also accepts a notification
object of type Window.Notification, as described further below.

mainwindow.showNotification("This is the caption",
 "This is the description");

Figure 4.7. Notification

The caption and description are, by default, written on the same line. If you want to have a line
break between them, use the XHTML line break markup "
". You can use any XHTML
markup in the caption and description of a notification.

main.showNotification("This is a warning",
 "
This is the <i>last</i> warning",
 Window.Notification.TYPE_WARNING_MESSAGE);

Figure 4.8. Notification with Formatting

The notification type defines the overall default style and behaviour of a notification. If no notific-
ation type is given, the "humanized" type is used as the default. The notification types, listed
below, are defined in the Window.Notification class.

TYPE_HUMANIZED_MESSAGE A user-friendly message that does not annoy too much:
it does not require confirmation by clicking and disap-
pears quickly. It is centered and has a neutral gray
color.

Notifications58

Writing a Web Application

TYPE_WARNING_MESSAGE Warnings are messages of medium importance. They
are displayed with colors that are neither neutral nor
too distractive. A warning is displayed for 1.5 seconds,
but the user can click the message box to dismiss it.
The user can continue to interact with the application
while the warning is displayed.

TYPE_ERROR_MESSAGE Error messages are notifications that require the highest
user attention, with alert colors and by requiring the
user to click the message to dismiss it. The error mes-
sage box does not itself include an instruction to click
the message, although the close box in the upper right
corner indicates it visually. Unlike with other notifica-
tions, the user can not interact with the application while
the error message is displayed.

TYPE_TRAY_NOTIFICATION Tray notifications are displayed in the "system tray"
area, that is, in the lower-right corner of the browser
view. As they do not usually obsure any user interface,
they are displayed longer than humanized or warning
messages, 3 seconds by default.The user can continue
to interact with the application normally while the tray
notification is displayed.

All of the features of specific notification types can be controlled with the attributes of Window.No-
tification. You can pass an explicitly created notification object to the showNotification()
method.

// Create a notification with default settings for a warning.
Window.Notification notif = new Window.Notification(
 "Be warned!",
 "This message lurks in the top-left corner!",
 Window.Notification.TYPE_WARNING_MESSAGE);

// Set the position.
notif.setPosition(Window.Notification.POSITION_TOP_LEFT);

// Let it stay there until the user clicks it
notif.setDelayMsec(-1);

// Show it in the main window.
main.showNotification(notif);

The setPosition() method allows setting the positioning of the notification.The method takes
as its parameter any of the constants:

Window.Notification.POSITION_CENTERED

Window.Notification.POSITION_CENTERED_TOP

Window.Notification.POSITION_CENTERED_BOTTOM

Window.Notification.POSITION_TOP_LEFT

Window.Notification.POSITION_TOP_RIGHT

Window.Notification.POSITION_BOTTOM_LEFT

Window.Notification.POSITION_BOTTOM_RIGHT

59Notifications

Writing a Web Application

The setDelayMSec() allows you to set the time in milliseconds for how long the notification is
displayed. Parameter value -1 means that the message is displayed until the user clicks the
message box. It also prevents interaction with other parts of the application window, as is default
behaviour for error messages. It does not, however, add a close box that the error notification
has.

4.7.3. Handling Uncaught Exceptions

Application development with Vaadin follows the event-driven programming model. Mouse and
keyboard events in the client cause (usually higher-level) events on the server-side, which can
be handled with listeners, and that is how most of the application logic works. Handling the events
can result in exceptions either in the application logic or in the framework itself, but some of them
may not be caught properly.

For example, in the following code excerpt, we throw an error in an event listener but do not catch
it, so it falls to the framework.

final Button button = new Button ("Fail Me");

button.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 // Throw some exception.
 throw new RuntimeException("You can't catch this.");
 }
});

Any such exceptions that occur in the call chain, but are not caught at any other level, are even-
tually caught by the terminal adapter in ApplicationServlet, the lowest-level component that
receives client requests. The terminal adapter passes all such caught exceptions as events to
the error listener of the Application instance through the Terminal.ErrorListener interface.The
Application class does not, by default, throw such exceptions forward.

The reason for this error-handling logic lies in the logic that handles component state synchron-
ization between the client and the server. We want to handle all the serialized variable changes
in the client request, because otherwise the client-side and server-side component states would
become unsynchronized very easily, which could put the entire application in an invalid state.

The default implementation of the Terminal.ErrorListener interface in the Application class
simply prints the error to console. It also tries to find out a component related to the error. If the
exception occurred in a listener attached to a component, that component is considered as the
component related to the exception. If a related component is found, the error handler sets the
component error for it, the same attribute which you can set with setComponentError().

In UI, the component error is shown with a small red "!" -sign (in the default theme). If you hover
the mouse pointer over it, you will see the entire backtrace of the exception in a large tooltip box,
as illustrated in Figure 4.9, “Uncaught Exception in Component Error Indicator” for the above
code example.

Handling Uncaught Exceptions60

Writing a Web Application

Figure 4.9. Uncaught Exception in Component Error Indicator

You can change the logic of handling the terminal errors easily by overriding the
terminalError() method in your application class (the one that inherits Application) or by
setting a custom error listener with the setErrorHandler method. You can safely discard the
default handling or extend its usage with your custom error handling or logging system. In the
example code below, the exceptions are also reported as notifications in the main window.

@Override
public void terminalError(Terminal.ErrorEvent event) {
 // Call the default implementation.
 super.terminalError(event);

 // Some custom behaviour.
 if (getMainWindow() != null) {
 getMainWindow().showNotification(
 "An unchecked exception occured!",
 event.getThrowable().toString(),
 Notification.TYPE_ERROR_MESSAGE);
 }
}

Handling other exceptions works in the usual way for Java Servlets. Uncaught exceptions are
finally caught and handled by the application server.

4.8. Setting Up the Application Environment

While more and more server based frameworks, libraries, standards, and architectures for Java
are invented to make the programmer's life easier, software deployment seems to get harder
and harder. For example, Java Enterprise Beans tried to make the creation of persistent and
networked objects easy and somewhat automatic, but the number of deployment descriptions
got enormous. As Vaadin lives in a Java Servlet container, it must follow the rules, but it tries to
avoid adding extra complexity.

All Vaadin applications are deployed as Java web applications, which can be packaged as WAR
files. For a detailed tutorial on how web applications are packaged, please refer to any Java book
that discusses Servlets. Sun has an excellent reference online at http://java.sun.com/j2ee/tutori-
al/1_3-fcs/doc/WCC3.html [http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html].

4.8.1. Creating Deployable WAR in Eclipse

To deploy an application to a web server, you need to create a WAR package. Here we give the
instructions for Eclipse.

61Setting Up the Application Environment

Writing a Web Application

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html

Open project properties and first set the name and destination of the WAR file in Tomcat Export
to WAR settings tab. Exporting to WAR is done by selecting Export to WAR from Tomcat
Project in project context menu (just click calc with the right mouse button on Package contents
tree).

4.8.2. Web Application Contents

The following files are required in a web application in order to run it.

Web application organization

WEB-INF/web.xml This is the standard web application descriptor that
defines how the application is organized.You can refer
to any Java book about the contents of this file. Also
see an example in Example 4.1, “web.xml”.

WEB-INF/lib/vaadin-6.1.0.jar This is the Vaadin library. It is included in the product
package in lib directory.

Your application classes You must include your application classes either in a
JAR file in WEB-INF/lib or as classes in
WEB-INF/classes

Your own theme files (OPTION-
AL)

If your application uses a special theme (look and feel),
y o u m u s t i n c l u d e i t i n
WEB-INF/lib/themes/themename directory.

4.8.3. Deployment Descriptor web.xml

The deployment descriptor is an XML file with the name web.xml in the WEB-INF directory of
a web application. It is a standard component in Java EE describing how a web application should
be deployed. The structure of the deployment descriptor is illustrated by the following example.
You simply deploy applications as servlets implemented by the special
com.vaadin.terminal.gwt.server.ApplicationServlet wrapper class. The class of
the actual application is specified by giving the application parameter with the name of the
specific application class to the servlet. The servlet is then connected to a URL in a standard
way for Java Servlets.

Web Application Contents62

Writing a Web Application

Example 4.1. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app
 id="WebApp_ID" version="2.4"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <servlet>
 <servlet-name>myservlet</servlet-name>
 <servlet-class>
 com.vaadin.terminal.gwt.server.ApplicationServlet
 </servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>MyApplicationClass</param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>myservlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

The descriptor defines a servlet with name myservlet. The servlet class, com.vaadin.termin-
al.gwt.server.ApplicationServlet, is provided by Vaadin framework and it should be the same
for all Vaadin projects. The servlet takes the class name Calc of the user application class as a
parameter, including the full package path to the class. If the class is in the default package the
package path is obviously not used.

The url-pattern is defined above as /*. This matches to any URL under the project context.
We defined above the project context as myproject so the application URL will be
http://localhost:8080/myproject/. If the project were to have multiple applications or
servlets, they would have to be given different names to distinguish them. For example,
url-pattern /myapp/* w o u l d m a t c h a U R L s u c h a s
http://localhost:8080/myproject/myapp/. Notice that the slash and the asterisk must
be included at the end of the pattern.

Notice also that if the URL pattern is other than root /* (such as /myapp/*), you will also need
to make a servlet mapping to /VAADIN/* (unless you are serving it statically as noted below).
For example:

 ...
 <servlet-mapping>
 <servlet-name>myservlet</servlet-name>
 <url-pattern>/myurl/*</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>myservlet</servlet-name>
 <url-pattern>/VAADIN/*</url-pattern>
 </servlet-mapping>

You do not have to provide the above /VAADIN/* mapping if you serve both the widget sets
and (custom and default) themes statically in WebContent/VAADIN/ directory. The mapping
simply allows serving them dynamically from the Vaadin JAR. Serving them statically is recom-
mended for production environments as it is much faster.

63Deployment Descriptor web.xml

Writing a Web Application

For a complete example on how to deploy applications, see the demos included in the Vaadin
installation package, especially the WebContent/WEB-INF directory.

Deployment Descriptor Parameters

Deployment descriptor can have many parameters and options that control the execution of a
servlet. You can find a complete documentation of the deployment descriptor in Java Servlet
Specification at http://java.sun.com/products/servlet/.

By default, Vaadin applications run in debug mode, which should be used during development.
This enables various debugging features. For production use, you should have put in your
web.xml the following parameter:

<context-param>
 <param-name>productionMode</param-name>
 <param-value>true</param-value>
 <description>Vaadin production mode</description>
</context-param>

The parameter and the debug and production modes are described in detail in Section 11.4,
“Debug and Production Mode”.

One often needed option is the session timeout. Different servlet containers use varying defaults
for timeouts, such as 30 minutes for Apache Tomcat.You can set the timeout with:

<session-config>
 <session-timeout>30</session-timeout>
</session-config>

After the timeout expires, the close() method of the Application class will be called.You should
implement it if you wish to handle timeout situations.

Deployment Descriptor web.xml64

Writing a Web Application

Chapter 5

User Interface
Components

5.1. Overview .. 66
5.2. Interfaces and Abstractions ... 67
5.3. Common Component Features ... 72
5.4. Label ... 75
5.5. Link ... 78
5.6. TextField ... 78
5.7. RichTextArea .. 79
5.8. Date and Time Input .. 80
5.9. Button ... 81
5.10. CheckBox ... 82
5.11. Selecting Items .. 83
5.12. Table .. 91
5.13. Tree ... 102
5.14. MenuBar ... 103
5.15. Embedded .. 105
5.16. Upload .. 107
5.17. Form .. 109
5.18. ProgressIndicator .. 117
5.19. Component Composition with CustomComponent 118

65Book of Vaadin

This chapter provides an overview and a detailed description of all non-layout components in
Vaadin.

5.1. Overview

Vaadin provides a comprehensive set of user interface components and allows you to define
custom components. Figure 5.1, “UI Component Inheritance Diagram” illustrates the inheritance
hierarchy of the UI component classes and interfaces. Interfaces are displayed in gray, abstract
classes in orange, and regular classes in blue. An annotated version of the diagram is featured
in the Vaadin Cheat Sheet.

Figure 5.1. UI Component Inheritance Diagram

At the top of the interface hierarchy, we have the Component interface. At the top of the class
hierarchy, we have the AbstractComponent class. It is inherited by two other abstract classes:
AbstractField, inherited further by field components, and AbstractComponentContainer, inher-
ited by various container and layout components. Components that are not bound to a content
data model, such as labels and links, inherit AbstractComponent directly.

The layout of the various components in a window is controlled, logically, by layout components,
just like in conventional Java UI toolkits for desktop applications. In addition, with the Custom-

Overview66

User Interface Components

Layout component, you can write a custom layout as an XHTML template that includes the loc-
ations of any contained components. Looking at the inheritance diagram, we can see that layout
components inherit the AbstractComponentContainer and the Layout interface. Layout com-
ponents are described in detail in Chapter 6, Managing Layout.

Looking at it from the perspective of an object hierarchy, we would have a Window object, which
contains a hierachy of layout components, which again contain other layout components, field
components, and other visible components.

You can browse the available UI components in the Feature Browser of the Vaadin Demo Applic-
ation. The Feature Browser shows a description, a list of properties, JavaDoc documentation,
and a code sample for each of the components. On the right side of the screen, you can find the
Properties panel, which you can use to edit the properties of the displayed component.

5.2. Interfaces and Abstractions

Vaadin user interface components are built on a skeleton of interfaces and abstract classes that
define and implement the features common to all components and the basic logic how the com-
ponent states are serialized between the server and the client.

This section gives details on the basic component interfaces and abstractions. The layout and
other component container abstractions are described in Chapter 6, Managing Layout.The inter-
faces that define the Vaadin data model are described in Chapter 9, Binding Components to
Data.

Figure 5.2. Component Interfaces and Abstractions

All components also implement the Paintable interface, which is used for serializing ("painting")
the components to the client, and the reverse VariableOwner interface, which is needed for
deserializing component state or user interaction from the client.

67Interfaces and Abstractions

User Interface Components

In addition to the interfaces defined within the Vaadin framework, all components implement the
java.io.Serializable interface to allow serialization. Serialization is needed in many clustering
and cloud computing solutions.

5.2.1. Component Interface

The Component interface is paired with the AbstractComponent class, which implements all
the methods defined in the interface.

Interface Attributes

The interface defines a number of attributes, which you can retrieve or manipulate with the cor-
responding setters and getters.

caption The caption of a component is usually rendered by the layout component
in which the component is placed. This allows the layout component to
control the placement of the caption. Some components, such as Button
and Panel, manage the caption themselves inside the component itself.

enabled Can the user use the component? A disabled component is grayed out and
the user can not use it; it is automatically in read-only state. Disabled com-
ponents have the v-disabled CSS style.

icon The icon of a component is usually rendered by the layout component in
which the component is placed.This allows the layout component to control
the placement of the icon. Some components, such as Button and Panel,
manage the icon themselves inside the component itself.

locale The locale defines the country and language used in the component. If the
locale is undefined, the locale of 1) the parent component, 2) the application.

readOnly Can the user change the component state? This attribute is obviously ap-
plicable only for components that allow changing the state. The attribute
does not prevent changing the state programmatically.While the appearance
of the component does not change, unlike with the enabled attribute, the
setter does trigger repainting of the component. Client-side state modifica-
tions will not be communicated to the server-side at all, which is an important
security feature, because a malicious user can not fabricate state changes
in a read-only component.

styleName A user-defined CSS style class name of the component.The attribute allows
listing multiple style names as a space-separated list. In addition to the
setter and getter, you can add and remove individual style names with
addStylename() and removeStyleName().

visible Is the component visible or hidden? Hidden components are not just not
visible, but not communicated to the browser at all. That is, they are not
made invisible with only CSS rules. This feature is important for security if
you have components that contain security-critical information that must
only be shown in specific application states.

Component Interface68

User Interface Components

Component Tree Management

Components are laid out in the user interface hierarchically. The layout is managed by layout
components, or more generally components that implement the ComponentContainer interface.
Such a container is the parent of the contained components.

The getParent() method allows retrieving the parent component of a component. While there
is a setParent(), you rarely need it as you usually add components with the addComponent()
method of the ComponentContainer interface, which automatically sets the parent.

A component does not know its parent when the component is created, so you can not refer to
the parent in the constructor with getParent(). Also, it is not possible to fetch a reference to
the application object with getApplication() before having a parent. For example, the following
is invalid:

public class AttachExample extends CustomComponent {
 public AttachExample() {
 // ERROR: We can't access the application object yet.
 ClassResource r = new ClassResource("smiley.jpg",
 getApplication());
 Embedded image = new Embedded("Image:", r);
 setCompositionRoot(image);
 }
}

Adding a component to an application triggers calling the attach() method for the component.
Correspondingly, removing a component from a container triggers calling the detach() method.
If the parent of an added component is already connected to the application, the attach() is
called immediately from setParent().

public class AttachExample extends CustomComponent {
 public AttachExample() {
 }

 @Override
 public void attach() {
 super.attach(); // Must call.

 // Now we know who ultimately owns us.
 ClassResource r = new ClassResource("smiley.jpg",
 getApplication());
 Embedded image = new Embedded("Image:", r);
 setCompositionRoot(image);
 }
}

The attachment logic is implemented in AbstractComponent, as described in Section 5.2.2,
“AbstractComponent”.

5.2.2. AbstractComponent

AbstractComponent is the base class for all user interface components. It is the (only) imple-
mentation of the Component interface, implementing all the methods defined in the interface.

AbstractComponent has a single abstract method, getTag(), which returns the serialization
identifier of a particular component class. It needs to be implemented when (and only when)
creating entirely new components. AbstractComponent manages much of the serialization of
component states between the client and the server. Creation of new components and serialization
is described in Chapter 10, Developing Custom Components, and the server-side serialization
API in Appendix A, User Interface Definition Language (UIDL).

69AbstractComponent

User Interface Components

5.2.3. Field Components (Field and AbstractField)

Fields are components that have a value that the user can change through the user interface.
Figure 5.3, “Field Components” illustrates the inheritance relationships and the important interfaces
and base classes.

Figure 5.3. Field Components

Field components are built upon the framework defined in the Field interface and the Abstract-
Field base class.

Fields are strongly coupled with the Vaadin data model.The field value is handled as a Property
of the field component. Selection fields allow management of the selectable items through the
Container interface.

The description of the field interfaces and base classes is broken down in the following sections.

Field Components (Field and AbstractField)70

User Interface Components

Field Interface

The Field interface inherits the Component superinterface and also the Property interface to
have a value for the field. AbstractField is the only class implementing the Field interface directly.
The relationships are illustrated in Figure 5.4, “Field Interface Inheritance Diagram”.

Figure 5.4. Field Interface Inheritance Diagram

You can set the field value with the setValue() and read with the getValue() method defined
in the Property interface. The actual value type depends on the component.

The Field interface defines a number of attributes, which you can retrieve or manipulate with the
corresponding setters and getters.

description All fields have a description. Notice that while this attribute is defined
in the Field component, it is implemented in AbstractField, which
does not directly implement Field, but only through the AbstractField
class.

required A field can be marked as required and a required indicator marker
(usually * character) is displayed in front of the field. If such fields are
validated but are empty, the error indicator is shown and the component
error is set to the text defined with the requiredError attribute (see
below). Without validation, the required indicator is merely a visual
guide.

requiredError Defines the error message to show when a value is required for a field
but no value is given.The error message is set as the component error
for the field and is usually displayed in a tooltip. The Form component
can display the error message in a special error indicator area.

Handling Field Value Changes

Field inherits Property.ValueChangeListener to allow listening for field value changes and
Property.Editor to allow editing values.

When the value of a field changes, a Property.ValueChangeEvent is triggered for the field.You
should not implement the valueChange() method in a class inheriting AbstractField, as it is

71Field Components (Field and AbstractField)

User Interface Components

already implemented in AbstractField. You should instead implement the method explicitly by
adding the implementing object as a listener.

AbstractField Base Class

AbstractField is the base class for all field components. In addition to the component features
inherited from AbstractComponent, it implements a number of features defined in Property,
Buffered, Validatable, and Component.Focusable interfaces.

5.3. Common Component Features

The component base classes and interfaces provide a large number of features. Let us look at
some of the most commonly needed features. Features not documented here can be found from
the Java API Reference.

5.3.1. Description and Tooltips

All components (that inherit AbstractComponent) have a description separate from their caption.
The description is usually shown as a tooltip that appears when the mouse pointer hovers over
the component for a short time.

You can set the description with setDescription() and retrieve with getDescription().

Button button = new Button("A Button");
button.setDescription("This is the tooltip");

The tooltip is shown in Figure 5.5, “Component Description as a Tooltip”.

Figure 5.5. Component Description as a Tooltip

A description is rendered as a tooltip in most components. Form shows it as text in the top area
of the component, as described in Section 5.17.1, “Form as a User Interface Component”.

When a component error has been set with setComponentError(), the error is usually also
displayed in the tooltip, below the description (Form displays it in the bottom area of the form).
Components that are in error state will also display the error indicator. See Section 4.7.1, “Error
Indicator and message”.

The description is actually not plain text, but you can use XHTML tags to format it. Such a rich
text description can contain any HTML elements, including images.

button.setDescription(
 "<h2>"+
 "A richtext tooltip</h2>"+
 ""+
 " Use rich formatting with XHTML"+
 " Include images from themes"+
 " etc."+
 "");

The result is shown in Figure 5.6, “A Rich Text Tooltip”.

Common Component Features72

User Interface Components

Figure 5.6. A Rich Text Tooltip

Notice that the setter and getter are defined for all fields in the Field interface, not for all compon-
ents in the Component interface.

5.3.2. Sizing Components

Vaadin components are sizeable; not in the sense that they were fairly large or that the number
of the components and their features are sizeable, but in the sense that you can make them fairly
large on the screen if you like, or small or whatever size.

The Sizeable interface, shared by all components, provides a number of manipulation methods
and constants for setting the height and width of a component in absolute or relative units, or for
leaving the size undefined.

The size of a component can be set with setWidth() and setHeight() methods.The methods
take the size as a floating-point value. You need to give the unit of the measure as the second
parameter for the above methods. The available units are listed in Table 5.1, “Size Units” below.

mycomponent.setWidth(100, Sizeable.UNITS_PERCENTAGE);
mycomponent.setWidth(400, Sizeable.UNITS_PIXELS);

Alternatively, you can speficy the size as a string. The format of such a string must follow the
HTML/CSS standards for specifying measures.

mycomponent.setWidth("100%");
mycomponent.setHeight("400px");

The "100%" percentage value makes the component take all available size in the particular direction
(see the description of Sizeable.UNITS_PERCENTAGE in the table below). You can also use
the shorthand method setSizeFull() to set the size to 100% in both directions.

The size can be undefined in either or both dimensions, which means that the component will
take the minimum necessary space. Most components have undefined size by default, but some
layouts have full size in horizontal direction. You can set the height or width as undefined with
Sizeable.SIZE_UNDEFINED parameter for setWidth() and setHeight().

You always need to keep in mind that a layout with undefined size may not contain components
with defined relative size, such as "full size". See Section 6.10.1, “Layout Size” for details.

The Table 5.1, “Size Units” lists the available units and their codes defined in the Sizeable inter-
face.

73Sizing Components

User Interface Components

Table 5.1. Size Units

The pixel is the basic hardware-specific measure of one physical
display pixel.

pxUNITS_PIXELS

The point is a typographical unit, which is usually defined as 1/72
inches or about 0.35 mm. However, on displays the size can vary
significantly depending on display metrics.

ptUNITS_POINTS

The pica is a typographical unit, defined as 12 points, or 1/7 inches
or about 4.233 mm. On displays, the size can vary depending on
display metrics.

pcUNITS_PICAS

A unit relative to the used font, the width of the upper-case "M" letter.emUNITS_EM

A unit relative to the used font, the height of the lower-case "x" letter.exUNITS_EX

A physical length unit, millimeters on the surface of a display device.
However, the actual size depends on the display, its metrics in the
operating system, and the browser.

mmUNITS_MM

A physical length unit, centimeters on the surface of a display device.
However, the actual size depends on the display, its metrics in the
operating system, and the browser.

cmUNITS_CM

A physical length unit, inches on the surface of a display device.
However, the actual size depends on the display, its metrics in the
operating system, and the browser.

inUNITS_INCH

A relative percentage of the available size. For example, for the top-
level layout 100% would be the full width or height of the browser
window. The percentage value must be between 0 and 100.

%UNITS_PERCENTAGE

If a component inside HorizontalLayout or VerticalLayout has full size in the namesake direction
of the layout, the component will expand to take all available space not needed by the other
components. See Section 6.10.1, “Layout Size” for details.

5.3.3. Managing Input Focus

When the user clicks on a component, the component gets the input focus, which is indicated by
highlighting according to style definitions. If the component allows inputting text, the focus and
insertion point are indicated by a cursor. Pressing the Tab key moves the focus to the component
next in the focus order.

Focusing is supported by all Field components and also by Form and Upload.

The focus order or tab index of a component is defined as a positive integer value, which you
can set with setTabIndex() and get with getTabIndex(). The tab index is managed in the
context of the application-level Window in which the components are contained.The focus order
can therefore jump between two any lower-level component containers, such as sub-windows
or panels.

The default focus order is determined by the natural hierarchical order of components in the order
in which they were added under their parents. The default tab index is 0 (zero).

Giving a negative integer as the tab index removes the component from the focus order entirely.

Managing Input Focus74

User Interface Components

CSS Style Rules

The component having the focus will have an additional style class with the -focus prefix. For
example, a TextField would have style v-textfield-focus.

For example (if we have the focusexample style defined for a parent of a text field), the following
would make a text field blue when it has focus.

.focusexample .v-textfield-focus {
 background: lightblue;
}

5.4. Label

Label is a text component that you can use to display non-editable text.The text will wrap around
if the width of the containing component limits the length of the lines (except for preformatted
text).

// A container for the Label.
Panel panel = new Panel("Panel Containing a Label");
panel.setWidth("200px"); // Defined width.
main.addComponent(panel);

panel.addComponent(
 new Label("This is a Label inside a Panel. There is enough " +
 "text in the label to make the text wrap if it " +
 "exceeds the width of the panel."));

As the size of the Panel in the above example is fixed, the text in the Label will wrap to fit the
panel, as shown in Figure 5.7, “The Label Component”.

Figure 5.7.The Label Component

The contents of a label are formatted depending on the content mode. By default, the text is as-
sumed to be plain text and any contained XML-specific characters will be quoted appropriately
to allow rendering the contents of a label in XHTML in a web browser. The content mode can be
set in the constructor or with setContentMode(), and can have the following values:

CONTENT_DEFAULT The default content mode is CONTENT_TEXT (see below).

CONTENT_PREFORMATTED Content mode, where the label contains preformatted text.
It will be, by default, rendered with a fixed-width typewriter
font. Preformatted text can contain line breaks, written in
Java with the \n escape sequence for a newline character
(ASCII 0x0a), or tabulator characters written with \t (ASCII
0x08).

CONTENT_RAW Content mode, where the label contains raw text. Output is
not required to be valid XML. It can be, for example, HTML,
which can be unbalanced or otherwise invalid XML. The ex-
ample below uses the
 tag in HTML. While XHTML

75Label

User Interface Components

should be preferred in most cases, this can be useful for
some specific purposes where you may need to display
loosely formatted HTML content. The raw mode also pre-
serves character entities, some of which might otherwise be
interpreted incorrectly.

CONTENT_TEXT Content mode, where the label contains only plain text. All
characters are allowed, including the special <, >, and &
characters in XML or HTML, which are quoted properly in
XHTML while rendering the component. This is the default
mode.

CONTENT_XHTML Content mode, where the label contains XHTML.The content
will be enclosed in a DIV element having the namespace
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd".

CONTENT_XML Content mode, where the label contains well-formed and
well-balanced XML. Each of the root elements must have
their default namespace specified.

CONTENT_UIDL Formatted content mode, where the contents are XML that
is restricted to UIDL 1.0, the internal language of Vaadin for
AJAX communications between the server and the browser.
Obsolete since IT Mill Toolkit 5.0.

Warning

Notice that the validity of XML or XHTML in a Label is not checked in the server
when rendering the component and any errors can result in an error in the browser!
You should validate the content before displaying it in the component, especially if
it comes from an uncertain source.

The following example demonstrates the use of Label in different modes.

GridLayout labelgrid = new GridLayout (2,1);

labelgrid.addComponent (new Label ("CONTENT_DEFAULT"));
labelgrid.addComponent (
 new Label ("This is a label in default mode: <plain text>",
 Label.CONTENT_DEFAULT));

labelgrid.addComponent (new Label ("CONTENT_PREFORMATTED"));
labelgrid.addComponent (
 new Label ("This is a preformatted label.\n"+
 "The newline character \\n breaks the line.",
 Label.CONTENT_PREFORMATTED));

labelgrid.addComponent (new Label ("CONTENT_RAW"));
labelgrid.addComponent (
 new Label ("This is a label in raw mode.
It can contain, "+
 "for example, unbalanced markup.",
 Label.CONTENT_RAW));

labelgrid.addComponent (new Label ("CONTENT_TEXT"));
labelgrid.addComponent (
 new Label ("This is a label in (plain) text mode",
 Label.CONTENT_TEXT));

labelgrid.addComponent (new Label ("CONTENT_XHTML"));
labelgrid.addComponent (

Label76

User Interface Components

 new Label ("<i>This</i> is an XHTML formatted label",
 Label.CONTENT_XHTML));

labelgrid.addComponent (new Label ("CONTENT_XML"));
labelgrid.addComponent (
 new Label ("This is an <myelement>XML</myelement> "+
 "formatted label",
 Label.CONTENT_XML));

main.addComponent(labelgrid);

The rendering will look as follows:

Figure 5.8. Label Modes Rendered on Screen

Using the XHTML, XML, or raw modes allow inclusion of, for example, images within the text
flow, which is not possible with any regular layout components. The following example includes
an image within the text flow, with the image coming from a class loader resource.

ClassResource labelimage = new ClassResource ("labelimage.jpg",
 this);
main.addComponent(new Label("Here we have an image <img src=\"" +
 this.getRelativeLocation(labelimage) +
 "\"/> within text.",
 Label.CONTENT_XHTML));

When you use a class loader resource, the image has to be included in the JAR of the web ap-
plication. In this case, the labelimage.jpg needs to be in the default package.When rendered
in a web browser, the output will look as follows:

Figure 5.9. Referencing An Image Resource in Label

Another solution would be to use the CustomLayout component, where you can write the com-
ponent content as an XHTML fragment in a theme, but such a solution may be too heavy for
most cases, and not flexible enough if the content needs to be dynamically generated.

Notice that the rendering of XHTML depends on the assumption that the client software and the
terminal adapter are XHTML based. It is possible to write a terminal adapter for a custom thin
client application, which may not be able to render XHTML at all. There are also differences
between web browsers in their support of XHTML.

77Label

User Interface Components

5.5. Link

The Link component allows making references to resources that are either external or provided
by the web server or by the application itself. While a Link appears like a hyperlink, it is not
handled in the web browser. When a user clicks a link, the server receives an event and typically
opens the referenced resource in the target window of the link. Resources are explained in
Section 4.5, “Referencing Resources”.

Links to external resources can be made by using a URI as follows:

Link link = new Link ("link to a resource",
 new ExternalResource("http://www.itmill.com/")));

With the simple contructor used in the above example, the link is opened in the current window.
Using the constructor that takes the target window as a parameter, or by setting the window with
setWindow, you can open the resource in another window, such as a native popup window or
a FrameWindow. As the target window can be defined as a target string managed by the browser,
the target can be any window, including windows not managed by the application itself.

When the user clicks the link, the application will receive an event regarding the click and handle
it to provide the resource. The link is therefore not an <a href> element in HTML and it does
not have an URI.This has some additional consequences, such as that a link can not be marked
as "visited" by the browser, unlike normal hyperlinks. If you wish to have an actual HTML anchor
element, you need to customize the rendering of the component or use a Label with XHTML
content mode and write the anchor element by yourself.

CSS Style Rules

The Link component has v-link style by default.

.v-link { }

When the mouse pointer hovers over the link, it will also have the over style.

5.6. TextField

TextField is one of the most common user interface components and is highly versatile. It supports
both single- and multi-line editing, password input, and buffering.

The following example creates two simple text fields: a single-line and a multi-line TextField.

/* Add a single-line text field. */
TextField subject = new TextField("Subject");
subject.setColumns(40);
main.addComponent(subject);

/* Add a multi-line text field. */
TextField message = new TextField("Message");
message.setRows(7);
message.setColumns(40);
main.addComponent(message);

Link78

User Interface Components

Figure 5.10. Single- and Multi-Line Text Field Example

Notice how font size affects the width of the text fields even though the width was set with the
same number of columns. This is a feature of HTML.

5.7. RichTextArea

The RichTextArea field allows entering or editing formatted text. The toolbar provides all basic
editing functionalities. The text content of RichTextArea is represented in HTML format. Rich-
TextArea inherits TextField and does not add any API functionality over it. You can add new
functionality by extending the client-side components VRichTextArea and VRichTextToolbar.

As with TextField, the textual content of the rich text area is the Property of the field and can
be set with setValue() and read with getValue().

// Create a rich text area
final RichTextArea rtarea = new RichTextArea();
rtarea.setCaption("My Rich Text Area");

// Set initial content as HTML
rtarea.setValue("<h1>Hello</h1>\n" +
 "<p>This rich text area contains some text.</p>");

Figure 5.11. Rich Text Area Component

Above, we used context-specific tags such as <h1> in the initial HTML content. The rich text
area component does not allow creating such tags, only formatting tags, but it does preserve
them unless the user edits them away. Any non-visible whitespace such as the new line character
(\n) are removed from the content. For example, the value set above will be as follows when
read from the field with getValue():

<h1>Hello</h1> <p>This rich text area contains some text.</p>

79RichTextArea

User Interface Components

The rich text area is one of the few components in Vaadin that contain textual labels.The selection
boxes in the toolbar are in English, and not be localized currently otherwise but by inheriting or
reimplementing the client-side VRichTextToolbar widget. The buttons can be localized simply
with CSS by downloading a copy of the toolbar background image, editing it, and replacing the
default toolbar.The toolbar is a single image file from which the individual button icons are picked,
so the order of the icons is different from the rendered. The image file depends on the client-side
implementation of the toolbar.

.v-richtextarea-richtextexample .gwt-ToggleButton

.gwt-Image {
 background-image: url(img/richtextarea-toolbar-fi.png)
 !important;
}

Figure 5.12. Regular English and a Localized Rich Text Area Toolbar

CSS Style Rules
.v-richtextarea { }
.v-richtextarea .gwt-RichTextToolbar { }
.v-richtextarea .gwt-RichTextArea { }

The rich text area consists of two main parts: the toolbar with overall style
.gwt-RichTextToolbar and the editor area with style .gwt-RichTextArea.The editor area
obviously contains all the elements and their styles that the HTML content contains. The toolbar
contains buttons and drop-down list boxes with the following respective style names:

.gwt-ToggleButton { }

.gwt-ListBox { }

5.8. Date and Time Input

The DateField component provides the means to display and input date and time. The field
comes in two variations: PopupDateField with numeric input fields and a popup calendar view
and InlineDateField with the calendar view always visible and the numeric input fields only for
time. The DateField base class defaults to the popup variation.

The example below illustrates the use of the DateField with the default style. We set the time of
the DateField to current time with the default constructor of the java.util.Date class.

/* Create a DateField with the default style. */
DateField date = new DateField();

/* Set the date and time to present. */
date.setValue(new java.util.Date());

Figure 5.13. Example of the Date Field with Default Style

CSS Style Rules80

User Interface Components

The default style provides date input using a text box for the date and combo boxes for the time,
down to milliseconds. Pressing the "..." button right of the date opens a month view for selecting
the date.

You probably will not need milliseconds in most applications, and might not even need the time,
but just the date. The visibility of the input components is controlled by resolution of the field
which can be set with setResolution() method. The method takes as its parameters the
lowest visible component, typically RESOLUTION_DAY for just dates and RESOLUTION_MIN for
dates with time in hours and minutes. Please see the API Reference for a complete list of resol-
ution parameters.

5.8.1. Calendar

The calendar style of the DateField provides a date picker component with a month view, just
like the one in the default style that opens by clicking the "..." button. The user can navigate
months and years by clicking the appropriate arrows.

// Create a DateField with the calendar style.
DateField date = new DateField("Here is a calendar field");
date.setStyle("calendar");

// Set the date and time to present.
date.setValue(new java.util.Date());

main.addComponent(date);

Figure 5.14. Example of the Date Field with Calendar Style

5.8.2. DateField Locale

The date fields use the locale set for the component, which defaults to the system locale. You
can set a custom locale with the setLocale() method of AbstractComponent.

5.9. Button

The Button is a user interface component that is normally used for finalizing input and initiating
some action. When the user clicks a button, a Button.ClickEvent is emitted. A listener that in-
herits the Button.ClickListener interface can handle clicks with the buttonClick() method.

public class TheButton extends CustomComponent
 implements Button.ClickListener {
 Button thebutton;

 public TheButton() {
 // Create a Button with the given caption.

81Calendar

User Interface Components

 thebutton = new Button ("Do not push this button");

 // Listen for ClickEvents.
 thebutton.addListener(this);

 setCompositionRoot(thebutton);
 }

 /** Handle click events for the button. */
 public void buttonClick (Button.ClickEvent event) {
 thebutton.setCaption ("Do not push this button again");
 }
}

Figure 5.15. An Example of a Button

As a user interface often has several buttons, you can differentiate between them either by
comparing the Button object reference returned by the getButton() method of Button.Click-
Event to a kept reference or by using a separate listener method for each button. The listening
object and method can be given to the constructor. For a detailed description of these patterns
together with some examples, please see Section 3.5, “Events and Listeners”.

CSS Style Rules
.v-button { }

The exact CSS style name can be different if a Button has the switchMode attribute enabled.
See the alternative CSS styles below.

5.10. CheckBox

CheckBox is a two-state selection component that can be either checked or unchecked. The
caption of the check box will be placed right of the actual check box. Vaadin provides two ways
to create check boxes: individual check boxes with the CheckBox component described in this
section and check box groups with the OptionGroup component in multiple selection mode, as
described in Section 5.11.3, “Radio Button and Check Box Groups with OptionGroup”.

Clicking on a check box will change its state. The state is the Boolean property of the Button,
and can be set with setValue() and obtained with getValue() method of the Property inter-
face. Changing the value of a check box will cause a ValueChangeEvent, which can be handled
by a ValueChangeListener.

// A check box with default state (not checked, false).
final CheckBox checkbox1 = new CheckBox("My CheckBox");
main.addComponent(checkbox1);

// Another check box with explicitly set checked state.
final CheckBox checkbox2 = new CheckBox("Checked CheckBox");
checkbox2.setValue(true);
main.addComponent(checkbox2);

// Make some application logic. We use anynymous listener
// classes here. The above references were defined as final
// to allow accessing them from inside anonymous classes.
checkbox1.addListener(new ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {

CSS Style Rules82

User Interface Components

 // Copy the value to the other checkbox.
 checkbox2.setValue(checkbox1.getValue());
 }
});
checkbox2.addListener(new ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 // Copy the value to the other checkbox.
 checkbox1.setValue(checkbox2.getValue());
 }
});

Figure 5.16. An Example of a Check Box

For an example on the use of check boxes in a table, see Section 5.12, “Table”.

CSS Style Rules
.v-checkbox { }

5.11. Selecting Items

Vaadin provides several alternative choices for selecting one or more items from a list. The se-
lection components allow selecting one or more items from a list of items. The items are objects
that implement the Item interface, and contained in a Container. The choices are based on the
AbstractSelect base class.

The following selection classes are available:

Select Provides a drop-down list for single selection and a multi-line list in
multiselect mode.

NativeSelect Provides selection using the native selection component of the browser,
typically a drop-down list for single selection and a multi-line list in
multiselect mode. This uses the <select> element in HTML.

OptionGroup Shows the items as a vertically arranged group of radio buttons in the
single selection mode and of check boxes in multiple selection mode.

TwinColSelect Shows two list boxes side by side where the user can select items
from a list of available items and move them to a list of selected items
using control buttons.

In addition, the Tree and Table components allow special forms of selection. They also inherit
the AbstractSelect.

A selection component provides the current selection as the property of the component (with the
Property interface). The property value is an item identifier object that identifies the selected
item. You can get the identifier with getValue() of the Property interface. You can select an
item with the corresponding setValue() method. In multiselect mode, the property will be an
unmodifiable set of item identifiers. If no item is selected, the property will be null in single se-
lection mode or an empty collection in multiselect mode.

83CSS Style Rules

User Interface Components

New items are added with the addItem() method, implemented for the Container interface.
The method takes the item identifier (IID) object as a parameter, and by default uses the identifier
also as the caption of the item. The identifier is typically a String. The addItem() method also
creates an empty Item, which itself has little relevance in the Select component, as the properties
of an item are not used in any way by the component.

