
Personalizing E-commerce Applications
with On-line Heuristic Decision Making

Vinod Anupam Richard Hull Bharat Kumar
Bell Labs, Lucent Technologies

600 Mountain Avenue
Murray Hill, NJ 07974

fanupam,hull,bharatg@lucent.com

ABSTRACT
This paper describes new technology based on on-line deci-
sion support for providing personalized customer treatments
in web-based storefronts and information sites. The central
improvement over existing systems is a new paradigm for
specifying decisions, based on a language that incorporates

owchart constructs, rules-based constructs, and a variety of
specialized constructs to facilitate reasoning based on heuris-
tics and partial information. Reports about decisions made
by a program in this language have structure that is concep-
tually close to the structure of that program. This makes
it easy for business analysts and managers to tune the pro-
grams to enhance business performance.
To illustrate the bene�ts of our approach this paper de-

scribes the May-I-Help-You (MIHU) prototype system, that
monitors a customer's progress through a web storefront,
and may choose to proactively intervene in order to help
close a sale. The intervention might o�er a discount or pro-
motion, or give the customer a \May I Help You" window,
that o�ers an opportunity to have text chat, voice chat,
and/or escorted browsing with a Customer Service Repre-
sentative (CSR). In MIHU, the decision about whether to
o�er live assistance is fully automated, taking into account
not only the business value of a given customer interaction,
but also the current availability of CSRs to help realize this
opportunity.

Keywords
B2C E-commerce, personalization, pro-active intervention,
Vortex rules system

1. INTRODUCTION
The advent of e-commerce is forcing radical changes to

the landscape of marketing and customer care. Customers
are demanding increased
exibility and convenience in ac-
cessing information about products, in ordering them, and

Copyright is held by the author/owner.
WWW10 May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

obtaining service for them. At the same time, businesses
are attempting to support (a) \segment of one" market-
ing and service to large masses of people [18, 20], including
intelligent targeted advertising, and intelligent mechanisms
to identify and take advantage of pro�table and loyal cus-
tomers; and (b) meaningful dialogues with customers so that
quality of service can be improved before customers switch
to a competitor. These needs are not restricted to B2C e-
commerce; web-sites in B2B e-commerce that are accessed
by employees of a business must also provide e�ective, per-
sonalized service. This paper introduces a new approach to
personalizing web-based e-commerce sites called DFP (De-
cision Flow Personalization), that is based on the use of
on-line decision support. A central contribution is the use
of a novel language for specifying decisions, that supports

owchart constructs and a specialized construct called \De-
cision Flow", that combines rules-based constructs and a va-
riety of specialized constructs to facilitate reasoning based
on both heuristics and partial information. The DFP ap-
proach is illustrated here by describing the MIHU (May-
I-Help-You) prototype system, that proactively o�ers live
assistance to web storefront customers.
A fundamental challenge in supporting personalization

through on-line decision support is to create a high-level
language for specifying decisions that supports sophisticated
reasoning but which at the same time is accessible to busi-
ness analysts and managers. As a starting point for our
work, we interviewed business experts on customer care and
personalization to understand the features that they need
from a decision support language. The following require-
ments were determined:

(a) Ability to use both formal (e.g., chaining of rules) and
heuristic (e.g., giving scores based on ad hoc combina-
tions of various factors) styles of reasoning;

(b) Ability to use rules where appropriate, and to use

owchart constructs where appropriate;

(c) Ability to work with partial and/or incomplete infor-
mation;

(d) Possibility for hierarchical, modular structuring;

(e) Ability to bring in outside information (e.g., access to
customer pro�les, the results of bulk statistical analy-
sis);

(f) Ability to invoke side-e�ect functions (e.g., database
updates, triggering work
ows).

296

(g) A clear and intuitively natural semantics;

(h) A natural correspondence between reports on decisions
made and the structure of how the decisions are speci-
�ed (i.e., primarily the structure of the rule sets); and

(i) The language can be \owned" or controlled by business
analysts and managers, without relying on program-
mers that translate the decision speci�cations into a
highly technical format.

Some additional systems requirements were determined:

(j) The on-line decision engine should permit changes to
decision speci�cations with no interruption in service;
and

(k) User-friendly authoring of decision policies, including
rules.

