
WEKA KnowledgeFlow Tutorial

for Version 3-5-8

Mark Hall

Peter Reutemann

July 14, 2008

c©2008 University of Waikato

Contents

1 Introduction 2

2 Features 3

3 Components 4

3.1 DataSources . 4
3.2 DataSinks . 4
3.3 Filters . 4
3.4 Classifiers . 4
3.5 Clusterers . 4
3.6 Evaluation . 5
3.7 Visualization . 6

4 Examples 7

4.1 Cross-validated J48 . 7
4.2 Plotting multiple ROC curves . 9
4.3 Processing data incrementally . 11

5 Plugin Facility 13

1

1 Introduction

The KnowledgeFlow provides an alternative to the Explorer as a graphical front
end to WEKA’s core algorithms. The KnowledgeFlow is a work in progress so
some of the functionality from the Explorer is not yet available. On the other
hand, there are things that can be done in the KnowledgeFlow but not in the
Explorer.

The KnowledgeFlow presents a data-flow inspired interface to WEKA. The
user can select WEKA components from a tool bar, place them on a layout can-
vas and connect them together in order to form a knowledge flow for processing
and analyzing data. At present, all of WEKA’s classifiers, filters, clusterers,
loaders and savers are available in the KnowledgeFlow along with some extra
tools.

The KnowledgeFlow can handle data either incrementally or in batches (the
Explorer handles batch data only). Of course learning from data incremen-
tally requires a classifier that can be updated on an instance by instance basis.
Currently in WEKA there are ten classifiers that can handle data incrementally:

• AODE

• IB1

• IBk

• KStar

• NaiveBayesMultinomialUpdateable

• NaiveBayesUpdateable

• NNge

• Winnow

And two of them are meta classifiers:

• RacedIncrementalLogitBoost - that can use of any regression base learner
to learn from discrete class data incrementally.

• LWL - locally weighted learning.

This manual is also available online on the WekaDoc Wiki [2].

2

2 Features

The KnowledgeFlow offers the following features:

• intuitive data flow style layout

• process data in batches or incrementally

• process multiple batches or streams in parallel (each separate flow executes
in its own thread)

• chain filters together

• view models produced by classifiers for each fold in a cross validation

• visualize performance of incremental classifiers during processing (scrolling
plots of classification accuracy, RMS error, predictions etc.)

• plugin facility for allowing easy addition of new components to the Knowl-
edgeFlow

3

3 Components

Components available in the KnowledgeFlow:

3.1 DataSources

All of WEKA’s loaders are available.

3.2 DataSinks

All of WEKA’s savers are available.

3.3 Filters

All of WEKA’s filters are available.

3.4 Classifiers

All of WEKA’s classifiers are available.

3.5 Clusterers

All of WEKA’s clusterers are available.

4

3.6 Evaluation

• TrainingSetMaker - make a data set into a training set.

• TestSetMaker - make a data set into a test set.

• CrossValidationFoldMaker - split any data set, training set or test set into
folds.

• TrainTestSplitMaker - split any data set, training set or test set into a
training set and a test set.

• ClassAssigner - assign a column to be the class for any data set, training
set or test set.

• ClassValuePicker - choose a class value to be considered as the “posi-
tive” class. This is useful when generating data for ROC style curves (see
ModelPerformanceChart below and example 4.2).

• ClassifierPerformanceEvaluator - evaluate the performance of batch trained/tested
classifiers.

• IncrementalClassifierEvaluator - evaluate the performance of incremen-
tally trained classifiers.

• ClustererPerformanceEvaluator - evaluate the performance of batch trained/tested
clusterers.

• PredictionAppender - append classifier predictions to a test set. For dis-
crete class problems, can either append predicted class labels or probabil-
ity distributions.

5

3.7 Visualization

• DataVisualizer - component that can pop up a panel for visualizing data
in a single large 2D scatter plot.

• ScatterPlotMatrix - component that can pop up a panel containing a ma-
trix of small scatter plots (clicking on a small plot pops up a large scatter
plot).