// Create a Select component.
Select select = new Select ("Select something here");
main.addComponent(select);

// Fill the component with some items.
final String[] planets = new String[] {
 "Mercury", "Venus", "Earth", "Mars",
 "Jupiter", "Saturn", "Uranus", "Neptune"};

for (int i=0; i<planets.length; i++)
 select.addItem(planets[i]);

We could as well have added the item identifiers as integers, for example, and set the captions
explicitly.

The Select and NativeSelect components will show "-" selection when no actual item is selected.
This is the null selection item identifier. You can set an alternative ID with
setNullSelectionItemId(). Setting the alternative null ID is merely a visual text; the
getValue() will still return null value if no item is selected, or an empty set in multiselect
mode.

The item identifier of the currently selected item will be set as the property of the Select object.
You can access it with the getValue() method of the Property interface of the component.
Also, when handling changes in a Select component with the Property.ValueChangeListener
interface, the Property.ValueChangeEvent will have the selected item as the property of the
event, accessible with the getProperty() method.

Figure 5.17. Selected Item

The item and its identifier can be of any object type. The caption of the items can be retrieved
from various sources, as defined with the caption mode of the component, which you can set
with the setItemCaptionMode() method. The default mode is
ITEM_CAPTION_MODE_EXPLICIT_DEFAULTS_ID. In addition to a caption, an item can have
an icon. The icon of an item is set with setItemIcon().

Caption Modes for Selection Components

ITEM_CAPTION_MODE_EXPLICIT_DEFAULTS_ID This is the default caption mode and its flexibility allows
using it in most cases. By default, the item identifier will
be used as the caption. The caption is retrieved with
toString() method of the item identifier object. If the
caption is specified explicitly with setItemCaption(),
it overrides the item identifier.

Selecting Items84

User Interface Components

ITEM_CAPTION_MODE_EXPLICIT Captions must be explicitly specified with
setItemCaption(). If they are not, the caption will
be empty. Such items with empty captions will never-
theless be displayed in the Select component as empty
rows. If they have an icon, they will be visible.

ITEM_CAPTION_MODE_ICON_ONLY Only icons are shown, captions are hidden.

ITEM_CAPTION_MODE_ID String representation of the item identifier object is used
as caption. This is useful when the identifier is actually
an application specific object. For example:

class Planet extends Object {
 String planetName;
 Planet (String name) {
 planetName = name;
 }
 public String toString () {
 return "The Planet " + planetName;
 }

 ... + equals() and hashCode() implentations

 }
 ...
 SelectExample (Application application) {
 ...
 for (int i=0; i<planets.length; i++)
 select.addItem(new Planet(planets[i]));

 ...
 }

ITEM_CAPTION_MODE_INDEX Index number of item is used as caption. This caption
mode is applicable only to data sources that implement
the Container.Indexed interface. If the interface is not
available, the component will throw a ClassCastExcep-
tion. The Select component itself does not implement
this interface, so the mode is not usable without a
separate data source. An IndexedContainer, for ex-
ample, would work.

ITEM_CAPTION_MODE_ITEM String representation of item, acquired with
toString(), is used as the caption.This is applicable
mainly when using a custom Item class, which also
requires using a custom Container that is used as a
data source for the Select component.

ITEM_CAPTION_MODE_PROPERTY Item captions are read from the String representation
of the property with the identifier specified with
setItemCaptionPropertyId(). This is useful, for
example, when you have a Table component that you
use as the data source for the Select, and you want to
use a specific table column for captions.

Notice that while the Select component allows associating an icon with each item with
setItemIcon(), the icons are not supported in the themes in the old IT Mill Toolkit version 4.

85Selecting Items

User Interface Components

This is because HTML does not support images inside select elements. Icons are also not
really visually applicable for optiongroup and twincol styles.

5.11.1. Basic Select Component

The Select component allows, in single selection mode, selecting an item from a drop-down list,
or in multiple selection mode, from a list box that shows multiple items.

Figure 5.18.The Select Component

Combo Box Behaviour

The Select component will act as a combo box in single selection mode, allowing either to choose
the value from the drop-down list or to write the value in the text field part of the component.

Filtered Selection

The Select component allows filtering the items available for selection. The component shows
as an input box for entering text.The text entered in the input box is used for filtering the available
items shown in a drop-down list. Pressing Enter will complete the item in the input box. Pressing
Up- and Down-arrows can be used for selecting an item from the drop-down list. The drop-down
list is paged and clicking on the scroll buttons will change to the next or previous page. The list
selection can also be done with the arrow keys on the keyboard. The shown items are loaded
from the server as needed, so the number of items held in the component can be quite large.

Vaadin provides two filtering modes:FILTERINGMODE_CONTAINS matches any item that contains
the string given in the text field part of the component and FILTERINGMODE_STARTSWITH
matches only items that begin with the given string. The filtering mode is set with
setFilteringMode(). Setting the filtering mode to the default value FILTERINGMODE_OFF
disables filtering.

Select select = new Select("Enter containing substring");

select.setFilteringMode(AbstractSelect.Filtering.FILTERINGMODE_CONTAINS);

/* Fill the component with some items. */
final String[] planets = new String[] {
 "Mercury", "Venus", "Earth", "Mars",
 "Jupiter", "Saturn", "Uranus", "Neptune" };

Basic Select Component86

User Interface Components

for (int i = 0; i < planets.length; i++)
 for (int j = 0; j < planets.length; j++) {
 select.addItem(planets[j] + " to " + planets[i]);

The above example uses the containment filter that matches to all items containing the input
string. As shown in Figure 5.19, “Filtered Selection” below, when we type some text in the input
area, the drop-down list will show all the matching items.

Figure 5.19. Filtered Selection

The FilterSelect demo in the Vaadin Demo Application provides an example of filtering items in
a Select component.

CSS Style Rules

.v-filterselect { }

.v-filterselect-input { }

.v-filterselect-button { }

.v-filterselect-suggestpopup { }

.v-filterselect-prefpage-off { }

.v-filterselect-suggestmenu { }

.v-filterselect-status { }

In its default state, only the input field of the Select component is visible. The entire component
is enclosed in v-filterselect style, the input field has v-filterselect-input style and
the button in the right end that opens and closes the drop-down result list has
v-filterselect-button style.

The drop-down result list has an overall v-filterselect-suggestpopup style. It contains
the list of suggestions with v-filterselect-suggestmenu style and a status bar in the bottom
with v-filterselect-status style. The list of suggestions is padded with an area with
v-filterselect-prefpage-off style above and below the list.

5.11.2. Native Selection Component NativeSelect

NativeSelect offers the native selection component in web browsers, using an HTML <select>
element. In single selection mode, the component is shown as a drop-down list, and in multiple
selection mode as a list box.

87Native Selection Component NativeSelect

User Interface Components

CSS Style Rules

.v-select-optiongroup {}

.v-checkbox, .v-select-option {}

.v-radiobutton, .v-select-option {}

The v-select-optiongroup is the overall style for the component. Each check box will have
the v-checkbox style and each radio button the v-radiobutton style. Both the radio buttons
and check boxes will also have the v-select-option style that allows styling regardless of
the option type.

5.11.3. Radio Button and Check Box Groups with OptionGroup

The OptionGroup class provides selection from alternatives using a group of radio buttons in
single selection mode. In multiple selection mode, the items show up as check boxes.

OptionGroup optiongroup = new OptionGroup("My Option Group");

// Use the multiple selection mode.
myselect.setMultiSelect(true);

Figure 5.20, “Option Button Group in Single and Multiple Selection Mode” shows the option group
in single and multiple selection mode.

Figure 5.20. Option Button Group in Single and Multiple Selection Mode

You can create check boxes individually using the CheckBox class, as described in Section 5.10,
“CheckBox”. The advantages of the OptionGroup component are that as it maintains the indi-
vidual check box objects, you can get an array of the currently selected items easily, and that
you can easily change the appearance of a single component.

CSS Style Rules

.v-select-optiongroup {}

.v-checkbox, .v-select-option {}

.v-radiobutton, .v-select-option {}

The v-select-optiongroup is the overall style for the component. Each check box will have
the v-checkbox style and each radio button the v-radiobutton style. Both the radio buttons
and check boxes will also have the v-select-option style that allows styling regardless of
the option type.

Radio Button and Check Box Groups with OptionGroup88

User Interface Components

5.11.4.Twin Column Selection with TwinColSelect

The TwinColSelect class provides a multiple selection component that shows two lists side by
side. The user can select items from the list on the left and click on the ">>" button to move them
to the list on the right. Items can be moved back by selecting them and clicking on the "<<" button.

Figure 5.21.Twin Column Selection

CSS Style Rules

.v-select-twincol {}

.v-select-twincol-options {}

.v-select-twincol-selections {}

.v-select-twincol-buttons {}

.v-select-twincol-deco {}

5.11.5. Allowing Adding New Items

The selection components allow the user to add new items, with a user interface similar to combo
boxes in desktop user interfaces. You need to enable the newItemsAllowed mode with the
setNewItemsAllowed() method.

myselect.setNewItemsAllowed(true);

The user interface for adding new items depends on the selection component and the selection
mode. The regular Select component in single selection mode, which appears as a combo box,
allows you to simply type the new item in the combo box and hit Enter to add it. In most other
selection components, as well as in the multiple selection mode of the regular Select component,
a text field that allows entering new items is shown below the selection list, and clicking the +
button will add the item in the list, as illustrated in Figure 5.22, “Select Component with Adding
New Items Allowed”.

89Twin Column Selection with TwinColSelect

User Interface Components

Figure 5.22. Select Component with Adding New Items Allowed

The identifier of an item added by the user will be a String object identical to the caption of the
item.You should consider this if the item identifier of automatically filled items is some other type
or otherwise not identical to the caption.

Adding new items is possible in both single and multiple selection modes and in all styles. Adding
new items may not be possible if the Select is bound to an external Container that does not allow
adding new items.

5.11.6. Multiple Selection Mode

Setting the Select, NativeSelect, or OptionGroup components to multiple selection mode with
the setMultiSelect() method changes their appearance to allow selecting multiple items.

Select and NativeSelect These components appear as a native HTML selection
list, as shown in Figure 5.22, “Select Component with
Adding New Items Allowed”. By holding the Ctrl or Shift
key pressed, the user can select multiple items.

OptionGroup The option group, which is a radio button group in single
selection mode, will show as a check box group in mul-
tiple selection mode. See Section 5.11.3, “Radio Button
and Check Box Groups with OptionGroup”.

The TwinColSelect, described in Section 5.11.4, “Twin Column Selection with TwinColSelect”,
is a special multiple selection mode that is not meaningful for single selection.

myselect.setMultiSelect(true);

As in single selection mode, the selected items are set as the property of the Select object. In
multiple selection mode, the property is a Collection of currently selected items. You can get
and set the property with the getValue() and setValue() methods as usual.

A change in the selection will trigger a ValueChangeEvent, which you can handle with a
Propery.ValueChangeListener. As usual, you should use setImmediate(true) to trigger
the event immediately when the user changes the selection. The following example shows how
to handle selection changes with a listener.

public class SelectExample
 extends CustomComponent
 implements Property.ValueChangeListener {
 // Create a Select object with a caption.
 Select select = new Select("This is a Select component");

Multiple Selection Mode90

User Interface Components

 VerticalLayout layout = new VerticalLayout();
 Label status = new Label("-");

 SelectExample () {
 setCompositionRoot (layout);
 layout.addComponent(select);

 // Fill the component with some items.
 final String[] planets = new String[] {
 "Mercury", "Venus", "Earth", "Mars",
 "Jupiter", "Saturn", "Uranus", "Neptune"};
 for (int i=0; i<planets.length; i++)
 select.addItem(planets[i]);

 // By default, the change event is not triggered
 // immediately when the selection changes.
 // This enables the immediate events.
 select.setImmediate(true);

 // Listen for changes in the selection.
 select.addListener(this);

 layout.addComponent(status);
 }

 /* Respond to change in the selection. */
 public void valueChange(Property.ValueChangeEvent event) {
 // The event.getProperty() returns the Item ID (IID)
 // of the currently selected item in the component.
 status.setValue("Currently selected item ID: " +
 event.getProperty());
 }
}

5.12. Table

The Table component is intended for presenting tabular data organized in rows and columns.
The Table is one of the most versatile components in Vaadin. Table cells can include text or ar-
bitrary UI components. You can easily implement editing of the table data, for example clicking
on a cell could change it to a text field for editing.

The data contained in a Table is managed using the Data Model of Vaadin (see Chapter 9,
Binding Components to Data), through the Container interface of the Table.This makes it possible
to bind a table directly to a data souce such as a database query. Only the visible part of the
table is loaded into the browser and moving the visible window with the scrollbar loads content
from the server. While the data is being loaded, a tooltip will be displayed that shows the current
range and total number of items in the table. The rows of the table are items in the container and
the columns are properties. Each table row (item) is identified with an item identifier (IID), and
each column (property) with a property identifier (PID).

When creating a table, you first need to define columns with addContainerProperty(). This
method comes in two flavours. The simpler one takes the property ID of the column and uses it
also as the caption of the column. The more complex one allows differing PID and header for the
column. This may make, for example, internationalization of table headers easier, because if a
PID is internationalized, the internationalization has to be used everywhere where the PID is
used.The complex form of the method also allows defining an icon for the column from a resource.
The "default value" parameter is used when new properties (columns) are added to the table, to
fill in the missing values. (This default has no meaning in the usual case, such as below, where
we add items after defining the properties.)

91Table

User Interface Components

/* Create the table with a caption. */
Table table = new Table("This is my Table");

/* Define the names and data types of columns.
 * The "default value" parameter is meaningless here. */
table.addContainerProperty("First Name", String.class, null);
table.addContainerProperty("Last Name", String.class, null);
table.addContainerProperty("Year", Integer.class, null);

/* Add a few items in the table. */
table.addItem(new Object[] {
 "Nicolaus","Copernicus",new Integer(1473)}, new Integer(1));
table.addItem(new Object[] {
 "Tycho", "Brahe", new Integer(1546)}, new Integer(2));
table.addItem(new Object[] {
 "Giordano","Bruno", new Integer(1548)}, new Integer(3));
table.addItem(new Object[] {
 "Galileo", "Galilei", new Integer(1564)}, new Integer(4));
table.addItem(new Object[] {
 "Johannes","Kepler", new Integer(1571)}, new Integer(5));
table.addItem(new Object[] {
 "Isaac", "Newton", new Integer(1643)}, new Integer(6));

In this example, we used an increasing Integer object as the Item Identifier, given as the second
parameter to addItem(). The actual rows are given simply as object arrays, in the same order
in which the properties were added. The objects must be of the correct class, as defined in the
addContainerProperty() calls.

Figure 5.23. Basic Table Example

Scalability of the Table is largely dictated by the container. The default IndexedContainer is
relatively heavy and can cause scalability problems, for example, when updating the values. Use
of an optimized application-specific container is recommended. Table does not have a limit for
the number of items and is just as fast with hundreds of thousands of items as with just a few.
With the current implementation of scrolling, there is a limit of around 500 000 rows, depending
on the browser and the pixel height of rows.

5.12.1. Selecting Items in a Table

The Table allows selecting one or more items by clicking them with the mouse. When the user
selects an item, the IID of the item will be set as the property of the table and a ValueChangeEvent
is triggered. To enable selection, you need to set the table selectable. You will also need to set
it as immediate in most cases, as we do below, because without it, the change in the property
will not be communicated immediately to the server.

The following example shows how to enable the selection of items in a Table and how to handle
ValueChangeEvent events that are caused by changes in selection. You need to handle the
event with the valueChange() method of the Property.ValueChangeListener interface.

Selecting Items in a Table92

User Interface Components

// Allow selecting items from the table.
table.setSelectable(true);

// Send changes in selection immediately to server.
table.setImmediate(true);

// Shows feedback from selection.
final Label current = new Label("Selected: -");

// Handle selection change.
table.addListener(new Property.ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 current.setValue("Selected: " + table.getValue());
 }
});

Figure 5.24.Table Selection Example

If the user clicks on an already selected item, the selection will deselected and the table property
will have null value. You can disable this behaviour by setting
setNullSelectionAllowed(false) for the table.

A table can also be in multiselect mode, where a user can select and unselect any item by
clicking on it.The mode is enabled with the setMultiSelect() method of the Select interface
of Table. Selecting an item triggers a ValueChangeEvent, which will have as its parameter an
array of item identifiers.

5.12.2. CSS Style Rules

Styling the overall style of a Table can be done with the following CSS rules.

.v-table {}
 .v-table-header-wrap {}
 .v-table-header {}
 .v-table-header-cell {}
 .v-table-resizer {} /* Column resizer handle. */
 .v-table-caption-container {}
 .v-table-body {}
 .v-table-row-spacer {}
 .v-table-table {}
 .v-table-row {}
 .v-table-cell-content {}

Notice that some of the widths and heights in a table are calculated dynamically and can not be
set in CSS.

93CSS Style Rules

User Interface Components

Setting Individual Cell Styles

The Table.CellStyleGenerator interface allows you to set the CSS style for each individual cell
in a table. You need to implement the getStyle(), which gets the row (item) and column
(property) identifiers as parameters and can return a style name for the cell. The returned style
name will be concatenated to prefix "v-table-cell-content-".

Alternatively, you can use a Table.ColumnGenerator (see Section 5.12.4, “Generated Table
Columns”) to generate the actual UI components of the cells and add style names to them. A cell
style generator is not used for the cells in generated columns.

Table table = new Table("Table with Cell Styles");
table.addStyleName("checkerboard");

// Add some columns in the table. In this example, the property
// IDs of the container are integers so we can determine the
// column number easily.
table.addContainerProperty("0", String.class, null, "", null, null);
for (int i=0; i<8; i++)
 table.addContainerProperty(""+(i+1), String.class, null,
 String.valueOf((char) (65+i)), null, null);

// Add some items in the table.
table.addItem(new Object[]{
 "1", "R", "N", "B", "Q", "K", "B", "N", "R"}, new Integer(0));
table.addItem(new Object[]{
 "2", "P", "P", "P", "P", "P", "P", "P", "P"}, new Integer(1));
for (int i=2; i<6; i++)
 table.addItem(new Object[]{String.valueOf(i+1),
 "", "", "", "", "", "", "", ""}, new Integer(i));
table.addItem(new Object[]{
 "7", "P", "P", "P", "P", "P", "P", "P", "P"}, new Integer(6));
table.addItem(new Object[]{
 "8", "R", "N", "B", "Q", "K", "B", "N", "R"}, new Integer(7));
table.setPageLength(8);

// Set cell style generator
table.setCellStyleGenerator(new Table.CellStyleGenerator() {
 public String getStyle(Object itemId, Object propertyId) {
 int row = ((Integer)itemId).intValue();
 int col = Integer.parseInt((String)propertyId);

 // The first column.
 if (col == 0)
 return "rowheader";

 // Other cells.
 if ((row+col)%2 == 0)
 return "black";
 else
 return "white";
 }
});

You can then style the cells, for example, as follows:

/* Center the text in header. */
.v-table-header-cell {
 text-align: center;
}

/* Basic style for all cells. */
.v-table-checkerboard .v-table-cell-content {
 text-align: center;
 vertical-align: middle;

CSS Style Rules94

User Interface Components

 padding-top: 12px;
 width: 20px;
 height: 28px;
}

/* Style specifically for the row header cells. */
.v-table-cell-content-rowheader {
 background: #E7EDF3
 url(../default/table/img/header-bg.png) repeat-x scroll 0 0;
}

/* Style specifically for the "white" cells. */
.v-table-cell-content-white {
 background: white;
 color: black;
}

/* Style specifically for the "black" cells. */
.v-table-cell-content-black {
 background: black;
 color: white;
}

The table will look as shown in Figure 5.25, “Cell Style Generator for a Table”.

Figure 5.25. Cell Style Generator for a Table

5.12.3.Table Features

Page Length and Scrollbar

The default style for Table provides a table with a scrollbar. The scrollbar is located at the right
side of the table and becomes visible when the number of items in the table exceeds the page
length, that is, the number of visible items.You can set the page length with setPageLength().

Setting the page length to zero makes all the rows in a table visible, no matter how many rows
there are. Notice that this also effectively disables buffering, as all the entire table is loaded to
the browser at once. Using such tables to generate reports does not scale up very well, as there
is some inevitable overhead in rendering a table with Ajax. For very large reports, generating
HTML directly is a more scalable solution.

95Table Features

User Interface Components

Organizing Columns

The default scrollable style supports most of the table features. User can resize the columns by
dragging their borders, change the sorting by clicking on the column headers, collapse the columns
if columnCollapsingAllowed is true, and reorder them if columnReorderingAllowed is
true.You can set the column width of individual columns with setColumnWidth().

Components Inside a Table

The cells of a Table can contain any user interface components, not just strings. If the rows are
higher than the row height defined in the default theme, you have to define the proper row height
in a custom theme.

When handling events for components inside a Table, such as for the Button in the example
below, you usually need to know the item the component belongs to. Components do not them-
selves know about the table or the specific item in which a component is contained. Therefore,
the handling method must use some other means for finding out the Item ID of the item. There
are a few possibilities. Usually the easiest way is to use the setData() method to attach an
arbitrary object to a component.You can subclass the component and include the identity inform-
ation there.You can also simply search the entire table for the item with the component, although
that solution may not be so scalable.

The example below includes table rows with a Label in XHTML formatting mode, a multiline
TextField, a CheckBox, and a Button that shows as a link.

// Create a table and add a style to allow setting the row height in theme.
final Table table = new Table();
table.addStyleName("components-inside");

/* Define the names and data types of columns.
 * The "default value" parameter is meaningless here. */
table.addContainerProperty("Sum", Label.class, null);
table.addContainerProperty("Is Transferred", CheckBox.class, null);
table.addContainerProperty("Comments", TextField.class, null);
table.addContainerProperty("Details", Button.class, null);

/* Add a few items in the table. */
for (int i=0; i<100; i++) {
 // Create the fields for the current table row
 Label sumField = new Label(String.format(
 "Sum is $%04.2f
<i>(VAT incl.)</i>",
 new Object[] {new Double(Math.random()*1000)}),
 Label.CONTENT_XHTML);
 CheckBox transferredField = new CheckBox("is transferred");

 // Multiline text field. This required modifying the
 // height of the table row.
 TextField commentsField = new TextField();
 commentsField.setRows(3);

 // The Table item identifier for the row.
 Integer itemId = new Integer(i);

 // Create a button and handle its click. A Button does not
 // know the item it is contained in, so we have to store the
 // item ID as user-defined data.
 Button detailsField = new Button("show details");
 detailsField.setData(itemId);
 detailsField.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 // Get the item identifier from the user-defined data.
 Integer itemId = (Integer)event.getButton().getData();

Table Features96

User Interface Components

 getWindow().showNotification("Link "+
 itemId.intValue()+" clicked.");
 }
 });
 detailsField.addStyleName("link");

 // Create the table row.
 table.addItem(new Object[] {sumField, transferredField,
 commentsField, detailsField},
 itemId);
}

// Show just three rows because they are so high.
table.setPageLength(3);

The row height has to be set higher than the default with a style rule such as the following:

/* Table rows contain three-row TextField components. */
.v-table-components-inside .v-table-cell-content {
 height: 54px;
}

The table will look as shown in Figure 5.26, “Components in a Table”.

Figure 5.26. Components in a Table

Editing the Values of a Table

Normally, a Table simply displays the items and their fields as text. If you want to allow the user
to edit the values, you can either put them inside components as we did above, or you can simply
call setEditable(true) and the cells are automatically turned into editable fields.

Let us begin with a regular table with a some columns with usual Java types, namely a Date,
Boolean, and a String.

// Create a table. It is by default not editable.
final Table table = new Table();

// Define the names and data types of columns.
table.addContainerProperty("Date", Date.class, null);
table.addContainerProperty("Work", Boolean.class, null);
table.addContainerProperty("Comments", String.class, null);

// Add a few items in the table.
for (int i=0; i<100; i++) {
 Calendar calendar = new GregorianCalendar(2008,0,1);
 calendar.add(Calendar.DAY_OF_YEAR, i);

97Table Features

User Interface Components

 // Create the table row.
 table.addItem(new Object[] {calendar.getTime(),
 new Boolean(false),
 ""},
 new Integer(i)); // Item identifier
}

table.setPageLength(8);
layout.addComponent(table);

You could put the table in editable mode right away if you need to. We'll continue the example
by adding a mechanism to switch the Table from and to the editable mode.

final CheckBox switchEditable = new CheckBox("Editable");
switchEditable.addListener(new Property.ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 table.setEditable(((Boolean)event.getProperty()
 .getValue()).booleanValue());
 }
});
switchEditable.setImmediate(true);
layout.addComponent(switchEditable);

Now, when you check to checkbox, the components in the table turn into editable fields, as shown
in Figure 5.27, “A Table in Normal and Editable Mode”.

Figure 5.27. A Table in Normal and Editable Mode

The field components that allow editing the values of particular types in a table are defined in a
field factory that implements the TableFieldFactory interface. The default implementation is
DefaultFieldFactory, which offers the following crude mappings:

Table 5.2.Type to Field Mappings in DefaultFieldFactory

Mapped to Field ClassProperty Type

A DateField.Date

A CheckBox.Boolean

A Form.The fields of the form are automatically created from the item's proper-
ties using a FormFieldFactory. The normal use for this property type is inside
a Form and is less useful inside a Table.

Item

A TextField.The text field manages conversions from the basic types, if possible.others

Field factories are covered with more detail in Section 5.17.2, “Binding Form to Data”.You could
just implement the TableFieldFactory interface, but we recommend that you extend the Default-
FieldFactory according to your needs. In the default implementation, the mappings are defined

Table Features98

User Interface Components

in the createFieldByPropertyType() method (you might want to look at the source code)
both for tables and forms.

Iterating Over a Table

As the items in a Table are not indexed, iterating over the items has to be done using an iterator.
The getItemIds() method of the Container interface of Table returns a Collection of item
identifiers over which you can iterate using an Iterator. For an example about iterating over a
Table, please see Section 9.4, “Collecting items in Containers”. Notice that you may not modify
the Table during iteration, that is, add or remove items. Changing the data is allowed.

5.12.4. Generated Table Columns

You might want to have a column that has values calculated from other columns. Or you might
want to format table columns in some way, for example if you have columns that display currencies.
The ColumnGenerator interface allows defining custom generators for such columns.

You add new generated columns to a Table with addGeneratedColumn(). It takes the column
identifier as its parameters. Usually you want to have a more user-friendly and possibly interna-
tionalized column header. You can set the header and a possible icon by calling
addContainerProperty() before adding the generated column.

// Define table columns.
table.addContainerProperty(
 "date", Date.class, null, "Date", null, null);
table.addContainerProperty(
 "quantity", Double.class, null, "Quantity (l)", null, null);
table.addContainerProperty(
 "price", Double.class, null, "Price (e/l)", null, null);
table.addContainerProperty(
 "total", Double.class, null, "Total (e)", null, null);

// Define the generated columns and their generators.
table.addGeneratedColumn("date",
 new DateColumnGenerator());
table.addGeneratedColumn("quantity",
 new ValueColumnGenerator("%.2f l"));
table.addGeneratedColumn("price",
 new PriceColumnGenerator());
table.addGeneratedColumn("total",
 new ValueColumnGenerator("%.2f e"));

Notice that the addGeneratedColumn() always places the generated columns as the last
column, even if you defined some other order previously. You will have to set the proper order
with setVisibleColumns().

table.setVisibleColumns(new Object[] {"date", "quantity", "price", "total"});

The generators are objects that implement the Table.ColumnGenerator interface and its
generateCell() method.The method gets the identity of the item and column as its parameters,
in addition to the table object. It has to return a component object.

The following example defines a generator for formatting Double valued fields according to a
format string (as in java.util.Formatter).

/** Formats the value in a column containing Double objects. */
class ValueColumnGenerator implements Table.ColumnGenerator {
 String format; /* Format string for the Double values. */

 /**

99Generated Table Columns

User Interface Components

 * Creates double value column formatter with the given
 * format string.
 */
 public ValueColumnGenerator(String format) {
 this.format = format;
 }

 /**
 * Generates the cell containing the Double value.
 * The column is irrelevant in this use case.
 */
 public Component generateCell(Table source, Object itemId,
 Object columnId) {
 // Get the object stored in the cell as a property
 Property prop =
 source.getItem(itemId).getItemProperty(columnId);
 if (prop.getType().equals(Double.class)) {
 Label label = new Label(String.format(format,
 new Object[] { (Double) prop.getValue() }));

 // Set styles for the column: one indicating that it's
 // a value and a more specific one with the column
 // name in it. This assumes that the column name
 // is proper for CSS.
 label.addStyleName("column-type-value");
 label.addStyleName("column-" + (String) columnId);
 return label;
 }
 return null;
 }
}

The generator is called for all the visible (or more accurately cached) items in a table. If the user
scrolls the table to another position in the table, the columns of the new visible rows are generated
dynamically. The columns in the visible (cached) rows are also generated always when an item
has a value change. It is therefore usually safe to calculate the value of generated cells from the
values of different rows (items).

When you set a table as editable, regular fields will change to editing fields. When the user
changes the values in the fields, the generated columns will be updated automatically. Putting a
table with generated columns in editable mode has a few quirks. The editable mode of Table
does not affect generated columns. You have two alternatives: either you generate the editing
fields in the generator or, in case of formatter generators, remove the generator in the editable
mode. The example below uses the latter approach.

// Have a check box that allows the user
// to make the quantity and total columns editable.
final CheckBox editable = new CheckBox(
 "Edit the input values - calculated columns are regenerated");

editable.setImmediate(true);
editable.addListener(new ClickListener() {
 public void buttonClick(ClickEvent event) {
 table.setEditable(editable.booleanValue());

 // The columns may not be generated when we want to
 // have them editable.
 if (editable.booleanValue()) {
 table.removeGeneratedColumn("quantity");
 table.removeGeneratedColumn("total");
 } else { // Not editable
 // Show the formatted values.
 table.addGeneratedColumn("quantity",
 new ValueColumnGenerator("%.2f l"));

Generated Table Columns100

User Interface Components

 table.addGeneratedColumn("total",
 new ValueColumnGenerator("%.2f e"));
 }
 // The visible columns are affected by removal
 // and addition of generated columns so we have
 // to redefine them.
 table.setVisibleColumns(new Object[] {"date", "quantity",
 "price", "total", "consumption", "dailycost"});
 }
});

You will also have to set the editing fields in immediate mode to have the update occur imme-
diately when an edit field loses the focus. You can set the fields in immediate mode with the a
custom TableFieldFactory, such as the one given below, that just extends the default implement-
ation to set the mode:

public class ImmediateFieldFactory extends DefaultFieldFactory {
 public Field createField(Container container,
 Object itemId,
 Object propertyId,
 Component uiContext) {
 // Let the DefaultFieldFactory create the fields...
 Field field = super.createField(container, itemId,
 propertyId, uiContext);

 // ...and just set them as immediate.
 ((AbstractField)field).setImmediate(true);

 return field;
 }
}
...
table.setFieldFactory(new ImmediateFieldFactory());

If you generate the editing fields with the column generator, you avoid having to use such a field
factory, but of course have to generate the fields for both normal and editable modes.

Figure 5.28, “Table with Generated Columns in Normal and Editable Mode” shows a table with
columns calculated (blue) and simply formatted (black) with column generators.

101Generated Table Columns

User Interface Components

Figure 5.28.Table with Generated Columns in Normal and Editable Mode

You can find the complete generated columns example in the Feature Browser demo application
in the installation package, in com.vaadin.demo.featurebrowser.GeneratedColum-
nExample.java.

5.13. Tree

The Tree component allows a natural way to represent data that has hierarchical relationships,
such as filesystems or message threads. The Tree component in Vaadin works much like the
tree components of most modern desktop user interface toolkits, for example in directory
browsing.

The typical use of the Tree component is for displaying a hierachical menu, like a menu on the
left side of the screen, as in Figure 5.29, “A Tree Component as a Menu”, or for displaying
filesystems or other hierarchical datasets. The menu style makes the appearance of the tree
more suitable for this purpose.

final Object[][] planets = new Object[][]{
 new Object[]{"Mercury"},
 new Object[]{"Venus"},
 new Object[]{"Earth", "The Moon"},
 new Object[]{"Mars", "Phobos", "Deimos"},
 new Object[]{"Jupiter", "Io", "Europa", "Ganymedes",
 "Callisto"},
 new Object[]{"Saturn", "Titan", "Tethys", "Dione",
 "Rhea", "Iapetus"},
 new Object[]{"Uranus", "Miranda", "Ariel", "Umbriel",
 "Titania", "Oberon"},
 new Object[]{"Neptune", "Triton", "Proteus", "Nereid",
 "Larissa"}};

Tree tree = new Tree("The Planets and Major Moons");

Tree102

User Interface Components

/* Add planets as root items in the tree. */
for (int i=0; i<planets.length; i++) {
 String planet = (String) (planets[i][0]);
 tree.addItem(planet);

 if (planets[i].length == 1) {
 // The planet has no moons so make it a leaf.
 tree.setChildrenAllowed(planet, false);
 } else {
 // Add children (moons) under the planets.
 for (int j=1; j<planets[i].length; j++) {
 String moon = (String) planets[i][j];

 // Add the item as a regular item.
 tree.addItem(moon);

 // Set it to be a child.
 tree.setParent(moon, planet);

 // Make the moons look like leaves.
 tree.setChildrenAllowed(moon, false);
 }

 // Expand the subtree.
 tree.expandItemsRecursively(planet);
 }
}

main.addComponent(tree);

Figure 5.29, “A Tree Component as a Menu” below shows the tree from the code example in a
practical situation.

You can read or set the currently selected item by the value property of the Tree component,
that is, with getValue() and setValue(). When the user clicks an item on a tree, the tree will
receive an ValueChangeEvent, which you can catch with a ValueChangeListener. To receive
the event immediately after the click, you need to set the tree as setImmediate(true).

The Tree component uses Container data sources much like the Table component, with the
addition that it also utilizes hierarchy information maintained by a HierarchicalContainer. The
contained items can be of any item type supported by the container. The default container and
its addItem() assume that the items are strings and the string value is used as the item ID.

5.14. MenuBar

The MenuBar component allows creating horizontal dropdown menus, much like the main menu
in desktop applications.

// Create a menu bar
final MenuBar menubar = new MenuBar();
main.addComponent(menubar);

You insert the top-level menu items to a MenuBar object with the addItem() method. It takes
a string label, an icon resource, and a command as its parameters. The icon and command are
not required and can be null.

MenuBar.MenuItem beverages =
 menubar.addItem("Beverages", null, null);

The command is called when the user clicks the item. A menu command is a class that implements
the MenuBar.Command interface.

103MenuBar

User Interface Components

Figure 5.29. A Tree Component as a Menu

// A feedback component
final Label selection = new Label("-");
main.addComponent(selection);

// Define a common menu command for all the menu items.
MenuBar.Command mycommand = new MenuBar.Command() {
 public void menuSelected(MenuItem selectedItem) {
 selection.setValue("Ordered a " +
 selectedItem.getText() +
 " from menu.");
 }
};

The addItem() method returns a MenuBar.MenuItem object, which you can use to add sub-
menu items. The MenuItem has an identical addItem() method.

// Put some items in the menu hierarchically
MenuBar.MenuItem beverages =
 menubar.addItem("Beverages", null, null);
MenuBar.MenuItem hot_beverages =
 beverages.addItem("Hot", null, null);
hot_beverages.addItem("Tea", null, mycommand);
hot_beverages.addItem("Coffee", null, mycommand);
MenuBar.MenuItem cold_beverages =
 beverages.addItem("Cold", null, null);
cold_beverages.addItem("Milk", null, mycommand);

// Another top-level item
MenuBar.MenuItem snacks =
 menubar.addItem("Snacks", null, null);
snacks.addItem("Weisswurst", null, mycommand);
snacks.addItem("Salami", null, mycommand);

// Yet another top-level item
MenuBar.MenuItem services =
 menubar.addItem("Services", null, null);
services.addItem("Car Service", null, mycommand);

The menu will look as follows:

MenuBar104

User Interface Components

Figure 5.30. Menu Bar

CSS Style Rules
.v-menubar { }
.gwt-MenuItem {}
.gwt-MenuItem-selected {}

The menu bar has the overall style name .v-menubar. Each menu item has .gwt-MenuItem
style normally and .gwt-MenuItem-selected when the item is selected.

5.15. Embedded

The Embedded component allows displaying embedded media objects, such as images, anim-
ations, or any embeddable media type supported by the browser.The contents of an Embedded
component are managed as resources. For documentation on resources, see Section 4.5, “Ref-
erencing Resources”.

The following example displays an image from the same Java package as the class itself using
the class loader.

Embedded image = new Embedded("Yes, logo:",
 new ClassResource("vaadin-logo.png", this));
main.addComponent(image);

Figure 5.31. Embedded Image

The Embedded component supports several different content types, which are rendered differently
in HTML. You can set the content type with setType(), although for images, as in the above
example, the type is determined automatically.

Embedded.TYPE_OBJECT The default embedded type, allows embedding certain file
types inside HTML <object> and <embed> elements.

Embedded.TYPE_IMAGE Embeds an image inside a HTML element.

105CSS Style Rules

User Interface Components

Embedded.TYPE_BROWSER Embeds a browser frame inside a HTML <iframe> ele-
ment.

5.15.1. Embedded Objects

The Embedded.TYPE_OBJECT is the default and most generic embedded type, which allows
embedding media objects inside HTML <object> and <embed> elements.You need define the
MIME type for the object type.

Currently, only Shockwave Flash animations are supported (MIME type
application/x-shockwave-flash).

// Create a Shockware Flash resource
final ClassResource flashResource =
 new ClassResource("itmill_spin.swf", getApplication());

// Display the resource in a Embedded compoant
final Embedded embedded =
 new Embedded("Embedded Caption", flashResource);

// This is the default type, but we set it anyway.
embedded.setType(Embedded.TYPE_OBJECT);

// This is recorgnized automatically, but set it anyway.
embedded.setMimeType("application/x-shockwave-flash");

You can set object parameters with setParameter(), which takes a parameter's name and
value as strings. The object parameters are included in the HTML as <param> elements.

5.15.2. Embedded Images

Images are embedded with the type Embedded.TYPE_IMAGE, although you do not normally
need to set the type explicitly, as it is recognized automatically from the MIME type of the resource,
as in the example above.

You can find another example of displaying an image from FileResource in Section 5.16, “Up-
load”. Another example, in Section 4.5.5, “Stream Resources”, shows how you can generate the
content of an Embedded component dynamically using a StreamResource.

If you have a dynamically generated image, for example with a StreamResource, and the data
changes, you need to reload the image in the browser. Because of how caching is handled in
some browsers, you are best off by renaming the filename of the resource with a unique name,
such as one including a timestamp. You should set cache time to zero with setCacheTime()
for the resource object when you create it.

// Create the stream resource with some initial filename.
StreamResource imageResource =
 new StreamResource(imageSource, "initial-filename.png",
 getApplication());

// Instruct browser not to cache the image.
imageResource.setCacheTime(0);

// Display the image in an Embedded component.
Embedded embedded = new Embedded("", imageResource);

When refreshing, you also need to call requestRepaint() for the Embedded object.

// This needs to be done, but is not sufficient.
embedded.requestRepaint();

Embedded Objects106

User Interface Components

// Generate a filename with a timestamp.
SimpleDateFormat df = new SimpleDateFormat("yyyyMMddHHmmssSSS");
String filename = "myfilename-" + df.format(new Date()) + ".png";

// Replace the filename in the resource.
imageResource.setFilename(makeImageFilename());

You can find more detailed information about the StreamResource in Section 4.5.5, “Stream
Resources”.

5.15.3. Browser Frames

The browser frame type allows you to embed external content inside an HTML <iframe> element.
You can refer to a URL with an ExternalResource object. URLs are given with the standard
Java URL class.

URL url = new URL("http://dev.itmill.com/");
Embedded browser = new Embedded("", new ExternalResource(url));
browser.setType(Embedded.TYPE_BROWSER);
main.addComponent(browser);

5.16. Upload

The Upload component allows a user to upload files to the server. It displays a file name entry
box, a file selection button, and an upload submit button. The user can either write the filename
in the text area or click the Browse button to select a file. After the file is selected, the user sends
the file by pressing the upload submit button.

// Create the Upload component.
Upload upload = new Upload("Upload the file here", this);

Figure 5.32. Upload Component

You can set the text of the upload button with setButtonCaption(), as in the example above,
but it is difficult to change the look of the Browse button.This is a security feature of web browsers.
The language of the Browse button is determined by the browser, so if you wish to have the
language of the Upload component consistent, you will have to use the same language in your
application.

upload.setButtonCaption("Upload Now");

The uploaded files are typically stored as files in a file system, in a database, or as temporary
objects in memory.The upload component writes the received data to an java.io.OutputStream
so you have plenty of freedom in how you can process the upload content.