As detailed in Section 5, the rules-based decision speci�ca-
tion languages used in existing approaches for e-commerce
personalization (e.g., Manna [15], Blaze [2]) satisfy some
but not all of these requirements because of their limited
expressive power, and other approaches to decision spec-
i�cation (e.g., expert systems, logic programming) fail to
satisfy some of the requirements because they are too rich.
To �ll this void we use a new paradigm for specifying de-

cisions, called Vortex. An early version of this paradigm is
described in [12], where the focus was on the
exible spec-
i�cation of work
ows that incorporated business heuristics.
Central to the Vortex paradigm is the notion of \Decision
Flow", which is a novel combination of rules constructs and
work
ow-like constructs. As detailed in Section 3, in a De-
cision Flow the emphasis is on computing attribute values.
Some of these are targets of the decision (e.g., should a dis-
count be o�ered to a customer) and others are intermediate
to the decision (e.g., the likelihood that this customer will
leave the site before completing the deal). Rules may be
used to compute the values of individual attributes, and
rules may be used to control what attributes are to be com-
puted. (For example, attributes not relevant to a speci�c
decision can be ignored.) Reports about decisions made can
show the values of the target and intermediate attributes,
and have structure close to the structure of the Decision
Flow.
Decision Flows permit complex reasoning about a broad

array of data about web sessions and customers. To take full
advantage of this it is important to have access to rich in-
formation about the pages a customer is visiting, including
the underlying intent of the pages (e.g., is it a catalog page,
an instructions page, a shopping cart page) and the content
delivered in them (e.g., what is the quality of a search re-
sult). Section 4 outlines and compares di�erent approaches
for gaining access to that information.
To illustrate the core technology and bene�ts of DFP

this paper introduces the May-I-Help-You (MIHU) proto-
type system. This system is aimed at reducing the number
of abandoned e-commerce transactions. Industry statistics
[7] indicate that in the U.S. market, for every online B2C
transaction that is completed there are nearly four times as
many that are abandoned. Further, 7.8% of the abandoned
transactions could be converted into sales by using live Cus-
tomer Service Representative (CSR) interaction. This trans-
lated into $6.1 billion in lost e-commerce sales in 1999, and

could lead to a cumulative loss of more than $173 billion in
the subsequent 5-year period.
The MIHU systemmonitors a customer's progress through

a web storefront, and uses stored and real-time information
to infer values such as the current business value of the ses-
sion and the frustration level of the customer. The MIHU
system can proactively o�er the customer discounts or tar-
geted promotions. Further, the MIHU system can o�er the
customer a \May I Help You" window, which invites the
customer to interact with a Customer Service Representa-
tive (CSR), through text chat, voice chat, and/or escorted
web browsing. The decision server accesses both stored in-
formation and real-time information, including the current
availability of, and load on, the CSRs.
Lucent Technologies is developing a product, called Con-

tact Assist, that will support the functionality of the MIHU
prototype system, including both an engine based on Vortex
and a
exible mechanism for gathering information from a
web server. Contact Assist will be available in mid 2001.
The DFP approach can be used in a wide variety of e-

commerce applications involving personalization and cus-
tomization, including the o�ering of carefully targeted pro-
motions and discounts, helping with navigation through cat-
alogs or self-help material, guiding a customer through an
ordering process, and conducting automated dialogues with
the customer. It can also be used in non-commercial web-
based applications, including context-aware searching tools
and automated customization of portals.

Organization. As noted above, the MIHU system will be
used to illustrate the main features of our approach. For
this reason, we begin in Section 2 by describing the MIHU
system at a high level. Section 3 describes the Vortex and
Decision Flow paradigms and illustrates their use in connec-
tion with the MIHU system. Section 4 describes approaches
for incorporating on-line decision servers, such as Vortex,
into web-based e-commerce sites. Section 5 considers re-
lated work. Section 6 discusses future research directions.

2. EXAMPLE APPLICATION: MAY I HELP
YOU

In a department store, customers are free to browse. In
a good department store, a salesperson will sometimes ap-
proach customers with the gentle question \May I help you?".
In an excellent department store the timing and manner in
which this question is asked is guided largely by the browsing
behavior of the customer. The May-I-Help-You (MIHU) sys-
tem provides a functionality for web-based storefronts that
is analogous to this kind of service in excellent department
stores. The MIHU system has an important advantage over
a department store salesperson, which is that many busi-
nesses know the identity of customers during their visits on
the web.
MIHU is a Customer Relationship Management system

that interfaces to a business' web storefront. MIHU can keep
track the interaction of a customer with the storefront. To
be more speci�c, using the high-level Vortex language busi-
ness analysts and managers can program the MIHU system
to use customer interaction information (e.g., shopping cart
content, sequence of pages visited), coupled with informa-
tion available in enterprise databases (e.g. customer pro�le,
contact history, current orders, and results from o�-line deci-
sion support tools) to build a model of the customer and the

297

web
client

web
server

on-line
decision
engine

enterprise
data

web
client

Customer Customer
Service

Representative
“Normal” interaction of
customer with web storefront
with decision for each page

On-line decision engine decides
to ask “May I help you?” The
offered help may be live or automated.

If customer says yes to live help, then
 -- decision engine assigns a CSR
 -- system sends relevant data to CSR
 -- system enables text chat, escorted
 browsing, and/or voice connection

Business
Analyst/
Manager

Reporting and
Tuning

“May I help you?”