• AttributeSummarizer - component that can pop up a panel containing a
matrix of histogram plots - one for each of the attributes in the input data.

• ModelPerformanceChart - component that can pop up a panel for visual-
izing threshold (i.e. ROC style) curves.

• TextViewer - component for showing textual data. Can show data sets,
classification performance statistics etc.

• GraphViewer - component that can pop up a panel for visualizing tree
based models.

• StripChart - component that can pop up a panel that displays a scrolling
plot of data (used for viewing the online performance of incremental clas-
sifiers).

6

4 Examples

4.1 Cross-validated J48

Setting up a flow to load an ARFF file (batch mode) and perform a cross-
validation using J48 (WEKA’s C4.5 implementation).

• Click on the DataSources tab and choose ArffLoader from the toolbar (the
mouse pointer will change to a cross hairs).

• Next place the ArffLoader component on the layout area by clicking some-
where on the layout (a copy of the ArffLoader icon will appear on the
layout area).

• Next specify an ARFF file to load by first right clicking the mouse over
the ArffLoader icon on the layout. A pop-up menu will appear. Select
Configure under Edit in the list from this menu and browse to the location
of your ARFF file.

• Next click the Evaluation tab at the top of the window and choose the
ClassAssigner (allows you to choose which column to be the class) com-
ponent from the toolbar. Place this on the layout.

• Now connect the ArffLoader to the ClassAssigner: first right click over
the ArffLoader and select the dataSet under Connections in the menu.
A rubber band line will appear. Move the mouse over the ClassAssigner
component and left click - a red line labeled dataSet will connect the two
components.

• Next right click over the ClassAssigner and choose Configure from the
menu. This will pop up a window from which you can specify which
column is the class in your data (last is the default).

• Next grab a CrossValidationFoldMaker component from the Evaluation
toolbar and place it on the layout. Connect the ClassAssigner to the
CrossValidationFoldMaker by right clicking over ClassAssigner and se-
lecting dataSet from under Connections in the menu.

• Next click on the Classifiers tab at the top of the window and scroll along
the toolbar until you reach the J48 component in the trees section. Place
a J48 component on the layout.

7

• Connect the CrossValidationFoldMaker to J48 TWICE by first choosing
trainingSet and then testSet from the pop-up menu for the CrossValida-
tionFoldMaker.

• Next go back to the Evaluation tab and place a ClassifierPerformanceE-

valuator component on the layout. Connect J48 to this component by
selecting the batchClassifier entry from the pop-up menu for J48.

• Next go to the Visualization toolbar and place a TextViewer compo-
nent on the layout. Connect the ClassifierPerformanceEvaluator to the
TextViewer by selecting the text entry from the pop-up menu for Classi-
fierPerformanceEvaluator.

• Now start the flow executing by selecting Start loading from the pop-up
menu for ArffLoader. Depending on how big the data set is and how long
cross-validation takes you will see some animation from some of the icons
in the layout (J48’s tree will grow in the icon and the ticks will animate
on the ClassifierPerformanceEvaluator). You will also see some progress
information in the Status bar and Log at the bottom of the window.

When finished you can view the results by choosing Show results from the
pop-up menu for the TextViewer component.

Other cool things to add to this flow: connect a TextViewer and/or a
GraphViewer to J48 in order to view the textual or graphical representations of
the trees produced for each fold of the cross validation (this is something that
is not possible in the Explorer).

8

4.2 Plotting multiple ROC curves

The KnowledgeFlow can draw multiple ROC curves in the same plot window,
something that the Explorer cannot do. In this example we use J48 and Ran-

domForest as classifiers. This example can be found on the WekaWiki as well
[4].

• Click on the DataSources tab and choose ArffLoader from the toolbar (the
mouse pointer will change to a cross hairs).

• Next place the ArffLoader component on the layout area by clicking some-
where on the layout (a copy of the ArffLoader icon will appear on the
layout area).

• Next specify an ARFF file to load by first right clicking the mouse over
the ArffLoader icon on the layout. A pop-up menu will appear. Select
Configure under Edit in the list from this menu and browse to the location
of your ARFF file.