To use the Upload component, you need to define a class that implements the Upload.Receiver
interface. The receiveUpload() method is called when the user clicks the submit button. The
method must return an OutputStream. To do this, it typically creates a File or a memory buffer
where the stream is written.The method gets the file name and MIME type of the file, as reported
by the browser.

When an upload is finished, successfully or unsuccessfully, the Upload component will emit the
Upload.FinishedEvent event.To receive it, you need to implement the Upload.FinishedListener
interface, and register the listening object in the Upload component. The event object will also

107Browser Frames

User Interface Components

include the file name, MIME type, and length of the file. Notice that the more specific Upload.Faile-
dEvent and Upload.SucceededEvent events will be called in the cases where the upload failed
or succeeded, respectively.

The following example allows uploading images to /tmp/uploads directory in (UNIX) filesystem
(the directory must exist or the upload fails). The component displays the last uploaded image
in an Embedded component.

import java.io.File;
import java.io.FileOutputStream;
import java.io.OutputStream;
import com.vaadin.terminal.FileResource;
import com.vaadin.ui.*;

public class MyUploader extends CustomComponent
 implements Upload.SucceededListener,
 Upload.FailedListener,
 Upload.Receiver {

 Panel root; // Root element for contained components.
 Panel imagePanel; // Panel that contains the uploaded image.
 File file; // File to write to.

 MyUploader() {
 root = new Panel("My Upload Component");
 setCompositionRoot(root);

 // Create the Upload component.
 final Upload upload =
 new Upload("Upload the file here", this);

 // Use a custom button caption instead of plain "Upload".
 upload.setButtonCaption("Upload Now");

 // Listen for events regarding the success of upload.
 upload.addListener((Upload.SucceededListener) this);
 upload.addListener((Upload.FailedListener) this);

 root.addComponent(upload);
 root.addComponent(new Label("Click 'Browse' to "+
 "select a file and then click 'Upload'."));

 // Create a panel for displaying the uploaded image.
 imagePanel = new Panel("Uploaded image");
 imagePanel.addComponent(
 new Label("No image uploaded yet"));
 root.addComponent(imagePanel);
 }

 // Callback method to begin receiving the upload.
 public OutputStream receiveUpload(String filename,
 String MIMEType) {
 FileOutputStream fos = null; // Output stream to write to
 file = new File("/tmp/uploads/" + filename);
 try {
 // Open the file for writing.
 fos = new FileOutputStream(file);
 } catch (final java.io.FileNotFoundException e) {
 // Error while opening the file. Not reported here.
 e.printStackTrace();
 return null;
 }

 return fos; // Return the output stream to write to
 }

Upload108

User Interface Components

 // This is called if the upload is finished.
 public void uploadSucceeded(Upload.SucceededEvent event) {
 // Log the upload on screen.
 root.addComponent(new Label("File " + event.getFilename()
 + " of type '" + event.getMIMEType()
 + "' uploaded."));

 // Display the uploaded file in the image panel.
 final FileResource imageResource =
 new FileResource(file, getApplication());
 imagePanel.removeAllComponents();
 imagePanel.addComponent(new Embedded("", imageResource));
 }

 // This is called if the upload fails.
 public void uploadFailed(Upload.FailedEvent event) {
 // Log the failure on screen.
 root.addComponent(new Label("Uploading "
 + event.getFilename() + " of type '"
 + event.getMIMEType() + "' failed."));
 }
}

The example does not check the type of the uploaded files in any way, which will cause an error
if the content is anything else but an image. The program also assumes that the MIME type of
the file is resolved correctly based on the file name extension. After uploading an image, the
component will look as show in Figure 5.33, “Image Upload Example” below.The browser shows
the Browse button localized.

Figure 5.33. Image Upload Example

5.17. Form

Most web applications need forms. The Form component in Vaadin offers an easy way to create
forms where the fields can be automatically generated from a data source that is bound to the
form. The BeanItem adapter allows the data sources to be just JavaBeans or Plain Old Java
Objects (POJOs) with just the setter and getter methods. Form manages buffering so that the
form contents can be committed to the data source only when filling the form is complete, and
before that, the user can discard any changes.

109Form

User Interface Components

The Form component is also a layout, with a bounding box, a caption, a description field, and a
special error indicator. As such, it can also be used within logical forms to group input fields.

5.17.1. Form as a User Interface Component

To begin with the Form, it is a UI component with a layout suitable for its purpose. A Form has
a caption, a description, a layout that contains the fields, an error indicator, and a footer, as illus-
trated in Figure 5.34, “Layout of the Form Component” below. Unlike with other components, the
caption is shown within the border. (See the details below on how to enable the border with CSS,
as it may not be enabled in the default style.)

Figure 5.34. Layout of the Form Component

Unlike most components, Form does not accept the caption in the constructor, as forms are often
captionless, but you can give the caption with the setCaption(). While the description text,
which you can set with setDescription(), is shown as a tooltip in most other components, a Form
displays it in top of the form box as shown in the figure above.

Form form = new Form();
form.setCaption("Form Caption");
form.setDescription("This is a description of the Form that is " +
 "displayed in the upper part of the form. You normally " +
 "enter some descriptive text about the form and its " +
 "use here.");

Form has FormLayout as its default layout, but you can set any other layout with setContent().
See Section 6.5, “FormLayout” for more information. Note that the Form itself handles layout
for the description, the footer and other common elements of the form. The user-set layout only
manages the contained fields and their captions.

The Form is most of all a container for fields so it offers many kinds of automation for creating
and managing fields.You can, of course, create fields directly in the layout, but it is usually more
desirable to bind the fields to the connected data source.

// Add a field directly to the layout. This field will
// not be bound to the data source Item of the form.
form.getLayout().addComponent(new TextField("A Field"));

// Add a field and bind it to an named item property.
form.addField("another", new TextField("Another Field"));

Binding forms and their fields to data objects is described further in Section 5.17.2, “Binding Form
to Data” below.

Form as a User Interface Component110

User Interface Components

The Form has a special error indicator inside the form. The indicator can show the following
types of error messages:

• Errors set with the setComponentError() method of the form. For example:

form.setComponentError(new UserError("This is the error indicator of the Form."));

• Errors caused by a validator attached to the Form with addValidator().

• Errors caused by validators attached to the fields inside forms, if
setValidationVisible(true) is set for the form.This type of validation is explained
futher in Section 5.17.3, “Validating Form Input” below.

• Errors from automatic validation of fields set as required with setRequired(true) if
an error message has also been set with setRequiredError().

Only a single error is displayed in the error indicator at a time.

Finally, Form has a footer area.The footer is a HorizontalLayout by default, but you can change
it with setFooter().

// Set the footer layout.
form.setFooter(new VerticalLayout());

form.getFooter().addComponent(
 new Label("This is the footer area of the Form. "+
 "You can use any layout here. "+
 "This is nice for buttons."));

// Have a button bar in the footer.
HorizontalLayout okbar = new HorizontalLayout();
okbar.setHeight("25px");
form.getFooter().addComponent(okbar);

// Add an Ok (commit), Reset (discard), and Cancel buttons
// for the form.
Button okbutton = new Button("OK", form, "commit");
okbar.addComponent(okbutton);
okbar.setComponentAlignment(okbutton, Alignment.TOP_RIGHT);
okbar.addComponent(new Button("Reset", form, "discard"));
okbar.addComponent(new Button("Cancel"));

CSS Style Rules

.v-form {}

.v-form legend

.v-form fieldset {}

.v-form-error {}

.v-form-errormessage {}

.v-form-description {}

The top-level style name of a Form component is v-form. It is important to notice that the form
is implemented as a HTML <fieldset>, which allows placing the caption (or "legend") inside
the border. It would not be so meaningful to set a border for the top-level form element. The fol-
lowing example sets a border around the form, as is done in Figure 5.34, “Layout of the Form
Component” above.

.v-form fieldset {
 border: thin solid;
}

111Form as a User Interface Component

User Interface Components

The top-level element of the form has the style name v-form-error if a component error has
been set for the form.

5.17.2. Binding Form to Data

The main purpose of the Form component is that you can bind it to a data source and let the
Form generate and manage fields automatically. The data source can be any class that imple-
ments the Item interface, which is part of the Vaadin Data Model, as described in Chapter 9,
Binding Components to Data. You can either implement the Item interface yourself, which can
be overly complicated, or use the ready BeanItem adapter to bind the form to any JavaBean
object.You can also use PropertysetItem to bind the form to an ad hoc set of Property objects,
resembling a Map.

Let us consider the following simple JavaBean with proper setter and getter methods for the
member variables.

/** A simple JavaBean. */
public class PersonBean {
 String name;
 String city;

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getCity() {
 return city;
 }
}

We can now bind this bean to a Form using the BeanItem adapter as follows.

// Create a form and use FormLayout as its layout.
final Form form = new Form();

// Set form caption and description texts
form.setCaption("Contact Information");
form.setDescription("Please specify name of the person and the city where the person
lives in.");

// Create the custom bean.
PersonBean bean = new PersonBean();

// Create a bean item that is bound to the bean.
BeanItem item = new BeanItem(bean);

// Bind the bean item as the data source for the form.
form.setItemDataSource(item);

The Form uses FormLayout layout by default and automatically generates the fields for each
of the bean properties, as shown in Figure 5.35, “Form Automatically Generated from a Bean”
below.

Binding Form to Data112

User Interface Components

Figure 5.35. Form Automatically Generated from a Bean

The automatically determined order of the fields can be undesirable. To set the order properly,
you can use the setVisibleItemProperties() method of the Form, which takes an ordered
collection as its parameter. Fields that are not listed in the collection are not included in the form.

// Set the order of the items in the form.
Vector order = new Vector();
order.add("city");
order.add("name");
form.setVisibleItemProperties(order);

The form uses the property identifiers as the captions of the fields by default. If you want to have
more proper captions for the fields, which is often the case, you need to use a FieldFactory to
create the fields, as is shown in the section below.

Generating Proper Fields with a FormFieldFactory

The form generates the fields automatically using very coarse logic. A String, int, or double will
result in a TextField alike, regardless of the meaning of the field. You might want to have a city
name to be input with a combo box, for example. You can create such custom fields by imple-
menting the createField() method in the FormFieldFactory interface.

The default implementation, DefaultFieldFactory is shared with the Table component: it also
implements the TableFieldFactory interface. This allows the DefaultFieldFactory to create the
fields for both purposes with the same logic. It is usually simplest to just extend the default imple-
mentation instead of implementing the interfaces from scratch. You should consult the source
code of DefaultFieldFactory to see how it works; you may want to reimplement
createFieldByPropertyType(), which actually creates the fields by type, instead of the
createField().

Below is an example of implementing the FormFieldFactory interface for a specific form, using
the names of the fields of the form to create the editable field components.

class MyFieldFactory implements FormFieldFactory {
 public Field createField(Item item, Object propertyId,
 Component uiContext) {
 // Identify the fields by their Property ID.
 String pid = (String) propertyId;
 if (pid.equals("name")) {
 return new TextField("Name");
 } else if (pid.equals("city")) {
 Select select = new Select("City");
 select.addItem("Berlin");
 select.addItem("Helsinki");
 select.addItem("London");
 select.addItem("New York");
 select.addItem("Turku");
 select.setNewItemsAllowed(true);
 return select;
 }

113Binding Form to Data

User Interface Components

 return null; // Invalid field (property) name.
 }
}

You set a Form to use a custom field factory with setFieldFactory():

form.setFieldFactory(new MyFieldFactory());

The earlier example will now look as shown in Figure 5.36, “Form Fields Generated with a
FormFieldFactory”.

Figure 5.36. Form Fields Generated with a FormFieldFactory

5.17.3. Validating Form Input

Validation of the form input is one of the most important tasks in handling forms. The fields in
Vaadin can be bound to validators. The validation provides feedback about bad input and the
forms can also manage validation results and accept the input only if all validations are successful.
Fields can also be set as required, which is a special built-in validator. The validators work on
the server-side.

Using Validators in Forms

Validators check the validity of input and, if the input is invalid, can provide an error message
through an exception.Validators are classes that implement the Validator interface.The interface
has two methods that you must implement: isValid() that returns the success or failure as a
truth value, and validate(), which reports a failure with an exception. The exception can be
associated with an error message describing the details of the error.

Simple validators that only need to produce a single error message in case the validation fails
can inherit from AbstractValidator or AbstractStringValidator. The Vaadin also provides a
number of standard validators, including IntegerValidator and DoubleValidator for validating
numerical input, StringLengthValidator, EmailValidator and the more general RegexpValidator
for checking that a string matches a Java regular expression:

// Postal code that must be 5 digits (10000-99999).
TextField field = new TextField("Postal Code");
field.setColumns(5);

Validating Form Input114

User Interface Components

// Create the validator
Validator postalCodeValidator = new RegexpValidator(
 "[1-9][0-9]{4}", "Postal code must be a number 10000-99999.");
field.addValidator(postalCodeValidator);

If you are using a custom FieldFactory to generate the fields, you may want to set the validators
for fields there. It is useful to have the form in immediate mode:

// Set the form to act immediately on user input. This is
// necessary for the validation of the fields to occur immediately
// when the input focus changes and not just on commit.
form.setImmediate(true);

Validation is done always when you call the commit() method of the Form.

// The Commit button calls form.commit().
Button commit = new Button("Commit", form, "commit");

If any of the validators in the form fail, the commit will fail and a validation exception message is
displayed in the error indicator of the form. If the commit is successful, the input data is written
to the data source. Notice that commit() also implicitly sets setValidationVisible(true)
(if setValidationVisibleOnCommit() is true, as is the default). This makes the error in-
dicators visible even if they were previously not visible.

Figure 5.37. Form Validation in Action

For cases in which more complex error handling is required, the validator can also implement
the Validator interface directly:

// Create the validator
Validator postalCodeValidator = new Validator() {

 // The isValid() method returns simply a boolean value, so
 // it can not return an error message.
 public boolean isValid(Object value) {
 if (value == null || !(value instanceof String)) {
 return false;
 }

 return ((String) value).matches("[1-9][0-9]{4}");
 }

 // Upon failure, the validate() method throws an exception
 // with an error message.
 public void validate(Object value)
 throws InvalidValueException {
 if (!isValid(value)) {
 if (value != null &&
 value.toString().startsWith("0")) {
 throw new InvalidValueException(
 "Postal code must not start with a zero.");
 } else {
 throw new InvalidValueException(

115Validating Form Input

User Interface Components

 "Postal code must be a number 10000-99999.");
 }
 }
 }
};

Required Fields in Forms

Setting a field as required outside a form is usually just a visual clue to the user. Leaving a
required field empty does not display any error indicator in the empty field as a failed validation
does. However, if you set a form field as required with setRequired(true) and give an error
message with setRequiredError() and the user leaves the required field empty, the form
will display the error message in its error indicator.

form.getField("name").setRequired(true);
form.getField("name").setRequiredError("Name is missing");
form.getField("address").setRequired(true); // No error message

To have the validation done immediately when the fields lose focus, you should set the form as
immediate, as was done in the section above.

Figure 5.38. Empty Required Field After Clicking Commit

Note

It is important that you provide the user with feedback from failed validation of required
fields either by setting an error message or by providing the feedback by other means.

Otherwise, when a user clicks the Ok button (commits the form), the button does not
appear to work and the form does not indicate any reason. As an alternative to setting
the error message, you can handle the validation error and provide the feedback
about the problem with a different mechanism.

5.17.4. Buffering Form Data

Buffering means keeping the edited data in a buffer and writing it to the data source only when
the commit() method is called for the component. If the user has made changes to a buffer,
calling discard() restores the buffer from the data source. Buffering is actually a feature of all
Field components and Form is a Field. Form manages the buffering of its contained fields so
that if commit() or discard() is called for the Form, it calls the respective method for all of
its managed fields.

final Form form = new Form();
...add components...

// Enable buffering.
form.setWriteThrough(false);

// The Ok button calls form.commit().

Buffering Form Data116

User Interface Components

Button commit = new Button("Ok", form, "commit");

// The Restore button calls form.discard().
Button restore = new Button("Restore", form, "discard");

The Form example in the Feature Browser of Vaadin demonstrates buffering in forms.The Widget
caching demo in Additional demos demonstrates buffering in other Field components, its source
code is available in BufferedComponents.java.

5.18. ProgressIndicator

The ProgressIndicator component allows displaying the progress of a task graphically. The
progress is given as a floating-point value between 0.0 and 1.0.

Figure 5.39.The Progress Indicator Component

The progress indicator polls the server for updates for its value. If the value has changed, the
progress is updated. Notice that the user application does not have to handle any polling event,
but updating the component is done automatically.

Creating a progress indicator is just like with any other component.You can give the initial progress
value as a parameter for the constructor. The default polling frequency is 1000 milliseconds (one
second), but you can set some other interval with the setPollingInterval() method.

// Create the indicator
final ProgressIndicator indicator =
 new ProgressIndicator(new Float(0.0));
main.addComponent(indicator);

// Set polling frequency to 0.5 seconds.
indicator.setPollingInterval(500);

CSS Style Rules
/* Base element. */
.v-progressindicator {}

/* Progress indication element on top of the base. */
.v-progressindicator div {}

The default style for the progress indicator uses an animated GIF image (img/base.gif) as
the base background for the component.The progress is a <div> element inside the base.When
the progress element grows, it covers more and more of the base background. By default, the
graphic of the progress element is defined in img/progress.png under the default style directory.
S e e
com.vaadin.terminal.gwt/public/default/progressindicator/progressindicator.css.

5.18.1. Doing Heavy Computation

The progress indicator is often used to display the progress of a heavy server-side computation
task. In the following example, we create a thread in the server to do some "heavy work". All the
thread needs to do is to set the value of the progress indicator with setValue() and the current
progress is displayed automatically when the browser polls the server.

// Create an indicator that makes you look busy
final ProgressIndicator indicator =

117ProgressIndicator

User Interface Components

 new ProgressIndicator(new Float(0.0));
main.addComponent(indicator);

// Set polling frequency to 0.5 seconds.
indicator.setPollingInterval(500);

// Add a button to start working
final Button button = new Button("Click to start");
main.addComponent(button);

// Another thread to do some work
class WorkThread extends Thread {
 public void run () {
 double current = 0.0;
 while (true) {
 // Do some "heavy work"
 try {
 sleep(50); // Sleep for 50 milliseconds
 } catch (InterruptedException) {}

 // Show that you have made some progress:
 // grow the progress value until it reaches 1.0.
 current += 0.01;
 if (current>1.0)
 indicator.setValue(new Float(1.0));
 else
 indicator.setValue(new Float(current));

 // After all the "work" has been done for a while,
 // take a break.
 if (current > 1.2) {
 // Restore the state to initial.
 indicator.setValue(new Float(0.0));
 button.setVisible(true);
 break;
 }
 }
 }
}

// Clicking the button creates and runs a work thread
button.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 final WorkThread thread = new WorkThread();
 thread.start();

 // The button hides until the work is done.
 button.setVisible(false);
 }
});

Figure 5.40. Starting Heavy Work

5.19. Component Composition with CustomComponent

The ease of making new user interface components is one of the core features of Vaadin. New
components can be created at several levels. Typically, you simply combine existing built-in
components to produce composite components. In many applications, such composite components
make up the majority of the user interface.

Component Composition with CustomComponent118

User Interface Components

The easiest way to create new components is to combine existing ones. This can be done in two
basic ways: inheritance and management. With inheritance, you inherit some containing class,
typically CustomComponent or some abstract class such as AbstractComponent, Abstract-
Field, or AbstractComponentContainer. With management, you create a class that creates
the needed components under some layout and handles their events. Both of these patterns are
used extensively in the examples in Chapter 5, User Interface Components and elsewhere.

The CustomComponent class is a simple implementation of the Component interface that
provides a simple way to create new user interface components by the composition of existing
components.

Composition is done by inheriting the CustomComponent class and setting the composite root
inside the component with setCompositionRoot(). The composite root is typically a layout
component that contains multiple components.

You can also create your own low-level components, for example existing Google Web Toolkit
components. It is also possible to extend the functionality of existing components. Development
of custom GWT components is covered in Chapter 10, Developing Custom Components.

119Component Composition with CustomComponent

User Interface Components

120

Chapter 6

Managing Layout

6.1. Overview .. 122
6.2. Window and Panel Root Layout ... 124
6.3. VerticalLayout and HorizontalLayout ... 124
6.4. GridLayout .. 128
6.5. FormLayout .. 132
6.6. Panel ... 133
6.7. SplitPanel ... 135
6.8. TabSheet ... 137
6.9. Accordion ... 140
6.10. Layout Formatting .. 141
6.11. Custom Layouts ... 148

Ever since the ancient xeroxians invented graphical user interfaces, programmers have wanted
to make GUI programming ever easier for themselves. Solutions started simple. When GUIs
appeared on PC desktops, practically all screens were of the VGA type and fixed into 640x480
size. Mac or X Window System on UNIX were not much different. Everyone was so happy with
such awesome graphics resolutions that they never thought that an application would have to
work on a radically different screen size. At worst, screens could only grow, they thought, giving
more space for more windows. In the 80s, the idea of having a computer screen in your pocket
was simply not realistic. Hence, the GUI APIs allowed placing UI components using screen co-
ordinates. Visual Basic and some other systems provided an easy way for the designer to drag
and drop components on a fixed-sized window. One would have thought that at least translators
would have complained about the awkwardness of such a solution, but apparently they were not,
as non-engineers, heard or at least cared about. At best, engineers could throw at them a resource
editor that would allow them to resize the UI components by hand. Such was the spirit back then.

121Book of Vaadin

After the web was born, layout design was doomed to change for ever. At first, layout didn't
matter much, as everyone was happy with plain headings, paragraphs, and a few hyperlinks here
and there. Designers of HTML wanted the pages to run on any screen size. The screen size was
actually not pixels but rows and columns of characters, as the baby web was really just hypertext,
not graphics.That was soon to be changed.The first GUI-based browser, NCSA Mosaic, launched
a revolution that culminated in Netscape Navigator. Suddenly, people who had previously been
doing advertisement brochures started writing HTML. This meant that layout design had to be
easy not just for programmers, but also allow the graphics designer to do his or her job without
having to know a thing about programming.The W3C committee designing web standards came
up with the CSS (Cascading Style Sheet) specification, which allowed trivial separation of appear-
ance from content. Later versions of HTML followed, XHTML appeared, as did countless other
standards.

Page description and markup languages are a wonderful solution for static presentations, such
as books and most web pages. Real applications, however, need to have more control. They
need to be able to change the state of user interface components and even their layout on the
run. This creates a need to separate the presentation from content on exactly the right level.

Thanks to the attack of graphics designers, desktop applications were, when it comes to appear-
ance, far behind web design. Sun Microsystems had come in 1995 with a new programming
language, Java, for writing cross-platform desktop applications. Java's original graphical user
interface toolkit, AWT (Abstract Windowing Toolkit), was designed to work on multiple operating
systems as well as embedded in web browsers. One of the special aspects of AWT was the
layout manager, which allowed user interface components to be flexible, growing and shrinking
as needed. This made it possible for the user to resize the windows of an application flexibly and
also served the needs of localization, as text strings were not limited to some fixed size in pixels.
It became even possible to resize the pixel size of fonts, and the rest of the layout adapted to the
new size.

Layout management of Vaadin is a direct successor of the web-based concept for separation of
content and appearance and of the Java AWT solution for binding the layout and user interface
components into objects in programs. Vaadin layout components allow you to position your UI
components on the screen in a hierarchical fashion, much like in conventional Java UI toolkits
such as AWT, Swing, or SWT. In addition, you can approach the layout from the direction of the
web with the CustomLayout component, which you can use to write your layout as a template
in XHTML that provides locations of any contained components.

The moral of the story is that, because Vaadin is intended for web applications, appearance is
of high importance. The solutions have to be the best of both worlds and satisfy artists of both
kind: code and graphics. On the API side, the layout is controlled by UI components, particularly
the layout components. On the visual side, it is controlled by themes. Themes can contain any
HTML, CSS, and JavaScript that you or your web artists create to make people feel good about
your software.

6.1. Overview

The user interface components in Vaadin can roughly be divided in two groups: components that
the user can interact with and layout components for placing the other components to specific
places in the user interface. The layout components are identical in their purpose to layout
managers in regular desktop frameworks for Java and you can use plain Java to accomplish
sophisticated component layouting.

Overview122

Managing Layout

You start by creating a root layout for the main window, unless you use the default, and then add
the other layout components hierarchically, and finally the interaction components as the leaves
of the component tree.

// Create the main window.
Window main = new Window("My Application");
setMainWindow(main);

// Set the root layout (VerticalLayout is actually the default).
VerticalLayout root = new VerticalLayout();
main.setContent(root);

// Add the topmost component.
root.addComponent(new Label("The Ultimate Cat Finder"));

// Add a horizontal layout for the bottom part.
HorizontalLayout bottom = new HorizontalLayout();
root.addComponent(bottom);

bottom.addComponent(new Tree("Major Planets and Their Moons"));
bottom.addComponent(new Panel());
...

You will usually need to tune the layout components a bit by setting sizes, expansion ratios,
alignments, spacings, and so on. The general settings are described in Section 6.10, “Layout
Formatting”, while the layout component specific settings are described in connection with the
component.

Layouts are coupled with themes that specify various layout features, such as backgrounds,
borders, text alignment, and so on. Definition and use of themes is described in Chapter 8,
Themes

You can see the finished version of the above example in Figure 6.1, “Layout Example”.

Figure 6.1. Layout Example

The alternative for using layout components is to use the special CustomLayout that allows
using HTML templates. This way, you can let the web page designers take responsibility of
component layouting using their own set of tools.What you lose is the ability to manage the layout
dynamically.

123Overview

Managing Layout

The Visual Editor

While you can always program the layout by hand, the Vaadin plugin for the Eclipse
IDE includes a visual (WYSIWYG) editor that you can use to create user interfaces
visually. The editor generates the code that creates the user interface and is useful
for rapid application development and prototyping. It is especially helpful when you
are still learning the framework, as the generated code, which is designed to be as
reusable as possible, also works as an example of how you create user interfaces
with Vaadin. You can find more about the editor in Chapter 7, Visual User Interface
Design with Eclipse (experimental).

6.2. Window and Panel Root Layout

The Window and its superclass Panel have a single root layout component. The component is
usually a Layout, but any ComponentContainer is allowed. When you create the components,
they create a default root layout, usually VerticalLayout, but you can change it with the setCon-
tent() method.

Window main = new Window("My Application");
setMainWindow(main);

// Set another root layout for the main window.
TabSheet tabsheet = new TabSheet();
main.setContent(tabsheet);

The size of the root layout is the default size of the particular layout component, for example, a
VerticalLayout has 100% width and undefined height by default. In many applications, you want
to use the full area of the browser view. Setting the components contained inside the root layout
to full size is not enough, and would actually lead to an invalid state if the height of the root layout
is undefined.

// This is actually the default.
main.setContent(new VerticalLayout());

// Set the size of the root layout to full width and height.
main.getContent().setSizeFull();

// Add a title area on top of the screen. This takes just the
// vertical space it needs.
main.addComponent(new Label("My Application"));

// Add a menu-view area that takes rest of the vertical space.
HorizontalLayout menuview = new HorizontalLayout();
menuview.setSizeFull();
main.addComponent(menuview);

See Section 6.10.1, “Layout Size” for more information about setting layout sizes.

6.3. VerticalLayout and HorizontalLayout

VerticalLayout and HorizontalLayout components are containers for laying out components
either vertically or horizontally, respectively. Some components, such as Window and Panel,
have a VerticalLayout as the root layout, which you can set with setContent().

Typical use of the layouts goes as follows:

VerticalLayout vertical = new VerticalLayout ();
vertical.addComponent(new TextField("Name"));
vertical.addComponent(new TextField("Street address"));

Window and Panel Root Layout124

Managing Layout

vertical.addComponent(new TextField("Postal code"));
main.addComponent(vertical);

The text fields have a label attached, which will by default be placed above the field. The layout
will look on screen as follows:

Using HorizontalLayout gives the following layout:

The layouts can have spacing between the horizontal or vertical cells, defined with
setSpacing(), as described in Section 6.10.3, “Layout Cell Spacing”.The contained components
can be aligned within their cells with setComponentAlignment(), as described in Sec-
tion 6.10.2, “Layout Cell Alignment”.

You can use setWidth() and setHeight() to specify width and height of a component in
either fixed units or relatively with a percentage.

6.3.1. Sizing Contained Components

The components contained within an ordered layout can be laid out in a number of different ways
depending on how you specify their height or width in the primary direction of the layout component.

Figure 6.2. Component Widths in HorizontalLayout

Figure 6.2, “Component Widths in HorizontalLayout” above gives a summary of the sizing options
for a HorizontalLayout. Let us break the figure down as follows.

If a VerticalLayout has undefined height or HorizontalLayout undefined width, the layout will
shrink to fit the contained components so that there is no extra space between them.

HorizontalLayout fittingLayout = new HorizontalLayout();
fittingLayout.setWidth(Sizeable.SIZE_UNDEFINED, 0);
fittingLayout.addComponent(new Button("Small"));
fittingLayout.addComponent(new Button("Medium-sized"));

125Sizing Contained Components

Managing Layout

fittingLayout.addComponent(new Button("Quite a big component"));
parentLayout.addComponent(fittingLayout);

If such a vertical layout continues below the bottom of a window (a Window object), the window
will pop up a vertical scroll bar on the right side of the window area. This way, you get a "web
page".

If you set a HorizontalLayout to a defined size horizontally or a VerticalLayout vertically, and
there is space left over from the contained components, the extra space is distributed equally
between the component cells. The components are aligned within these cells according to their
alignment setting, top left by default, as in the example below.

fixedLayout.setWidth("400px");

Using percentual sizes for components contained in a layout requires answering the question,
"Percentage of what?" There is no sensible default answer for this question in the current imple-
mentation of the layouts, so in practice, you may not define "100%" size alone.

Often, you want to have one component that takes all the available space left over from other
components.You need to set its size as 100% and set it as expanding with setExpandRatio().
The second parameter for the method is an expansion ratio, which is relevant if there are more
than one expanding component, but its value is irrelevant for a single expanding component.

HorizontalLayout layout = new HorizontalLayout();
layout.setWidth("400px");

// These buttons take the minimum size.
layout.addComponent(new Button("Small"));
layout.addComponent(new Button("Medium-sized"));

// This button will expand.
Button expandButton = new Button("Expanding component");

// Use 100% of the expansion cell's width.
expandButton.setWidth("100%");

// The component must be added to layout before setting the ratio.
layout.addComponent(expandButton);

// Set the component's cell to expand.
layout.setExpandRatio(expandButton, 1.0f);

parentLayout.addComponent(layout);

Notice that you must call setExpandRatio() after addComponent(), because the layout can
not operate on an component that it doesn't (yet) include.

A layout that contains components with percentual size must have a defined
size!

If a layout has undefined size and a contained component has, say, 100% size, the
component would fill the space given by the layout, while the layout would shrink to

Sizing Contained Components126

Managing Layout

fit the space taken by the component, which is a paradox. This requirement holds
for height and width separately.The debug mode allows detecting such invalid cases;
see Section 11.4.1, “Debug Mode”.

If you specify an expand ratio for multiple components, they will all try to use the available space
according to the ratio.

HorizontalLayout layout = new HorizontalLayout();
layout.setWidth("400px");

// Create three equally expanding components.
String[] captions = { "Small", "Medium-sized",
 "Quite a big component" };
for (int i = 1; i <= 3; i++) {
 Button button = new Button(captions[i-1]);
 button.setWidth("100%");
 layout.addComponent(button);

 // Have uniform 1:1:1 expand ratio.
 layout.setExpandRatio(button, 1.0f);
}

As the example used the same ratio for all components, the ones with more content may have
the content cut. Below, we use differing ratios:

// Expand ratios for the components are 1:2:3.
layout.setExpandRatio(button, i * 1.0f);

If the size of the expanding components is defined as a percentage (typically "100%"), the ratio
is calculated from the overall space available for the relatively sized components. For example,
if you have a 100 pixels wide layout with two cells with 1.0 and 4.0 respective expansion ratios,
and both the components in the layout are set as setWidth("100%"), the cells will have re-
spective widths of 20 and 80 pixels, regardless of the minimum size of the components.

However, if the size of the contained components is undefined or fixed, the expansion ratio is of
the excess available space. In this case, it is the excess space that expands, not the components.

for (int i = 1; i <= 3; i++) {
 // Button with undefined size.
 Button button = new Button(captions[i - 1]);

 layout4.addComponent(button);

 // Expand ratios are 1:2:3.
 layout4.setExpandRatio(button, i * 1.0f);
}

It is not meaningful to combine expanding components with percentually defined size and com-
ponents with fixed or undefined size. Such combination can lead to a very unexpected size for
the percentually sized components.

A percentual size of a component defines the size of the component within its cell. Usually, you
use "100%", but a smaller percentage or a fixed size (smaller than the cell size) will leave an

127Sizing Contained Components

Managing Layout

empty space in the cell and align the component within the cell according to its alignment setting,
top left by default.

HorizontalLayout layout50 = new HorizontalLayout();
layout50.setWidth("400px");

String[] captions1 = { "Small 50%", "Medium 50%",
 "Quite a big 50%" };
for (int i = 1; i <= 3; i++) {
 Button button = new Button(captions1[i-1]);
 button.setWidth("50%");
 layout50.addComponent(button);

 // Expand ratios for the components are 1:2:3.
 layout50.setExpandRatio(button, i * 1.0f);
}
parentLayout.addComponent(layout50);

6.4. GridLayout

GridLayout container lays components out on a grid, defined by the number of columns and
rows. The columns and rows of the grid serve as coordinates that are used for laying out com-
ponents on the grid. Each component can use multiple cells from the grid, defined as an area
(x1,y1,x2,y2), although they typically take up only a single grid cell.

The grid layout maintains a cursor for adding components in left-to-right, top-to-bottom order. If
the cursor goes past the bottom-right corner, it will automatically extend the grid downwards by
adding a new row.

The following example demonstrates the use of GridLayout. The addComponent takes a com-
ponent and optional coordinates. The coordinates can be given for a single cell or for an area in
x,y (column,row) order. The coordinate values have a base value of 0. If coordinates are not
given, the cursor will be used.

// Create a 4 by 4 grid layout.
GridLayout grid = new GridLayout(4, 4);
grid.addStyleName("example-gridlayout");

// Fill out the first row using the cursor.
grid.addComponent(new Button("R/C 1"));
for (int i = 0; i < 3; i++) {
 grid.addComponent(new Button("Col " + (grid.getCursorX() + 1)));
}

// Fill out the first column using coordinates.
for (int i = 1; i < 4; i++) {
 grid.addComponent(new Button("Row " + i), 0, i);
}

GridLayout128

Managing Layout

// Add some components of various shapes.
grid.addComponent(new Button("3x1 button"), 1, 1, 3, 1);
grid.addComponent(new Label("1x2 cell"), 1, 2, 1, 3);
InlineDateField date = new InlineDateField("A 2x2 date field");
date.setResolution(DateField.RESOLUTION_DAY);
grid.addComponent(date, 2, 2, 3, 3);

The resulting layout will look as follows. The borders have been made visible to illustrate the
layout cells.

Figure 6.3.The Grid Layout Component

A component to be placed on the grid must not overlap with existing components. A conflict
causes throwing a GridLayout.OverlapsException.

6.4.1. Sizing Grid Cells

You can define the size of both a grid layout and its components in either fixed or percentual
units, or leave the size undefined altogether, as described in Section 5.3.2, “Sizing Components”.
Section 6.10.1, “Layout Size” gives an introduction to sizing of layouts.

The size of the GridLayout component is undefined by default, so it will shrink to fit the size of
the components placed inside it. In most cases, especially if you set a defined size for the layout
but do not set the contained components to full size, there will be some unused space. The pos-
ition of the non-full components within the grid cells will be determined by their alignment. See
Section 6.10.2, “Layout Cell Alignment” for details on how to align the components inside the
cells.

The components contained within a GridLayout layout can be laid out in a number of different
ways depending on how you specify their height or width. The layout options are similar to Hori-
zontalLayout and VerticalLayout, as described in Section 6.3, “VerticalLayout and Horizont-
alLayout”.

A layout that contains components with percentual size must have a defined
size!

If a layout has undefined size and a contained component has, say, 100% size, the
component would fill the space given by the layout, while the layout would shrink to
fit the space taken by the component, which is a paradox. This requirement holds

129Sizing Grid Cells

Managing Layout

for height and width separately.The debug mode allows detecting such invalid cases;
see Section 11.4.1, “Debug Mode”.

Often, you want to have one or more rows or columns that take all the available space left over
from non-expanding rows or columns. You need to set the rows or columns as expanding with
setRowExpandRatio() and setColumnExpandRatio(). The first parameter for these
methods is the index of the row or column to set as expanding. The second parameter for the
methods is an expansion ratio, which is relevant if there are more than one expanding row or
column, but its value is irrelevant if there is only one. With multiple expanding rows or columns,
the ratio parameter sets the relative portion how much a specific row/column will take in relation
with the other expanding rows/columns.

GridLayout grid = new GridLayout(3,2);
grid.addStyleName("gridexpandratio");

// Layout containing relatively sized components must have
// a defined size.
grid.setWidth("600px");
grid.setHeight("200px");

// Add content
grid.addComponent(new Label("Shrinking column
Shrinking row", Label.CONTENT_XHTML));
grid.addComponent(new Label("Expanding column (1:)
Shrinking row",
Label.CONTENT_XHTML));
grid.addComponent(new Label("Expanding column (5:)
Shrinking row",
Label.CONTENT_XHTML));

grid.addComponent(new Label("Shrinking column
Expanding row", Label.CONTENT_XHTML));
grid.addComponent(new Label("Expanding column (1:)
Expanding row",
Label.CONTENT_XHTML));
grid.addComponent(new Label("Expanding column (5:)
Expanding row",
Label.CONTENT_XHTML));

// Set different expansion ratios for the two columns
grid.setColumnExpandRatio(1, 1);
grid.setColumnExpandRatio(2, 5);

// Set the bottom row to expand
grid.setRowExpandRatio(1, 1);

// Align and size the labels.
for (int col=0; col<grid.getColumns(); col++) {
 for (int row=0; row<grid.getRows(); row++) {
 Component c = grid.getComponent(col, row);
 grid.setComponentAlignment(c, Alignment.TOP_CENTER);

 // Make the labels high to illustrate the empty
 // horizontal space.
 if (col != 0 || row != 0) {
 c.setHeight("100%");
 }
 }
}

Sizing Grid Cells130

Managing Layout

Figure 6.4. Expanding Rows and Columns in GridLayout

If the size of the contained components is undefined or fixed, the expansion ratio is of the excess
space, as in Figure 6.4, “Expanding Rows and Columns in GridLayout” (excess horizontal space
is shown in white). However, if the size of the all the contained components in the expanding
rows or columns is defined as a percentage, the ratio is calculated from the overall space available
for the percentually sized components. For example, if we had a 100 pixels wide grid layout with
two columns with 1.0 and 4.0 respective expansion ratios, and all the components in the grid
were set as setWidth("100%"), the columns would have respective widths of 20 and 80 pixels,
regardless of the minimum size of their contained components.

CSS Style Rules
.v-gridlayout {}
.v-gridlayout-margin {}

The v-gridlayout is the root element of the GridLayout component. The v-gridlayout-margin is a
simple element inside it that allows setting a padding between the outer element and the cells.

For styling the individual grid cells, you should style the components inserted in the cells. The
implementation structure of the grid can change, so depending on it, as is done in the example
below, is not generally recommended. Normally, if you want to have, for example, a different
color for a certain cell, just make set the component inside it setSizeFull(), and add a style
name for it. Sometimes you may need to use a layout component between a cell and its actual
component just for styling.

The following example shows how to make the grid borders visible, as in Figure 6.4, “Expanding
Rows and Columns in GridLayout”.

.v-gridlayout-gridexpandratio {
 background: blue; /* Creates a "border" around the grid. */
 margin: 10px; /* Empty space around the layout. */
}

/* Add padding through which the background color shows. */
.v-gridlayout-gridexpandratio .v-gridlayout-margin {
 padding: 2px;
}

/* Add cell borders and make the cell backgrounds white.
 * Warning: This depends heavily on the HTML structure. */
.v-gridlayout-gridexpandratio > div > div > div {
 padding: 2px; /* Layout background will show through. */
 background: white; /* The cells will be colored white. */
}

/* Components inside the layout are a safe way to style cells. */

131CSS Style Rules

Managing Layout

.v-gridlayout-gridexpandratio .v-label {
 text-align: left;
 background: #ffffc0; /* Pale yellow */
}

You should beware of margin, padding, and border settings in CSS as they can mess up the
layout. The dimensions of layouts are calculated in the Client-Side Engine of Vaadin and some
settings can interfere with these calculations. For more information, on margins and spacing, see
Section 6.10.3, “Layout Cell Spacing” and Section 6.10.4, “Layout Margins”

6.5. FormLayout

FormLayout is the default layout of a Form component. It lays the form fields and their captions
out in two columns, with optional indicators for required fields and errors that can be shown for
each field.