“Yes”

Business analyst/manager
 -- monitors decisions being made
 -- tunes decision flows for business
 performance

Figure 1: Overview of MIHU functionality

current interaction. Based on the individual characteristics
of each customer interaction, MIHU may choose to present
to the customer an icon or window o�ering help relevant to
the current context. This help might be automated, or it
might be an o�er to chat with a live Customer Service Rep-
resentative (CSR). In the �rst case, if the customer takes
up the o�er (e.g., by clicking on the icon or window), then
appropriate context-dependent information will be delivered
to the customer. In the second case, a CSR will be assigned,
appropriate information will be forwarded to that CSR, and
some kind of interaction with the customer will be initiated.
Of course, providing live CSR help with an interactive ses-
sion brings with it the opportunity to help close the sale,
and also the opportunity to attempt cross-sells or up-sells.
Figure 1 summarizes the operation of the MIHU system.

There are four phases or aspects to the operation. In the �rst
phase (shown with lines having small dots) a customer has
\normal" interaction with the web store-front. In particu-
lar, the web server supporting the store-front presents pages
to the customer's web client, and the customer �lls in blanks
and submits page requests to the server. However, before
the web server presents a new page to the customer, the
on-line decision engine is asked whether or not the customer
should be presented with the \May I Help You" option (or
some other optional assistance or customer service such as a
targeted discount). The decision server can access informa-
tion about the customer's current web session (e.g., pages
visited, shopping cart contents), and may access data from
an enterprise database (including results from o�-line deci-
sion support systems). The decision server may also gather
information from decision engines using alternate reasoning
paradigms, such as an expert system or, e.g., a specialized
system for determining customer preferences.
The second phase (shown with lines having large dots)

occurs if and when the decision engine determines that the
customer should be given the MIHU option. In that case,
the web server presents to the customer's client an applet

that asks whether the customer would like assistance from
a CSR.
The third phase (shown with lines having short and long

dashes) arises if the customer does want assistance. In that
case, some or all of three forms of interaction can be es-
tablished between customer and CSR: voice conversation,
text chat, and \escorted" or \collaborative" web browsing
(where the CSR can select a URL and both the CSR and
customer clients go to that URL, or visa-versa).
The fourth phase (shown with lines long dashes) occurs in

parallel with the other ones, and at a more deliberate pace.
This stage involves tuning for business performance, i.e., the
continued examination of the decisions made for the web-
storefront, with the ultimate goal of making improvements
on the underlying decision policies. As will be described
below, novel aspects of the Vortex language make it possible
to quickly modify a Vortex program in order to achieve a
desired e�ect.
At a super�cial level, it might seem that since the MIHU

system monitors a customer's progress through a web site,
and peeks at the interaction between her and the web site,
there are serious privacy issues involved here. However, this
is not the case since the MIHU system is not getting any ex-
tra information that is not already available to the web site.
However, it might be a good idea to let the customer know
that such monitoring might be going on (e.g., by allowing
her to opt-in when she registers with the site).

3. VORTEX AND DECISION FLOWS
This section presents a detailed introduction the Vortex

language using the MIHU example, indicates how Vortex
satis�es the requirements given in the Introduction, and de-
scribes the engine for executing Vortex programs. Some for-
mal details about the Vortex language are beyond the scope
of this paper, but may be found in [12].
In the current version of Vortex, programs are essentially

owcharts that may include one or more specialized nodes

298

determine
frustration

scoretrue

determine MIHU score

true

offer
MIHU

true

MIHU override
score

true
MIHU score

(combines MIHU score,
 MIHU override score,
 and agent load)

(combines current business value,
 frustration score, opportunity score)

(allows for simple “overrides”
 of MIHU score, e.g.,
 if leather coat gets
 into shopping cart
 then contribute 90)

determine
agent load

true

determine whether to offer MIHU

every third page,
unless business

value > 70

true

current
business

value

MIHU has not
been offered

yet

MIHU DecisionFlow

determine
opportunity

scoretrue

Source attributes: Customer ID, Customer Profile, Pages visited, Shopping cart, . . .

Target attributes: offer MIHU, frustration score, . . .

Figure 2: Representative Decision Flow for making MIHU decision (using informal syntax)

which contain \Decision Flows". Since
owchart constructs
are well understood, we focus here on Decision Flows.

3.1 Vortex Decision Flows
The Decision Flow paradigm was developed for specify-

ing complex reasoning that may involve partial informa-
tion, heuristics, and multiple styles of combining informa-
tion. A key criterion in the development of the paradigm
was that users other than computer scientists (e.g., busi-
ness managers, policy analysts, domain experts) should be
able to understand the speci�cations of how decisions will
be made, and in some cases be able to modify the speci�ca-
tions directly. Decision Flows support a form of incremen-
tal decision-making, that can easily incorporate a myriad of
business and other factors, and specify the relative weights
they should be given. Decision Flows support a rule-based
style of specifying decision policies, and are more expressive
than decision trees and traditional business rule systems.
However, Decision Flows are less expressive than conven-
tional expert systems as a result of a novel approach to
structuring the rule set underlying a Decision Flow. This
helps to simplify explanations of how a decision is made,
and reduces the \ripple e�ect" that often arises from modi-
�cations to programs written in with expert systems or logic
programming languages.
We brie
y illustrate some of the basic Decision Flow con-

structs using Figures 2 and 4, which give a high-level picture
of a representative Decision Flow that can be used for mak-
ing the MIHU decision. In the MIHU prototype, a Decision
Flow like this would be one node of a
owchart which is
executed for each page that is served to a customer. For
example, this outer
owchart might operate as follows: (a)
test whether the page indicates a new session or is the con-
tinuation of an active session, (b) if a continuation then
retrieve information (from a main memory database or in-
ternal data structure) about previous pages of the session
(c) possibly get customer pro�le information, (d) execute a