• Next click the Evaluation tab at the top of the window and choose the
ClassAssigner (allows you to choose which column to be the class) com-
ponent from the toolbar. Place this on the layout.

• Now connect the ArffLoader to the ClassAssigner: first right click over
the ArffLoader and select the dataSet under Connections in the menu.
A rubber band line will appear. Move the mouse over the ClassAssigner
component and left click - a red line labeled dataSet will connect the two
components.

• Next right click over the ClassAssigner and choose Configure from the
menu. This will pop up a window from which you can specify which
column is the class in your data (last is the default).

• Next choose the ClassValuePicker (allows you to choose which class label
to be evaluated in the ROC) component from the toolbar. Place this
on the layout and right click over ClassAssigner and select dataSet from
under Connections in the menu and connect it with the ClassValuePicker.

• Next grab a CrossValidationFoldMaker component from the Evaluation
toolbar and place it on the layout. Connect the ClassAssigner to the
CrossValidationFoldMaker by right clicking over ClassAssigner and se-
lecting dataSet from under Connections in the menu.

9

• Next click on the Classifiers tab at the top of the window and scroll along
the toolbar until you reach the J48 component in the trees section. Place
a J48 component on the layout.

• Connect the CrossValidationFoldMaker to J48 TWICE by first choosing
trainingSet and then testSet from the pop-up menu for the CrossValida-
tionFoldMaker.

• Repeat these two steps with the RandomForest classifier.

• Next go back to the Evaluation tab and place a ClassifierPerformanceE-

valuator component on the layout. Connect J48 to this component by
selecting the batchClassifier entry from the pop-up menu for J48. Add
another ClassifierPerformanceEvaluator for RandomForest and connect
them via batchClassifier as well.

• Next go to the Visualization toolbar and place a ModelPerformanceChart

component on the layout. Connect both ClassifierPerformanceEvaluators
to the ModelPerformanceChart by selecting the thresholdData entry from
the pop-up menu for ClassifierPerformanceEvaluator.

• Now start the flow executing by selecting Start loading from the pop-up
menu for ArffLoader. Depending on how big the data set is and how long
cross validation takes you will see some animation from some of the icons
in the layout. You will also see some progress information in the Status

bar and Log at the bottom of the window.

• Select Show plot from the popup-menu of the ModelPerformanceChart

under the Actions section.

Here are the two ROC curves generated from the UCI dataset credit-g, eval-
uated on the class label good :

10

4.3 Processing data incrementally

Some classifiers, clusterers and filters in Weka can handle data incrementally
in a streaming fashion. Here is an example of training and testing naive Bayes

incrementally. The results are sent to a TextViewer and predictions are plotted
by a StripChart component.

• Click on the DataSources tab and choose ArffLoader from the toolbar (the
mouse pointer will change to a cross hairs).

• Next place the ArffLoader component on the layout area by clicking some-
where on the layout (a copy of the ArffLoader icon will appear on the
layout area).

• Next specify an ARFF file to load by first right clicking the mouse over
the ArffLoader icon on the layout. A pop-up menu will appear. Select
Configure under Edit in the list from this menu and browse to the location
of your ARFF file.

• Next click the Evaluation tab at the top of the window and choose the
ClassAssigner (allows you to choose which column to be the class) com-
ponent from the toolbar. Place this on the layout.

• Now connect the ArffLoader to the ClassAssigner: first right click over
the ArffLoader and select the dataSet under Connections in the menu.
A rubber band line will appear. Move the mouse over the ClassAssigner
component and left click - a red line labeled dataSet will connect the two
components.

• Next right click over the ClassAssigner and choose Configure from the
menu. This will pop up a window from which you can specify which
column is the class in your data (last is the default).

• Now grab a NaiveBayesUpdateable component from the bayes section of
the Classifiers panel and place it on the layout.

• Next connect the ClassAssigner to NaiveBayesUpdateable using a instance

connection.

• Next place an IncrementalClassiferEvaluator from the Evaluation panel
onto the layout and connect NaiveBayesUpdateable to it using a incre-

mentalClassifier connection.