A Form handles additional layout elements itself, including a caption, a form description, a form
error indicator, a footer that is often used for buttons and a border. For more information on these,
see Section 5.17, “Form”.

The field captions can have an icon in addition to the text.

// A FormLayout used outside the context of a Form
FormLayout fl = new FormLayout();

// Make the FormLayout shrink to its contents
fl.setSizeUndefined();

TextField tf = new TextField("A Field");
fl.addComponent(tf);

// Mark the first field as required
tf.setRequired(true);
tf.setRequiredError("The Field may not be empty.");

TextField tf2 = new TextField("Another Field");
fl.addComponent(tf2);

// Set the second field straing to error state with a message.
tf2.setComponentError(
 new UserError("This is the error indicator of a Field."));

The resulting layout will look as follows. The error message shows in a tooptip when you hover
the mouse pointer over the error indicator.

Figure 6.5. A FormLayout Layout for Forms

FormLayout132

Managing Layout

CSS Style Rules
.v-formlayout {}
.v-formlayout .v-caption {}

/* Columns in a field row. */
.v-formlayout-contentcell {} /* Field content. */
.v-formlayout-captioncell {} /* Field caption. */
.v-formlayout-errorcell {} /* Field error indicator. */

/* Overall style of field rows. */
.v-formlayout-row {}
.v-formlayout-firstrow {}
.v-formlayout-lastrow {}

/* Required field indicator. */
.v-formlayout .v-required-field-indicator {}
.v-formlayout-captioncell .v-caption
 .v-required-field-indicator {}

/* Error indicator. */
.v-formlayout-cell .v-errorindicator {}
.v-formlayout-error-indicator .v-errorindicator {}

The top-level element of FormLayout has the v-formlayout style. The layout is tabular with
three columns: the caption column, the error indicator column, and the field column. These can
be styled with v-formlayout-captioncell, v-formlayout-errorcell, and
v-formlayout-contentcell, respectively. While the error indicator is shown as a dedicated
column, the indicator for required fields is currently shown as a part of the caption column.

For information on setting margins and spacing, see also Section 6.10.3, “Layout Cell Spacing”
and Section 6.10.4, “Layout Margins”.

6.6. Panel

Panel is a simple container with a frame and an optional caption. The content area is bound to
a an inner layout component for laying out the contained components. The default content layout
is a VerticalLayout, but you can change it with the setContent() method to be any class im-
plementing the ComponentContainer interface.

The caption can have an icon in addition to the text.

// Create a panel with a caption.
final Panel panel = new Panel("Contact Information");
panel.addStyleName("panelexample");

// The width of a Panel is 100% by default, make it
// shrink to fit the contents.
panel.setWidth(Sizeable.SIZE_UNDEFINED, 0);

// Create a layout inside the panel
final FormLayout form = new FormLayout();

// Have some margin around it.
form.setMargin(true);

// Add some components
form.addComponent(new TextField("Name"));
form.addComponent(new TextField("Email"));

// Set the layout as the root layout of the panel
panel.setContent(form);

133CSS Style Rules

Managing Layout

The resulting layout will look as follows.

Figure 6.6. A Panel Layout

See Section 6.2, “Window and Panel Root Layout” for more information about setting the content
layout.

CSS Style Rules
.v-panel {}
.v-panel-caption {}
.v-panel-nocaption {}
.v-panel-content {}
.v-panel-deco {}

The entire panel has v-panel style. A panel consists of three parts: the caption, content, and
bottom decorations (shadow).These can be styled with v-panel-caption, v-panel-content,
and v-panel-deco, respectively. If the panel has no caption, the caption element will have the
style v-panel-nocaption.

The built-in light style has no borders or border decorations for the Panel. You enable it simply
by adding the light style name for the panel, as is done in the example below.

// Have a window with a SplitPanel.
final Window window = new Window("Window with a Light Panel");
window.setWidth("400px");
window.setHeight("200px");
final SplitPanel splitter =
 new SplitPanel(SplitPanel.ORIENTATION_HORIZONTAL);
window.setContent(splitter);

// Create a panel with a caption.
final Panel light = new Panel("Light Panel");
light.setSizeFull();

// The "light" style is a predefined style without borders.
light.addStyleName("light");

light.addComponent(new Label("The light Panel has no borders."));
light.getLayout().setMargin(true);

// The Panel will act as a "caption" of the left panel
// in the SplitPanel.
splitter.addComponent(light);
splitter.setSplitPosition(250, Sizeable.UNITS_PIXELS);

main.addWindow(window);

Figure 6.7, “A Panel with Light Style” shows the rendered Panel.

CSS Style Rules134

Managing Layout

Figure 6.7. A Panel with Light Style

The light style is typical when using a Panel as the root layout of a window or some similar layout,
as in the example above.

6.7. SplitPanel

SplitPanel is a two-component container that divides the available space into two areas to acco-
modate the two components. The split direction is vertical by default, but you can change it with
setOrientation().

You can set the two components with the dedicated setFirstComponent() and
setSecondComponent() methods, or with the regular addComponent() method.

SplitPanel splitpanel = new SplitPanel();

// Set the orientation.
splitpanel.setOrientation(SplitPanel.ORIENTATION_HORIZONTAL);

// Put two components in the container.
splitpanel.setFirstComponent(new Label("Left Panel"));
splitpanel.setSecondComponent(new Label("Right Panel"));

A split bar that divides the two panels is enabled by default.The user can drag the bar with mouse
to change the split position. To disable the bar, lock the split position with setLocked(true).

The following example shows how you can create a layout with two nested SplitPanel components
(one of which has a locked split position):

// A top-level panel to put everything in.
Panel panel = new Panel("Nested SplitPanels");

// Allow it to shrink to the size of the contained SplitPanel.
panel.setSizeUndefined();

// Have a vertical SplitPanel as the main component.
SplitPanel vertical = new SplitPanel();
panel.addComponent(vertical);

// Set the size of the SplitPanel rather than the containing Panel,
// because then we know how much space we have for the panels.
vertical.setHeight("150px");
vertical.setWidth("250px");

// Set the split position to 50 pixels, which is more than
// enough height for the Label in the upper panel.
vertical.setSplitPosition(50, SplitPanel.UNITS_PIXELS);

135SplitPanel

Managing Layout

// Put a label in the upper panel.
vertical.addComponent(new Label("The contents of the upper area."));

// Put a horizontal SplitPanel in the lower area.
SplitPanel horizontal = new SplitPanel();
horizontal.setOrientation(SplitPanel.ORIENTATION_HORIZONTAL);
horizontal.setSplitPosition(65); // percent
vertical.addComponent(horizontal);

// The lower SplitPanel is locked, so the user cannot move
// the split position.
horizontal.setLocked(true);

// Component in the left panel:
horizontal.addComponent(new Label("Lower left area. "+
 "The text on the left wraps around as needed."));

// Component in the right panel:
horizontal.addComponent(new Label("Lower right area. "+
 "The text on the right also wraps around."));

Figure 6.8. A Layout With Nested SplitPanels

CSS Style Rules
/* For a horizontal SplitPanel. */
.v-splitpanel-horizontal {}
.v-splitpanel-hsplitter {}
.v-splitpanel-hsplitter-locked {}

/* For a vertical SplitPanel. */
.v-splitpanel-vertical {}
.v-splitpanel-vsplitter {}
.v-splitpanel-vsplitter-locked {}

/* The two container panels. */
.v-splitpanel-first-container {} /* Top or left panel. */
.v-splitpanel-second-container {} /* Bottom or right panel. */

CSS Style Rules136

Managing Layout

The entire accordion has the style v-splitpanel-horizontal or v-splitpanel-vertical.
The split bar or splitter between the two content panels has either the ...-splitter or
...-splitter-locked style, depending on whether its position is locked or not.

6.8. TabSheet

The TabSheet is a multicomponent container that allows switching between the components
with "tabs". The tabs are organized as a tab bar at the top of the tab sheet. Clicking on a tab
opens its contained component in the main display area of the layout.

You add new tabs to a tab sheet with the addTab() method. The simple version of the method
takes as its parameter the root component of the tab.You can use the root component to retrieve
its corresponding Tab object. Typically, you put a layout component as the root component.

// Create an empty tab sheet.
TabSheet tabsheet = new TabSheet();

// Create a component to put in a tab and put
// some content in it.
VerticalLayout myTabRoot = new VerticalLayout();
myTabRoot.addComponent(new Label("Hello, I am a Tab!"));

// Add the component to the tab sheet as a new tab.
tabsheet.addTab(myTabRoot);

// Get the Tab holding the component and set its caption.
tabsheet.getTab(myTabRoot).setCaption("My Tab");

Each tab in a tab sheet is represented as a Tab object, which manages the tab caption, icon,
and attributes such as hidden and visible.You can set the caption with setCaption() and the
icon with setIcon(). If the component added with addTab() has a caption or icon, it is used
as the default for the Tab object. However, changing the attributes of the root component later
does not affect the tab, but you must make the setting through the Tab object. The addTab()
returns the new Tab object, so you can easily set an attribute using the reference.

// Set an attribute using the returned reference
tabsheet.addTab(myTab).setCaption("My Tab");

You can also give the caption and the icon as parameters for the addTab() method.The following
example demonstrates the creation of a simple tab sheet, where each tab shows a different Label
component. The tabs have an icon, which are (in this example) loaded as Java class loader re-
sources from the application.

TabSheet tabsheet = new TabSheet();

// Make the tabsheet shrink to fit the contents.
tabsheet.setSizeUndefined();

tabsheet.addTab(new Label("Contents of the first tab"),
 "First Tab",
 new ClassResource("images/Mercury_small.png", this));
tabsheet.addTab(new Label("Contents of the second tab"),
 "Second Tab",
 new ClassResource("images/Venus_small.png", this));
tabsheet.addTab(new Label("Contents of the third tab"),
 "Third tab",
 new ClassResource("images/Earth_small.png", this));

137TabSheet

Managing Layout

Figure 6.9. A Simple TabSheet Layout

The hideTabs() method allows hiding the tab bar entirely.This can be useful in tabbed document
interfaces (TDI) when there is only one tab. An individual tab can be made invisible by setting
setVisible(false) for the Tab object. A tab can be disabled by setting setEnabled(false).

Clicking on a tab selects it. This fires a TabSheet.SelectedTabChangeEvent, which you can
handle by implementing the TabSheet.SelectedTabChangeListener interface. The source
component of the event, which you can retrieve with getSource() method of the event, will be
the TabSheet component. You can find the currently selected tab with getSelectedTab()
and select (open) a particular tab programmatically with setSelectedTab(). Notice that also
adding the first tab fires the SelectedTabChangeEvent, which may cause problems in your
handler if you assume that everything is initialized before the first change event.

The example below demonstrates handling TabSheet related events and enabling and disabling
tabs. The sort of logic used in the example is useful in sequential user interfaces, often called
wizards, where the user goes through the tabs one by one, but can return back if needed.

import com.vaadin.ui.*;
import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.TabSheet.SelectedTabChangeEvent;

public class TabSheetExample extends CustomComponent implements
 Button.ClickListener, TabSheet.SelectedTabChangeListener {
 TabSheet tabsheet = new TabSheet();
 Button tab1 = new Button("Push this button");
 Label tab2 = new Label("Contents of Second Tab");
 Label tab3 = new Label("Contents of Third Tab");

 TabSheetExample() {
 setCompositionRoot(tabsheet);

 // Listen for changes in tab selection.
 tabsheet.addListener(this);

 // First tab contains a button, for which we
 // listen button click events.
 tab1.addListener(this);

 // This will cause a selectedTabChange() call.
 tabsheet.addTab(tab1, "First Tab", null);

 // A tab that is initially invisible.
 tabsheet.addTab(tab2, "Second Tab", null);
 tabsheet.getTab(tab2).setVisible(false);

 // A tab that is initially disabled.
 tabsheet.addTab(tab3, "Third tab", null);
 tabsheet.getTab(tab3).setEnabled(false);
 }

 public void buttonClick(ClickEvent event) {
 // Enable the invisible and disabled tabs.
 tabsheet.getTab(tab2).setVisible(true);
 tabsheet.getTab(tab3).setEnabled(true);

 // Change selection automatically to second tab.

TabSheet138

Managing Layout

 tabsheet.setSelectedTab(tab2);
 }

 public void selectedTabChange(SelectedTabChangeEvent event) {
 // Cast to a TabSheet. This isn't really necessary in
 // this example, as we have only one TabSheet component,
 // but would be useful if there were multiple TabSheets.
 final TabSheet source = (TabSheet) event.getSource();

 if (source == tabsheet) {
 // If the first tab was selected.
 if (source.getSelectedTab() == tab1) {
 // The 2. and 3. tabs may not have been set yet.
 if (tabsheet.getTab(tab2) != null
 && tabsheet.getTab(tab3) != null) {
 tabsheet.getTab(tab2).setVisible(false);
 tabsheet.getTab(tab3).setEnabled(false);
 }
 }
 }
 }
}

Figure 6.10. A TabSheet with Hidden and Disabled Tabs

CSS Style Rules
.v-tabsheet {}
.v-tabsheet-tabs {}
.v-tabsheet-content {}
.v-tabsheet-deco {}
.v-tabsheet-tabcontainer {}
.v-tabsheet-tabsheetpanel {}
.v-tabsheet-hidetabs {}

.v-tabsheet-scroller {}

.v-tabsheet-scrollerPrev {}

.v-tabsheet-scrollerNext {}

.v-tabsheet-scrollerPrev-disabled{}

.v-tabsheet-scrollerNext-disabled{}

.v-tabsheet-tabitem {}

.v-tabsheet-tabitem-selected {}

.v-tabsheet-tabitemcell {}

.v-tabsheet-tabitemcell-first {}

.v-tabsheet-tabs td {}

.v-tabsheet-spacertd {}

The entire tabsheet has the v-tabsheet style. A tabsheet consists of three main parts: the tabs
on the top, the main content pane, and decorations around the tabsheet.

The tabs area at the top can be styled with v-tabsheet-tabs, v-tabsheet-tabcontainer
and v-tabsheet-tabitem*.

139CSS Style Rules

Managing Layout

The style v-tabsheet-spacertd is used for any empty space after the tabs. If the tabsheet
has too little space to show all tabs, scroller buttons enable browsing the full tab list. These use
the styles v-tabsheet-scroller*.

The content area where the tab contents are shown can be styled with v-tabsheet-content,
and the surrounding decoration with v-tabsheet-deco.

6.9. Accordion

Accordion is a multicomponent container similar to TabSheet, except that the "tabs" are arranged
vertically. Clicking on a tab opens its contained component in the space between the tab and the
next one. You can use an Accordion identically to a TabSheet, which it actually inherits. See
Section 6.8, “TabSheet” for more information.

The following example shows how you can create a simple accordion. As the Accordion is rather
naked alone, we put it inside a Panel that acts as its caption and provides it a border.

// Create the Accordion.
Accordion accordion = new Accordion();

// Have it take all space available in the layout.
accordion.setSizeFull();

// Some components to put in the Accordion.
Label l1 = new Label("There are no previously saved actions.");
Label l2 = new Label("There are no saved notes.");
Label l3 = new Label("There are currently no issues.");

// Add the components as tabs in the Accordion.
accordion.addTab(l1, "Saved actions", null);
accordion.addTab(l2, "Notes", null);
accordion.addTab(l3, "Issues", null);

// A container for the Accordion.
Panel panel = new Panel("Tasks");
panel.setWidth("300px");
panel.setHeight("300px");
panel.addComponent(accordion);

// Trim its layout to allow the Accordion take all space.
panel.getLayout().setSizeFull();
panel.getLayout().setMargin(false);

Figure 6.11, “An Accordion” shows what the example would look like with the default theme.

Accordion140

Managing Layout

Figure 6.11. An Accordion

CSS Style Rules
.v-accordion {}
.v-accordion-item {}
.v-accordion-item-open {}
.v-accordion-item-first {}
.v-accordion-item-caption {}
.v-accordion-item-caption .v-caption {}
.v-accordion-item-content {}

The top-level element of Accordion has the v-accordion style. An Accordion consists of a
sequence of item elements, each of which has a caption element (the tab) and a content area
element.

The selected item (tab) has also the v-accordion-open style. The content area is not shown
for the closed items.

6.10. Layout Formatting

While the formatting of layouts is mainly done with style sheets, just as with other components,
style sheets are not ideal or even possible to use in some situations. For example, CSS does
not allow defining the spacing of table cells, which is done with the cellspacing attribute in
HTML.

Moreover, as many layout sizes are calculated dynamically in the Client-Side Engine of Vaadin,
some CSS settings can fail altogether.

6.10.1. Layout Size

The size of a layout component can be specified with the setWidth() and setHeight()
methods defined in the Sizeable interface, just like for any component. It can also be undefined,
in which case the layout shrinks to fit the component(s) inside it. Section 5.3.2, “Sizing Compon-
ents” gives details on the interface.

141CSS Style Rules

Managing Layout

Figure 6.12. HorizontalLayout with Undefined vs Defined size

Many layout components take 100% width by default, while they have the height undefined.

The sizes of components inside a layout can also be defined as a percentage of the space
available in the layout, for example with setWidth("100%"); or with the (most commonly used
method) setFullSize() that sets 100% size in both directions. If you use a percentage in a
HorizontalLayout, VerticalLayout, or GridLayout, you will also have to set the component as
expanding, as noted below.

Warning

A layout that contains components with percentual size must have a defined size!

If a layout has undefined size and a contained component has, say, 100% size, the
component will try to fill the space given by the layout, while the layout will shrink to
fit the space taken by the component, which is a paradox. This requirement holds
for height and width separately.The debug mode allows detecting such invalid cases;
see Section 11.4.1, “Debug Mode”.

For example:

// This takes 100% width but has undefined height.
VerticalLayout layout = new VerticalLayout();

// A button that takes all the space available in the layout.
Button button = new Button("100%x100% button");
button.setSizeFull();
layout.addComponent(button);

// We must set the layout to a defined height vertically, in
// this case 100% of its parent layout, which also must
// not have undefined size.
layout.setHeight("100%");

The default layout of Window and Panel is VerticalLayout with undefined height. If you insert
enough components in such a layout, it will grow outside the bottom of the view area and scrollbars
will appear in the browser. If you want your application to use all the browser view, nothing more
or less, you should use setFullSize() for the root layout.

// Create the main window.
Window main = new Window("Main Window");
setMainWindow(main);

// Use full size.
main.getLayout().setSizeFull();

Expanding Components

If you set a HorizontalLayout to a defined size horizontally or a VerticalLayout vertically, and
there is space left over from the contained components, the extra space is distributed equally
between the component cells. The components are aligned within these cells, according to their
alignment setting, top left by default, as in the example below.

Layout Size142

Managing Layout

Often, you don't want such empty space, but want one or more components to take all the leftover
space. You need to set such a component to 100% size and use setExpandRatio(). If there
is just one such expanding component in the layout, the ratio parameter is irrelevant.

If you set multiple components as expanding, the expand ratio dictates how large proportion of
the available space (overall or excess depending on whether the components are sized as a
percentage or not) each component takes. In the example below, the buttons have 1:2:3 ratio
for the expansion.

GridLayout has corresponding method for both of its directions, setRowExpandRatio() and
setColumnExpandRatio().

Expansion is dealt in detail in the documentation of the layout components that support it. See
Section 6.3, “VerticalLayout and HorizontalLayout” and Section 6.4, “GridLayout” for details
on components with relative sizes.

6.10.2. Layout Cell Alignment

You can set the alignment of the component inside a specific layout cell with the
setComponentAlignment() method. The method takes as its parameters the component
contained in the cell to be formatted, and the horizontal and vertical alignment.

Figure 6.13, “Cell Alignments” illustrates the alignment of components within a GridLayout.

Figure 6.13. Cell Alignments

The easiest way to set alignments is to use the constants defined in the Alignment class. Let
us look how the buttons in the top row of the above GridLayout are aligned with constants:

// Create a grid layout
final GridLayout grid = new GridLayout(3, 3);

grid.setWidth(400, Sizeable.UNITS_PIXELS);
grid.setHeight(200, Sizeable.UNITS_PIXELS);

Button topleft = new Button("Top Left");
grid.addComponent(topleft, 0, 0);
grid.setComponentAlignment(topleft, Alignment.TOP_LEFT);

Button topcenter = new Button("Top Center");
grid.addComponent(topcenter, 1, 0);
grid.setComponentAlignment(topcenter, Alignment.TOP_CENTER);

143Layout Cell Alignment

Managing Layout

Button topright = new Button("Top Right");
grid.addComponent(topright, 2, 0);
grid.setComponentAlignment(topright, Alignment.TOP_RIGHT);
...

The following table lists all the Alignment constants by their respective locations:

Table 6.1. Alignment Constants

TOP_RIGHTTOP_CENTERTOP_LEFT

MIDDLE_RIGHTMIDDLE_CENTERMIDDLE_LEFT

BOTTOM_RIGHTBOTTOM_CENTERBOTTOM_LEFT

Another way to specify the alignments is to create an Alignment object and specify the horizontal
and vertical alignment with separate constants.You can specify either of the directions, in which
case the other alignment direction is not modified, or both with a bitmask operation between the
two directions.

Button middleleft = new Button("Middle Left");
grid.addComponent(middleleft, 0, 1);
grid.setComponentAlignment(middleleft,
 new Alignment(Bits.ALIGNMENT_VERTICAL_CENTER |
 Bits.ALIGNMENT_LEFT));

Button middlecenter = new Button("Middle Center");
grid.addComponent(middlecenter, 1, 1);
grid.setComponentAlignment(middlecenter,
 new Alignment(Bits.ALIGNMENT_VERTICAL_CENTER |
 Bits.ALIGNMENT_HORIZONTAL_CENTER));

Button middleright = new Button("Middle Right");
grid.addComponent(middleright, 2, 1);
grid.setComponentAlignment(middleright,
 new Alignment(Bits.ALIGNMENT_VERTICAL_CENTER |
 Bits.ALIGNMENT_RIGHT));

Obviously, you may combine only one vertical bitmask with one horizontal bitmask, though you
may leave either one out. The following table lists the available alignment bitmask constants:

Table 6.2. Alignment Bitmasks

Bits.ALIGNMENT_LEFTHorizontal

Bits.ALIGNMENT_HORIZONTAL_CENTER

Bits.ALIGNMENT_RIGHT

Bits.ALIGNMENT_TOPVertical

Bits.ALIGNMENT_VERTICAL_CENTER

Bits.ALIGNMENT_BOTTOM

You can determine the current alignment of a component with getComponentAlignment(),
which returns an Alignment object.The class provides a number of getter methods for decoding
the alignment, which you can also get as a bitmask value.

Layout Cell Alignment144

Managing Layout

6.10.3. Layout Cell Spacing

The VerticalLayout, HorizontalLayout, and GridLayout layouts offer a setSpacing() method
for enabling space between the cells in the layout. Enabling the spacing adds a spacing style for
all cells except the first so that, by setting the left or top padding, you can specify the amount of
spacing.

To enable spacing, simply call setSpacing(true) for the layout as follows:

HorizontalLayout layout2 = new HorizontalLayout();
layout2.addStyleName("spacingexample");
layout2.setSpacing(true);
layout2.addComponent(new Button("Component 1"));
layout2.addComponent(new Button("Component 2"));
layout2.addComponent(new Button("Component 3"));

VerticalLayout layout4 = new VerticalLayout();
layout4.addStyleName("spacingexample");
layout4.setSpacing(true);
layout4.addComponent(new Button("Component 1"));
layout4.addComponent(new Button("Component 2"));
layout4.addComponent(new Button("Component 3"));

In practise, the setSpacing() method toggles between the
"v-COMPONENTCLASSNAME-spacing-on" and "-off" CSS class names in the cell elements.
Elements having those class names can be used to define the spacing metrics in a theme.

The layouts have a spacing style name to define spacing also when spacing is off. This allows
you to define a small default spacing between components by default and a larger one when the
spacing is actually enabled.

Spacing can be horizontal (for HorizontalLayout), vertical (for VerticalLayout), or both (for
GridLayout).The name of the spacing style for horizontal and vertical spacing is the base name
of the component style name plus the "-spacing-on" suffix, as shown in the following table:

Table 6.3. Spacing Style Names

v-verticallayout-spacing-onVerticalLayout

v-horizontallayout-spacing-onHorizontalLayout

v-gridlayout-spacing-onGridLayout

In the CSS example below, we specify the exact amount of spacing for the code example given
above, for the layouts with the custom "spacingexample" style:

/* Set the amount of horizontal cell spacing in a
 * specific element with the "-spacingexample" style. */
.v-horizontallayout-spacingexample .v-horizontallayout-spacing-on {
 padding-left: 30px;
}

/* Set the amount of vertical cell spacing in a
 * specific element with the "-spacingexample" style. */
.v-verticallayout-spacingexample .v-verticallayout-spacing-on {
 padding-top: 30px;
}

/* Set the amount of both vertical and horizontal cell spacing
 * in a specific element with the "-spacingexample" style. */
.v-gridlayout-spacingexample .v-gridlayout-spacing-on {
 padding-top: 30px;

145Layout Cell Spacing

Managing Layout

 padding-left: 50px;
}

The resulting layouts will look as shown in Figure 6.14, “Layout Spacings”, which also shows the
layouts with no spacing.

Figure 6.14. Layout Spacings

Note

Spacing is unrelated to "cell spacing" in HTML tables.While many layout components
are implemented with HTML tables in the browser, this implementation is not guar-
anteed to stay the same and at least Vertical-/HorizontalLayout could be implemen-
ted with <div> elements as well. In fact, as GWT compiles widgets separately for
different browsers, the implementation could even vary between browsers.

Also note that HTML elements with spacing classnames don't necessarily exist in a
component after rendering, because the Client-Side Engine of Vaadin processes
them.

6.10.4. Layout Margins

By default, layout components do not have any margin around them. You can add margin with
CSS directly to the layout component. Below we set margins for a specific layout component
(here a horizontallayout):

layout1.addStyleName("marginexample1");

.v-horizontallayout-marginexample1
 .v-horizontallayout-margin {
 padding-left: 200px;
 padding-right: 100px;
 padding-top: 50px;
 padding-bottom: 25px;
}

Similar settings exist for other layouts such as verticallayout.

The layout size calculations require the margins to be defined as CSS padding rather than as
CSS margin.

As an alternative to the pure CSS method, you can set up a margin around the layout that can
be enabled with setMargin(true). The margin element has some default margin widths, but
you can adjust the widths in CSS if you need to.

Let us consider the following example, where we enable the margin on all sides of the layout:

// Create a layout
HorizontalLayout layout2 = new HorizontalLayout();

Layout Margins146

Managing Layout

containinglayout.addComponent(
 new Label("Layout with margin on all sides:"));
containinglayout.addComponent(layout2);

// Set style name for the layout to allow styling it
layout2.addStyleName("marginexample");

// Have margin on all sides around the layout
layout2.setMargin(true);

// Put something inside the layout
layout2.addComponent(new Label("Cell 1"));
layout2.addComponent(new Label("Cell 2"));
layout2.addComponent(new Label("Cell 3"));

You can enable the margins only for specific sides. The margins are specified for the
setMargin() method in clockwise order for top, right, bottom, and left margin. The following
would enable the top and left margins:

layout2.setMargin(true, false, false, true);

You can specify the actual margin widths in the CSS if you are not satisfied with the default widths
(in this example for a HorizontalLayout):

.v-horizontallayout-marginexample .v-horizontallayout-margin-left {padding-left:
200px;}
.v-horizontallayout-marginexample .v-horizontallayout-margin-right {padding-right:
100px;}
.v-horizontallayout-marginexample .v-horizontallayout-margin-top {padding-top:
50px; }
.v-horizontallayout-marginexample .v-horizontallayout-margin-bottom {padding-bottom:
25px; }

The resulting margins are shown in Figure 6.15, “Layout Margins” below. The two ways produce
identical margins.

Figure 6.15. Layout Margins

CSS Style Rules

The CSS style names for the margin widths for setMargin() consist of the specific layout name
plus -margin-left and so on. The CSS style names for CSS-only margins consist of the
specific layout name plus -margin. Below, the style rules are given for VerticalLayout:

147Layout Margins

Managing Layout

/* Alternative 1: CSS only style */
.v-verticallayout-margin {
 padding-left: ___px;
 padding-right: ___px;
 padding-top: ___px;
 padding-bottom: ___px;
}
/* Alternative 2: CSS rules to be enabled in code */
.v-verticallayout-margin-left {padding-left: ___px;}
.v-verticallayout-margin-right {padding-right: ___px;}
.v-verticallayout-margin-top {padding-top: ___px;}
.v-verticallayout-margin-bottom {padding-bottom: ___px;}

6.11. Custom Layouts

While it is possible to create almost any typical layout with the standard layout components, it is
sometimes best to separate the layout completely from code.With the CustomLayout component,
you can write your layout as a template in XHTML that provides locations of any contained
components. The layout template is included in a theme. This separation allows the layout to be
designed separately from code, for example using WYSIWYG web designer tools such as Adobe
Dreamweaver.

A template is a HTML file located under layouts folder under a theme folder under the
WebContent/VAADIN/themes/ f o l d e r , f o r e x a m p l e ,
WebContent/VAADIN/themes/themename/layouts/mylayout.html. (Notice that the
root path WebContent/VAADIN/themes/ for themes is fixed.) A template can also be provided
dynamically from an InputStream, as explained below. A template includes <div> elements
with a location attribute that defines the location identifier. All custom layout HTML-files must
be saved using UTF-8 character encoding.

<table width="100%" height="100%">
 <tr height="100%">
 <td>
 <table align="center">
 <tr>
 <td align="right">User name:</td>
 <td><div location="username"></div></td>
 </tr>
 <tr>
 <td align="right">Password:</td>
 <td><div location="password"></div></td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td align="right" colspan="2">

<div location="okbutton"></div>
 </td>
 </tr>
</table>

The client-side engine of Vaadin will replace contents of the location elements with the compon-
ents. The components are bound to the location elements by the location identifier given to
addComponent(), as shown in the example below.

// Have a Panel where to put the custom layout.
Panel panel = new Panel("Login");
panel.setSizeUndefined();
main.addComponent(panel);

// Create custom layout from "layoutname.html" template.

Custom Layouts148

Managing Layout

CustomLayout custom = new CustomLayout("layoutname");
custom.addStyleName("customlayoutexample");

// Use it as the layout of the Panel.
panel.setContent(custom);

// Create a few components and bind them to the location tags
// in the custom layout.
TextField username = new TextField();
custom.addComponent(username, "username");

TextField password = new TextField();
custom.addComponent(password, "password");

Button ok = new Button("Login");
custom.addComponent(ok, "okbutton");

The resulting layout is shown below in Figure 6.16, “Example of a Custom Layout Component”.

Figure 6.16. Example of a Custom Layout Component

You can use addComponent() also to replace an existing component in the location given in
the second parameter.

In addition to a static template file, you can provide a template dynamically with the CustomLayout
constructor that accepts an InputStream as the template source. For example:

new CustomLayout(new ByteArrayInputStream("Template".getBytes()));

or

new CustomLayout(new FileInputStream(file));

149Custom Layouts

Managing Layout

150

Chapter 7

Visual User
Interface Design

with Eclipse
(experimental)

7.1. Overview .. 151
7.2. Creating a New CustomComponent .. 152
7.3. Using The Visual Editor ... 154
7.4. Structure of a Visually Editable Component .. 159

This chapter provides instructions for developing the graphical user interface of Vaadin components
with a visual editor (experimental) included in the Vaadin Plugin for the Eclipse IDE.

7.1. Overview

The visual or WYSIWYG editor for Vaadin allows you to design the user interface of an entire
application or specific custom components. The editor generates the actual Java code, which is
designed to be reusable, so you can design the basic layout of the user interface with the visual

151Book of Vaadin

editor and build the user interaction logic on top of the generated code.You can use inheritance
and composition to modify the components further.

The editor is included in the Vaadin Plugin for Eclipse (actually as a separate plugin in the plugin
set). For installing the Vaadin plugin, see Section 2.2.5, “Vaadin Plugin for Eclipse”.

Ongoing Work

The first preview version of the visual editor was released in May 2009 and is still
under development at the time of the publication of this book and should be con-
sidered as experimental. While the preview version is incomplete and probably not
suitable for demanding use, you can use it for simple tasks, especially when famili-
arizing yourself with Vaadin.

7.2. Creating a New CustomComponent

The visual editor works with custom component classes that extend the CustomComponent
class, which is the basic technique in Vaadin for creating composite components. Custom com-
ponents are described in Section 5.19, “Component Composition with CustomComponent”.
Any CustomComponent will not do for the visual editor; you need to create a new one as instruc-
ted below.

1. Select File → New → Other... in the main menu or right-click the Project Explorer and
select New → Other... to open the New window.

2. In the first, Select a wizard step, select Vaadin → Vaadin CustomComponent and
click Next.

3. The Source folder is the root source directory where the new component will be created.
This is by default the default source directory of your project.

Creating a New CustomComponent152

Visual User Interface Design with Eclipse (experimental)

Enter the Java Package under which the new component class should be created or
select it by clicking the Browse button. Also enter the class Name of the new component.

Finally, click Finish to create the component.

A newly created composite component is opened in the editor window, as shown in Figure 7.1,
“New Composite Component”.

153Creating a New CustomComponent

Visual User Interface Design with Eclipse (experimental)

Figure 7.1. New Composite Component

You can observe that a component that you can edit with the visual editor has two tabs at the
bottom of the view: Source and Design. These tabs allow switching between the source view
and the visual editing view.

7.3. Using The Visual Editor

The visual editor view consists of, on the left side, an editing area that displays the current layout
and, on the right side, a control panel that contains a component tree, component property panel,
and a component list for adding new components.

7.3.1. Adding New Components

Adding new components in the user interface is done by adding nodes to the component tree at
the top of the editor control panel. The list box at the bottom of the editor control panel shows
the components allowed under the selected component; you can generally add components only
under a layout (Layout) or a component container (ComponentContainer).

To add a new node:

Using The Visual Editor154

Visual User Interface Design with Eclipse (experimental)

1. select an existing node (in the component tree) under which you wish to insert the new
node

2. click on a component in the component list at the bottom of the panel.

Figure 7.2. Basic Component Properties

The component will be added under the selected component in the component tree. You can
delete a component by right-clicking it in the component tree and selecting Remove.

7.3.2. Setting Component Properties

The property setting area of the control panel allows setting component properties. The area is
divided into basic properties, size and position settings, and other properties, which includes also
styles.

Basic Properties

The top section of the property panel, shown in Figure 7.2, “Basic Component Properties”, allows
settings basic component properties.

155Setting Component Properties

Visual User Interface Design with Eclipse (experimental)

Figure 7.3. Basic Component Properties

The basic properties are:

Component name The name of the component, which is used for the reference
to the component, so it must obey Java notation for variable
names.

Caption The caption of a component is usually displayed above the
component. Some components, such as Button, display
the caption inside the component. For Label text, you
should set the value of the label instead of the caption,
which should be left empty.

Description (tooltip) The description is usually displayed as a tooltip when the
mouse pointer hovers over the component for a while. Some
components, such as Form have their own way of display-
ing the description.

Icon The icon of a component is usually displayed above the
component, left of the caption. Some components, such as
Button, display the icon inside the component.

Formatting type Some components allow different formatting types, such
as Label, which allow formatting either as Text, XHTML,
Preformatted, and Raw.

Value The component value. The value type and how it is dis-
played by the component varies between different compon-
ent types and each value type has its own editor.The editor
opens by clicking on the ... button.

Most of the basic component properties are defined in the Component interface; see Section 5.2.1,
“Component Interface” for further details.

Size and Position

The size of a component is determined by its width and height, which you can give in the two
edit boxes in the control panel. You can use any unit specifiers for components, as described in
Section 5.3.2, “Sizing Components”. Emptying a size box will make the size "automatic", which
means setting the size as undefined. In the generated code, the undefined value will be expressed
as "-1px".

Setting width of "100px" and auto (undefined or empty) height would result in the following gen-
erated settings for a button:

Setting Component Properties156

Visual User Interface Design with Eclipse (experimental)

// myButton
myButton = new Button();
...
myButton.setHeight("-1px");
myButton.setWidth("100px");
...

Figure 7.4, “Component Size and Position” shows the control panel area for the size and position.

Figure 7.4. Component Size and Position

The generated code for the example would be:

// myButton
myButton = new Button();
myButton.setWidth("-1px");
myButton.setHeight("-1px");
myButton.setImmediate(true);
myButton.setCaption("My Button");
mainLayout.addComponent(myButton,
 "top:243.0px;left:152.0px;");

The position is given as a CSS position in the second parameter for addComponent(). The
values "-1px" for width and height will make the button to be sized automatically to the minimum
size required by the caption.

When editing the position of a component inside an AbsoluteLayout, the editor will display ver-
tical and horizontal guides, which you can use to set the position of the component. See Sec-
tion 7.3.3, “Editing an AbsoluteLayout” for more information about editing absolute layouts.

The ZIndex setting controls the "Z coordinate" of the components, that is, which component will
overlay which when they overlap. Value -1 means automatic, in which case the components
added to the layout later will be on top.

Other Properties

The bottom section of the property panel, shown in Figure 7.5, “Other Properties”, allows settings
other often used component properties.

Figure 7.5. Other Properties

157Setting Component Properties

Visual User Interface Design with Eclipse (experimental)

Style Names Enter the enabled CSS style names for the component as a space-
seraparated list. See Chapter 8, Themes for information on component
styles in themes.

Visible Defines whether the component is visible or hidden, as set with the
setVisible() method.

Enabled Defines whether the component is enabled or disabled, as set with the
setEnabled() method. If disabled, no user interaction is allowed for
the component and it is usually shown as shadowed.

Read-only Defines whether editing the component is allowed, as set with the
setReadonly() method.

Immediate Defines whether user interaction with the component is updated immedi-
ately (after the component loses focus) in the server as a state or value
chage in the component value.

Most of the component properties mentioned above are defined in the Component interface;
see Section 5.2.1, “Component Interface” for further details.

7.3.3. Editing an AbsoluteLayout

The visual editor has interactive support for the AbsoluteLayout component that allows positioning
components exactly at specified coordinates.You can position the components using guides that
control the position attributes, shown in the control panel on the right. The position values are
measured in pixels from the corresponding edge; the vertical and horizontal rulers show the dis-
tances from the top and left edge.

Figure 7.6, “Positioning with AbsoluteLayout” shows three components, a Label, a Table, and
a Button, inside an AbsoluteLayout.

Figure 7.6. Positioning with AbsoluteLayout

Editing an AbsoluteLayout158

Visual User Interface Design with Eclipse (experimental)

Position attributes that are empty are automatic and can be either zero (at the edge) or dynamic
to make it shrink to fit the size of the component, depending on the component. Guides are shown
also for the automatic position attributes and move automatically; in Figure 7.6, “Positioning with
AbsoluteLayout” the right and bottom edges of the Button are automatic.

Moving an automatic guide manually makes the guide and the corresponding the position attribute
non-automatic. To make a manually set attribute automatic, empty it in the control panel. Fig-
ure 7.7, “Manually positioned Label” shows a Label component with all the four edges set
manually. Notice that if an automatic position is 0, the guide is at the edge of the ruler.

Figure 7.7. Manually positioned Label

7.4. Structure of a Visually Editable Component

A component created by the wizard and later managed by the visual editor has a very specific
structure that allows you to insert your user interface logic in the component while keeping a
minimal amount of code off-limits.You need to know what you can edit yourself and what exactly
is managed by the editor. The managed member variables and methods are marked with the
AutoGenerated annotation, as you can see later.

A visually editable component consists of:

• Member variables containing sub-component references

• Sub-component builder methods

• The constructor

The structure of a composite component is hierarchical, a nested hierarchy of layout components
containing other layout components as well as regular components. The root layout of the com-
ponent tree, or the composition root of the CustomComponent, is named mainLayout. See
Section 5.19, “Component Composition with CustomComponent” for a detailed description of
the structure of custom (composite) components.

159Structure of a Visually Editable Component

Visual User Interface Design with Eclipse (experimental)

7.4.1. Sub-Component References

The CustomComponent class will include a reference to each contained component as a
member variable. The most important of these is the mainLayout reference to the composition
root layout. Such automatically generated member variables are marked with the
@AutoGenerated annotation. They are managed by the editor, so you should not edit them
manually, unless you know what you are doing.

A composite component with an AbsoluteLayout as the composition root, containing a Button
and a Table would have the references as follows:

public class MyComponent extends CustomComponent {

 @AutoGenerated
 private AbsoluteLayout mainLayout;
 @AutoGenerated
 private Button myButton;
 @AutoGenerated
 private Table myTable;
 ...