Decision Flow that decides whether to make an automated
intervention, and (e) inform the web server about the deci-
sion made.
The two Decision Flow �gures show rules and conditions

using an informal, pidgin syntax. In the text-based version
of Vortex, the syntax for conditions and terms is close to the
C language. A GUI is provided for Vortex programmers,
including wizards to help with rule construction, query con-
struction, and the like.
Decision Flows are attribute-centric. In particular, a De-

cision Flow speci�cation has source attributes or input pa-
rameters; in the example these hold information about the
customer identi�cation, customer pro�le and current ses-
sion. The speci�cation also includes a family of derived at-
tributes, which may be evaluated during execution. Some of
the derived attributes will be target, and embody the output
of a Decision Flow; in the example this includes a boolean
indicating whether to o�er the MIHU functionality, and ad-
ditional attributes giving characteristics of a session. The
current prototype Vortex system supports data types asso-
ciated with relational databases, namely scalars, tuples of
scalars, lists of scalars, and lists of tuples of scalars. (We
expect to incorporate XML data in the next round.)
The Decision Flow of Figure 2 shows individual attributes

using hexagons (e.g., current business score, offer MIHU),
and modules using rounded-corner boxes (e.g., determine
MIHU score, determine frustration score). A hexagon
node may contain rules that specify how an attribute is to
be computed; this will be described below in Subsection
3.2. External functions such as database queries, calls to a
heavy-weight decision support system (e.g., an expert sys-
tem), or side-e�ect functions (e.g., database updates, trig-
gering work
ows) can also be included. The modules may
be hierarchically organized, and may contain other modules,
hexagons, and external functions.
We now use Figure 3 to explain intuitively how the MIHU

Decision Flow operates. This �gure shows a report present-

299

Session ID Page Business Frustration Opportunity MIHU Override CSR O�er
Value Score Score score Score Load MIHU

250 1 70 6 0 46 0 80 false
250 2 70 14 0 54 0 81 false
250 3 70 20 0 60 0 81 false
250 4 70 24 0 64 0 79 false
250 5 85 8 51 83 0 78 true

282 1 40 6 0 25 0 83 false
282 2 40 { { { 0 82 false
282 3 57 { { { 90 82 true
282 4 57 16 29 43 { { {
282 5 57 { { { { { {
282 6 71 19 37 58 { { {
282 7 71 25 48 58 { { {

Figure 3: Data from report on MIHU decisions

ing some representative decisions reached by the decision
engine. The columns of this report correspond to some of
the most important attributes of the Decision Flow, and
each row corresponds to a single execution of the Decision
Flow. During a single execution, the value of offer MIHU is
based on three intermediate attributes: MIHU score, MIHU
override score, and CSR load. In the example, if either
of the scores is � CSR load, then the MIHU functionality is
o�ered.
The MIHU score attribute is based on other intermediate

attributes, which focus on the current business value of the
customer and session, on the estimated frustration level of
the customer, and on the estimated opportunity for mak-
ing money from the customer (either by encouraging the
customer to purchase the contents of the shopping cart, or
through a cross-sell or up-sell). The frustration score and
opportunity scores in turn depend on additional intermedi-
ate attributes.
Referring to Figure 3, the �rst �ve rows of Figure 3 show

how the di�erent scoring attributes might vary over a user
session. We assume in this example that the customer vis-
ited 5 pages, and placed something in the shopping cart
when sending the 4th page back to the web storefront. In the
Decision Flow used to generate this example, frustration
score goes up, except when the customer places something
in the shopping cart. The intuition here is that customer
frustration goes down if there is a feeling of progress, e.g.,
after several searches a product is found and put in the shop-
ping cart. On the other hand, the opportunity score gen-
erally goes up when something goes into the shopping cart,
both because there is something in the shopping cart, and in
some cases there are possibilities for cross-sells and up-sells.
Of course, the speci�c behavior of the attributes in a