11

• Next place a TextViewer component from the Visualization panel on the
Layout. Connect the IncrementalClassifierEvaluator to it using a text

connection.

• Next place a StripChart component from the Visualization panel on the
layout and connect IncrementalClassifierEvaluator to it using a chart con-
nection.

• Display the StripChart’s chart by right-clicking over it and choosing Show

chart from the pop-up menu. Note: the StripChart can be configured
with options that control how often data points and labels are displayed.

• Finally, start the flow by right-clicking over the ArffLoader and selecting
Start loading from the pop-up menu.

Note that, in this example, a prediction is obtained from naive Bayes for each
incoming instance before the classifier is trained (updated) with the instance.
If you have a pre-trained classifier, you can specify that the classifier not be
updated on incoming instances by unselecting the check box in the configuration
dialog for the classifier. If the pre-trained classifier is a batch classifier (i.e. it
is not capable of incremental training) then you will only be able to test it in
an incremental fashion.

12

5 Plugin Facility

The KnowledgeFlow offers the ability to easily add new components via a plugin
mechanism. Plugins are installed in a directory called .knowledgeFlow/plugins

in the user’s home directory. If this directory does not exist you must create
it in order to install plugins. Plugins are installed in subdirectories of the
.knowledgeFlow/plugins directory. More than one plugin component may
reside in the same subdirectory. Each subdirectory should contain jar file(s)
that contain and support the plugin components. The KnowledgeFlow will dy-
namically load jar files and add them to the classpath. In order to tell the
KnowledgeFlow which classes in the jar files to instantiate as components, a
second file called Beans.props needs to be created and placed into each plu-
gin subdirectory. This file contains a list of fully qualified class names to be
instantiated. Successfully instantiated components will appear in a “Plugins”
tab in the KnowledgeFlow user interface.Below is an example plugin directory
listing, the listing of the contents of the jar file and the contents of the associated
Beans.props file:

cygnus:~ mhall$ ls -l $HOME/.knowledgeFlow/plugins/kettle/

total 24

-rw-r--r-- 1 mhall mhall 117 20 Feb 10:56 Beans.props

-rw-r--r-- 1 mhall mhall 8047 20 Feb 14:01 kettleKF.jar

cygnus:~ mhall$ jar tvf /Users/mhall/.knowledgeFlow/plugins/kettle/kettleKF.jar

0 Wed Feb 20 14:01:34 NZDT 2008 META-INF/

70 Wed Feb 20 14:01:34 NZDT 2008 META-INF/MANIFEST.MF

0 Tue Feb 19 14:59:08 NZDT 2008 weka/

0 Tue Feb 19 14:59:08 NZDT 2008 weka/gui/

0 Wed Feb 20 13:55:52 NZDT 2008 weka/gui/beans/

0 Wed Feb 20 13:56:36 NZDT 2008 weka/gui/beans/icons/

2812 Wed Feb 20 14:01:20 NZDT 2008 weka/gui/beans/icons/KettleInput.gif

2812 Wed Feb 20 14:01:18 NZDT 2008 weka/gui/beans/icons/KettleInput_animated.gif

1839 Wed Feb 20 13:59:08 NZDT 2008 weka/gui/beans/KettleInput.class

174 Tue Feb 19 15:27:24 NZDT 2008 weka/gui/beans/KettleInputBeanInfo.class

cygnus:~ mhall$ more /Users/mhall/.knowledgeFlow/plugins/kettle/Beans.props

Specifies the tools to go into the Plugins toolbar

weka.gui.beans.KnowledgeFlow.Plugins=weka.gui.beans.KettleInput

13

References

[1] Witten, I.H. and Frank, E. (2005) Data Mining: Practical machine learn-

ing tools and techniques. 2nd edition Morgan Kaufmann, San Francisco.

[2] WekaDoc – http://weka.sourceforge.net/wekadoc/

[3] WekaWiki – http://weka.sourceforge.net/wekawiki/

[4] Plotting multiple ROC curves on WekaWiki –
http://weka.sourceforge.net/wiki/index.php/Plotting multiple ROC curves

14