The names of the member variables are defined in the component properties panel of the visual
editor, in the Component name field, as described in the section called “Basic Properties”.While
you can change the name of any other components, the name of the root layout is always
mainLayout. It is fixed because the editor does not make changes to the constructor, as noted
in Section 7.4.3, “The Constructor”.You can, however, change the type of the root layout, which
is an AbsoluteLayout by default.

Certain typically static components, such as the Label label component, will not have a reference
as a member variable. See the description of the builder methods below for details.

7.4.2. Sub-Component Builders

Every managed layout component will have a builder method that creates the layout and all its
contained components. The builder puts references to the created components in their corres-
ponding member variables, and it also returns a reference to the created layout component.

Below is an example of an initial main layout:

@AutoGenerated
private AbsoluteLayout buildMainLayout() {
 // common part: create layout
 mainLayout = new AbsoluteLayout();

 // top-level component properties
 setHeight("100.0%");
 setWidth("100.0%");

 return mainLayout;
}

Notice that while the builder methods return a reference to the created component, they also
write the reference directly to the member variable. The returned reference might not be used
by the generated code at all (in the constructor or in the builder methods), but you can use it for
your purposes.

The builder of the main layout is called in the constructor, as explained in Section 7.4.3, “The
Constructor”.When you have a layout with nested layout components, the builders of each layout
will call the appropriate builder methods of their contained layouts to create their contents.

Sub-Component References160

Visual User Interface Design with Eclipse (experimental)

7.4.3.The Constructor

When you create a new composite component using the wizard, it will create a constructor for
the component and fill its basic content.

 public MyComponent() {
 buildMainLayout();
 setCompositionRoot(mainLayout);

 // TODO add user code here
 }

The most important thing to do in the constructor is to set the composition root of the Custom-
Component with the setCompositionRoot() (see Section 5.19, “Component Composition
with CustomComponent” for more details on the composition root). The generated constructor
first builds the root layout of the composite component with buildMainLayout() and then uses
the mainLayout reference.

The editor will not change the constructor afterwards, so you can safely change it as you want.
The editor does not allow changing the member variable holding a reference to the root layout,
so it is always named mainLayout.

161The Constructor

Visual User Interface Design with Eclipse (experimental)

162

Chapter 8

Themes

8.1. Overview .. 163
8.2. Introduction to Cascading Style Sheets ... 165
8.3. Creating and Using Themes .. 170
8.4. Creating a Theme in Eclipse .. 173

This chapter provides details about using and creating themes that control the visual look of web
applications. Themes consist of Cascading Style Sheets (CSS) and other theme resources such
as images. We provide an introduction to CSS, especially concerning the styling of HTML by
element classes.

8.1. Overview

Vaadin separates the appearance of the user interface from its logic using themes. Themes can
include CSS style sheets, custom HTML layouts, and any necessary graphics.Theme resources
can also be accessed from an application as ThemeResource objects.

Custom themes are placed under the WebContents/VAADIN/themes/ folder of the web ap-
plication. This location is fixed -- the VAADIN folder specifies that these are static resources
specific to Vaadin. The folder should normally contain also the built-in themes, although you can
let them be loaded dynamically from the Vaadin JAR (even though that is somewhat inefficient).
Figure 8.1, “Contents of a Theme” illustrates the contents of a theme.

163Book of Vaadin

Figure 8.1. Contents of a Theme

The name of a theme folder defines the name of the theme.The name is used in the setTheme()
call. A theme must contain the styles.css stylesheet, but other contents have free naming.
We suggest a convention for naming the folders as img for images, layouts for custom layouts,
and css for additional stylesheets.

Custom themes that use an existing complete theme need to inherit the theme. See Section 8.3.2,
“Built-in Themes” and Section 8.3.4, “Theme Inheritance” for details on inheriting a theme.
Copying and modifying a complete theme is also possible, but it may need more work to maintain
if the modifications are small.

You use a theme with a simple setTheme() method call for the Application object as follows:

public class MyApplication
 extends com.vaadin.Application {
 public void init() {
 setTheme("demo");
 ...
 }
}

An application can use different themes for different users and switch between themes during
execution. For smaller changes, a theme can contain alternate styles for user interface compon-
ents, which can be changed as needed.

In addition to style sheets, a theme can contain HTML templates for custom layouts used with
CustomLayout. See Section 6.11, “Custom Layouts” for details.

Resources provided in a theme can also be accessed using the ThemeResource class, as de-
scribed in Section 4.5.4, “Theme Resources”.This allows using theme resources, such as images,
for example in Embedded objects and other objects that allow inclusion of images using resources.

Overview164

Themes

8.2. Introduction to Cascading Style Sheets

Cascading Style Sheets or CSS is a technique to separate the appearance of a web page from
the content represented in HTML or XHTML. Let us give a short introduction to Cascading Style
Sheets and look how they are relevant to software development with Vaadin.

8.2.1. Basic CSS Rules

A style sheet is a file that contains a set of rules. Each rule consists of one or more selectors,
separated with commas, and a declaration block enclosed in curly braces. A declaration block
contains a list of property statements. Each property has a label and a value, separated with a
colon. A property statement ends with a semicolon.

Let us look at an example:

p, td {
 color: blue;
}

td {
 background: yellow;
 font-weight: bold;
}

In the example above, p and td are element type selectors that match with <p> and <td> ele-
ments in HTML, respectively.The first rule matches with both elements, while the second matches
only with <td> elements. Let us assume that you have saved the above style sheet with the
name mystylesheet.css and consider the following HTML file located in the same folder.

<html>
 <head>
 <link rel="stylesheet" type="text/css"
 href="mystylesheet.css"/>
 </head>
 <body>

<p>This is a paragraph</p>
<p>This is another paragraph</p>

 <table>
 <tr>

<td>This is a table cell</td>
<td>This is another table cell</td>

 </tr>
 </table>
 </body>
</html>

The <link> element defines the style sheet to use. The HTML elements that match the above
rules are emphasized. When the page is displayed in the browser, it will look as shown in the
figure below.

Figure 8.2. Simple Styling by Element Type

165Introduction to Cascading Style Sheets

Themes

CSS has an inheritance mechanism where contained elements inherit the properties of their
parent elements. For example, let us change the above example and define it instead as follows:

table {
 color: blue;
 background: yellow;
}

All elements contained in the <table> element would have the same properties. For example,
the text in the contained <td> elements would be in blue color.

Each HTML element type accepts a certain set of properties. The <div> elements are generic
elements that can be used to create almost any layout and formatting that can be created with
a specific HTML element type. Vaadin uses <div> elements extensively, especially for layouts.

Matching elements by their type is, however, rarely if ever used in style sheets for Vaadin com-
ponents or Google Web Toolkit widgets.

8.2.2. Matching by Element Class

Matching HTML elements by the class attribute of the elements is the most relevant form of
matching with Vaadin. It is also possible to match with the identifier of a HTML element.

The class of an HTML element is defined with the class attribute as follows:

<html>
 <body>

<p class="normal">This is the first paragraph</p>

<p class="another">This is the second paragraph</p>

 <table>
 <tr>

<td class="normal">This is a table cell</td>
<td class="another">This is another table cell</td>

 </tr>
 </table>
 </body>
</html>

The class attributes of HTML elements can be matched in CSS rules with a selector notation
where the class name is written after a period following the element name. This gives us full
control of matching elements by their type and class.

p.normal {color: red;}
p.another {color: blue;}
td.normal {background: pink;}
td.another {background: yellow;}

The page would look as shown below:

Figure 8.3. Matching HTML Element Type and Class

Matching by Element Class166

Themes

We can also match solely by the class by using the universal selector * for the element name,
for example *.normal. The universal selector can also be left out altogether so that we use just
the class name following the period, for example .normal.

.normal {
 color: red;
}

.another {
 blackground: yellow;
}

In this case, the rule will match with all elements of the same class regardless of the element
type. The result is shown in Figure 8.4, “Matching Only HTML Element Class”. This example il-
lustrates a technique to make style sheets compatible regardless of the exact HTML element
used in drawing a component.

Figure 8.4. Matching Only HTML Element Class

To assure compatibility, we recommend that you use only matching based on the element classes
and do not match for specific HTML element types in CSS rules, because either Vaadin or GWT
may use different HTML elements to render some components in the future. For example, IT Mill
Toolkit Release 4 used <div> elements extensively for layout components. However, IT Mill
Toolkit Release 5 and Vaadin use GWT to render the components, and GWT uses the <table>
element to implement most layouts. Similarly, IT Mill Toolkit Release 4 used <div> element also
for buttons, but in Release 5, GWT uses the <button> element. Vaadin has little control over
how GWT renders its components, so we can not guarantee compatibility in different versions
of GWT. However, both <div> and <table> as well as <tr> and <td> elements accept most
of the same properties, so matching only the class hierarchy of the elements should be compatible
in most cases.

8.2.3. Matching by Descendant Relationship

CSS allows matching HTML by their containment relationship. For example, consider the following
HTML fragment:

<body>
 <p class="mytext">Here is some text inside a
 paragraph element</p>
 <table class="mytable">
 <tr>
 <td class="mytext">Here is text inside
 a table and inside a td element.</td>
 </tr>
 </table>
</body>

Matching by the class name .mytext alone would match both the <p> and <td> elements. If
we want to match only the table cell, we could use the following selector:

.mytable .mytext {color: blue;}

167Matching by Descendant Relationship

Themes

To match, a class listed in a rule does not have to be an immediate descendant of the previous
class, but just a descendant. For example, the selector ".v-panel .v-button" would match
all elements with class .v-button somewhere inside an element with class .v-panel.

Let us give an example with a real case. Consider the following Vaadin component.

public class LoginBox extends CustomComponent {
 Panel panel = new Panel("Log In");

 public LoginBox () {
 setCompositionRoot(panel);

 panel.addComponent(new TextField("Username:"));
 panel.addComponent(new TextField("Password:"));
 panel.addComponent(new Button("Login"));
 }
}

The component will look by default as shown in the following figure.

Figure 8.5.Themeing Login Box Example with 'runo' theme.

Now, let us look at the HTML structure of the component. The following listing assumes that the
application contains only the above component in the main window of the application.

<body>
 <div id="itmtk-ajax-window">
 <div>
 <div class="v-orderedlayout">
 <div>
 <div class="v-panel">
 <div class="v-panel-caption">Log In</div>
 <div class="v-panel-content">
 <div class="v-orderedlayout">
 <div>
 <div>
 <div class="v-caption">
 Username:
 </div>
 </div>
 <input type="text" class="v-textfield"/>
 </div>
 <div>
 <div>
 <div class="v-caption">
 Password:
 </div>
 </div>
 <input type="password"
 class="v-textfield"/>
 </div>
 <div>

Matching by Descendant Relationship168

Themes

 <button type="button"
 class="v-button">Login</button>
 </div>
 </div>
 </div>
 <div class="v-panel-deco"/>
 </div>
 </div>
 </div>
 </div>
 </div>
</body>

Now, consider the following theme where we set the backgrounds of various elements.

.v-panel .v-panel-caption {
 background: #80ff80; /* pale green */
}

.v-panel .v-panel-content {
 background: yellow;
}

.v-panel .v-textfield {
 background: #e0e0ff; /* pale blue */
}

.v-panel .v-button {
 background: pink;
}

The coloring has changed as shown in the following figure.

Figure 8.6.Themeing Login Box Example with Custom Theme

An element can have multiple classes separated with a space. With multiple classes, a CSS rule
matches an element if any of the classes match.This feature is used in many Vaadin components
to allow matching based on the state of the component. For example, when the mouse is over
a Link component, over class is added to the component. Most of such styling is a feature of
Google Web Toolkit.

8.2.4. Notes on Compatibility

CSS was first proposed in 1994. The specification of CSS is maintained by the CSS Working
Group of World Wide Web Consortium (W3C). Its versions are specified as levels that build upon
the earlier version. CSS Level 1 was published in 1996, Level 2 in 1998. Development of CSS
Level 3 was started in 1998 and is still under way.

169Notes on Compatibility

Themes

While the support for CSS has been universal in all graphical web browsers since at least 1995,
the support has been very incomplete at times and there still exists an unfortunate number of
incompatibilities between browsers.While we have tried to take these incompatibilities into account
in the built-in themes in Vaadin, you need to consider them while developing custom themes.

Compatibility issues are detailed in various CSS handbooks.

8.3. Creating and Using Themes

Custom themes are placed in VAADIN/themes folder of the web application (in the WebContent
directory) as illustrated in Figure 8.1, “Contents of a Theme”. This location is fixed. You need to
have a theme folder for each theme you use in your application, although applications rarely
need more than a single theme. For example, if you want to define a theme with the name
mytheme, you will place it in folder VAADIN/themes/mytheme.

A custom theme must also inherit a built-in theme, as shown in the example below:

@import "../reindeer/styles.css";

.v-app {
 background: yellow;
}

Vaadin 6.0 includes two built-in themes: reindeer and runo.The latter is a compatibility theme
for IT Mill Toolkit 5; there is no longer a "default" theme. See Section 8.3.2, “Built-in Themes”
and Section 8.3.4, “Theme Inheritance” below for details on inheriting themes.

8.3.1. Styling Standard Components

Each user interface component in Vaadin has a set of style classes that you can use to control
the appearance of the component. Some components have additional elements that also allow
styling.

The following table lists the style classes of all client-side components of Vaadin. Notice that a
single server-side component can have multiple client-side implementations. For example, a
Button can be rendered on the client side either as a regular button or a check box, depending
on the switchMode attribute of the button. For details regarding the mapping to client-side
components, see Section 10.5, “Defining a Widget Set”. Each client-side component type has
its own style class and a number of additional classes that depend on the client-side state of the
component. For example, a text field will have v-textfield-focus class when mouse pointer
hovers over the component.This state is purely on the client-side and is not passed to the server.

Some client-side components can be shared by different server-side components. There is also
the VUnknownComponent, which is a component that indicates an internal error in a situation
where the server asked to render a component which is not available on the client-side.

Creating and Using Themes170

Themes

Table 8.1. Default CSS Style Names of Vaadin Components

CSS Class NameClient-Side WidgetServer-Side Component

v-buttonVButtonButton

VCheckBox

v-customcomponentVCustomComponentCustomComponent

VCustomLayoutCustomLayout

v-datefieldVDateFieldDateField

v-datefield-entrycalendarVCalendar

v-datefield-calendarVDateFieldCalendar

v-datefield-calendarVPopupCalendar

VTextualDate

-VEmbeddedEmbedded

v-formVFormForm

-VFormLayoutFormLayout

-VGridLayoutGridLayout

v-labelVLabelLabel

v-linkVLinkLink

v-select-optiongroupVOptionGroupOptionGroup

v-horizontallayoutVHorizontalLayoutHorizontalLayout

v-verticallayoutVVerticalLayoutVerticalLayout

v-panel (v-panel-caption, v-panel-content, v-
panel-deco)

VPanelPanel

Select

v-listselectVListSelect

v-filterselectVFilterSelect

v-sliderVSliderSlider

-VSplitPanelSplitPanel

-VSplitPanelHorizontal

-VSplitPanelVertical

v-tableVScrollTableTable

v-table (v-table-tbody)VTablePaging

v-tabsheet (v-tabsheet-content, v-tablsheet-
tabs)

VTabSheetTabSheet

v-textfieldVTextFieldTextField

VTextArea

VPasswordField

v-tree (v-tree-node-selected)VTreeTree

v-select-twincol (v-select-twincol-selections,
v-select-twincol-buttons, v-select-twincol-
deco)

VTwinColSelectTwinColSelect

171Styling Standard Components

Themes

CSS Class NameClient-Side WidgetServer-Side Component

-VUploadUpload

v-windowVWindowWindow

-CalendarEntry-

v-datefield-calendarpanelCalendarPanel-

v-contextmenuContextMenu-

itmtk-unknown (itmtk-unknown-caption)VUnknownComponent-

-VView-

gwt-MenuBarMenubar-

gwt-MenuItemMenuItem-

v-datefield-time (v-select)Time-

Style names of sub-components are shown in parentheses.

8.3.2. Built-in Themes

Vaadin currently includes two built-in themes: reindeer and runo. The latter is the default
theme for IT Mill Toolkit 5 (where its name is "default"); the default theme in Vaadin 6.0 is
reindeer.

The built-in themes are provided in the respective VAADIN/themes/reindeer/styles.css
and VAADIN/themes/runo/styles.css stylesheets in the Vaadin library JAR. These
stylesheets are compilations of the separate stylesheets for each component in the corresponding
subdirectory. The stylesheets are compiled to a single file for efficiency: the browser needs to
load just a single file.

Serving Built-In Themes Statically

The built-in themes included in the Vaadin library JAR are served dynamically from
the JAR by the servlet. Serving a theme statically by the web server is much more
efficient. You only need to extract the VAADIN/ directory from the JAR under your
WebContent directory. Just make sure to update it if you upgrade to a newer version
of Vaadin.

Creation of a default theme for custom GWT widgets is described in Section 10.3.3, “Styling GWT
Widgets”.

8.3.3. Using Themes

Using a theme is simple, you only need to set the theme with setTheme() in the application
object. The Eclipse wizard for creating custom Vaadin themes automatically adds such call in
the init() method of the application class, as explained in Section 8.4, “Creating a Theme in
Eclipse”.

Defining the appearance of a user interface component is fairly simple. First, you create a com-
ponent and add a custom style name for it with addStyleName(). Then you write the CSS
element that defines the formatting for the component.

Built-in Themes172

Themes

8.3.4.Theme Inheritance

When you define your own theme, you will need to inherit a built-in theme (unless you just copy
the built-in theme).

Inheritance in CSS is done with the @import statement. In the typical case, when you define
your own theme, you inherit a built-in theme as follows:

@import "../reindeer/styles.css";

.v-app {
 background: yellow;
}

You can even create a deep hierarchy of themes by inheritance. Such a solution is often useful
if you have some overall theme for your application and a slightly modified theme for different
user classes.You can even make it possible for each user to have his or her own theme.

For example, let us assume that we have the base theme of an application with the name myapp
and a specific myapp-student theme for users with the student role. The stylesheet of the base
theme would be located in themes/myapp/styles.css. We can then "inherit" it in
themes/myapp-student/styles.css with a simple @import statement:

@import "../myapp/styles.css";

.v-app {
 background: green;
}

This would make the page look just as with the base theme, except for the green background.
You could use the theme inheritance as follows:

public class MyApplication extends com.vaadin.Application {

 public void init() {
 setTheme("myapp");
 ...
 }

 public void login(User user) {
 if (user.role == User.ROLE_STUDENT)
 setTheme("myapp-student");
 ...
 }

 public void logout() {
 setTheme("myapp");
 ...
 }
}

In the above example, the User class is an imaginary class assumed to hold user information.

8.4. Creating a Theme in Eclipse

The Eclipse plugin provides a wizard for creating custom themes. Do the following steps to create
a new theme.

1. Select File → New → Other... in the main menu or right-click the Project Explorer and
select New → Other.... A window will open.

173Theme Inheritance

Themes

2. In the Select a wizard step, select the Vaadin → Vaadin Theme wizard.

Click Next to proceed to the next step.

3. In the Create a new Vaadin theme step, you have the following settings:

Project (mandatory) The project in which the theme should be created.

Theme name (mandatory) The theme name is used as the name of the theme
folder and in a CSS tag (prefixed with "v-theme-"),
so it must be a proper identifier. Only latin alphanu-
merics, underscore, and minus sign are allowed.

Modify application classes to
use theme (optional)

The setting allows the wizard to write a code state-
ment that enables the theme in the constructor of
the selected application class(es). If you need to
control the theme with dynamic logic, you can leave
the setting unchecked or change the generated line
later.

Click Finish to create the theme.

The wizard creates the theme folder under the WebContent/VAADIN/themes folder and the
actual style sheet as styles.css, as illustrated in Figure 8.7, “Newly Created Theme”.

Creating a Theme in Eclipse174

Themes

Figure 8.7. Newly Created Theme

The created theme inherits a built-in base theme with an @import statement. See the explanation
of theme inheritance in Section 8.3, “Creating and Using Themes”. Notice that the reindeer
theme is not located in the widgetsets folder, but in the Vaadin JAR. See Section 8.3.2, “Built-
in Themes” for information for serving the built-in themes.

If you selected an application class or classes in the Modify application classes to use theme
in the theme wizard, the wizard will add the following line at the end of the init() method of
the application class(es):

setTheme("myprojecttheme");

Notice that renaming a theme by changing the name of the folder will not change the setTheme()
calls in the application classes or vise versa. You need to change such references to theme
names in the calls manually.

175Creating a Theme in Eclipse

Themes

176

Chapter 9

Binding
Components to

Data

9.1. Overview .. 177
9.2. Properties .. 178
9.3. Holding properties in Items .. 179
9.4. Collecting items in Containers ... 179

9.1. Overview

The Vaadin Data Model is one of the core concepts of the library.To allow the view (user interface
components) to access the application data directly, we have introduced a standard data interface.
Application data needs a common interface so that the data can be accessed by the view and
the controller alike. In Vaadin, we have solved this with the Data Model.

177Book of Vaadin

Figure 9.1. Vaadin Data Model

The Vaadin Data Model allows binding user interface components directly to the data they show
and modify. There are three nested levels of hierarchy in the data model: property, item and
container. Using a spreadsheet application as an analogy, these would correspond to the data
underlying a cell, a row and a table, respectively. The components would display the data in
these and optionally allow direct editing of the corresponding entities.

The Data Model is realized as a set of interface classes in the fittingly named package
com.vaadin.data. The package contains the interfaces Property, Item, and Container, along
with a number of more specialized interfaces and classes.

Notice that the Data Model does not define data representation, but only interfaces. This leaves
the representation fully to the implementation of the containers.The representation can be almost
anything, such as a Java object structure, a filesystem, or a database query.

The Data Model is used heavily in UI components of Vaadin. A key feature of all UI components
is that they can either maintain their data by themselves or be bound to an external data source.
Various components also implement some of these interfaces themselves, so you can actually
use them as data sources for other components.

The Data Model has many important and useful features, such as support for change notification,
transactions, validation, and lazy loading.

9.2. Properties

Vaadin data model is one of the core concepts in the library and the Property-interface is the
base of that model. Property provides a standardized API for a single data object that can be
read (get) and written (set). A property is always typed, but can optionally support data type
conversions. The type of a property can be any Java class. Optionally, properties can provide
value change events for following their changes.

Properties178

Binding Components to Data

Properties are in themselves unnamed objects. Properties are collected in an item, which asso-
ciates the properties with names, the Property Identifiers or PIDs. Items can be contained in
containers and are identified with Item Identifiers or IIDs. In the spreadsheet analogy, Property
Identifiers would correspond to column names and Item Identifiers to row names. The identifiers
can be arbitrary objects, but should implement the equals(Object) and hashCode() methods
so that they can be used in any standard Java Collection.

The most important function of the Property as well as other data models is to connect classes
implementing the interface directly to editor and viewer classes. Typically this is used to connect
different data sources to UI components for editing and viewing their contents.

Properties can be utilized either by implementing the interface or by using some of the existing
property implementations. Vaadin includes Property interface implementations for arbitrary
function pairs or Bean-properties as well as simple object properties.

Many of the UI components also implement Property interface and allow setting of other compon-
ents as their data-source. Simple UI-components that control a single property (their displayed
value or state) include various Field implementations such as TextField, DateField and Button
as well as the Label. You can access this property through the Property interface inherited by
the components.

In addition to the simple components, a variety of selectable components such as Select, Table
and Tree have a property that contains their current selection (the identifier of the selected item
or a set of item identifiers).

Components manage their property by default using an internal data source object, in which case
the property is contained within the component, but you can bind the the components to external
data sources with the setPropertyDataSource() method of the com.vaadin.ui.AbstractField
class inherited by such components.

9.3. Holding properties in Items

Item is an object that contains a set of named properties. Each property is identified by a property
identifier (PID) and a reference to the property can be queried from the Item. Item defines inner
interfaces for maintaining the item property set and listening changes in the item property set.
Concrete examples or items include a row in a table (with its properties corresponding to cells
on the row), the data underlying a form (with properties corresponding to individual fields) or a
node in a filesystem tree.

In addition to being used indirectly by many user interface components, items provide the basic
data model underlying Form components. In simple cases, forms can even be generated auto-
matically from items. The properties of the item correspond to the fields of the form.

Items generally represent objects in the object-oriented model, but with the exception that they
are configurable and provide an event mechanism. The simplest way of utilizing Item interface
is to use existing Item implementations. Provided utility classes include a configurable property
set (PropertySetItem) and a bean-to-item adapter (BeanItem), in addition to which a Form can
also be used directly as an item.

9.4. Collecting items in Containers

Container is the most advanced of the data model supported by Vaadin. It provides a very flexible
way of managing a set of items that share common properties. Each item is identified by an item

179Holding properties in Items

Binding Components to Data

id. Properties can be requested from container with item and property ids. Another way of access-
ing properties is to first request an item from container and then request its properties from it.

By implementing a container interface, you can bind UI components directly to data. As containers
can be unordered, ordered, indexed, or hierarchical, they can interface practically any kind of
data representation. Vaadin includes data connectors for some common data sources, such as
the simple data tables and filesystem.

The Container interface was designed with flexibility and efficiency in mind. It contains inner in-
terfaces that containers can optionally implement for ordering the items sequentially, indexing
the items and accessing them hierarchically. Those ordering models provide the basis for the
Table, Tree, and Select UI components. As with other data models, the containers support events
for notifying about changes made to their contents.

In addition to separate container objects, also many UI components are containers in addition to
being properties. This is especially true for selectable components (that implement Select), be-
cause they are containers that contain selectable items. Their property is the currently selected
item.This is useful as it enables binding components to view and update each others' data directly,
and makes it easy to reuse already constructed data models - e.g. a form could edit a row (item)
of a table directly, and the table could use a database container as its underlying container. The
fields of the form would correspond to the properties of the item, i.e. the cells of the table row.
For more details on components, see Chapter 5, User Interface Components.

The library contains a set of utilities for converting between different container implementations
by adding external ordering or hierarchy into existing containers. In-memory containers imple-
menting indexed and hierarchical models provide easy-to-use tools for setting up in-memory data
storages. Such default container implementations include IndexedContainer, which can be
thought of as a generalization of a two-dimensional data table, and BeanItemContainer which
maps standard Java objects (beans) to items of an indexed container. In addition, the default
containers include a hierarchical container for direct file system browsing.

9.4.1. Iterating Over a Container

As the items in a Container are not necessarily indexed, iterating over the items has to be done
using an Iterator.The getItemIds() method of Container returns a Collection of item identi-
fiers over which you can iterate. The following example demonstrates a typical case where you
iterate over the values of check boxes in a column of a Table component. The context of the
example is the example used in Section 5.12, “Table”.

// Collect the results of the iteration into this string.
String items = "";

// Iterate over the item identifiers of the table.
for (Iterator i = table.getItemIds().iterator(); i.hasNext();) {
 // Get the current item identifier, which is an integer.
 int iid = (Integer) i.next();

 // Now get the actual item from the table.
 Item item = table.getItem(iid);

 // And now we can get to the actual checkbox object.
 Button button = (Button)
 (item.getItemProperty("ismember").getValue());

 // If the checkbox is selected.
 if ((Boolean)button.getValue() == true) {
 // Do something with the selected item; collect the
 // first names in a string.

Iterating Over a Container180

Binding Components to Data

 items += item.getItemProperty("First Name")
 .getValue() + " ";
 }
}

// Do something with the results; display the selected items.
layout.addComponent (new Label("Selected items: " + items));

Notice that the getItemIds() returns an unmodifiable collection, so the Container may not be
modified during iteration. You can not, for example, remove items from the Container during it-
eration. The modification includes modification in another thread. If the Container is modified
during iteration, a ConcurrentModificationException is thrown and the iterator may be left in
an undefined state.

181Iterating Over a Container

Binding Components to Data

182

Chapter 10

Developing
Custom

Components

10.1. Overview .. 184
10.2. Doing It the Simple Way in Eclipse .. 185
10.3. Google Web Toolkit Widgets .. 191
10.4. Integrating a GWT Widget ... 195
10.5. Defining a Widget Set .. 200
10.6. Server-Side Components .. 201
10.7. Using a Custom Component ... 204
10.8. GWT Widget Development .. 206

This chapter describes how you can create custom client-side components as Google Web Toolkit
(GWT) widgets and how you integrate them with Vaadin. The client-side implementations of all
standard user interface components in Vaadin use the same client-side interfaces and patterns.

Google Web Toolkit is intended for developing browser-based user interfaces using the Java
language, which is compiled into JavaScript. Knowledge of such client-side technologies is usually
not needed with Vaadin, as its repertoire of user interface components should be sufficient for
most applications.The easiest way to create custom components in Vaadin is to make composite
components with the CustomComponent class. See Section 5.19, “Component Composition

183Book of Vaadin

with CustomComponent” for more details on the composite components. In some cases, however,
you may need to either make modifications to existing components or create new or integrate
existing GWT widgets with your application.

Creation of new widgets involves a number of rather intricate tasks.The Vaadin Plugin for Eclipse
makes many of the tasks much easier, so if you are using Eclipse and the plugin, you should find
Section 10.2, “Doing It the Simple Way in Eclipse” helpful.

If you need more background on the architecture, Section 3.4, “Client-Side Engine” gives an in-
troduction to the architecture of the Vaadin Client-Side Engine. If you are new to Google Web
Toolkit, Section 3.2.2, “Google Web Toolkit” gives an introduction to GWT and its role in the ar-
chitecture of Vaadin.

On Terminology

Google Web Toolkit uses the term widget for user interface components. In this book,
we use the term widget to refer to client-side components made with Google Web
Toolkit, while using the term component in a general sense and also in the special
sense for server-side components.

10.1. Overview

Google Web Toolkit (GWT) is an integral part of Vaadin since Release 5. All rendering of user
interface components in a web browser is programmed with GWT. Using custom GWT widgets
is easy in Vaadin.This chapter gives an introduction to GWT widgets and details on how to integ-
rate them with Vaadin.

On the client side, in the web browser, you have the Vaadin Client-Side Engine. It uses the GWT
framework, and both are compiled into a JavaScript runtime component. The client-side engine
is contained in the com.vaadin.terminal.gwt.client package and the client-side implementations
of various user interface components are in the com.vaadin.terminal.gwt.client.ui package. You
can find the source code for these packages in the Vaadin installation package.You make custom
components by inheriting GWT widget classes. To integrate them with Vaadin, you have to im-
plement the Paintable interface of the Client-Side Engine that provides the AJAX communications
with the server-side application. To enable the custom widgets, you also need to implement a
widget set. A widget set is a factory class that can instantiate your widgets. It needs to inherit the
DefaultWidgetSet that acts as the factory for the standard widgets. You can also define
stylesheets for custom widgets. A client-side module is defined in a GWT Module Descriptor.

To summarize, to implement a client-side widget that is integrated with Vaadin, you need the
following:

• A GWT widget that implements the Paintable interface of the Vaadin Client-Side Engine

• A widget factory (a "widget set") that can create the custom widget or widgets

• Default CSS style sheet for the widget set (optional)

• A GWT Module Descriptor (.gwt.xml) that describes the entry point and style sheet

On the server side, you need to implement a server-side component that manages serialization
and deserialization of its attributes with the client-side widget. A server-side component usually
inherits the AbstractComponent or AbstractField class and implements either the
paintContent() or the more generic paint() method to serialize its data to the client.These
methods "paint" the component by generating a UIDL element that is sent to the client.The UIDL

Overview184

Developing Custom Components

element contains all the relevant information about the component, and you can easily add your
own attributes to it. Upon reception of UIDL messages, the client-side engine (using the widget
set) creates or updates user interface widgets as needed.

Figure 10.1, “Color Picker Module” illustrates the folder hierarchy of the Color Picker example
used in this chapter. The example is available in the demo application of Vaadin with URL
/colorpicker/. You can find the full source code of the application in the source module for
the demos in the installation package.

Figure 10.1. Color Picker Module

The ColorPickerApplication.java application provides an example of using the ColorPick-
er custom component. To allow accessing the application, it must be defined in the deployment
descriptor web.xml. See Section 4.8.3, “Deployment Descriptor web.xml” for details.The source
code for the server-side component is located in the same folder.

A client-side widget set must be developed within a single source module tree. This is because
GWT Compiler takes as its argument the root folder of the source code, in the Color Picker ex-
ample the colorpicker.gwt.client module, and compiles all the contained Java source
files into JavaScript. The path to the source files, the entry point class, and the style sheet are
specified in the WidgetSet.gwt.xml descriptor for the GWT Compiler.The WidgetSet.java
provides source code for the entry point, which is a factory class for creating the custom widget
objects.The actual custom widget is split into two classes: GwtColorPicker, a pure GWT widget,
and VColorPicker that provides the integration with Vaadin.The default style sheet for the widget
set is provided in gwt/public/colorpicker/styles.css.

10.2. Doing It the Simple Way in Eclipse

The Vaadin Plugin for Eclipse automates all the Vaadin related routines of widget development,
most importantly the creation of new widgets and the required widget set.

185Doing It the Simple Way in Eclipse

Developing Custom Components

10.2.1. Creating a Widget Set

Before creating new widgets, you need to create a new widget set. The Vaadin widget set wizard
will automate the creation of new widget sets. The definition of widget sets is described in detail
in Section 10.5, “Defining a Widget Set”.

1. Select File → New → Other... in the main menu or right-click the Project Explorer and
select New → Other... or press Ctrl-N to open the New dialog.

2. In the first, Select a wizard step, select Vaadin → Vaadin Widgetset and click Next.

3. In the Vaadin widgetset step, fill out the target folder, package, and class information.

Creating a Widget Set186

Developing Custom Components

Source folder The root folder of the source tree under which you
wish to put the new widget sets. The default value
is your default source tree.

Package The parent package under which the widget set
should be created.Widget sets will be created under
the client subpackage under this package.

Name Name of the widget set class to be created. We
suggest a naming convention that uses -Widgetset
suffix in the class name.

Superclass The superclass defines the base widget set that you
extend with your own widgets. You should always
have DefaultWidgetSet highest at the hierarchy.

Modify applications to use
widget set

Select the application(s) that will use the created
widget set.This will modify the web.xml deployment
descriptor of the selected application(s) to enable
the widget set.

Compile widgetset When this option is enabled, the wizard will start
compilation of the new widget set automatically after
it is created. See below for details and Sec-
tion 10.2.3, “Recompiling the Widget Set” for inform-
ation on compiling a widget set manually.

Finally, click Finish to create the new widget set.

The wizard will create:

187Creating a Widget Set

Developing Custom Components

• Widget set class in client folder under the base folder

• GWT module descriptor file (.gwt.xml) in the base folder

• Launch configuration (.launch) for compiling the widget set in the project root folder

If you selected the Compile widgetset option, the wizard will also automatically compile the
widget set. After the compilation finishes, you should be able to run your application as before,
but using the new widget set. The compilation result is written under the
WebContent/VAADIN/widgetsets folder. When you need to recompile the widget set in Ec-
lipse, see Section 10.2.3, “Recompiling the Widget Set”. For detailed information on compiling
widget sets, see Section 10.8.4, “Compiling GWT Widget Sets”.

You do not normally need to edit the widget set class yourself, as the New widget wizard will
manage it for you. If you need to have more complex logic for the creation of widget objects,
please see Section 10.5, “Defining a Widget Set” for a detailed description of widget sets. You
should not touch the methods marked as AUTOGENERATED.

If you selected application(s) in the Modify applications to use widget set selection, the following
setting is inserted in your web.xml deployment descriptor(s) to enable the widget set:

<init-param>
 <description>Application widgetset</description>
 <param-name>widgetset</param-name>
 <param-value>com.example.myproject.MyprojectApplicationWidgetset</param-value>
</init-param>

Notice that the package structure created by the Vaadin Plugin for Eclipse is slightly different
from the one illustrated in Figure 10.1, “Color Picker Module” earlier, with no intermediate gwt
package that contains the GWT module descriptor.You can refactor the package structure if you
find need for it, but the client-side code must always be stored under a package named "client".

10.2.2. Creating a Widget

Once you have created a widget set as described above, you can create new widgets in it as
follows:

1. Select File → New → Other... in the main menu or right-click the Project Explorer and
select New → Other... or press Ctrl-N to open the New dialog.

2. In the first, Select a wizard step, select Vaadin → Vaadin Widget and click Next.

Creating a Widget188

Developing Custom Components

3. In the New Component wizard step, fill out the target folder, package, and class inform-
ation.

Source folder The root folder of the source tree under which you wish
to put the new widget sets. The default value is the
default source tree of your project.

Package The parent package under which the new server-side
component should be created. The client-side widget
will be created under the client subpackage under this
package.

189Creating a Widget

Developing Custom Components

Name The class name of the new server-side component.
The name of the client-side widget stub (if you have its
creation enabled) will be the same but with "V-" prefix.
You can easily refactor the class names afterwards.

Superclass The superclass of the server-side component. It is Ab-
stractComponent by default, but com.vaadin.ui.Ab-
stractField or com.vaadin.ui.AbstractSelect are
other commonly used superclasses. If you are extend-
ing an existing component, you should select it as the
superclass.You can easily change the superclass later.

Build client-side stub When this option is selected (strongly recommended),
the wizard will build a stub for the client-side widget.

To widgetset Select the widget set in which the client-side stub
should be included.

Finally, click Finish to create the new component.

The wizard will create:

• Server-side component stub in the defined package

• Client-side widget stub in the client.ui package under the base package

The structure of the server-side component and the client-side widget, and the serialization of
component state between them, is explained in the subsequent sections of this chapter.

The wizard will automatically recompile the widget set in which you included the new widget. See
Section 10.2.3, “Recompiling the Widget Set”.

10.2.3. Recompiling the Widget Set

After you edit your widget or widget set, you need to recompile it. You can do this from Run →
External Tools menu, where the run configuration whould be listed. You can view the launch
configuration settings by selecting Run → External Tools → External Tools Configurations.

The compilation progress is shown in the Console panel in Eclipse, as illustrated in Figure 10.2,
“Recompiling a Widget Set”.

Figure 10.2. Recompiling a Widget Set

Recompiling the Widget Set190

Developing Custom Components

The compilation output is written under the WebContent/VAADIN/widgetsets folder, in a
widget set specific folder.

For detailed information on compiling widget sets, see Section 10.8.4, “Compiling GWT Widget
Sets”. Should you ever compile a widget set outside Eclipse, you need to refresh the project by
selecting it in Project Explorer and pressing F5.

10.3. Google Web Toolkit Widgets

Let us take a look into how custom GWT widgets are created. The authoritative sources for de-
veloping with GWT are the Google Web Toolkit Developer Guide and Google Web Toolkit Class
Reference.

Google Web Toolkit offers a variety of ways for creating custom widgets. The easiest way is to
create composite widgets by grouping existing basic widgets and adding some interaction logic
to them.You can also develop widgets using the lower-level Java interfaces used by the standard
GWT widgets or the really low-level JavaScript interfaces.

A custom GWT widget needs to find its place in the GWT class hierarchy. Figure 10.3, “GWT
Widget Base Class Hierarchy” illustrates the abstract base classes for GWT widgets.

Figure 10.3. GWT Widget Base Class Hierarchy

Each of the base classes offers various services for different types of widgets. Many custom
widgets, such as the Color Picker example below, extend the Composite class to combine the
widget from existing GWT widgets. Other base classes offer various features useful for different
kinds of widgets. You can also choose to extend an existing GWT widget, as we have done for
most of the standard user interface components of Vaadin, or extend a Vaadin widget.

10.3.1. Extending a Vaadin Widget

Extending a Vaadin widget is an easy way to add features, such as advanced client-side validation,
to existing standard components. If the extended widget does not require any additional paramet-
ers, which is usual in client-side validation, you may not even need to define a server-side
counterpart for your widget. A server-side component can be mapped to multiple client-side
components depending on its parameters. The mapping is defined in the widget factory, i.e., the
class inheriting DefaultWidgetSet. For details on how to implement a widget factory, see Sec-
tion 10.5, “Defining a Widget Set”.