Decision Flow is determined by the business analysts and
managers who program it. As a result, the Decision Flow
for MIHU described here can be adapted to encompass any
principles and heuristics that a business manager wants.
A key feature of Decision Flows is the use of enabling

conditions or guards on the execution of attributes, mod-
ules, and external functions. For example, determine MIHU
score has as enabling condition, expressed informally, that
the module will be executed if the current business value
is > 70, and otherwise on every third page of the web ses-

sion. Likewise, determine whether to offer MIHU will be
executed only if the MIHU option has not yet been o�ered
to the customer.
Session 282 in Figure 3 illustrates how the enabling condi-

tion on determine MIHU score impacts Decision Flow ex-
ecutions. In this session the current business value is
� 70, and so the determine MIHU score is not executed on
the 2nd, 3rd or 5th pages. On the 6th page the current
business value goes above 70. So determine MIHU score
is computed for the 6th and 7th page.
Enabling conditions are useful in at least three contexts:

(a) to permit savings on resource usage (as just illustrated);
(b) to avoid the computation of irrelevant attributes (e.g.,
once MIHU has been o�ered there is no need to compute
offer MIHU); and (c) to indicate which attributes should be
ignored if a realtime constraint is about to be violated.
What happens if an attribute that has been disabled is re-

ferred to by the computation of some other attribute? One
design principle of Decision Flows is that any attribute may
have null value, and that any attribute computation must be
able to work with null inputs. This is motivated in part by
the observation that data retrieval over a network is not re-
liable, and that many decisions must be made using partial
information. Suppose in the example that the MIHU option
has not been o�ered yet. Even if the module determine
MIHU score is disabled, i.e., not evaluated, the rest of the
Decision Flow will be executed, and a �nal value for offer
MIHU will be obtained. The condition language used in Deci-
sion Flows can test whether an attribute has been disabled
(i.e., the enabling condition is false). Importantly, both the
condition language and the attribute computation language
used in Decision Flows were designed to work in the context
of partial information and null values (see [12]).
As detailed in [12], a declarative semantics is associated

with Decision Flows. Under this semantics Decision Flows
are viewed as input-output devices, which map a given set
of source attribute values (and an underlying environment,
such as any databases accessed) to a given set of target at-
tribute values. It turns out that given a set of source at-
tribute values (and a �xed underlying environment), a well-
formed Decision Flow uniquely determines the values of the
target attributes. A key factor in achieving this declara-
tive semantics is that Decision Flows must satisfy a certain

300

determine
frustration

score

Determine MIHU score

MIHU
 override

score
determine
agent load

Determine whether to offer MIHU
offer
MIHU

MIHU score

MIHU DecisionFlow

determine opportunity score

. . .

current business value [0 to 100]
 Rules:

If green card
then contribute 40

If gold card
then contribute 70

If shopping cart not empty
then contribute 2 * (shopping cart profit)

If bought something in past 30 days
then contribute 20

. . . .
Combining Policy: sum of true rules

 40

 26

 20

 86

weighted promo list [list of record of < item, weight>]

if raincoat in shopping cart
then contribute < umbrella , 40 >

if shirt in shopping cart
then contribute < sweater , 30 >

if customer lives in sunny climate
then contribute < straw hat , 10 >

if customer lives in cold climate
then contribute < sweater , 10 >
. . . .

Combining Policy: sorted weighted sum

Rules:
<umbrella, 40 >

<sweater, 30>

<sweater, 20>

[<sweater, 50>,
 <umbrella, 40>]

current
business

value

weighted
promo list

Figure 4: Attribute Rules and Combining Policies in a Decision Flow

acyclicity property. In particular, a graph can be formed for
each moduleM , where the nodes are the top layer modules,
attributes, and external functions of M , and which contains
an edge from node A to node B if (i) [data
ow] an attribute
de�ned in A is used in the computation of B, or (ii) [enabling

ow] an attribute de�ned in A is used in the enabling condi-
tion of B. For a Decision Flow to be well-formed, this graph
must be acyclic for each module. In operational terms, the
acyclicity condition implies that there will not be race condi-
tions between di�erent attributes being evaluated. Further,
the acyclicity condition underlies our claim that Decision
Flows are easier to understand than expert systems, and
su�er less from the ripple e�ect.
There are three advantages to the declarative semantics

just outlined. First, the semantics provides a clear and un-
ambiguous meaning for Vortex Decision Flows. Second, peo-
ple developing Vortex Decision Flows can largely ignore
ow
of control issues, and focus instead on the business logic they
are trying to express. This provides a key di�erence between
Decision Flows and conventional
owcharts. (The Vortex
compiler will alert the user if the acyclicity condition is vi-
olated.) And third, the declarative semantics a�ords some
possibilities for optimizations, of both response time and
system throughput (see [11]).

3.2 Attribute Rules and Combining Policies
Another key feature of the Decision Flow paradigm is the

tremendous
exibility given to users when specifying how an
attribute should be computed. In addition to permitting ex-
ternal function calls (e.g., database dips, or calls to execute
in a di�erent decision support engine) the paradigm sup-
ports the use of attribute rules and combining policies. Two
simple illustrations are provided in Figure 4, which shows
the contents of the current business value and weighted
promo list attributes. As shown there, a family of rules
is associated with attribute current business value, each
potentially contributing a number. Numbers contributed by

rules with true condition are to be combined by summation.
In the example, rules contribute 40, 26 and 20, resulting in
�nal value 86.
The attribute weighted promo list illustrates a more in-

teresting combining policy. The output of this module will
hold a list of promo items, ordered according to how well
they �t the current situation. The individual rules con-
tribute ordered pairs, consisting of a promo item along with
a numeric weight (e.g., < umbrella, 40 >). As illustrated
by the second and fourth rules here, several rules might
contribute to the same promo item. The combining pol-
icy for this module is to group contributed pairs by promo
item, then add the weights for each promo item, and �nally
sort the list of resulting pairs according to the aggregated
weights.
More generally, the Decision Flow paradigm o�ers a broad

range of combining policies for aggregating the contributions
of a rule set. Other combining policies involving numbers
include maximum, minimum and average. As illustrated
with weighted promo list the contributed values and the
result may have structured type. In addition to supporting
a family of ad hoc combining policies, the system supports
an OQL-like [4] algebra for specifying customized combining
policies.
The presence of multiple combining policies permits the

use of di�erent styles of reasoning within the Decision Flow
paradigm. Decision Flows also support di�erent styles of
reasoning at a more granular level as well. We illustrate
this in connection with the attributes MIHU score and MIHU
override score. We have discussed how MIHU score in-
volves a deliberate derivation involving many factors. In
contrast, the attribute MIHU override score is computed
by an atomic node that includes collection of simple and
disjoint factors (e.g., that a particular item is in the shop-
ping cart, or that a certain page has been visited) and uses
as combining policy \maximum contributed value". If MIHU
override score is greater than CSR load then the MIHU

301

Vortex engine

Scheduler

Vortex Program
 Parser

Vortex Program
 Executor

Vortex
Program

Repository

All external events
(e.g., new decision
requests)

Vortex
program
in ASCII

Parsing
status
(success, fail)

Vortex program
as internal data
structure

Request to
execute a
Vortex program,
with input data

Pointer to Vortex
program internal
data structures

Support
Functions

Internal events,
Vortex program
errors, exceptions

. . .

T
rig

g
er W

o
rkflo

w
s. .

E
n

terp
rise D

ata M
g

m
t. .

Responses to w
eb server

R
eporting data

Side-effect activities

Admin Server
Admin events
(new/modified
Vortex programs,
new/modified
support functions)

Request
Vortex

Program

Instance #1

Instance #N

Figure 5: High-level architecture of Vortex engine

option will be o�ered, and so each rule in MIHU override
score is analogous to a presidential veto or gubinatorial
pardon. For example, in the second session of Figure 3 the
MIHU override score goes to 90 on the 3rd page, perhaps
because a leather coat was placed into the shopping cart;
and this triggers the o�er of MIHU.

3.3 Miscellaneous
This subsection gives added details about the Vortex sys-

tem, and reviews it in light of the requirements given in the
Introduction.
We have already seen from the preceding discussion that

the Vortex language satis�es requirements (a) through (g).
Turning to requirement (h), the \attribute-centric" na-

ture of Decision Flows makes possible reports about how or
why decisions were made are conceptually close to the De-
cision Flow speci�cation. In particular, reports such as in
Figure 3 can be created using some or all of the attributes
derived by the Decision Flow. Given a family of decisions,
a user can inspect this report (either manually or using au-
tomated techniques such as regression analysis or data min-
ing) to see whether the various attributes and criteria are
given appropriate emphasis. If anomalies are found, then
it is relatively easy to �nd the corresponding places in the
Decision Flow that should be modi�ed. Furthermore, we
expect that this close correspondence between reports and
Decision Flow structure will facilitate the development of
self-learning tools that will work on top of Vortex.
Decision Flows reveal the key factors involved in making

a decision or evaluation, and hide a substantial amount of
detail about the execution. In contrast, when specifying an
equivalent decision using a conventional
owchart or Petri
Net formalism, the key factors and logic are obscured by
the plumbing. In Decision Flows di�erent ways of executing
rules can co-exist; this contrasts with logic programming

languages and conventional expert systems, which have a
single execution semantics, and force the use of awkward
simulations if rules are to be combined in a di�erent way.
It is these considerations along with the correspondence be-
tween reports and the structure of Decision Flows that lead
us to believe that Vortex satis�es requirement (h).
We turn now to requirement (j). Figure 5 shows a high-

level architecture of the Vortex engine. Vortex programs are
input into the Administrative Server, which invokes a parser.
This checks that the program is well-formed and compiles it
into an internal data structure. When the program is to be
executed, i.e., when a decision is to be made based on given
input parameters, a copy of the data structure is created,
and that copy is then interpreted. As a result, the Vortex
program can be modi�ed, parsed, and complied into a (new)
internal data structure. The new data structure can then be
used for subsequent decisions. In this way, Vortex programs
can be modi�ed without bringing the engine down. For ef-
�ciency, the Vortex engine has been implemented in C++.
Furthermore, many of the speci�c operations of a Vortex
program (e.g., arithmetic comparisons, list manipulations,
external functions) are performed by \support functions",
which are compiled. Additional support functions can be
added to the engine without bringing it down.
With regards to requirement (k), a prototype GUI has

been implemented to support speci�cation of Vortex pro-
grams. A visual palette is provided for the Decision Flow
constructs; this has appearance similar to the images of Fig-
ures 2 and 4. Wizards are provided for building up
owchart
nodes, rules, attribute modules, database queries, etc.
The example MIHU Decision Flow described earlier is rel-

atively simple, in terms of the size of the Decision Flow and
the nature of the data being evaluated. We have developed
richer Decision Flows that involve many modules and over
50 attributes.