191Google Web Toolkit Widgets

Developing Custom Components

10.3.2. Example: A Color Picker GWT Widget

In the following example, we implement a composite GWT widget built from HorizontalPanel,
Grid, Button, and Label widgets. This widget does not yet have any integration with the server
side code, which will be shown later in this chapter. The source code is available in the source
folder for the demo application in Vaadin installation folder, under package com.vaadin.demo.col-
orpicker.

package com.vaadin.demo.colorpicker.gwt.client.ui;

import com.google.gwt.user.client.DOM;
import com.google.gwt.user.client.Element;
import com.google.gwt.user.client.ui.*;

/**
 * A regular GWT component without integration with Vaadin.
 **/
public class GwtColorPicker extends Composite
 implements ClickListener {

 /**
 * The currently selected color name to give client-side
 * feedback to the user.
 **/
 protected Label currentcolor = new Label();

 public GwtColorPicker() {
 // Create a 4x4 grid of buttons with names for 16 colors
 Grid grid = new Grid(4,4);
 String[] colors = new String[] {"aqua", "black", "blue",
 "fuchsia", "gray", "green", "lime", "maroon",
 "navy", "olive", "purple", "red", "silver",
 "teal", "white", "yellow"};
 int colornum = 0;
 for (int i=0; i<4; i++)
 for (int j=0; j<4; j++, colornum++) {
 // Create a button for each color
 Button button = new Button(colors[colornum]);
 button.addClickListener(this);

 // Put the button in the Grid layout
 grid.setWidget(i, j, button);

 // Set the button background colors.
 DOM.setStyleAttribute(button.getElement(),
 "background",
 colors[colornum]);

 // For dark colors, the button label must be
 // in white.
 if ("black navy maroon blue purple"
 .indexOf(colors[colornum]) != -1)
 DOM.setStyleAttribute(button.getElement(),
 "color",
 "white");
 }

 // Create a panel with the color grid and currently
 // selected color indicator
 HorizontalPanel panel = new HorizontalPanel();
 panel.add(grid);
 panel.add(currentcolor);

 // Set the class of the color selection feedback box to
 // allow CSS styling. We need to obtain the DOM element

Example: A Color Picker GWT Widget192

Developing Custom Components

 // for the current color label. This assumes that the
 // <td> element of the HorizontalPanel is the parent of
 // the label element. Notice that the element has no
 // parent before the widget has been added to the
 // horizontal panel.
 Element panelcell =
 DOM.getParent(currentcolor.getElement());
 DOM.setElementProperty(panelcell, "className",
 "colorpicker-currentcolorbox");

 // Set initial color. This will be overridden with
 // the value read from server.
 setColor("white");

 // Composite GWT widgets must call initWidget().
 initWidget(panel);
 }

 /** Handles click on a color button. */
 public void onClick(Widget sender) {
 // Use the button label as the color name to set
 setColor(((Button) sender).getText());
 }

 /** Sets the currently selected color. */
 public void setColor(String newcolor) {
 // Give client-side feedback by changing the color
 // name in the label
 currentcolor.setText(newcolor);

 // Obtain the DOM elements. This assumes that the <td>
 // element of the HorizontalPanel is the parent of
 // the label element.
 Element nameelement = currentcolor.getElement();
 Element cell = DOM.getParent(nameelement);

 // Give feedback by changing the background color
 DOM.setStyleAttribute(cell, "background", newcolor);
 DOM.setStyleAttribute(nameelement, "background",
 newcolor);
 if ("black navy maroon blue purple"
 .indexOf(newcolor) != -1)
 DOM.setStyleAttribute(nameelement, "color", "white");
 else
 DOM.setStyleAttribute(nameelement, "color", "black");
 }
}

This example demonstrates one reason for making a custom widget: it provides client-side
feedback to the user in a way that would not be possible or at least practical from server-side
code. Server-side code can only select a static CSS style or a theme, while on the client-side we
can manipulate styles of HTML elements very flexibly. Notice that manipulation of the DOM tree
depends somewhat on the browser. In this example, the manipulation should be rather compatible,
but in some cases there could be problems. Standard GWT and Vaadin widgets handle many of
such compatibility issues, but when doing such low-level operations as DOM manipulation, you
may need to consider them.

The structure of the DOM tree depends on how GWT renders its widgets for a specific browser.
It is also not guaranteed that the rendering does not change in future releases of GWT. You
should therefore make as few assumptions regarding the DOM structure as possible. Unfortunately,
GWT does not provide a way to set the style of, for example, cells of layout elements. The above
example therefore assumes that the Grid is a table and the <button> elements are inside <td>

193Example: A Color Picker GWT Widget

Developing Custom Components

elements of the table. See Section 10.3.3, “Styling GWT Widgets” below for more details on
compatibility.

The widget will look as follows:

Figure 10.4. Color Picker Widget Without Styling

As you can notice, the widget will look rather uninviting without CSS styling. We will next look
how to define a default style for a GWT widget.

10.3.3. Styling GWT Widgets

GWT renders its widgets in the DOM tree of the web browser as HTML elements. Therefore,
their style can be defined with Cascading Style Sheets (CSS) just as in HTML. GWT Compiler
supports packaging style sheets from the source package tree. The style sheet is defined in the
.gwt.xml descriptor file (see Section 10.5.1, “GWT Module Descriptor” for details).

<!-- WidgetSet default theme -->
<stylesheet src="colorpicker/styles.css"/>

The style sheet path is relative to the public folder under the folder containing the .gwt.xml
file.

Let us define the colorpicker/styles.css as follows.

/* Set style for the color picker table.
 * This assumes that the Grid layout is rendered
 * as a HTML <table>. */
table.example-colorpicker {
 border-collapse: collapse;
 border: 0px;
}

/* Set color picker button style.
 * This does not make assumptions about the HTML
 * element tree as it only uses the class attributes
 * of the elements. */
.example-colorpicker .gwt-Button {
 height: 60px;
 width: 60px;
 border: none;
 padding: 0px;
}

/* Set style for the right-hand box that shows the
 * currently selected color. While this may work for
 * other implementations of the HorizontalPanel as well,
 * it somewhat assumes that the layout is rendered
 * as a table where cells are <td> elements. */
.colorpicker-currentcolorbox {
 width: 240px;
 text-align: center;
 /* Must be !important to override GWT styling: */

Styling GWT Widgets194

Developing Custom Components

 vertical-align: middle !important;
}

The stylesheet makes some assumptions regarding the HTML element structure. First, it assumes
that the Grid layout is a table. Second, the custom class name,
colorpicker-currentcolorbox, of the right-hand HorizontalPanel cell was inserted in the
DOM representation of the widget in the GwtColorPicker implementation. Styling a button makes
less assumptions. Using only class names instead of specific element names may make a
stylesheet more compatible if the HTML representation is different in different browsers or changes
in the future.

Figure 10.5. Color Picker Widget With Styling

10.4. Integrating a GWT Widget

Integration of GWT widgets with Vaadin can be done in two basic ways: by modifying the original
class or by inheriting it and adding the integration code in the subclass. The latter way is actually
the way the standard client-side components in Vaadin are done: they simply inherit the corres-
ponding standard GWT widgets. For example, VButton inherits GWT Button.

The integration code has the following tasks:

• Manage CSS style class

• Receive component state from server

• Send state changes caused by user interaction to server

The integration is broken down in the following sections into server-client deserialization done in
updateFromUIDL() and client-server serialization done with updateVariable().The complete
example of the integration of the Color Picker widget is given at the end of this section.

If you are using the Eclipse IDE, the Vaadin Plugin for Eclipse allows easy creation of a stub for
a new widget, alongside its server-side component. It also manages the widget set for you
automatically. See Section 10.2.2, “Creating a Widget” for detailed instructions.

Naming Conventions

While the use of Vaadin does not require the use of any particular naming conventions
for GWT widgets, some notes regarding naming may be necessary. Even though

195Integrating a GWT Widget

Developing Custom Components

Java package names make it possible to use identical class names in the same
context, it may be useful to try to make them more distinctive to avoid any inconveni-
ence. GWT uses plain names for its standard widgets, such as Button.The standard
components of Vaadin use identical or similar names, but that does not cause any
inconvenience, because the GWT widgets and server-side components of Vaadin
are never used in the same context. For the client-side components of Vaadin, we
use the "V" prefix, for example VButton. In the Color Picker example, we use
GwtColorPicker for the GWT widget and VColorPicker for the integration imple-
mentation.You may wish to follow similar conventions.

Notice that the naming convention changed when IT Mill Toolkit was renamed as
Vaadin.The prefix for client-side widgets in IT Mill Toolkit was I, which was changed
to V in Vaadin. Similarly, CSS style name prefixes were changed from i- to v-.

10.4.1. Deserialization of Component State from Server

To receive data from the server, a widget must implement the Paintable interface and its
updateFromUIDL() method.The idea is that the method "paints" the user interface description
by manipulating the HTML tree on the browser.Typically, when using composite GWT components,
most of the DOM tree manipulation is done by standard GWT widgets.

An implementation of the updateFromUIDL() method must include some routine tasks:

• Call updateComponent() and return if it succeeds

• Manage the component identifier

• Manage a reference to the ApplicationConnection object. The widget needs to know
it to be able to initiate a server request when a browser event occurs.

The latter two of these tasks are not needed if the widget does not handle any user input that
needs to be sent to server.

The following excerpt provides a skeleton for the updateFromUIDL() method and shows how
the component identifier and connection object reference are managed by a widget.

 String uidlId;
 ApplicationConnection client;

 ...

 public void updateFromUIDL(UIDL uidl,
 ApplicationConnection client) {
 if (client.updateComponent(this, uidl, true))
 return;

 this.client = client;
 uidlId = uidl.getId();

 ...
 }

The updateComponent() call has several functions important for different kinds of components.
It updates various default attributes, such as disabled, readonly, invisible, and (CSS)
style attributes. If the manageCaption argument is true, the call will also update the caption
of the component. By default, the caption is managed by the parent layout of the component.

Deserialization of Component State from Server196

Developing Custom Components

Components, such as a Button, that manage the caption themselves, do not need management
of the caption.

The updateComponent() is also part of the transmutation mechanism that allows a single
server-side component to have alternative client-side implementations, based on its parameters.
For example, the Button server-side component can manifest either as a clickable VButton or
as a switchable VCheckBox widget on the client-side. If the parameters are changed, the client-
side widget can be replaced with another dynamically. Determination of the correct implementation
is done in a WidgetSet. If updateComponent() returns true, the client-side engine can attempt
to replace the implementation. For more details on the transmutation mechanism, see Section 10.5,
“Defining a Widget Set”.

The component identifier is used when the component needs to serialize its updated state to
server.The reference to the application connection manager is needed to make the server request.
If a component does not have any state changes that need to be sent to the server, management
of the variables is not needed. See Section 10.4.2, “Serialization of Component State to Server”
below for further details.

The design of the client-side framework of Vaadin, because the Paintable is an interface and
can not store any references. Having an API layer between GWT and custom widgets would be
a much more complicated solution.

10.4.2. Serialization of Component State to Server

User input is handled in GWT widgets with events.

User input is passed to the server using the updateVariable() method. If the immediate
parameter is false, the value is simply added to a queue to be sent to the server at next AJAX
request. If the argument is true, the AJAX request is made immediately, and will include all
queued updates to variables. The immediate argument is described in more detail below.

if (uidl_id == null || client == null)
 return;

client.updateVariable(uidl_id, "myvariable",
 newvalue, immediate);

The client of the above example is a reference to the ApplicationConnection object that
manages server requests. The uidl_id argument is the UIDL identifier obtained during a
updateFromUIDL() call with uidl.getId() method.

The updateVariable() method has several varieties to send variables of different types.

197Serialization of Component State to Server

Developing Custom Components

Table 10.1. UIDL Variable Types

UIDL TypeDescriptionType

sString object.String

iNative integer value.int

lNative long integer value.long

fNative single-precision floating-point value.float

dNative double-precision floating-point value.double

bNative boolean value.boolean

aArray of object data.The toString() method is used to serialize each
of the objects.The content strings are escaped with escapeString(),
to allow characters such as quotes.

Object[]

This serialization mechanism is intended to be as simple as possible in most cases, when the
user input is typically just one state variable, while also allowing the serialization of more complex
data, if necessary.

Immediateness

Server-side components that inherit AbstractComponent have an immediate attribute, set
with setImmediate(). This attribute dictates whether a component makes a server request
immediately when its state changes, or only afterwards. For example, there is no need to send
the contents of a "Username" TextField before the "Login" button has been clicked. On the other
hand, the server can set the TextField as immediate to receive changes for example when the
component loses focus.

Most widgets should support immediateness by receiving the immediate attribute from the UIDL
message that renders the widget.The following example is extracted from the VTextField imple-
mentation.

// Store the immediate attribute in a member variable
private boolean immediate = false;
...

public void updateFromUIDL(UIDL uidl,
 ApplicationConnection client) {
 if(client.updateComponent(this, uidl, true))
 return;

 // Receive and store the immediate attribute
 immediate = uidl.getBooleanAttribute("immediate");
 ...
}

public void onChange(Widget sender) {
 if(client != null && id != null) {
 // Use the stored immediate attribute to say
 // whether or not make the server request
 // immediately.
 client.updateVariable(id, "text", getText(),
 immediate);
 }
}

In some widgets, the immediate attribute would have little meaning, and in fact an accidental
false value would cause undesired behaviour. For example, a button is always expected to

Serialization of Component State to Server198

Developing Custom Components

send a request to the server when it is clicked. Such widgets can simply use true for the
immediate argument in updateVariable(). For example, VButton does as follows:

public void onClick(Widget sender) {
 if (id == null || client == null)
 return;
 client.updateVariable(id, "state", true,
 /* always immediate */ true);
}

10.4.3. Example: Integrating the Color Picker Widget

Below is a complete example of an integration component for the Color Picker example. It
demonstrates all the basic tasks needed for the integration of a GWT widget with its server-side
counterpart component.

import com.vaadin.terminal.gwt.client.ApplicationConnection;
import com.vaadin.terminal.gwt.client.Paintable;
import com.vaadin.terminal.gwt.client.UIDL;

public class VColorPicker extends GwtColorPicker
 implements Paintable {

 /** Set the CSS class name to allow styling. */
 public static final String CLASSNAME = "example-colorpicker";

 /** Component identifier in UIDL communications. */
 String uidlId;

 /** Reference to the server connection object. */
 ApplicationConnection client;

 /**
 * The constructor should first call super() to initialize
 * the component and then handle any initialization relevant
 * to Vaadin.
 */
 public VColorPicker() {
 // The superclass has a lot of relevant initialization
 super();

 // This method call of the Paintable interface sets
 // the component style name in DOM tree
 setStyleName(CLASSNAME);
 }

 /**
 * This method must be implemented to update the client-side
 * component from UIDL data received from server.
 *
 * This method is called when the page is loaded for the
 * first time, and every time UI changes in the component
 * are received from the server.
 */
 public void updateFromUIDL(UIDL uidl,
 ApplicationConnection client) {
 // This call should be made first. Ensure correct
 // implementation, and let the containing layout
 // manage the caption, etc.
 if (client.updateComponent(this, uidl, true))
 return;

 // Save reference to server connection object to be
 // able to send user interaction later
 this.client = client;

199Example: Integrating the Color Picker Widget

Developing Custom Components

 // Save the UIDL identifier for the component
 uidlId = uidl.getId();

 // Get value received from server and actualize it
 // in the GWT component
 setColor(uidl.getStringVariable("colorname"));
 }

 /**
 * Override the method to communicate the new value
 * to server.
 **/
 public void setColor(String newcolor) {
 // Ignore if no change
 if (newcolor.equals(currentcolor.getText()))
 return;

 // Let the original implementation to do
 // whatever it needs to do
 super.setColor(newcolor);

 // Updating the state to the server can not be done
 // before the server connection is known, i.e., before
 // updateFromUIDL() has been called.
 if (uidlId == null || client == null)
 return;

 // Communicate the user interaction parameters to server.
 // This call will initiate an AJAX request to the server.
 client.updateVariable(uidlId, "colorname",
 newcolor, true);
 }
}

10.5. Defining a Widget Set

The client-side components, or in GWT terminology, widgets, must be made usable in the client-
side GWT application by defining a widget set factory that can create the widgets by their UIDL
tag name. (Actually, such a widget set factory is the client-side application.)

A widget set factory needs to inherit the default factory DefaultWidgetSet and implement the
createWidget() and resolveWidgetType() methods. The methods must call their default
implementation to allow creation of the standard widgets.

The following example shows how to define a widget set factory class for the Color Picker example.
The tag name of the widget was defined in the server-side implementation of the widget (see
Section 10.4.3, “Example: Integrating the Color Picker Widget”) as colorpicker. The
resolveWidgetType() must resolve this name to the class object of the VColorPicker integ-
ration class, which is later passed to the createWidget() method for creating an instance of
the VColorPicker class.

import com.vaadin.demo.colorpicker.gwt.client.ui.VColorPicker;
import com.vaadin.terminal.gwt.client.DefaultWidgetSet;
import com.vaadin.terminal.gwt.client.Paintable;
import com.vaadin.terminal.gwt.client.UIDL;

public class ColorPickerWidgetSet extends DefaultWidgetSet {
 /** Resolves UIDL tag name to widget class. */
 protected Class resolveWidgetType(UIDL uidl) {
 final String tag = uidl.getTag();
 if ("colorpicker".equals(tag))
 return VColorPicker.class;

Defining a Widget Set200

Developing Custom Components

 // Let the DefaultWidgetSet handle resolution of
 // default widgets
 return super.resolveWidgetType(uidl);
 }

 /** Creates a widget instance by its class object. */
 public Paintable createWidget(UIDL uidl) {
 final Class type = resolveWidgetType(uidl);
 if (VColorPicker.class == type)
 return new VColorPicker();

 // Let the DefaultWidgetSet handle creation of
 // default widgets
 return super.createWidget(uidl);
 }
}

The default widgets in Vaadin actually use more than just the tag name to resolve the actual
widget class. For example, the Button server-side component, which has tag name button,
can be resolved to either an VButton or VCheckBox widget, depending on the switch
(switchMode) attribute. Vaadin Client-Side Engine can actually replace the client-side object of
the parameters change.

10.5.1. GWT Module Descriptor

A widget set is actually a GWT application and needs to be defined in the GWT module descriptor
as the entry point of the application. A GWT module descriptor is an XML file with extension
.gwt.xml.

If you are using the Eclipse IDE, the New Vaadin Widget Set wizard will create the GWT module
descriptor for you. See Section 10.2.1, “Creating a Widget Set” for detailed instructions.

The following example shows the GWT module descriptor of the Color Picker application. The
client-side entry point will be the WidgetSet class. We also define the default stylesheet for the
color picker widget, as described above in Section 10.3.3, “Styling GWT Widgets”.

<module>
 <!-- Inherit NoEntry version to avoid multiple entrypoints -->
 <inherits
 name="com.vaadin.terminal.gwt.DefaultWidgetSetNoEntry" />

 <!-- WidgetSet default theme -->
 <stylesheet src="colorpicker/styles.css"/>

 <!-- Entry point -->
 <entry-point
 class="com.vaadin.demo.colorpicker.gwt.client.WidgetSet"/>

</module>

For more information about the GWT Module XML Format, please see Google Web Toolkit De-
veloper Guide.

10.6. Server-Side Components

Server-side components provide the API for user applications to build their user interface. Many
applications do not ever need to bother with the client-side implementation of the standard com-
ponents, but those that use their own GWT widgets need to have corresponding server-side
components.

201GWT Module Descriptor

Developing Custom Components

If you are using the Vaadin Plugin for Eclipse, the wizard for creating new widgets will also create
a stub of the server-side component for you. See Section 10.2.2, “Creating a Widget” for detailed
instructions.

A server-side component has two basic tasks: it has to be able to serialize its state variables to
the corresponding client-side component, and deserialize any user input received from the client.
Many of these tasks are taken care of by the component framework.

10.6.1. Component Tag Name

Server-side components are identified with a unique UIDL tag name, which must be returned by
the getTag() method.The tag should follow XML rules for element names, that is, only characters
a-z, A-Z, 0-9, and _, and not begin with a number. Actually, as Vaadin Release 5 uses a JSON
notation for serialization, the tag syntax is more relaxed, but we nevertheless recommend using
a stricter syntax. UIDL is detailed in Appendix A, User Interface Definition Language (UIDL) to-
gether with lists of reserved tags.The server-side implementation of the Color Picker component
defines the tag as follows:

 public String getTag() {
 return "colorpicker";
 }

On the client side, this tag is mapped to a GWT widget. The mapping from server-side to client-
side components is actually one to many; a server-side component can manifest as several client-
side components, depending on its parameters. For example, a server-side Button can manifest
either as an VButton or VCheckBox in client, depending on the switchMode attribute. For the
client side, see Section 10.3, “Google Web Toolkit Widgets” above.

The serialization is broken down into server-client serialization and client-server deserialization
in the following sections.We will also present the complete example of the server-side implement-
ation of the Color Picker component below.

10.6.2. Server-Client Serialization

The server-side implementation of a component must be able to serialize its data into a UIDL
message that is sent to the client.You need to override the paintContent() method, defined
in AbstractComponent.You should call the superclass to allow it to paint its data as well.

The data is serialized with the variants of the addAttribute() and addVariable() methods
for different basic data types.

The UIDL API offered in PaintTarget is covered in Section A.1, “API for Painting Components”.

10.6.3. Client-Server Deserialization

The server-side component must be able to receive state changes from the client-side widget.
This is done by overriding the changeVariables() method, defined in AbstractComponent.
A component should always call the superclass implementation in the beginning to allow it handle
its variables.

The variables are given as objects in the variables map, with the same key with which they
were serialized on the client-side. The object type is likewise the same as given for the particular
variable in updateVariable() in the client-side.

@Override
public void changeVariables(Object source, Map variables) {

Component Tag Name202

Developing Custom Components

 // Let superclass read any common variables.
 super.changeVariables(source, variables);

 // Sets the currently selected color
 if (variables.containsKey("colorname") && !isReadOnly()) {
 final String newValue = (String)variables.get("colorname");

 // Changing the property of the component will
 // trigger a ValueChangeEvent
 setValue(newValue, true);
 }
}

The above example handles variable changes for a field component inheriting AbstractField.
Fields have their value as the value property of the object. Setting the value with setValue(),
as above, will trigger a ValueChangeEvent, which the user of the component can catch with a
ValueChangeListener.

Contained components, such as components inside a layout, are deserialized by referencing
them by their paintable identifier or PID.

10.6.4. Extending Standard Components

Extending standard components is one way to develop new components that have some addi-
tional features.

Every component needs to have a unique UIDL tag that is used to create and communicate with
widgets on the client-side. The tag is normally unique for server-side components. The minimal
requirement for the server-side component is that you reimplement the getId() method that
provides the tag.

If your extension component contains any specific state variables, you need to handle their seri-
alization in paintContent() and deserialization in changeVariables() and call the superclass
implementation in the beginning. See Section 10.6.2, “Server-Client Serialization” Section 10.6.3,
“Client-Server Deserialization” above for details.

The client-side implementation goes also much like for regular custom widgets.

10.6.5. Example: Color Picker Server-Side Component

The following example provides the complete server-side ColorPicker component for the Color
Picker example. It has only one state variable: the currently selected color, which is stored as
the property of the component. Implementation of the Property interface is provided in the Ab-
stractField superclass of the component.The UIDL tag name for the component is colorpicker
and the state is communicated through the colorname variable.

package com.vaadin.demo.colorpicker;

import java.util.Map;
import com.vaadin.terminal.PaintException;
import com.vaadin.terminal.PaintTarget;
import com.vaadin.ui.*;

public class ColorPicker extends AbstractField {
 public ColorPicker() {
 super();
 setValue(new String("white"));
 }

 /** The property value of the field is an Integer. */

203Extending Standard Components

Developing Custom Components

 public Class getType() {
 return String.class;
 }

 /**
 * Tag is the UIDL element name for client-server
 * communications.
 **/
 public String getTag() {
 return "colorpicker";
 }

 /** Set the currently selected color. */
 public void setColor(String newcolor) {
 // Sets the color name as the property of the
 // component. Setting the property will automatically
 // cause repainting of the component with paintContent().
 setValue(newcolor);
 }

 /** Retrieve the currently selected color. */
 public String getColor() {
 return (String) getValue();
 }

 /** Paint (serialize) the component for the client. */
 public void paintContent(PaintTarget target)
 throws PaintException {
 // Superclass writes any common attributes in the
 // paint target.
 super.paintContent(target);

 // Add the currently selected color as a variable in
 // the paint target.
 target.addVariable(this, "colorname", getColor());
 }

 /** Deserialize changes received from client. */
 public void changeVariables(Object source, Map variables) {
 // Sets the currently selected color
 if (variables.containsKey("colorname")
 && !isReadOnly()) {
 String newValue = (String) variables.get("colorname");

 // Changing the property of the component will
 // trigger a ValueChangeEvent
 setValue(newValue,true);
 }
 }
}

10.7. Using a Custom Component

A custom component is used like any other Vaadin component. You will, however, need to
compile the client-side widget set with the GWT Compiler. See Section 10.8.4, “Compiling GWT
Widget Sets” for instructions on how to compile widget sets.

10.7.1. Example: Color Picker Application

The following server-side example application shows how to use the Color Picker custom widget.
The example includes also server-side feedback of the user input and changing the color selection
to show that the communication of the component state works in both directions.

Using a Custom Component204

Developing Custom Components

package com.vaadin.demo.colorpicker;

import com.vaadin.data.Property.ValueChangeEvent;
import com.vaadin.data.Property.ValueChangeListener;
import com.vaadin.ui.*;
import com.vaadin.ui.Button.ClickEvent;

/**
 * Demonstration application that shows how to use a simple
 * custom client-side GWT component, the ColorPicker.
 */
public class ColorPickerApplication
 extends com.vaadin.Application {
 Window main = new Window("Color Picker Demo");

 /* The custom component. */
 ColorPicker colorselector = new ColorPicker();

 /* Another component. */
 Label colorname;

 public void init() {
 setMainWindow(main);
 setTheme("demo");

 // Listen for value change events in the custom
 // component, triggered when user clicks a button
 // to select another color.
 colorselector.addListener(new ValueChangeListener() {
 public void valueChange(ValueChangeEvent event) {
 // Provide some server-side feedback
 colorname.setValue("Selected color: " +
 colorselector.getColor());
 }
 });
 main.addComponent(colorselector);

 // Add another component to give feedback from
 // server-side code
 colorname = new Label("Selected color: " +
 colorselector.getColor());
 main.addComponent(colorname);

 // Server-side manipulation of the component state
 Button button = new Button("Set to white");
 button.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 colorselector.setColor("white");
 }
 });
 main.addComponent(button);
 }
}

10.7.2. Web Application Deployment

Deployment of web applications that include custom components is almost identical to the normal
case where you use only the default widget set of Vaadin. The default case is documented in
Section 4.8.3, “Deployment Descriptor web.xml”. You only need to specify the widget set for
the application in the WebContent/WEB-INF/web.xml deployment descriptor.

If you are using the Vaadin Plugin for Eclipse, creating a new widget set with the New Vaadin
Widgetset wizard will modify the deployment descriptor for you to use the custom widget set.
See Section 10.2.1, “Creating a Widget Set” for detailed instructions.

205Web Application Deployment

Developing Custom Components

The following deployment descriptor specifies the Color Picker Application detailed in the previous
section.

<?xml version="1.0" encoding="UTF-8"?>
<web-app
 id="WebApp_ID"
 version="2.4"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>myproject</display-name>

 <servlet>
 <servlet-name>ColorPickerServlet</servlet-name>
 <servlet-class>
 com.vaadin.terminal.gwt.server.ApplicationServlet
 </servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>

com.vaadin.demo.colorpicker.ColorPickerApplication
 </param-value>
 </init-param>
 <init-param>
 <param-name>widgetset</param-name>
 <param-value>

com.vaadin.demo.colorpicker.gwt.ColorPickerWidgetSet
 </param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>ColorPickerServlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

The project specific parameters are emphasized. Notice that the widget set name is not a file
name, but the base name for the ColorPickerWidgetSet.gwt.xml module descriptor.

As the project context root in the above example is myproject and the <url-pattern> is /*,
the URL for the application will be /myproject/.

10.8. GWT Widget Development

Development of new GWT widgets includes management of the source code tree, running and
debugging the application with the GWT Hosted Mode Browser, and compiling the widgets and
the Vaadin Client-Side Engine to JavaScript with the GWT Compiler.

You can use any IDE for developing GWT components for Vaadin. The examples given in this
book are for the Eclipse IDE. It allows easy launching of the GWT Hosted Mode Browser, debug-
ging, and running an external compiler for GWT widget sets.

10.8.1. Creating a Widget Project in Eclipse

Creation of a Vaadin project that uses the default widget set was covered in Section 2.4, “Your
First Project with Vaadin”. Developing custom widgets creates a number of additional requirements
for a project. Let us review the steps required for creating a project. Details for each step are
given in the subsequent sections.

GWT Widget Development206

Developing Custom Components

The Vaadin Plugin for Eclipse makes the creation of custom widgets in Eclipse very easy. See
Section 10.2, “Doing It the Simple Way in Eclipse” for detailed instructions.

1. Create a new project in the Eclipse IDE. (Section 2.4.1)

2. Import GWT directory into the project. (Section 10.8.2 below)

3. Write the source code in a Java module. (Section 10.8.3 below)

4. Write the web.xml Deployment Descriptor for the web application.

• Define the custom widget set to use instead of the default widget set. (Section 10.7.2
above)

5. Compile the widget set to JavaScript runtime with GWT Compiler. (Section 10.8.4 below)

6. Configure the project in Apache Tomcat (or some other web container) and start the
server. (Section 2.4.3 below)

7. Either:

a. Open a web browser to use the web application.

b. Debug the widgets with Hosted Mode Browser. (Section 10.8.6)

The contents of a ready widget development project are described in Section 10.8.5, “Ready to
Run”.

10.8.2. Importing GWT Installation Package

You will need to include the Google Web Toolkit in your project to develop custom widgets. The
installation directory of Vaadin includes full GWT installation in the gwt subdirectory.The package
includes precompiled libraries and applications for the specific platform of the installation.To use
the libraries, you need to configure them in the classpath of your project as described below.

Experimental OOPHM Package

The Out of Process Hosted Mode, described in Section 10.8.7, “Out of Process
Hosted Mode (OOPHM)”, is an experimental alternative for the Hosted Mode Browser,
which you will need to debug GWT widgets. It runs the application in a regular browser
instead of the built-in browser, so it will later probably become the default solution.
The regular Hosted Mode Browser does not work on Linux in Vaadin 6.1. For the
Linux platform, the OOPHM package is the only option if you wish to debug GWT
code.

The OOPHM version of GWT is included in the experimental platform-independent
OOPHM package of Vaadin, available from the download site.

You need to copy the gwt directory to your project. You can either copy it with system tools or,
if you are using Eclipse, import the directory.You can import the directory as follows.

1. Right-click on the project folder in Project Explorer and select Import → Import....

2. From the Import dialog, select General → File System and click Next.

207Importing GWT Installation Package

Developing Custom Components

3. Click Browse button of the "From directory" field and browse to the gwt directory under
the Vaadin installation directory. Click Ok in the file selection dialog.

4. Select the gwt entry in the list box for importing.

5. In the "Into folder" field, enter myproject/gwt. (If you do not set this, all the contents
of the gwt directory will be imported directly below the root directory of the project which
is undesirable.)

6. Click Finish.

If you copied the directory outside Eclipse with system tools, remember to select your project
folder in Eclipse and press F5 to refresh the project.

GWT libraries must be included in the classpath of the project. Right-click on the project folder
in the Project Explorer in Eclipse and select Properties. Select Java Build Path → Libraries.

10.8.3. Creating a GWT Module

This section gives details on writing an application module that includes custom widgets.

Creating the Source Folder

While the source files can be placed in any directory in ordinary projects, usually in the src dir-
ectory directly under the project root, the widget build script described below in Section 10.8.4,
“Compiling GWT Widget Sets” as well as the GWT Hosted Mode Browser assume that source
files are located under the WebContent/WEB-INF/src folder. The source folder has to be
created and designated as a source folder for the project.

1. Right-click on the WebContent/WEB-INF folder and select New → Folder.

2. In the New Folder dialog, enter src as the Folder name and click Finish.

3. Right-click on the src folder and select Build Path → Use as Source Folder.

The folders designated as source folders are moved under the Java Resources folder in the
Project Explorer of Eclipse. This is only a display feature; the source directory remains in its
original location in the filesystem.

Creating Source Files

In Eclipse, you can insert a folder inside a source package by selecting File → New → Folder.

Importing the ColorPicker Demo

If you want to use the Color Picker application as an application skeleton, you need to import it
under the source folder.

1. Right-click on the source folder and select Import.

2. In the Import dialog, select General → File System and click Next.

3. Browse to WebContent/WEB-INF/src/com.vaadin/demo/colorpicker/ and
click Ok button in the Import from directory dialog.

Creating a GWT Module208

Developing Custom Components

4. I n t h e I n t o f o l d e r f i e l d , e n t e r
myproject/WebContent/WEB-INF/src/com.vaadin/demo/colorpicker.

5. Check the colorpicker entry in the list box.

6. Click Finish.

This will import the directory as com.vaadin.demo.colorpicker package. If you want to use it as
a skeleton for your own project, you should refactor it to some other name. Notice that you will
need to refactor the package and application name manually in the web.xml and .gwt.xml
descriptor files.

10.8.4. Compiling GWT Widget Sets

When running an application in a regular web browser, you need to compile the Vaadin Client-
Side Engine and your custom widget set to JavaScript. This is done with the GWT Compiler.
Vaadin installation package includes an Ant build script build-widgetset.xml in the
WebContent/docs/example-source/ directory.

If you are using the Vaadin Plugin for Eclipse, it will create a launch configuration for compiling
the widget sets for you. See Section 10.2.1, “Creating a Widget Set” and Section 10.2.3, “Recom-
piling the Widget Set” for instructions.

To compile the Color Picker widget set example using the Ant build script, just change to the
directory and enter:

$ ant -f build-widgetset.xml

We advice that you copy the build script to your project and use it as a template. Just set the
paths in the "configure" target and the widget set class name in the "compile-widgetset" target
to suit your project.

Alternatively, you can launch the build script from Eclipse, by right-clicking the script in Package
Explorer and selecting Run As → Ant Build. Progress of the compilation is shown in the Console
window.

After compilation, refresh the project by selecting it and pressing F5. This makes Eclipse scan
new content and become aware of the output of the compilation in the
WebContent/VAADIN/widgetsets/ directory. If the project is not refreshed, the JavaScript
runtime is not included in the web application and running the application will result in an error
message such as the following:

Requested resource
[VAADIN/widgetsets/com.vaadin.demo.colorpicker.gwt.ColorPickerWidgetSet/com.vaadin.demo.colorpicker.gwt.ColorPickerWidgetSet.nocache.js]
 not found from filesystem or through class loader. Add widgetset and/or theme JAR to
your classpath or add files to WebContent/VAADIN folder.

Compilation with GWT is required also initially when using the Hosted Mode Browser described
in Section 10.8.6, “Hosted Mode Browser”. The compilation with the GWT Compiler must be
done at least once, as it provides files that are used also by the Hosted Mode Browser, even
though the browser runs the GWT application in Java Virtual Machine instead of JavaScript.

Warning

Because GWT supports a slightly reduced version of Java, GWT compilation can
produce errors that do not occur with the Java compiler integrated in the Eclipse IDE.

209Compiling GWT Widget Sets

Developing Custom Components

Compiling a Custom Widget Set

If you wish to use the build script to compile your own widget sets, open it in an editor. The build
script contains some instructions in the beginning of the file. You can use the
compile-my-widgetset target as a template for your own widget sets.

<!-- NOTE: Modify this example to compile your own widgetset -->
<target name="compile-widgetset" depends="init">
 <echo>Compiling ColorPickerWidgetSet.</echo>
 <echo>Modify this script to compile your own widgetsets.</echo>
 <java classname="com.google.gwt.dev.Compiler"
 failonerror="yes" fork="yes" maxmemory="256m">

 <!-- Define the output directory. -->
 <arg value="-war" />
 <arg value="${client-side-destination}" />

 <!-- Define your GWT widget set class here. -->
 <arg value="com.vaadin.demo.colorpicker.gwt.Col
 orPickerWidgetSet"/>

 <!-- Reserve more than the default amount of stack space. -->
 <jvmarg value="-Xss1024k"/>

 <!-- Prevent some X11 warnings on Linux/UNIX. -->
 <jvmarg value="-Djava.awt.headless=true"/>

 <classpath>
 <path refid="compile.classpath"/>
 </classpath>
 </java>
</target>

Replace the target name with your desired target name and the widget set class name with your
own class name.

Google Web Toolkit Version

You should use a version of GWT suitable for the version of Vaadin you are using;
we recommend using the GWT included in the installation package, but other versions
may work as well.

If you are upgrading from Vaadin 5, the GWT 1.6 and later versions used by Vaadin
6 contains a new compiler and the old GWTCompiler class used previously for
compiling GWT widgets is deprecated and replaced with
com.google.gwt.dev.Compiler. You should update your existing widget set build
scripts or launch configurations to use the new compiler class. The only significant
API change is the output directory parameter, previously -out, now -war, as shown
in the example above.

Java Stack Overflow Problems

The -Xss parameter for the Java process may be necessary if you experience stack
overflow errors with the default stack size. They occur especially with GWT 1.6,
which uses large amount of stack space.

Notice further that the Windows version of Sun JRE 1.5 has a bug that makes the
stack size setting ineffective. The Windows version also has a smaller default stack
size than the other platforms. If you experience the problem, we advice that you

Compiling GWT Widget Sets210

Developing Custom Components

either use JRE 1.6 on the Windows platform or use a wrapper that circumvents the
problem. To use the wrapper, use class com.vaadin.launcher.WidgetsetCompiler
in the build script instead of the regular compiler.

The -Djava.awt.headless=true is relevant in Linux/UNIX platforms to avoid some X11
warnings.

You can now compile the widget set with the following command:

$ ant -f build-widgetset.xml

10.8.5. Ready to Run

Figure 10.6, “Annotated Project Contents” shows the contents of a ready project.

Figure 10.6. Annotated Project Contents

Notice that the Package Explorer does not correspond with the file system contents. Eclipse
displays the items marked with asterisk (*) in a logical location, instead of the physical location
in the file system.

211Ready to Run

Developing Custom Components

You can either run the application in web mode, as introduced in Section 2.4.4, or debug it with
the GWT Hosted Mode Browser, as detailed in the next section.

10.8.6. Hosted Mode Browser

The GWT Hosted Mode Browser allows easy debugging of GWT applications. The GWT applic-
ation is actually not compiled into JavaScript, as is done in the deployment phase, but executed
as a Java application.This makes it possible to debug the application with, for example, the Eclipse
IDE.

Experimental OOPHM Package

The Out of Process Hosted Mode (OOPHM), described in Section 10.8.7, “Out of
Process Hosted Mode (OOPHM)”, is an experimental alternative for the Hosted Mode
Browser, which you will need to debug GWT widgets. It runs the application in a
regular browser instead of the built-in browser, so it will later probably become the
default solution.The OOPHM version of GWT is included in the experimental platform-
independent OOPHM package of Vaadin, available from the download site.

The regular Hosted Mode Browser does not work on Linux in Vaadin 6.1. For the
Linux platform, the OOPHM package is the only option if you wish to debug GWT
code.

Figure 10.7. Hosted Mode Browser

Figure 10.7, “Hosted Mode Browser” shows the hosted mode browser in action. On the left, you
have the GWT Development Shell window. It displays compilation information and possible errors
that occur during compilation.You can open a new browser window by clicking Hosted Browser.

The browser window has a Compile/Browse button, which runs the GWT Compiler to produce
the JavaScript runtime and opens a regular web browser to run the application in Web Mode.
Notice that even though it is possible to recompile the program with the button, GWT Compiler
must be run before launching the Hosted Mode Browser, as described in Section 10.8.4, “Com-
piling GWT Widget Sets”.

Hosted Mode Browser212

Developing Custom Components

Because GWT supports a slightly reduced version of Java, GWT compilation can produce errors
that do not occur with the Java compiler integrated in the Eclipse IDE. Such errors will show up
in the GWT Development Shell window.

While the Hosted Mode Browser is a fast and easy way to debug applications, it does not allow
inspecting the HTML or DOM tree or network traffic like Firebug does in Mozilla Firefox.

Configuring Hosted Mode Launching in Eclipse

This section gives details on configuring a launcher for the Hosted Mode Browser in the Eclipse
IDE.We use the QuickStart installation of Vaadin covered in Section 2.3, “QuickStart with Eclipse”
as an example project. The project includes source code for the Color Picker demo application.

If you are using the Vaadin Plugin for Eclipse, it will create a launch configuration for compiling
the widget sets for you. See Section 10.2.1, “Creating a Widget Set” and Section 10.2.3, “Recom-
piling the Widget Set” for instructions.

1. Select from menu Run → Debug... and the Debug configuration window will open.
Notice that it is not purposeful to run the Hosted Mode Browser in the "Run" mode, be-
cause its entire purpose is to allow debugging.

2. Select the Java Application folder and click on the New button to create a new launch
configuration.

Figure 10.8. Creating New Launch Configuration

3. Click on the created launch configuration to open it on the right-side panel. In the Main
tab, give the launch configuration a name. Define the Main class as
com.google.gwt.dev.GWTShell.

213Hosted Mode Browser

Developing Custom Components

Figure 10.9. Naming Launch Configuration

4. Switch to the Arguments tab and enter arguments for the Hosted Mode Browsed Java
application.

a. In the Program arguments field, enter:

-noserver -whitelist "127.0.0.1 ^http[:][/][/]127[.]0[.]0[.]1[:]8080"
-out WebContent/VAADIN/widgetsets http://127.0.0.1:8080/myproject

The browser application, GWTShell, takes as its arguments the following parameters:

-noserver Prevents an embedded web server from starting, thereby allowing
to use an already running server.