302

4. INTEGRATION WITH WEB SERVERS
The second key component of the DFP approach to web

personalization concerns creating a linkage between the on-
line decision server and the web server hosting a site. We
begin by discussing the kinds of information that need to
be passed back and forth between web server and decision
engine. We then consider di�erent ways to convey relevant
information to the decision engine, and to permit decisions
made to have impact on the web server.

4.1 Raw vs. Semantic Information
The DFP approach to web personalization is based on

providing relevant information to a sophisticated on-line de-
cision engine. This subsection distinguishes between the raw
data that can be obtained easily and higher-level semantic
information, such as used by the Decision Flow in the ex-
ample of Section 3.
At a minimum, the on-line decision engine should have

access to the following kinds of information. We are not
suggesting that all of this data will be used in each decision,
but that it should be available if deemed relevant.

(a) History of customer clicks: This includes not only the
web requests that the customer is making, but also the
the navigation path being followed around the site, the
times spent at each page, and the entries made into any
forms.

(b) Web server responses: The response of a web store-
front to a customer may be very important in under-
standing the customer experience. For example, to de-
termine frustration stemming from di�cult searches,
it is important to know about both the number of
searches performed and also the sizes of returned an-
swers.

(c) Enterprise data: A broad variety of stored information
may be useful to the personalization. At a minimum
this will include accessing information resulting from
bulk statistical analyses and information on inventory
and availability times. If the customer has been identi-
�ed then customer pro�les and recent customer histo-
ries can also be incorporated into the personalization
process.

There is also a higher, semantically rich kind of informa-
tion that can be helpful as input for the decision engine.
This will include information, for example, about the cat-
egory of page being accessed by the customer (e.g., search
request, search answer, catalog entry, shopping cart), or the
intent of a page (e.g., that it includes a promotion or indi-
cates that a certain catalog item is out of stock).
Indeed, an important part of installing a DFP system, or

any web personalization system using on-line decision sup-
port, will involve creating or determining a model of the web
site, that incorporates relevant models of customers, the in-
tent of their activities on the site, the business value of those
activities, indicators that a customer may abandon a trans-
action, etc. The example of Section 3 provides a starting
point for such a model, but a variety of other factors may
be brought into play. This model will be clearly visible in
the program driving the decision engine, and will help to
guide the kinds of information that need to be passed from
web server to decision engine.

There is a trade-o� between attempting to automatically
infer semantically rich information from the HTML passed
between customer and web server vs. manually incorporat-
ing that information into the web page generation so that it
can be obtained easily by the decision engine. Attempting to
infer this information automatically typically involves pars-
ing the HTML; it will involve the development of special-
purpose code and be computationally expensive. Further,
its success will depend on how direct and uniform the re-
lationship is between the actual HTML content of the web
pages and their intent. On the other hand, incorporating
code into the web page generation that captures the se-
mantically rich information puts an additional burden on
the web site developer, both at creation time and during
maintenance. A site such as Amazon or Yahoo could have
thousands of pages, some static, others generated dynami-
cally via server-side scripting languages such as ASP/JSP,
or CGI-scripts/servlets. It will be a huge e�ort to modify
all executable scripts to add the MIHU functionality.
Sophisticated web authoring environments such as Mi-

crosoft's FrontPage or Allaire's ColdFusion Studio provide
hooks so that web site authors can easily incorporate seman-
tically rich information into the HTML generated by their
code. Thus it would be straightforward for site developers
to extract high-level semantic information to be passed to
the Vortex engine. However, if the site has not been built
using such tools, we expect that early adopters of our per-
sonalization technology will opt for parsing the HTML, and
will use only some of the information actually available.

4.2 Acquiring the Information
In this subsection, we examine �ve techniques of gather-

ing session information required for the decision engine, and
discuss their pros and cons. A summary is presented in Fig-
ure 6. It is expected that a combination of these techniques
will be required in a DFP toolkit, if it is to be deployed
to support personalization for a broad variety of web sites.
After presenting the techniques we make some general re-
marks.