-whitelist Adds a regular expression to the list of allowed URL patterns for the
web browser. Modify the port number from the 8080 given above as
necessary.

-out Output directory for compiling widgets with GWT Compiler. The dir-
ectory must be WebContent/VAADIN/widgetsets. You can
compile the widgets either from the Hosted Mode Browser or extern-
ally as explained later in this chapter.

URL The URL to connect to. This must be the same as the whitelist entry
given above. The port number must correspond to the port of the
running web server. The Jetty web server included in Vaadin will run
in port 8888 by default. In contrast, Apache Tomcat installed under
Eclipse will run in port 8080 by default.

b. In the VM arguments field enter, for example, -Xms256M -Xmx512M to give the
hosted mode browser more memory than the default amount. On Mac, add also
-XstartOnFirstThread.

Hosted Mode Browser214

Developing Custom Components

Figure 10.10. GWTShell Arguments

5. In the Classpath tab, you will by default have vaadin-examples, which contains the
default classpath entries for the project. If the classpath entries for the project are suffi-
cient, this should be enough.

6. Click Apply to save the launch configuration.

7. Click Debug to launch the Hosted Mode Browser using the launch configuration.

See the following section for details on debugging with the Hosted Mode Browser.

Debugging with Hosted Mode Browser

The purpose of the hosted mode browser is to allow debugging client-side GWT applications, or
in our case, GWT widgets. Below is a checklist for important requirements for launching the
Hosted Mode Browser:

• GWT is installed under the project folder.

• GWT libraries are included in the project classpath.

• Widget sets have been compiled with GWT Compiler.

• web.xml descriptor is configured.

• Web server is running and listening to the correct port.

• Hosted Mode Browser launcher is configured.

Once everything is ready to start debugging, just open a source file, for example, the
com.vaadin.demo.colorpicker.gwt.client.ui.GwtColorPicker class. Find the onClick()
method. At the line containing the setColor() call, right-click on the leftmost bar in the editor

215Hosted Mode Browser

Developing Custom Components

and select Toggle Breakpoint from the popup menu. A small magnifying glass will appear in
the bar to indicate the breakpoint.

Figure 10.11. Setting a Breakpoint

Select from menu Run → Debug... and the Debug configuration window will open. Notice that
it is not purposeful to run the Hosted Mode Browser in the "Run" mode, because its entire purpose
is to allow debugging.

Figure 10.12. Debugging with Hosted Mode Browser

Starting demo applications under the Hosted Mode Browser can take considerable time!
This is especially true for the Reservation and Color Picker applications, which require compilation
of custom widget sets. During this time, the Hosted Mode Browser is unresponsive and does not
update its window. Compiling widgets can take 5-30 seconds, depending on the hardware.

Please refer to Eclipse IDE documentation for further instructions on using the debugger.

Hosted Mode Browser216

Developing Custom Components

10.8.7. Out of Process Hosted Mode (OOPHM)

The Out of Process Hosted Mode of GWT is an experimental new way for debugging GWT ap-
plications in a regular web browser. This allows using other browser debugging tools, such as
Firebug, while debugging in hosted mode.

The Linux Hosted Mode Browser is not compatible with Vaadin 6.0, so OOPHM is the only way
to debug client-side code in Linux.

The OOPHM installation package of Vaadin is a platform-independent package available separately
from the platform specific packages. Use of OOPHM requires (see more detailed notes further
below):

1. Installation of OOPHM plugin from gwt/plugins into your browser

2. Compiling custom widget sets using the GWT Compiler provided in
gwt-dev-oophm.jar instead of the platform-dependent library.

3. Launching Hosted Mode debugging with the gwt-dev-oophm.jar in class path instead
of the platform-dependent library.

If you try debugging the demo applications in the Vaadin installation package, just install the
plugin (Step 1), launch the server in Web Mode, and then launch the Hosted Mode in debug
mode (Step 3) with the included launch configuration.

The OOPHM plugin is available for Mozilla Firefox, Internet Explorer, and WebKit based browsers.

Installing the OOPHM plugin in Firefox and WebKit

The plugin for Firefox and WebKit is installed by opening the plugin file for your browser in the
gwt/plugins directory. The Firefox plugin directory contains two plugins; you should normally
use the oophm-xpcom.xpi plugin.

Installing the OOPHM plugin in Internet Explorer

The Internet Explorer plugin is installed by running the command regsvr32 oophm.dll in the
gwt/plugins/ie directory. Remember to restart Internet Explorer afterwards.

The installation package contains the built-in default widget set compiled with the OOPHM, but
if you have your own widget sets (which is usually the reason why you want to use client-side
debugging in the first place), you need to compile them. If you have compiled them previously
with a regular installation of Vaadin, you need to recompile them with the GWT Compiler provided
in the gwt-dev-oophm.jar library. Compiling GWT widget sets is covered in Section 10.8.4,
“Compiling GWT Widget Sets”. The compilation of OOPHM widget sets uses a large amount of
stack memory, so if the JVM default is too small, you should set it explicitly in
compile-widgetset.xml with the following parameter for the Java process (currently included
in the example build script):

 <jvmarg value="-Xss1024k"/>

Launching the debugging is done just as described in Section 10.8.6, “Hosted Mode Browser”
for the regular Hosted Mode Browser, except that you must include the gwt-dev-oophm.jar
library in the class path instead of the platform specific library. Launching the application with the
debug configuration will contact the plugin in your browser and automatically opens the configured
page.

217Out of Process Hosted Mode (OOPHM)

Developing Custom Components

To enable the usage of hosted mode in the browser you need to add a gwt.hosted=ip:port
parameter to the URL of the application you want to debug, e.g.
http://localhost:8080/myapp/?gwt.hosted=127.0.0.1:9997. As OOPHM support
is experimental you might get messages such as "No GWT plugin found" but debugging should
still work. In Internet Explorer you might get a warning: "The website wants to run the following
add-on: 'Google Web Toolkit Out-of-Process Hosted Mode...'" when using OOPHM hosted mode.
You need to allow execution of the ActiveX code to be able to use it.

Out of Process Hosted Mode (OOPHM)218

Developing Custom Components

Chapter 11

Advanced Web
Application Topics

11.1. Special Characteristics of AJAX Applications 219
11.2. Application-Level Windows .. 220
11.3. Embedding Applications in Web Pages ... 227
11.4. Debug and Production Mode ... 232
11.5. Resources ... 234
11.6. Shortcut Keys .. 237
11.7. Printing .. 240
11.8. Portal Integration ... 241

This chapter covers various features and topics often needed in applications. While other topics
could be considered as "advanced", the first section gives a brief introduction to AJAX development
for beginners.

11.1. Special Characteristics of AJAX Applications

New to AJAX? This section is intended for people familiar with the development of either tradi-
tional web applications or desktop applications, who are entering AJAX-enabled web application
development. AJAX application development has a few special characteristics with respect to
other types of applications. Possibly the most important one is how the display is managed in
the web browser.

219Book of Vaadin

The web was originally not built for applications, but for hypertext pages that you can view with
a browser. The purpose of web pages is to provide content for the user. Application software has
a somewhat different purpose; usually to allow you to work on some data or content, much of
which is not ever intended to be accessible through a web browser as web pages. As the web
is inherently page-based, conventional web applications had to work with page requests and
output HTML as response. JavaScript and AJAX have made it possible to let go of the pages.

Pages are largely an unknown concept to conventional desktop applications. At most, desktop
applications can open multiple windows, but usually they work with a single main window, with
an occasional dialog window here and there. Same goes usually for web applications developed
with Vaadin: an application typically runs on a single page, changing the layout as needed and
popping up dialog boxes.

Not having to load pages and use hyperlinks to communicate all user interaction is a relief for
application development. However, they are an important feature that ordinary desktop applications
lack. They allow referencing different functionalities of an application or resources managed by
the application. They are also important for integration with external applications.

Certain resources can be identified through a URI or Universal Resource Identifier. A URI can
easily be passed around or stored as a bookmark. We will see in Section 11.5.1, “URI Handlers”
how you can retrieve the URI of a page request. Similarly, a page request can have query para-
meters, which can be handled as detailed in Section 11.5.2, “Parameter Handlers”.

Using URIs or request parameters to access functionalities or content is not as straight-forward
as in conventional page-based web applications. Vaadin, just as any other AJAX framework,
uses browser cookies not just for tracking users but also for tracking the application state.
Cookies are unique in a browser, so any two windows share the same cookies and therefore
also the state. The advantage is that you can close your browser and open it again and the ap-
plication will be in the state where you left off (except for components such as text fields which
did not have the immediate attribute enabled). The disadvantage is that there is no good way to
distinguish between the windows, so there can usually be only a single application window. Even
if there were several, you would have trouble with synchronization of application data between
windows. Many conventional page-based web applications simply ignore out-of-sync situations,
but such situations are risky for application platforms that are intended to be stable. Therefore it
is safer to work with a single browser window. If you wish to have multiple windows in your ap-
plication, you can create them inside the main window as Window objects. A URI can be used
to fetch resources that have no particular state or to provide an entry point to the application.

11.2. Application-Level Windows

Vaadin Release 5 introduces support for multiple application-level windows that can be used just
like the main window. All such windows use the same application session. Each window is
identified with a URL that is used to access it. This makes it possible to bookmark application-
level windows. Such windows can even be created dynamically based on URLs.

Application-level windows allow several uses important for the usability of browser-based applic-
ations.

• Native child windows. An application can open child windows that are not floating windows
inside a parent window.

• Page-based browsing. The application can allow the user to open certain content to
different windows. For example, in a messaging application, it can be useful to open

Application-Level Windows220

Advanced Web Application Topics

different messages to different windows so that the user can browse through them while
writing a new message.

• Bookmarking. Bookmarks in the web browser can provide an entry-point to some content
provided by an application.

• Embedding windows.Windows can be embedded in web pages, thus making it possible
to provide different views to an application from different pages or even from the same
page, while keeping the same session. See Section 11.3, “Embedding Applications in
Web Pages”.

Because of the special nature of AJAX applications, these uses require some caveats. We will
go through them later in Section 11.2.4, “Caveats in Using Multiple Windows”.

11.2.1. Creating New Application-Level Windows

Creating a new application-level window is much like creating a child window (see Section 4.3,
“Child Windows”), except that the window is added with addWindow() to the application object
instead of the main window.

public class WindowTestApplication extends Application {
 public void init() {
 // First create the main window.
 final Window main = new Window ("My Test Application");
 setMainWindow(main);

 // Create another application-level window.
 final Window mywindow = new Window("Second Window");

 // Manually set the name of the window.
 mywindow.setName("mywindow");

 // Add some content to the window.
 mywindow.addComponent(new Label("Has content."));

 // Add the window to the application.
 addWindow(mywindow);
 }
}

This creates the window object that a user can view by opening a URL in a browser. Creating
an application-level window object does not open a new browser window automatically to view
the object, but if you wish to open one, you have to do it explicitly as shown below. An application-
level window has a unique URL, which is based on the application URL and the name of the
window given with the setName() method. For example, if the application URL is
http://localhost:8080/myapp/ and the window name is mywindow, the URL for the window
will be http://localhost:8080/myapp/mywindow/. If the name of a window is not explicitly
set with setName(), an automatically generated name will be used. The name can be retrieved
with the getName() method and the entire URL with getURL().

There are three typical ways to open a new window: using the open() method of Window class,
a Link, or referencing it from HTML or JavaScript code written inside a Label component.

The Window open() method takes as parameters a resource to open and the target name.You
can use ExternalResource to open a specific URL, which you get from the window to be opened
with the getURL() method.

/* Create a button to open a new window. */
main.addComponent(new Button("Click to open new window",

221Creating New Application-Level Windows

Advanced Web Application Topics

 new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 // Open the window.
 main.open(new ExternalResource(mywindow.getURL()),
 "_new");
 }
}));

The target name is one of the default HTML target names (_new, _blank, _top, etc.) or a custom
target name. How the window is exactly opened depends on the browser. Browsers that support
tabbed browsing can open the window in another tab, depending on the browser settings.

Another typical way to open windows is to use a Link component with the window URL as an
ExternalResource.

/* Add a link to the second window. */
Link link = new Link("Click to open second window",
 new ExternalResource(mywindow.getURL()));
link.setTargetName("second");
link.setTargetHeight(300);
link.setTargetWidth(300);
link.setTargetBorder(Link.TARGET_BORDER_DEFAULT);
main.addComponent(link);

Using a Link allows you to specify parameters for the window that opens by clicking on the link.
Above, we set the dimensions of the window and specify what window controls the window should
contain.The Link.TARGET_BORDER_DEFAULT specifies to use the default, which includes most
of the usual window controls, such as the menu, the toolbar, and the status bar.

Another way to allow the user to open a window is to insert the URL in HTML code inside a Label.
This allows even more flexibility in specifying how the window should be opened.

// Add the link manually inside a Label.
main.addComponent(
 new Label("Second window: <a href='" + mywindow.getURL()
 + "' target='second'>click to open",
 Label.CONTENT_XHTML));
main.addComponent(
 new Label("The second window can be accessed through URL: "
 + mywindow.getURL()));

When an application-level window is closed in the browser the close() method is normally
called just like for a child window and the Window object is purged from the application. However,
there are situations where close() might not be called. See Section 11.2.3, “Closing Windows”
for more information.

11.2.2. Creating Windows Dynamically

You can create a window object dynamically by its URL path by overriding the getWindow()
method of the Application class. The method gets a window name as its parameter and must
return the corresponding Window object. The window name is determined from the first URL
path element after the application URL (window name may not contain slashes). See the notes
below for setting the actual name of the dynamically created windows below.

The following example allows opening windows with a window name that begins with "planet-"
prefix. Since the method is called for every browser request for the application, we filter only the
requests where a window with the given name does not yet exist.

public class WindowTestApplication extends Application {
 ...

Creating Windows Dynamically222

Advanced Web Application Topics

 @Override
 public Window getWindow(String name) {
 // If a dynamically created window is requested, but
 // it does not exist yet, create it.
 if (name.startsWith("planet-") &&
 super.getWindow(name) == null) {
 String planetName =
 name.substring("planet-".length());

 // Create the window object.
 Window newWindow =
 new Window("Window about " + planetName);

 // DANGEROUS: Set the name explicitly. Otherwise,
 // an automatically generated name is used, which
 // is usually safer.
 newWindow.setName(name);

 // Put some content in it.
 newWindow.addComponent(
 new Label("This window contains details about " +
 planetName + "."));

 // Add it to the application as a regular
 // application-level window.
 addWindow(newWindow);

 return newWindow;
 }

 // Otherwise the Application object manages existing
 // windows by their name.
 return super.getWindow(name);
 }

The window name is and must be a unique indentifier for each Window object instance. If you
use setName() to set the window name explicitly, as we did above, any browser window that
has the same URL (within the same browser) would open the same window object. This is dan-
gerous and generally not recommended, because the browser windows would share the same
window object. Opening two windows with the same static name would immediately lead to a
synchronization error, as is shown in Figure 11.1, “Synchronization Error Between Windows with
the Same Name” below. (While also the window captions are same, they are irrelevant for this
problem.)

Figure 11.1. Synchronization Error Between Windows with the Same Name

There are some cases where setting the name explicitly is useful. The launch application below
is one example, as it always opens the other windows in a window target that is specific to the
window name, thereby never creating two windows with the same URL. Similarly, if you had
embedded the application in a browser frame and the link would open the window in a frame,
you would not have problems. Having a single window instance for a URL is also useful if the

223Creating Windows Dynamically

Advanced Web Application Topics

browser crashes and the user opens the window again, as it will have kept its previous (server-
side) state.

Leaving the window name to be automatically generated allows opening multiple windows with
the same URL, while each of the windows will have a separate state. The URL in the location
bar stays unchanged and the generated window name is used only for the Ajax communications
to identify the window object. A generated name is a string representation of a unique random
number, such as "1928676448". You should be aware of the generated window names when
overriding the getWindow() method (and not unintentionally create a new window instance
dynamically for each such request). The condition in the above example would also filter out the
requests for an already existing window with a generated name.

Figure 11.2, “A Dynamically Created Window” shows a dynamically created application-level
window with the URL shown in the address bar. The URL for the application is here
http://localhost:8080/tk5/windowexample/, including the application context, and the
dynamically created window's name is planet-mars.

Figure 11.2. A Dynamically Created Window

The application knows the windows it already has and can return them after the creation. The
application also handles closing and destruction of application-level window objects, as discussed
in Section 11.2.3, “Closing Windows”.

Such dynamic windows could be opened as in the following example:

public void init() {
 final Window main = new Window("Window Test");
 setMainWindow(main);

 // Have some IDs for the dynamically creatable windows.
 final String[] items = new String[] { "mercury", "venus",
 "earth", "mars", "jupiter", "saturn", "uranus",
 "neptune" };

 // Create a list of links to each of the available window.
 for (int i = 0; i < items.length; i++) {
 // Create a URL for the window.
 String windowUrl = getURL() + "planet-" + items[i];

 // Create a link to the window URL. Using the
 // item ID for the target also opens it in a new
 // browser window (or tab) unique to the window name.
 main.addComponent(
 new Link("Open window about " + items[i],
 new ExternalResource(windowUrl),
 items[i], -1, -1, Window.BORDER_DEFAULT));

Creating Windows Dynamically224

Advanced Web Application Topics

 }
}

Figure 11.3. Opening Windows

11.2.3. Closing Windows

When the user closes an application-level window, the Client-Side Engine running in the browser
will report the event to the server before the page is actually removed. You can catch the event
with a Window.CloseListener, as is done in the example below.

newWindow.addListener(new Window.CloseListener() {
 @Override
 public void windowClose(CloseEvent e) {
 // Do something.
 System.out.println(e.getWindow().getName() +
 " was closed");

 // Add a text to the main window about closing.
 // (This does not update the main window.)
 getMainWindow().addComponent(
 new Label("Window '" + e.getWindow().getName() +
 "' was closed."));
 }
});

Notice that the change to the server-side state of the main window (or another application-level
window) does not refresh the window in the browser, so the change will be unseen until user in-
teraction or polling refreshes the window. This problem and its dangers are discussed in Sec-
tion 11.2.4, “Caveats in Using Multiple Windows” below.

The close event does not occur if the browser crashes or the connection is otherwise severed
violently. In such a situation, the window object will be left hanging, which could become a resource
problem if you allow the users to open many such application-level windows. The positive side
is that the user can reconnect to the window using the window URL.

225Closing Windows

Advanced Web Application Topics

11.2.4. Caveats in Using Multiple Windows

Communication Between Windows

For cases where you need communication between windows, we recommend using floating child
windows. In Vaadin Release 5, an application window can not update the data in other windows.
The contents of a window can only be updated when the particular window makes a request to
the server. The request can be caused by user input or through polling.

Changing the server-side state of a window while processing a user event from another window
can potentially cause serious problems. Changing the client-side state of a window does not always
immediately communicate the changes to the server. The server-side state can therefore be out
of sync with the client-side state.

Figure 11.4. Communication Between Two Application-Level Windows

The following example creates a second window that changes the contents of the main window,
as illustrated in the figure above. In this simple case, changing the main window contents is safe.

// Create a table in the main window to hold items added
// in the second window
final Table table = new Table();
table.setPageLength(5);
table.getSize().setWidth(100, Size.UNITS_PERCENTAGE);
table.addContainerProperty("Name", String.class, "");
main.addComponent(table);

// Create the second window
final Window adderWindow = new Window("Add Items");
adderWindow.setName("win-adder");
main.getApplication().addWindow(adderWindow);

// Create selection component to add items to the table
final NativeSelect select = new NativeSelect("Select item to add");
select.setImmediate(true);
adderWindow.addComponent(select);

// Add some items to the selection
String items[] = new String[]{"-- Select --", "Mercury", "Venus",
 "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune"};
for (int i=0; i<items.length; i++)
 select.addItem(items[i]);
select.setNullSelectionItemId(items[0]);

// When an item is selected in the second window, add
// table in the main window
select.addListener(new ValueChangeListener() {

Caveats in Using Multiple Windows226

Advanced Web Application Topics

 public void valueChange(ValueChangeEvent event) {
 // If the selected value is something else
 // but a null selection item.
 if (select.getValue() != null) {
 // Add the selected item to the table
 // in the main window
 table.addItem(new Object[]{select.getValue()},
 new Integer(table.size()));
 }
 }
});

// Link to open the selection window
Link link = new Link("Click to open second window",
 new ExternalResource(adderWindow.getURL()),
 "_new", 50, 200,
 Link.TARGET_BORDER_DEFAULT);
main.addComponent(link);

// Enable polling to update the main window
ProgressIndicator poller = new ProgressIndicator();
poller.addStyleName("invisible");
main.addComponent(poller);

The example uses an invisible ProgressIndicator to implement polling.This is sort of a trick and
a more proper API for polling is under design. Making the progress indicator invisible requires
the following CSS style definition:

.v-progressindicator-invisible {
 display: none;
}

11.3. Embedding Applications in Web Pages

Many web applications and especially web sites are not all AJAX, but AJAX is used only for
specific functionalities. In practice, many web applications are a mixture of dynamic web pages
and AJAX applications embedded to such pages.

Embedding Vaadin applications is easy. There are two basic ways to embed them. One is to
have a <div> placeholder for the web application and load the Vaadin Client-Side Engine with
a simple JavaScript code.The second method is even easier, which is to simply use the <iframe>
element. Both of these methods have advantages and disadvantages. The <div> method can
only embed one application in a page, while the <iframe> method can embed as many as
needed. One disadvantage of the <iframe> method is that the size of the <iframe> element
is not flexible according to the content while the <div> method allows such flexibility.The following
sections look closer into these two embedding methods.

11.3.1. Embedding Inside a div Element

The loading code for the Client-Side Engine changed in IT Mill toolkit version 5.1.2 and the ex-
planation below is no longer compatible with Vaadin. Please view the source code of the initial
page of your application in your browser.

You can embed a Vaadin application inside a web page with a method that is equivalent to
loading the initial page content from the application servlet in a non-embedded application. Nor-
mally, the ApplicationServlet servlet generates an initial page that contains the correct parameters
for the specific application. You can easily configure it to load multiple Vaadin applications on
the same page, assuming that they use the same widget set.

227Embedding Applications in Web Pages

Advanced Web Application Topics

You can view the initial page for your application easily simply by opening the application in a
web browser and viewing the HTML source code.You could just copy and paste the embedding
code from the default initial page. It has, however, some extra functionality that is not normally
needed: it generates some of the script content with document.write() calls, which is useful
only when you are running the application as a portlet in a portal. The method outlined below is
much simpler.

The WebContent/multiapp.html file included in the Vaadin installation package provides
an example of embedding (multiple) Vaadin applications in a page. After launching the demo
application, you can view the example at URL http://localhost:8888/multiapp.html.
Notice that the example assumes the use of root context for the applications (/).

Embedding requires four elements inside the HTML document:

1. In the <head> element, you need to define the application URI and parameters and
load the Vaadin Client-Side Engine. The vaadin variable is an associative map that
can contain various runtime data used by the Client-Side Engine of Vaadin. The
vaadinConfigurations item is itself an associate map that contains parameters for
each of the applications embedded in the page. The map must contain the following
items:

appUri The application URI consists of the context and the application path.
If the context is /mycontext and the application path is myapp, the
appUri would be /mycontext/myapp. The multiapp.html ex-
ample assumes the use of root context, which is used in the demo
application.

pathInfo The PATHINFO parameter for the Servlet.

themeUri URI of the application theme.The URI must include application context
and the path to the theme directory. Themes are, by default, stored
under the /VAADIN/themes/ path.

versionInfo This item is itself an associative map that contains two parameters:
vaadinVersion contains the version number of the Vaadin version
used by the application. The applicationVersion parameter con-
tains the version of the particular application.

The following example defines two applications to run in the same window: the Calcu-
lator and Hello World examples. In the example, the application context is /tk5.

<script type="text/javascript">
 var vaadin = {
 vaadinConfigurations: {
 'calc': {
 appUri:'/tk5/Calc',
 pathInfo: '/',
 themeUri: '/tk5/VAADIN/themes/example',
 versionInfo : {
 vaadinVersion:"5.9.9-INTERNAL-
 NONVERSIONED-DEBUG-BUILD",
 applicationVersion:"NONVERSIONED"
 }
 },
 'hello': {
 appUri:'/tk5/HelloWorld',
 pathInfo: '/',
 themeUri: '/tk5/VAADIN/themes/example',
 versionInfo : {

Embedding Inside a div Element228

Advanced Web Application Topics

 vaadinVersion:"5.9.9-INTERNAL-
 NONVERSIONED-DEBUG-BUILD",
 applicationVersion:"NONVERSIONED"
 }
 }
 }};
</script>

2. Loading the Vaadin Client-Side Engine is done with the following kind of line in the
<head> element:

<script language='javascript'
src='/vaadin-examples/VAADIN/widgetsets/com.vaadin.terminal.gwt.DefaultWidgetSet/com.vaadin.terminal.gwt.DefaultWidgetSet.nocache.js'></script>

The engine URI consists of the context of the web application, vaadin-examples
above, followed by the path to the JavaScript (.js) file of the widget set, relative to the
WebContent directory.The file contains the Client-Side Engine compiled for the partic-
ular widget set. The line above assumes the use of the default widget set of Vaadin. If
you have made custom widgets that are defined in a custom widget set, you need to
use the path to the compiled widget set file. Widget sets must be compiled under the
WebContent/VAADIN/widgetsets directory.

3. In the <html> element, you need to do a routine inclusion of GWT history iframe
element as follows:

<iframe id="__gwt_historyFrame"
 style="width:0;height:0;border:0"></iframe>

4. The location of the Vaadin application is defined with a div placeholder element having
id="itmill-ajax-window" as follows:

<div id="itmill-ajax-window"/>

Below is a complete example of embedding an application. It works out-of-the-box with the Cal-
culator demo application.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
 <head>
 <title>Embedding Example</title>

 <!-- Set parameters for the Vaadin Client-Side Engine. -->
 <script type="text/javascript">
 var vaadin = {appUri:'Calc', pathInfo: '/'};
 </script>

 <!-- Load the Vaadin Client-Side Engine. -->
 <script language='javascript'
src='/vaadin-examples/VAADIN/widgetsets/com.vaadin.terminal.gwt.DefaultWidgetSet/com.vaadin.terminal.gwt.DefaultWidgetSet.nocache.js'></script>

 <!-- We can stylize the web application. -->
 <style>
 #vaadin-ajax-window {background: #c0c0ff;}
 .v-button {background: pink;}
 </style>
 </head>

 <body>
 <!-- This <iframe> element is required by GWT. -->

229Embedding Inside a div Element

Advanced Web Application Topics

 <iframe id="__gwt_historyFrame"
 style="width:0;height:0;border:0"></iframe>

 <h1>This is a HTML page</h1>
 <p>Below is the Vaadin application inside a table:</p>
 <table align="center" border="3" style="background: yellow;">
 <tr><th>The Calculator</th></tr>
 <tr>
 <td>
 <!-- Placeholder <div> for the Vaadin application -->
 <div id="vaadin-ajax-window"/>
 </td>
 </tr>
 </table>
 </body>
</html>

The page will look as shown in Figure 11.5, “Embedded Application”.

You can style the web application with themes as described in Chapter 8, Themes. The Client-
Side Engine loads the style sheets required by the application. In addition, you can do styling in
the embedding page, as was done in the example above.

The Reservation Demo and Windowed Demos provide similar examples of embedding an applic-
ation in a web page. The embedding web pages are WebContent/reservr.html and
WebContent/windoweddemos.html, respectively.

The disadvantage of this embedding method is that there can only be one web application em-
bedded in a page. One is usually enough, but if it is not, you need to use the <iframe> method
below.

11.3.2. Embedding Inside an iframe Element

Embedding a Vaadin application inside an <iframe> element is even easier than the method
described above, as it does not require definition of any Vaadin specific definitions. The use of
<iframe> makes it possible to embed multiple web applications or two different views to the
same application on the same page.

You can embed an application with an element such as the following:

<iframe src="/vaadin-examples/Calc"></iframe>

The problem with <iframe> elements is that their size of is not flexible depending on the content
of the frame, but the content must be flexible to accommodate in the frame.You can set the size
of an <iframe> element with height and width attributes.

Below is a complete example of using the <iframe> to embed two applications in a web page.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
 <head>
 <title>Embedding in IFrame</title>
 </head>

 <body style="background: #d0ffd0;">
 <h1>This is a HTML page</h1>
 <p>Below are two Vaadin applications embedded inside
 a table:</p>

 <table align="center" border="3">

Embedding Inside an iframe Element230

Advanced Web Application Topics

Figure 11.5. Embedded Application

 <tr>
 <th>The Calculator</th>
 <th>The Color Picker</th>
 </tr>
 <tr valign="top">
 <td>
 <iframe src="/vaadin-examples/Calc" height="200"
 width="150" frameborder="0"></iframe>
 </td>
 <td>
 <iframe src="/vaadin-examples/colorpicker"
 height="330" width="400"
 frameborder="0"></iframe>
 </td>
 </tr>
 </table>
 </body>
</html>

The page will look as shown in Figure 11.6, “Vaadin Applications Embedded Inside IFrames”
below.

231Embedding Inside an iframe Element

Advanced Web Application Topics

Figure 11.6. Vaadin Applications Embedded Inside IFrames

11.4. Debug and Production Mode

Vaadin applications can be run in two modes: debug mode and production mode. The debug
mode, which is on by default, enables a number of built-in debug features for the developers.
The features include:

• Debug Window for accessing debug functionalities

• Display debug information in the Debug Window and server console.

• Analyze layouting button that analyzes the layout for possible problems.

All applications are run in the debug mode by default (since IT Mill Toolkit version 5.3.0). The
production mode can be enabled, and debug mode thereby disabled, by adding a
productionMode=true parameter to the servlet context in the web.xml deployment descriptor:

<context-param>
 <param-name>productionMode</param-name>
 <param-value>true</param-value>
 <description>Vaadin production mode</description>
</context-param>

Enabling the production mode disables the debug features, thereby preventing users from easily
inspecting the inner workings of the application from the browser.

11.4.1. Debug Mode

Running an application in the debug mode enables the client-side Debug Window in the browser.
You can open the Debug Window by adding "?debug" to the application URL, e.g.,

Debug and Production Mode232

Advanced Web Application Topics

http://localhost:8080/myapp/?debug.The Debug Window, shown in Figure 11.7, “Debug
Window”, consists of buttons controlling the debugging features and a scrollable log of debug
messages.

Figure 11.7. Debug Window

Clear console Clears the log in the Debug Window.

Restart app Restarts the application.

Force layout Causes all currently visible layouts to recalculate their appearance.
Layout components calculate the space required by all child com-
ponents, so the layout appearance must be recalculated whenever
the size of a child component is changed. In normal applications,
this is done automatically, but when you do themeing or alter the
CSS with Firebug, you may need to force all layouts to recalculate
themselves, taking into account the recently made changes.

Analyze layouts This is described in the following section.

If you use the Firebug plugin in Mozilla Firefox, the log messages will also be printed to the
Firebug console. In such a case, you may want to enable client-side debugging without showing
the Debug Window with "?debug=quiet" in the URL. In the quiet debug mode, log messages
will only be printed to the Firebug console.

11.4.2. Analyzing Layouts

The Analyze layouts button analyzes the currently visible layouts and makes a report of possible
layout related problems. All detected layout problems are displayed in the log and also printed
to the console.

The most common layout problem is caused by placing a component that has a relative size inside
a container (layout) that has undefined size, e.g., adding a 100% wide Panel inside a Horizont-
alLayout with no width specification. In such a case, the error will look as shown below:

Vaadin DEBUG
- Window/1a8bd74 "My window" (width: MAIN WINDOW)
 - HorizontalLayout/1cf243b (width: UNDEFINED)
 - Panel/12e43f1 "My panel" (width: RELATIVE, 100.0 %)
Layout problem detected: Component with relative width inside a HorizontalLayout with no
 width defined
Relative sizes were replaced by undefined sizes, components may not render as expected.

233Analyzing Layouts

Advanced Web Application Topics

This particular error tells that the Panel "My panel" is 100% wide while the width of the containing
HorizontalLayout is undefined. The components will be rendered as if the the width of the con-
tained Panel was undefined, which might not be what the developer wanted. There are two
possible fixes for this case: if the Panel should fill the main window horizontally, set a width for
the HorizontalLayout (e.g. 100% wide), or set the width of the Panel to "undefined" to render
the it as it is currently rendered but avoiding the warning message.

The same error is shown in the Debug Window in a slightly different form and with an additional
feature (see Figure 11.8, “Debug Window Showing the Result of Analyze layouts.”). Checking
the Emphasize component in UI box will turn red the background of the component that caused
a warning, making it easy for the developer to figure out which component each warning relates
to.The messages will also be displayed hierarchically, as a warning from a containing component
often causes more warnings from its child components. A good rule of thumb is to work on the
upper-level problems first and only after that worry about the warnings from the children.

Figure 11.8. Debug Window Showing the Result of Analyze layouts.

11.4.3. Custom Layouts

CustomLayout components can not be analyzed in the same way as other layouts. For custom
layouts, the Analyze layouts button analyzes all contained relative-sized components and checks
if any relative dimension is calculated to zero so that the component will be invisible. The error
log will display a warning for each of these invisible components. It would not be meaningful to
emphasize the component itself as it is not visible, so when you select such an error, the parent
layout of the component is emphasized if possible.

11.4.4. Debug Functions for Component Developers

You can take advantage of the debug mode when developing client-side components. The static
function ApplicationConnection.getConsole() will return a reference to a Console object
which contains logging methods such as log(String msg) and error(String msg).These
functions will print messages to the Debug Window and Firebug console in the same way as
other debugging functionalities of Vaadin do. No messages will be printed if the Debug Window
is not open or if the application is running in production mode.

11.5. Resources

In addition to high-level resource classes described in Section 4.5, “Referencing Resources”,
Vaadin provides low-level facilities for retrieving the URI and other parameters of HTTP requests.
In the following, we will look into low-level interfaces for handling URIs and parameters to provide
resources and functionalities.

Custom Layouts234

Advanced Web Application Topics

Notice that using URI or parameter handlers to create "pages" is not meaningful in Vaadin or in
AJAX applications generally. See Section 11.1, “Special Characteristics of AJAX Applications”
for reasons.

11.5.1. URI Handlers

The URI parameter for the application is useful mainly for two purposes: for providing some
special functionality according to the URI or for providing dynamic content. Dynamic content can
also be provided with StreamResource.

You can retrieve the URI for the HTTP request made for your application by implementing the
com.vaadin.terminal.URIHandler interface. The handler class needs to be registered in the
main window object of your application with the addURIHandler() method. You then get the
URI by implementing the handleURI() method. The method gets two parameters: a context
and a URI relative to the context. The context is the base URI for your application.

public void init() {
 final Window main = new Window("Hello window");
 setMainWindow(main);

 URIHandler uriHandler = new URIHandler() {
 public DownloadStream handleURI(URL context,
 String relativeUri) {
 // Do something here
 System.out.println("handleURI=" + relativeUri);

 // Should be null unless providing dynamic data.
 return null;
 }
 };
 main.addURIHandler(uriHandler);

}

If you have multiple URI handlers attached to a window, they are executed after one another.
The URI handlers should return null, unless you wish to provide dynamic content with the call.
Other URI handlers attached to the window will not be executed after some handler returns non-
null data.The combined parameter and URI handler example below shows how to create dynamic
content with a URI handler.

Notice that if you do provide dynamic content with a URI handler, the dynamic content is returned
in the HTTP response. If the handler makes any changes to the UI state of the application, these
changes are not rendered in the browser, as they are usually returned in the HTTP response
made by the Application object and now the custom URI handler overrides the default behaviour.
If your client-side code makes a server call that does update the UI state, the client-side must
initiate an update from the server. For example, if you have an integration situation where you
make a JavaScript call to the server, handle the request with a URI handler, and the server state
changes as a side-effect, you can use the vaadin.forceSync() method to force the update.

11.5.2. Parameter Handlers

You can retrieve the parameters passed to your application by implementing the com.vaadin.ter-
minal.ParameterHandler interface.The handler class needs to be registered in the main window
object of your application with the addParameterHandler() method. You then get the para-
meters in the handleParameters() method.The parameters are passes as a map from string
key to a vector of string values.

235URI Handlers

Advanced Web Application Topics

class MyParameterHandler implements ParameterHandler {
 public void handleParameters(Map parameters) {
 // Print out the parameters to standard output
 for (Iterator it = parameters.keySet().iterator();
 it.hasNext();) {
 String key = (String) it.next();
 String value = ((String[]) parameters.get(key))[0];
 System.out.println("Key: "+key+", value: "+value);
 }
 }
}

The parameter handler is not called if there are no parameters. Parameter handler is called before
the URI handler, so if you handle both, you might typically want to just store the URI parameters
in the parameter handler and do actual processing in URI handler. This allows you, for example,
to create dynamic resources based on the URI parameters.

import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.*;
import java.net.URL;
import java.util.Map;
import javax.imageio.ImageIO;
import com.vaadin.terminal.*;

/**
 * Demonstrates handling URI parameters and the URI itself to
 * create a dynamic resource.
 */
public class MyDynamicResource implements URIHandler,
 ParameterHandler {
 String textToDisplay = "- no text given -";

 /**
 * Handle the URL parameters and store them for the URI
 * handler to use.
 */
 public void handleParameters(Map parameters) {
 // Get and store the passed HTTP parameter.
 if (parameters.containsKey("text"))
 textToDisplay =
 ((String[])parameters.get("text"))[0];
 }

 /**
 * Provides the dynamic resource if the URI matches the
 * resource URI. The matching URI is "/myresource" under
 * the application URI context.
 *
 * Returns null if the URI does not match. Otherwise
 * returns a download stream that contains the response
 * from the server.
 */
 public DownloadStream handleURI(URL context,
 String relativeUri) {
 // Catch the given URI that identifies the resource,
 // otherwise let other URI handlers or the Application
 // to handle the response.
 if (!relativeUri.startsWith("myresource"))
 return null;

 // Create an image and draw some background on it.
 BufferedImage image = new BufferedImage (200, 200,
 BufferedImage.TYPE_INT_RGB);
 Graphics drawable = image.getGraphics();
 drawable.setColor(Color.lightGray);

Parameter Handlers236

Advanced Web Application Topics

 drawable.fillRect(0,0,200,200);
 drawable.setColor(Color.yellow);
 drawable.fillOval(25,25,150,150);
 drawable.setColor(Color.blue);
 drawable.drawRect(0,0,199,199);

 // Use the parameter to create dynamic content.
 drawable.setColor(Color.black);
 drawable.drawString("Text: "+textToDisplay, 75, 100);

 try {
 // Write the image to a buffer.
 ByteArrayOutputStream imagebuffer =
 new ByteArrayOutputStream();
 ImageIO.write(image, "png", imagebuffer);

 // Return a stream from the buffer.
 ByteArrayInputStream istream =
 new ByteArrayInputStream(
 imagebuffer.toByteArray());
 return new DownloadStream (istream,null,null);
 } catch (IOException e) {
 return null;
 }
 }
}

When you use the dynamic resource class in your application, you obviously need to provide the
same instance of the class as both types of handler:

MyDynamicResource myresource = new MyDynamicResource();
mainWindow.addParameterHandler(myresource);
mainWindow.addURIHandler(myresource);

Figure 11.9. Dynamic Resource with URI Parameters

11.6. Shortcut Keys

Shortcut keys can be defined as actions using the ShortcutAction class. ShortcutAction extends
generic Action class that is used for example in Tree and Table for context menus. Currently
the only classes that accept ShortcutActions are Window and Panel. This may change in the
future. Table is a good candidate to support ShortcutActions.

To handle key presses, you need to define an action handler by implementing the Handler inter-
face. The interface has two methods that you need to implement: getActions() and
handleAction().

237Shortcut Keys

Advanced Web Application Topics

The getActions() interface method must return an array of Action objects for the component
specified with the second parameter for the method, the sender of an action. For a keyboard
shortcut, you use a ShortcutAction. The implementation of the method could be following:

// Have the unmodified Enter key cause an event
Action action_ok = new ShortcutAction("Default key",
 ShortcutAction.KeyCode.ENTER, null);

// Have the C key modified with Alt cause an event
Action action_cancel = new ShortcutAction("Alt+C",
 ShortcutAction.KeyCode.C,
 new int[] { ShortcutAction.ModifierKey.ALT });

Action[] actions = new Action[] {action_cancel, action_ok};

public Action[] getActions(Object target, Object sender) {
 if(sender == myPanel)
 return actions;

 return null;
}

The returned Action array may be static or created dynamically for different senders according
to your needs.

The constructor method of ShortcutAction takes a symbolic caption for the action; this is largely
irrelevant for shortcut actions in their current implementation, but might be used later if implement-
ors use them in both menus and as shortcut actions. The second parameter is the keycode, as
defined in ShortcutAction.KeyCode interface. Currently, the following keycodes are allowed:

Keys A to Z Normal letter keys

F1 to F12 Function keys

BACKSPACE, DELETE, ENTER,
ESCAPE, INSERT, TAB

Control keys

NUM0 to NUM9 Number pad keys

ARROW_DOWN, ARROW_UP,
ARROW_LEFT, ARROW_RIGHT

Arrow keys

HOME, END, PAGE_UP,
PAGE_DOWN

Other movement keys

The third parameter is an array of modifier keys, as defined in the ShortcutAction.ModifierKey
interface. The following modifier keys are allowed: ALT, CTRL, and SHIFT. The modifier keys
can be combined; for example, the following defines shortcut key combination Ctrl-Shift-S:

ShortcutAction("Ctrl+Shift+S",
 ShortcutAction.KeyCode.S, new int[] {
 ShortcutAction.ModifierKey.CTRL,
 ShortcutAction.ModifierKey.SHIFT});

The following example demonstrates the definition of a default button for a user interface, as well
as a normal shortcut key, Alt-C for clicking the Cancel button.

import com.vaadin.event.Action;
import com.vaadin.event.ShortcutAction;
import com.vaadin.event.Action.Handler;
import com.vaadin.ui.Button;

Shortcut Keys238

Advanced Web Application Topics

import com.vaadin.ui.CustomComponent;
import com.vaadin.ui.FormLayout;
import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.Label;
import com.vaadin.ui.Panel;
import com.vaadin.ui.TextField;

public class DefaultButtonExample extends CustomComponent
 implements Handler {
 // Define and create user interface components
 Panel panel = new Panel("Login");
 FormLayout formlayout = new FormLayout();
 TextField username = new TextField("Username");
 TextField password = new TextField("Password");
 HorizontalLayout buttons = new HorizontalLayout();

 // Create buttons and define their listener methods.
 Button ok = new Button("OK", this, "okHandler");
 Button cancel = new Button("Cancel", this, "cancelHandler");

 // Have the unmodified Enter key cause an event
 Action action_ok = new ShortcutAction("Default key",
 ShortcutAction.KeyCode.ENTER, null);

 // Have the C key modified with Alt cause an event
 Action action_cancel = new ShortcutAction("Alt+C",
 ShortcutAction.KeyCode.C,
 new int[] { ShortcutAction.ModifierKey.ALT });

 public DefaultButtonExample() {
 // Set up the user interface
 setCompositionRoot(panel);
 panel.addComponent(formlayout);
 formlayout.addComponent(username);
 formlayout.addComponent(password);
 formlayout.addComponent(buttons);
 buttons.addComponent(ok);
 buttons.addComponent(cancel);

 // Set focus to username
 username.focus();

 // Set this object as the action handler
 System.out.println("adding ah");
 panel.addActionHandler(this);

 System.out.println("start done.");
 }

 /**
 * Retrieve actions for a specific component. This method
 * will be called for each object that has a handler; in
 * this example just for login panel. The returned action
 * list might as well be static list.
 */
 public Action[] getActions(Object target, Object sender) {
 System.out.println("getActions()");
 return new Action[] { action_ok, action_cancel };
 }

 /**
 * Handle actions received from keyboard. This simply directs
 * the actions to the same listener methods that are called
 * with ButtonClick events.
 */
 public void handleAction(Action action, Object sender,
 Object target) {

239Shortcut Keys

Advanced Web Application Topics

 if (action == action_ok) {
 okHandler();
 }
 if (action == action_cancel) {
 cancelHandler();
 }
 }

 public void okHandler() {
 // Do something: report the click
 formlayout.addComponent(new Label("OK clicked. "
 + "User=" + username.getValue() + ", password="
 + password.getValue()));
 //
 }

 public void cancelHandler() {
 // Do something: report the click
 formlayout.addComponent(new Label("Cancel clicked. User="
 + username.getValue() + ", password="
 + password.getValue()));
 }
}

Notice that the keyboard actions can currently be attached only to Panels and Windows. This
can cause problems if you have components that require a certain key. For example, multi-line
TextField requires the Enter key.There is currently no way to filter the shortcut actions out while
the focus is inside some specific component, so you need to avoid such conflicts.

11.7. Printing

Vaadin does not currently have any special support for printing. Printing on the server-side is
anyhow largely independent from the web UI of an application. You just have to take care that
the printing does not block server requests, possibly by running printing in another thread.

For client-side printing, most browsers support printing the web page. The print() method in
JavaScript opens the print window of the browser. You can easily make a HTML button or link
that prints the current page by placing the custom HTML code inside a Label.

main.addComponent(new Label("<input type='button' onClick='print()' value='Click to
Print'/>", Label.CONTENT_XHTML));

This button would print the current page. Often you want to be able to print a report or receipt
and it should not have any UI components. In such a case you could offer it as a PDF resource,
or you could open a new window as is done below and automatically launch printing.

// A button to open the printer-friendly page.
Button printButton = new Button("Click to Print");
main.addComponent(printButton);
printButton.addListener(new Button.ClickListener() {
 public void buttonClick(ClickEvent event) {
 // Create a window that contains stuff you want to print.
 Window printWindow = new Window("Window to Print");

 // Have some content to print.
 printWindow.addComponent(
 new Label("Here's some dynamic content."));

 // To execute the print() JavaScript, we need to run it
 // from a custom layout.
 CustomLayout scriptLayout = new CustomLayout("printpage");
 printWindow.addComponent (scriptLayout);

Printing240

Advanced Web Application Topics

 // Add the printing window as an application-level window.
 main.getApplication().addWindow(printWindow);

 // Open the printing window as a new browser window
 main.open(new ExternalResource(printWindow.getURL()),
 "_new");
 }
});

How the browser opens the window, as an actual window or just a tab, depends on the browser.
Notice that above we create a new window object each time the print button is clicked, which
leads to unused window objects. If this is a real problem, you might want to reuse the same
window object or clean up the old ones - it's ok because the user doesn't interact with them later
anyhow.

You will also need a custom layout that contains the print() JavaScript function that launches
the printing. Notice that the custom layout must contain also another element (below a <div>)
in addition to the <script> element.

<div>This is some static content.</div>

<script type='text/javascript'>
 print();
</script>

Printing as PDF would not require creating a Window object, but you would need to provide the
content as a static or a dynamic resource for the open() method. Printing a PDF file would ob-
viously require a PDF viewer cabability (such as Adobe Reader) in the browser.

11.8. Portal Integration

Vaadin supports running applications as portlets, as defined in the JSR-168 standard. While
providing generic support for all portals implementing the standard, Vaadin especially supports
the Liferay portal and the needed portal-specific configuration is given below for Liferay.

Portal Integration Examples

You can deploy the Vaadin demo package WAR (available from the download site)
directly to a portal such as Liferay. It contains all the necessary portlet configuration
files. For optimal performance with Liferay, you need to install and configure the
widget set and themes in Liferay as described below.

You can find more documentation and examples from the Vaadin Developer's Site
at http://dev.vaadin.com/.

11.8.1. Deploying to a Portal

Deploying a Vaadin application as a portlet is essentially just as easy as deploying a regular ap-
plication to an application server.You do not need to make any changes in the application itself,
but only the following:

• Application packaged as a WAR
• WEB-INF/portlet.xml descriptor
• WEB-INF/liferay-portlet.xml descriptor for Liferay
• WEB-INF/liferay-display.xml descriptor for Liferay

• Widget set installed to portal (recommended)
• Themes installed to portal (recommended)

241Portal Integration

Advanced Web Application Topics

• Portal configuration settings (optional)

Installing the widget set and themes to the portal is required for running two or more Vaadin
portlets simultaneously in a portal page. As this situation occurs quite easily, we recommend in-
stalling them in any case.

In addition to the Vaadin library, you will need to copy the portlet.jar to your project. It is in-
cluded in the Vaadin installation package. Notice that you must not put the portlet.jar in the
same WebContent/WEB-INF/lib directory as the Vaadin JAR or otherwise include it in the
WAR to be deployed, because otherwise it will create a conflict with the internal portlet library of
the portal.

How you actually deploy a WAR package depends on the portal. In Liferay, you simply copy it
to the deploy subdirectory under the Liferay installation directory. Liferay uses Tomcat by default,
so you will find the extracted package in the webapps directory under the Tomcat installation
directory included in Liferay.

11.8.2. Portlet Deployment Descriptors

To deploy a portlet WAR in a portal, you need to provide the basic portlet.xml descriptor
specified in the Java Portlet standard. In addition, you may need to include possible portal vendor
specific deployment descriptors. The ones required by Liferay are described below.

Basic Portlet Descriptor

The por tlet WAR must include a por tlet descr iptor located at
WebContent/WEB-INF/portlet.xml. A portlet definition includes the portlet name, mapping
to a servlet in web.xml, modes supported by the portlet, and other configuration. Below is an
example of a simple portlet definition in portlet.xml descriptor.

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app
 version="1.0"
 xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd
 http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd">

 <portlet>
 <!-- Must not be the same as servlet name. -->
 <portlet-name>PortletExamplePortlet</portlet-name>
 <display-name>Vaadin Portlet Example</display-name>

 <!-- Map portlet to a servlet. -->
 <portlet-class>
 com.vaadin.terminal.gwt.server.ApplicationPortlet
 </portlet-class>
 <init-param>
 <name>application</name>

 <!-- Must match the servlet name in web.xml. -->
 <value>PortletExample</value>
 </init-param>

 <!-- Supported portlet modes and content types. -->
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 <portlet-mode>edit</portlet-mode>

Portlet Deployment Descriptors242

Advanced Web Application Topics

 <portlet-mode>help</portlet-mode>
 </supports>

 <!-- Not always required but Liferay requires these. -->
 <portlet-info>
 <title>Vaadin Portlet Example</title>
 <short-title>Portlet Example</short-title>
 </portlet-info>
 </portlet>
</portlet-app>

Enabling portlet modes enables portlet controls in the portal user interface that allow changing
the mode, as described later.

Using a Single Widget Set

If you have just one Vaadin application that you ever need to run in your portal, you can just deploy
the WAR as described above and that's it. However, if you have multiple applications, especially
ones that use different custom widget sets, you run into problems, because a portal window can
load only a single Vaadin widget set at a time. You can solve this problem by combining all the
different widget sets in your different applications into a single widget set using inheritance or
composition.

For example, the portal demos defined in the portlet.xml in the demo WAR have the following
setting that defines every portlet to use the same widget set:

<portlet>
 ...
 <!-- Use the Sampler widget set for all portal demos. -->
 <init-param>
 <name>widgetset</name>
 <value>com.vaadin.demo.sampler.gwt.SamplerWidgetSet</value>
 </init-param>
 ...

The SamplerWidgetSet required by the Sampler application inherits the DefaultWidgetSet so
that the latter is essentially a subset of the former. Other applications requiring only the regular
DefaultWidgetSet can as well use the larger set.

If your portlets are contained in multiple WARs, which can happen quite typically, you need to
install the widget set and theme portal-wide so that all the portlets can use them. See Sec-
tion 11.8.4, “Installing Widget Sets and Themes in Liferay” on configuring the widget sets in the
portal itself.

Liferay Portlet Descriptor

Liferay requires a special liferay-portlet.xml descriptor file that defines Liferay-specific
parameters. Especially, Vaadin portlets must be defined as "instanceable", but not "ajaxable".

Below is an example descriptor for the earlier portlet example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE liferay-portlet-app PUBLIC
 "-//Liferay//DTD Portlet Application 4.3.0//EN"
 "http://www.liferay.com/dtd/liferay-portlet-app_4_3_0.dtd">

<liferay-portlet-app>
 <portlet>
 <!-- Matches definition in portlet.xml. -->
 <!-- Note: Must not be the same as servlet name. -->
 <portlet-name>PortletExamplePortlet</portlet-name>

243Portlet Deployment Descriptors

Advanced Web Application Topics

 <instanceable>true</instanceable>
 <ajaxable>false</ajaxable>
 </portlet>
</liferay-portlet-app>

See Liferay documentation for further details on the liferay-portlet.xml deployment
descriptor.

Liferay Display Descriptor

The liferay-display.xml file defines the portlet category under which portlets are organized
in the Add Application window in Liferay. Without this definition, portlets will be organized under
the "Undefined" category.

The following display configuration, which is included in the demo WAR, puts the Vaadin portlets
under the "Vaadin" category, as shown in Figure 11.10, “Portlet Categories in Add Application
Window”.

<?xml version="1.0"?>
<!DOCTYPE display PUBLIC
 "-//Liferay//DTD Display 4.0.0//EN"
 "http://www.liferay.com/dtd/liferay-display_4_0_0.dtd">

<display>
 <category name="Vaadin">
 <portlet id="PortletExamplePortlet" />
 </category>
</display>

Figure 11.10. Portlet Categories in Add Application Window

See Liferay documentation for further details on how to configure the categories in the
liferay-display.xml deployment descriptor.

Portlet Deployment Descriptors244

Advanced Web Application Topics

11.8.3. Portlet Hello World

The Hello World program that runs as a portlet is no different from a regular Vaadin application,
as long as it doesn't need to handle portlet actions, mode changes, and so on.

import com.vaadin.Application;
import com.vaadin.ui.*;

public class PortletExample extends Application {
 @Override
 public void init() {
 Window mainWindow = new Window("Portlet Example");

 Label label = new Label("Hello Vaadin user");
 mainWindow.addComponent(label);
 setMainWindow(mainWindow);
 }
}

In addition to the application class, you need the descriptor files, libraries, and other files as de-
scribed earlier. Figure 11.11, “Portlet Project Structure in Eclipse” shows the complete project
structure under Eclipse.

Installed as a portlet in Liferay from the Add Application menu, the application will show as illus-
trated in Figure 11.12, “Hello World Portlet”.

Figure 11.12. Hello World Portlet

11.8.4. Installing Widget Sets and Themes in Liferay

Loading widget sets and themes from a portlet WAR is possible as long as you have a single
WAR, but it will not work if you have multiple WARs. To solve this, Vaadin portlets use globally
installed widget sets and themes. Liferay actually includes them and the required configuration
in Liferay 5.3 and later, but if you are using an earlier version of Liferay or have a customized
widget set, you will need to do the configuration manually.

We assume that you use the Tomcat installation included in the Liferay installation package,
under the tomcat-x.x.x directory.

The widget set needs to be located at /html/VAADIN/widgetsets/ and themes at
/html/VAADIN/themes/ path under the portal context.You simply need to copy the contents
f r o m u n d e r yo u r WebContent/VAADIN d i r e c t o r y t o t h e
tomcat-x.x.x/webapps/ROOT/html/VAADIN directory under the Liferay installation directory.
If you use a widget set or theme included in Vaadin, you should copy it from the Vaadin installation
directory or extract them from Vaadin JAR.

245Portlet Hello World

Advanced Web Application Topics

Figure 11.11. Portlet Project Structure in Eclipse

You need to define the widget set and the theme in the portal-ext.properties configuration
file for Liferay. The file should normally be placed in the Liferay installation directory and you
need to restart Liferay after creating or modifying the file. See Liferay documentation for details
on the configuration file.

Below is an example of a portal-ext.properties file:

Path under which the VAADIN directory is located.
(/html is the default so it is not needed.)
vaadin.resources.path=/html

Portal-wide widget set
vaadin.widgetset=com.vaadin.demo.sampler.gwt.SamplerWidgetSet

Theme to use
vaadin.theme=reindeer

The allowed parameters are:

vaadin.resources.path Specifies the resource root path under the portal context.
This is /html by default, pointing to the
webapps/ROOT/html directory under Tomcat installation
directory.

vaadin.widgetset The widget set class to use. Give the full path to the class
name in the dot notation. If the parameter is not given, the
default widget set is used.

Installing Widget Sets and Themes in Liferay246

Advanced Web Application Topics

vaadin.theme Name of the theme to use. If the parameter is not given,
the default theme is used, which is reindeer in Vaadin 6.

11.8.5. Handling Portlet Events

Portals such as Liferay are not AJAX applications but reload the page every time a user interaction
requires data from the server. They consider a Vaadin application as a regular (though dynamic)
web page. All the AJAX communications required by the Vaadin application are done by the
Vaadin Client-Side Engine (the widget set) past the portal.

The only way for a portal to interact with an application is to load it with a render request (reloading
does not reset the application). The render requests can be caused by user interaction with the
portal or by loading action URLs launched from the portlet. You can handle render requests by
implementing the PortletApplicationContext.PortletListener interface and the
handleRenderRequest() handler method. You can use the request object passed to the
handler to access certain portal data, such as user information.

You can also define portal actions that you can handle in the handleActionRequest()
method of the interface.
.

You add your portlet request listener to the application context of your application, which is a
PortletApplicationContext when (and only when) the application is being run as a portlet.

// Check that we are running as a portlet.
if (getContext() instanceof PortletApplicationContext) {
 PortletApplicationContext ctx =
 (PortletApplicationContext) getContext();

 // Add a custom listener to handle action and
 // render requests.
 ctx.addPortletListener(this, new MyPortletListener());
} else {
 getMainWindow().showNotification(
 "Not initialized via Portal!",
 Notification.TYPE_ERROR_MESSAGE);
}

The handler methods receive references to request and response objects, which are defined in
the Java Servlet API. Please refer to the Servlet API documentation for further details.

The PortletDemo application included in the demo WAR package includes examples of processing
mode and portlet window state changes in a portlet request listener.

247Handling Portlet Events

Advanced Web Application Topics

248

Appendix A

User Interface
Definition

Language (UIDL)

User Interface Definition Language (UIDL) is a language for serializing user interface contents
and changes in responses from web server to a browser. The idea is that the server-side com-
ponents "paint" themselves to the screen (a web page) with the language. The UIDL messages
are parsed in the browser and translated to GWT widgets.

The UIDL is used through both server-side and client-side APIs. The server-side API consists of
the PaintTarget interface, described in Section A.1, “API for Painting Components”. The client-
side interface depends on the implementation of the client-side engine. In Vaadin Release 5, the
client-side engine uses the Google Web Toolkit framework. Painting the user interface with a
GWT widget is described in Section 10.3, “Google Web Toolkit Widgets”.

UIDL supports painting either the entire user interface or just fragments of it.When the application
is started by opening the page in a web browser, the entire user interface is painted. If a user
interface component changes, only the changes are painted.

Since Vaadin Release 5, the UIDL communications are currently done using JSON (JavaScript
Object Notation), which is a lightweight data interchange format that is especially efficient for in-
terfacing with JavaScript-based AJAX code in the browser. The use of JSON as the interchange
format is largely transparent; IT Mill Toolkit version 4 (predecessor of Vaadin released in 2006)

249Book of Vaadin

the older versions used an XML-based UIDL representation with the same API. Nevertheless,
the UIDL API uses XML concepts such as attributes and elements. Below, we show examples
of a Button component in both XML and JSON notation.

With XML notation:

<button id="PID2" immediate="true"
 caption="My Button" focusid="1">
 <boolean id="v1" name="state"
 value="false"></boolean>
</button>

With JSON notation:

["button",
 {"id": "PID2",
 "immediate":true,
 "caption": "My Button",
 "focusid":1,
 "v":{"state":false}
 }
]

Components are identified with a PID or paintable identifier in the id attribute. Each component
instance has its individual PID, which is usually an automatically generated string, but can be set
manually with setDebugId() method.

Section A.2, “JSON Rendering” gives further details on JSON. For more information about
handling UIDL messages in the client-side components, see Chapter 10, Developing Custom
Components.

You can track and debug UIDL communications easily with the Firebug extension for Mozilla
Firefox, as illustrated in Section A.2, “JSON Rendering” below.

A.1. API for Painting Components

Serialization or "painting" of user interface components from server to the client-side engine
running in the browser is done through the PaintTarget interface. In Vaadin Release 5, the only
implementation of the interface is the JsonPaintTarget, detailed in Section A.2, “JSON Rendering”
below.

The abstract AbstractComponent class allows easy painting of user interface components by
managing many basic tasks, such as attributes common for all components. Components that
inherit the class need to implement the abstract getTag() method that returns the UIDL tag of
the component. For example, the implementation for the Button component is as follows:

public String getTag() {
 return "button";
}

AbstractComponent implements the paint() method of the Paintable interface to handle
basic tasks in painting, and provides paintContent() method for components to paint their
special contents.The method gets the PaintTarget interface as its parameter.The method should
call the default implementation to paint any common attributes.

/* Paint (serialize) the component for the client. */
public void paintContent(PaintTarget target)
 throws PaintException {
 // Superclass writes any common attributes in
 // the paint target.

API for Painting Components250

User Interface Definition Language (UIDL)

 super.paintContent(target);

 // Set any values as variables of the paint target.
 target.addVariable(this, "colorname", getColor());
}

Serialized data can be attributes or variables, serialized with the addAttribute() and
addVariable() methods, respectively. You must always serialize the attributes first and the
variables only after that.

The API provides a number of variations of the methods for serializing different basic data types.
The methods support the native Java data types and strings of the String class.addVariable()
also supports vectors of strings.

Contained components are serialized by calling the paint() method of a sub-component, which
will call the paintContent() for the sub-component, allowing the serialization of user interfaces
recursively. The paint() method is declared in the server-side Paintable interface and imple-
mented in the abstract base classes, AbstractComponent and AbstractComponentContainer
(for layouts).

Layout components have to serialize the essential attributes and variables they need, but not the
contained components. The AbstractComponentContainer and AbstractLayout baseclasses
manage the recursive painting of all the contained components in layouts.

The AbstractField provides an even higher-level base class for user interface components. The
field components hold a value or a property, and implement the Property interface to access
this property. For example the property of a Button is a Boolean value.

public void paintContent(PaintTarget target)
 throws PaintException {
 super.paintContent(target);

 // Serialize the switchMode as an attribute
 if (isSwitchMode())
 target.addAttribute("type", "switch");

 // Get the state of the Button safely
 boolean state;
 try {
 state = ((Boolean) getValue()).booleanValue();
 } catch (NullPointerException e) {
 state = false;
 }
 target.addVariable(this, "state", state);

}

A.2. JSON Rendering

Vaadin 5 uses JSON, a lightweight data-interchange format, to communicate UI rendering with
the browser, because it is very fast to parse compared to XML. JSON messages are essentially
JavaScript statements that can be directly evaluated by the browser. The client-side engine of
Vaadin parses and evaluates the UIDL messages with the JSON library that comes with the
Google Web Toolkit.

Section 3.2.3, “JSON” gave a general introduction to JSON as part of the architecture of Vaadin.
In this section, we look into the technical details of the format. The technical details of the JSON
messages are useful mainly for debugging purposes, for example using the Firebug plugin for
Mozilla Firefox.

251JSON Rendering

User Interface Definition Language (UIDL)

To view a UIDL message, open the Firebug panel in Firefox, select Net tab, select a "POST
UIDL" request, open the Response tab, and click Load Response.This displays the entire UIDL
message, as shown in Figure A.1, “Debugging UIDL Messages with Firebug” below.

Figure A.1. Debugging UIDL Messages with Firebug

JSON messages are represented as nested lists and associative arrays (objects with named
properties) in JavaScript syntax. At the top level, we can find an associative array with the following
fields:

changes Changes to the UI caused by the request.

meta Meta-information regarding the response and the application state.

resources Information about application resources.

locales Locale-specific data for locale-dependent components, such as names of
months and weekdays.

The "changes" field contains the actual UI changes as a list of components. Components that
can contain other components are represented in a recursive list structure.

A component is represented as a list that first contains the UIDL tag of the component, which
identifies its class, followed by data fields.The basic representation of component data as attributes
and variables is defined in the base classes of the framework. Attributes are represented as an
associative array and variables as a separate associative array inside the special "v" attribute.
For example, a Button component is communicated with a JSON representation such as the
following:

["button",
 {"id": "PID5",
 "immediate": true,
 "caption": "7",
 "v":{"state":false}}
]

JSON Rendering252

User Interface Definition Language (UIDL)

A component can give its data also in additional fields in the list instead of the attributes or vari-
ables, as is done for the Label component:

["label",
 {"id": "PID4",
 "width": "100.0%"},
 "Some text here"]

The meta-information field can contain certain types of information, which are not displayed in
the UI, but used by the client-side engine. The repaintAll parameter tells that the changes
include the entire window contents, not just partial changes. Other data includes redirection details
for expired sessions.

253JSON Rendering

User Interface Definition Language (UIDL)

254

Appendix B

Songs of Vaadin

Vaadin is a mythological creature in Finnish folklore, the goddess and divine ancestor of the
mountain reindeer. It appears frequently in the poetic mythos, often as the trustworthy steed of
either Seppo Ilmarinen or Väinämöinen, the two divine hero figures. In many of the stories, it is
referred to as Steed of Seppo or Seponratsu in Finnish. An artifact itself, according to most ac-
counts, Vaadin helped Seppo Ilmarinen in his quests to find the knowledge necessary to forge
magical artefacts, such as Sampo.

Some of the Vaadin poems were collected by Elias Lönnrot, but he left them out of Kalevala, the
Finnish epic poem, as they were somewhat detached from the main theme and would have created
inconsistencies with the poems included in the epos. Lönnrot edited Kalevala heavily and it rep-
resents a selection from a much larger and more diverse body of collected poems. Many of the
accounts regarding Vaadin were sung by shamans, and still are. A shamanistic tradition, centered
on the tales of Seppo and Vaadin, still lives in South-Western Finland, around the city of Turku.
Some research in the folklore suggests that the origin of Vaadin is as a shamanistic animal spirit
used during trance for voyaging to Tuonela, the Land of Dead, with its mechanical construction
reflecting the shamanistic tools used for guiding the trance. While the shamanistic interpretation
of the origins is disputed by a majority of the research community in a maximalist sense, it is
considered a potentially important component in the collection of traditions that preserve the
folklore.

Origin or birth poems, synnyt in Finnish, provide the most distinct accounts of mythological artefacts
in the Finnish folklore, as origin poems or songs were central in the traditional magical practices.
Vaadin is no exception and its origin poems are numerous. In many of the versions, Vaadin was
created in a mill, for which Seppo had built the millstone. After many a year, grinding the sacred
acorns of the Great Oak (a version of the World Tree in Finnish mythology), the millstone had
become saturated with the magical juices of the acorns. Seppo found that the stone could be
used to make tools. He cut it in many peaces and built a toolkit suitable for fashioning spider web
into any imaginable shape. When Seppo started making Sampo, he needed a steed that would

255Book of Vaadin

help him find the precious components and the knowledge he required.The magical tools became
the skeleton of Vaadin.

 "Lost, his mind was,
 gone, was his understanding,
 ran away, were his memories,
 in the vast land of hills of stone.
 Make a steed he had to,
 forge bone out of stone,
 flesh out of moss,
 and skin of bark of the birch.

The length of his hammer,
 he put as the spine and the hip,
 bellows as the lungs,
 tongs as the legs, paired.
 So woke Vaadin from the first slumber,
 lichen did Seppo give her for eating,
 mead did he give her for drinking,
 then mounted her for the journey."

Other versions associate the creation with Väinämöinen instead of Seppo Ilmarinen, and give
different accounts for the materials.This ambiguity can be largely explained through the frequent
cooperation between Väinämöinen and Seppo in the mythos. Nevertheless, the identity of the
steed or steeds is largely implicit in the myths and, because of the differences in the origin myths,
can not be unambiquously associated with a unique identity.

The theme of animal ancestor gods is common in the Finnish myth, as we can see in the wide-
spread worship of Tapio, the lord of the bear and the forest. With respect to Vaadin, the identific-
ation of the animal is not completely clear. The Finnish word vaadin refers specifically to an adult
female of the semi-domesticated mountain reindeer, which lives in the Northern Finland in Lapland
as well as in the Northern Sweden and Norway. On the other hand, the Finnish folklore repres-
ented in Kalevala and other collections has been collected from Southern Finland, where the
mountain reindeer does not exist. Nevertheless, Southern Finnish folklore and Kalevala do include
many other elements as well that are distinctively from Lapland, so we may assume that the
folklore reflects a record of cultural interaction. The distinction between the northern mountain
reindeer and the deer species of Southern Finland, the forest reindeer and the elk, is clear in the
modern language, but may not have been in old Finnish dialects. For example, peura, reindeer,
may have been a generic word for a wild animal, as can be seen in jalopeura, the old Finnish
word for lion. The identification is further complicated by the fact that the line of poems included
in Kalevala often refers to a horse. This could be due to the use of the word for horse as a gen-
eric name for a steed.While a mountain reindeer is not suitable for riding, animal gods are typically
portrayed as uncommonly large in mythology, even to the extremes, so the identification fits quite
well in the variety of magical mounts.

The mythology related to Vaadin, especially as represented in Kalevala, locates some important
characters and people in Pohjola, a mythical land in the north from where all evil originates, ac-
cording to most accounts. For example, Louhi or Pohjolan emäntä, Queen of Pohjola, is the
primary antagonist in the Kalevala mythos. Both Seppo Ilmarinen and Väinämöinen make services
to Louhi to earn the hand of her daughters for marriage. Vaadin is often mentioned in connection
with these services, such as the making of Sampo. On the other hand, as Sampo can be identified
with the mill mentioned in creation stories of Vaadin, its identification in the stories becomes un-
clear.

256

Songs of Vaadin

While beginning its life as an artifact, Vaadin is later represented as an antropomorphic divine
being.This is in contrast with the Bride of Gold, another creation of Seppo, which failed to become
a fully living and thinking being. Finding magical ways around fundamental problems in life are
central in Kalevala. In some areas, magical solutions are morally acceptable, while in others they
are not and the successes and failures in the mythos reflect this ethic. Research in the folklore
regarding the Bride of Gold myth has provided support for a theory that creating a wife would go
against very fundamental social rules of courting and mating, paralleling the disapproval of
"playing god" in acts involving life and death (though "cheating death" is usually considered a
positive act). The main motivation of the protagonists in Kalevala is courting young daughters,
which always ends in failure, usually for similar reasons. Animals, such as Vaadin, are outside
the social context and considered to belong in the same category with tools and machines. The
Vaadin myths present a noteworthy example of this categorization of animals and tools in the
same category at an archetypal level.

The Vaadin myths parallel the Sleipnir myths in the Scandinavian mythology. This connection is
especially visible for the connection of Väinämöinen with Odin, who used Sleipnir in his journeys.
The use of tongs for the legs of Vaadin actually suggests eight legs, which is the distinguishing
attribute of Sleipnir.While Sleipnir is almost universally depicted as a horse, the exact identification
of the steed may have changed during the transmission between the cultures.

The Bridle of Vaadin is a special artifact itself. There is no headstall, but only the rein, detached
from the creature, kept in the hand of the rider. The rein is a chain or set of "gadgets" used for
controlling the creature. The rein was built of web with special tools, with Seppo wearing magni-
fying goggles to work out the small details.

The significance and cultural influence of Vaadin can be seen in its identification with a constel-
lation in the traditional Finnish constellation system. The famous French astronomer Pierre
Charles Le Monnier (1715-99), who visited Lapland, introduced the constellation to international
star charts with the name Tarandus vel Rangifer. The constellation was present in many star
charts of the time, perhaps most notably in the Uranographia published in 1801 by Johann Elert
Bode, as shown in Figure B.1, “Constellation of Tarandus vel Rangifer in Bode's Uranographia
(1801)”. It was later removed in the unification of the constellation system towards the Greek
mythology.

257

Songs of Vaadin

Figure B.1. Constellation of Tarandus vel Rangifer in Bode's Uranographia
(1801)

258

Songs of Vaadin

	Book of Vaadin
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Overview
	1.2. Example Application Walkthrough
	1.3. Support for the Eclipse IDE
	1.4. Goals and Philosophy
	1.5. Background

	Chapter 2. Getting Started with Vaadin
	2.1. Installing Vaadin
	2.1.1. Installing the Distribution Package
	2.1.2. Starting the Content Browser
	Windows
	Linux / UNIX
	Mac OS X

	2.1.3. Package Contents
	2.1.4. Demo Applications

	2.2. Setting up the Development Environment
	2.2.1. Installing Java SDK
	Windows
	Linux / UNIX

	2.2.2. Installing Eclipse IDE
	Windows
	Linux / UNIX

	2.2.3. Installing Apache Tomcat
	2.2.4. Firefox and Firebug
	2.2.5. Vaadin Plugin for Eclipse
	Updating the Vaadin Plugin
	Updating the Vaadin Library

	2.3. QuickStart with Eclipse
	2.3.1. Starting Eclipse
	2.3.2. Importing Vaadin as a Project
	2.3.3. Running the Demo Applications in Eclipse
	Launching the Hosted Mode Browser
	How to Stop the Run

	2.3.4. Debugging the Demo Applications in Eclipse
	2.3.5. Using QuickStart as a Project Skeleton

	2.4. Your First Project with Vaadin
	2.4.1. Creating the Project
	2.4.2. Exploring the Project
	2.4.3. Setting Up and Starting the Web Server
	2.4.4. Running and Debugging

	Chapter 3. Architecture
	3.1. Overview
	3.2. Technological Background
	3.2.1. AJAX
	3.2.2. Google Web Toolkit
	3.2.3. JSON

	3.3. Applications as Java Servlet Sessions
	3.4. Client-Side Engine
	3.5. Events and Listeners

	Chapter 4. Writing a Web Application
	4.1. Overview
	4.2. Managing the Main Window
	4.3. Child Windows
	4.3.1. Opening and Closing a Child Window
	4.3.2. Window Positioning
	4.3.3. Modal Windows

	4.4. Handling Events with Listeners
	4.5. Referencing Resources
	4.5.1. Resource Interfaces and Classes
	4.5.2. File Resources
	4.5.3. Class Loader Resources
	4.5.4. Theme Resources
	4.5.5. Stream Resources

	4.6. Shutting Down an Application
	4.6.1. Closing an Application
	4.6.2. Handling the Closing of a Window

	4.7. Handling Errors
	4.7.1. Error Indicator and message
	4.7.2. Notifications
	4.7.3. Handling Uncaught Exceptions

	4.8. Setting Up the Application Environment
	4.8.1. Creating Deployable WAR in Eclipse
	4.8.2. Web Application Contents
	4.8.3. Deployment Descriptor web.xml
	Deployment Descriptor Parameters

	Chapter 5. User Interface Components
	5.1. Overview
	5.2. Interfaces and Abstractions
	5.2.1. Component Interface
	Interface Attributes
	Component Tree Management

	5.2.2. AbstractComponent
	5.2.3. Field Components (Field and AbstractField)
	Field Interface
	Handling Field Value Changes
	AbstractField Base Class

	5.3. Common Component Features
	5.3.1. Description and Tooltips
	5.3.2. Sizing Components
	5.3.3. Managing Input Focus

	5.4. Label
	5.5. Link
	5.6. TextField
	5.7. RichTextArea
	5.8. Date and Time Input
	5.8.1. Calendar
	5.8.2. DateField Locale

	5.9. Button
	5.10. CheckBox
	5.11. Selecting Items
	5.11.1. Basic Select Component
	Combo Box Behaviour
	Filtered Selection

	5.11.2. Native Selection Component NativeSelect
	5.11.3. Radio Button and Check Box Groups with OptionGroup
	5.11.4. Twin Column Selection with TwinColSelect
	5.11.5. Allowing Adding New Items
	5.11.6. Multiple Selection Mode

	5.12. Table
	5.12.1. Selecting Items in a Table
	5.12.2. CSS Style Rules
	Setting Individual Cell Styles

	5.12.3. Table Features
	Page Length and Scrollbar
	Organizing Columns
	Components Inside a Table
	Editing the Values of a Table
	Iterating Over a Table

	5.12.4. Generated Table Columns

	5.13. Tree
	5.14. MenuBar
	5.15. Embedded
	5.15.1. Embedded Objects
	5.15.2. Embedded Images
	5.15.3. Browser Frames

	5.16. Upload
	5.17. Form
	5.17.1. Form as a User Interface Component
	5.17.2. Binding Form to Data
	Generating Proper Fields with a FormFieldFactory

	5.17.3. Validating Form Input
	Using Validators in Forms
	Required Fields in Forms

	5.17.4. Buffering Form Data

	5.18. ProgressIndicator
	5.18.1. Doing Heavy Computation

	5.19. Component Composition with CustomComponent

	Chapter 6. Managing Layout
	6.1. Overview
	6.2. Window and Panel Root Layout
	6.3. VerticalLayout and HorizontalLayout
	6.3.1. Sizing Contained Components

	6.4. GridLayout
	6.4.1. Sizing Grid Cells

	6.5. FormLayout
	6.6. Panel
	6.7. SplitPanel
	6.8. TabSheet
	6.9. Accordion
	6.10. Layout Formatting
	6.10.1. Layout Size
	Expanding Components

	6.10.2. Layout Cell Alignment
	6.10.3. Layout Cell Spacing
	6.10.4. Layout Margins

	6.11. Custom Layouts

	Chapter 7. Visual User Interface Design with Eclipse (experimental)
	7.1. Overview
	7.2. Creating a New CustomComponent
	7.3. Using The Visual Editor
	7.3.1. Adding New Components
	7.3.2. Setting Component Properties
	Basic Properties
	Size and Position
	Other Properties

	7.3.3. Editing an AbsoluteLayout

	7.4. Structure of a Visually Editable Component
	7.4.1. Sub-Component References
	7.4.2. Sub-Component Builders
	7.4.3. The Constructor

	Chapter 8. Themes
	8.1. Overview
	8.2. Introduction to Cascading Style Sheets
	8.2.1. Basic CSS Rules
	8.2.2. Matching by Element Class
	8.2.3. Matching by Descendant Relationship
	8.2.4. Notes on Compatibility

	8.3. Creating and Using Themes
	8.3.1. Styling Standard Components
	8.3.2. Built-in Themes
	8.3.3. Using Themes
	8.3.4. Theme Inheritance

	8.4. Creating a Theme in Eclipse

	Chapter 9. Binding Components to Data
	9.1. Overview
	9.2. Properties
	9.3. Holding properties in Items
	9.4. Collecting items in Containers
	9.4.1. Iterating Over a Container

	Chapter 10. Developing Custom Components
	10.1. Overview
	10.2. Doing It the Simple Way in Eclipse
	10.2.1. Creating a Widget Set
	10.2.2. Creating a Widget
	10.2.3. Recompiling the Widget Set

	10.3. Google Web Toolkit Widgets
	10.3.1. Extending a Vaadin Widget
	10.3.2. Example: A Color Picker GWT Widget
	10.3.3. Styling GWT Widgets

	10.4. Integrating a GWT Widget
	10.4.1. Deserialization of Component State from Server
	10.4.2. Serialization of Component State to Server
	Immediateness

	10.4.3. Example: Integrating the Color Picker Widget

	10.5. Defining a Widget Set
	10.5.1. GWT Module Descriptor

	10.6. Server-Side Components
	10.6.1. Component Tag Name
	10.6.2. Server-Client Serialization
	10.6.3. Client-Server Deserialization
	10.6.4. Extending Standard Components
	10.6.5. Example: Color Picker Server-Side Component

	10.7. Using a Custom Component
	10.7.1. Example: Color Picker Application
	10.7.2. Web Application Deployment

	10.8. GWT Widget Development
	10.8.1. Creating a Widget Project in Eclipse
	10.8.2. Importing GWT Installation Package
	10.8.3. Creating a GWT Module
	Creating the Source Folder
	Creating Source Files
	Importing the ColorPicker Demo

	10.8.4. Compiling GWT Widget Sets
	Compiling a Custom Widget Set

	10.8.5. Ready to Run
	10.8.6. Hosted Mode Browser
	Configuring Hosted Mode Launching in Eclipse
	Debugging with Hosted Mode Browser

	10.8.7. Out of Process Hosted Mode (OOPHM)
	Installing the OOPHM plugin in Firefox and WebKit
	Installing the OOPHM plugin in Internet Explorer

	Chapter 11. Advanced Web Application Topics
	11.1. Special Characteristics of AJAX Applications
	11.2. Application-Level Windows
	11.2.1. Creating New Application-Level Windows
	11.2.2. Creating Windows Dynamically
	11.2.3. Closing Windows
	11.2.4. Caveats in Using Multiple Windows
	Communication Between Windows

	11.3. Embedding Applications in Web Pages
	11.3.1. Embedding Inside a div Element
	11.3.2. Embedding Inside an iframe Element

	11.4. Debug and Production Mode
	11.4.1. Debug Mode
	11.4.2. Analyzing Layouts
	11.4.3. Custom Layouts
	11.4.4. Debug Functions for Component Developers

	11.5. Resources
	11.5.1. URI Handlers
	11.5.2. Parameter Handlers

	11.6. Shortcut Keys
	11.7. Printing
	11.8. Portal Integration
	11.8.1. Deploying to a Portal
	11.8.2. Portlet Deployment Descriptors
	11.8.3. Portlet Hello World
	11.8.4. Installing Widget Sets and Themes in Liferay
	11.8.5. Handling Portlet Events

	Appendix A. User Interface Definition Language (UIDL)
	A.1. API for Painting Components
	A.2. JSON Rendering

	Appendix B. Songs of Vaadin