Content generation scripts send high-level semantics
to decision engine. Assuming that all pages that need to
be tracked are generated via executable scripts/programs
(which is a reasonable assumption to make for large sites),
an obvious approach to obtaining meaningful semantic in-
formation would be to create or modify these scripts to
gather/create the desired information, and then pass it on
to the decision engine. The primary advantage of this ap-
proach is that the people developing the web pages will have
the best idea of the intended semantics of the pages, and thus
what the decision engine should receive. For this reason, we
expect this to be the approach of choice when creating new
web sites. Further advantages are that the actual HTTP re-
quests and responses do not need to be transformed/parsed,
and HTTPS connections can be handled. The primary dis-
advantage concerns legacy sites, where modifying all the ex-
isting scripts to generate the high level semantic data would
be quite expensive. Another disadvantage is that mainte-
nance of the site would become more cumbersome.
So how can the DFP approach be used in large legacy

web sites? In such cases, the only solution might be to try
and extract meaningful information from the raw HTTP
requests/responses. There are various ways to do so, some
of which we discuss below.

303

Strategy Converting HTTPS HTTP response HTTP response
legacy sites easy handled? transformation required parsing required

Content generation scripts send No Yes No No
high-level semantics to engine
Content generation scripts send Yes Yes No Yes
raw HTML to engine
Wrapper scripts Yes Yes Maybe Yes
Proxies Yes No No Yes
Web Server Extensions Yes Yes No No

Figure 6: Comparison of Web Interaction Monitoring Strategies

Content generation scripts send raw HTML to de-
cision engine. This is a variation of the approach men-
tioned earlier, however, in this case, only the raw HTTP
requests/responses are forwarded by the scripts. This can
be done by injecting the same (small) block of code into
the scripts that generate each and every page of the web
site. The advantage is that converting a legacy site to this
approach is straight-forward (assuming that it was imple-
mented with server-side scripting language such as JSP or
ASP), since the only function the extra piece of code per-
forms is to forward appropriate data (HTTP request and/or
response) to the decision engine. However, since the injected
code will be uniform and generic, it will not be able to ex-
tract high-level semantic information from each page. This
means that detailed knowledge of what information to ex-
tract for speci�c (categories of) pages, and how to extract
it, needs to be built, either in the decision engine or in some
other process. Depending on the level of information to be
extracted, this can cause maintenance problems anytime the
structure of the corresponding pages change. Moreover, this
approach is sensitive to the language and/or platform that
the web site is implemented in, e.g., if the CGI scripts are
based on C++ then it may be hard to know where to inject
the code block, making the approach infeasible.

Wrapper scripts. The idea here is that the web server can
be con�gured so that all web requests and responses (that
need to be tracked) are �ltered through executable scripts
that perform the task of extracting the relevant information
and contacting the Vortex server to determine the appropri-
ate response. Note that these wrapper scripts could reside
on the web server(s) that are supporting page requests, or
could reside on separate machines. As opposed to the pre-
vious approaches, the advantage in this scenario is that the
actual content generation is not a�ected | this method is
simply layered on top. Moreover, HTTPS connections can
be handled, since the wrapper script gets the customer re-
quest after it is decrypted by the server, and parses the
response before it is encrypted and sent to the client. A
disadvantage is that HTML pages being served would need
to be transformed, since the links/forms/frames in existing
pages now need to go through the wrapper, whereas other
objects (e.g., pre-loaded images via Javascript) need to be
accessed directly. However, it can be hard to automatically
transform all underlying pages, especially if a lot of des-
tination URL computation is done inside client-side script
code, which would require the wrapper to parse the corre-
sponding scripting language. Also, HTML pages input to
the wrapper would need to be parsed and translated into
higher level semantic information, either by the wrapper or

the decision engine. Finally, session tracking information
may be lost under this approach, if the web server is using
a cookie-based scheme that tracks sessions for some but not
all of the web site pages. In that case, replacing URLs so
that they access the wrapper scripts may disrupt the web
site's scheme for putting cookies at the customer site. To
remedy this, some re-writing of the web site scripts would
be required. However, this problem can be eliminated if the
web server allows URL re-direction based on customizable
rules. In that case, the customer could see the same URL
and no HTML re-writing would be required, hence session
tracking would not be a problem.

Proxies. A proxy can be inserted between a company's web
site and the end user. The proxy is responsible for tracking
user requests, extracting the site responses, and contacting
the decision server to determine the appropriate intervention
strategy. An advantage is that HTML page transformation
is not required. However, there are several disadvantages to
this approach. Firstly, if SSL tunneling is being used, then
the proxy will need to serve as the receiving end of the tun-
nel, and will need to perform encrypting/decrypting of the
web tra�c. Moreover, it would also need to extract higher
level semantic information from the HTML. Lastly, the use
of one or more proxies may have impact on scalability, be-
cause the proxy servers can become a bottleneck. It will be
important to have enough proxies to cover the anticipated
load on the web site.

Web Server Extensions. Most popular web servers
(Apache, Netscape Enterprise, Microsoft IIS) have an API
(Apache modules, Netscape's NSAPI, Microsoft's ISAPI)
that can be used to extend the functionality provided by the
server. In particular, these can be used to attach monitoring
hooks into the web server itself, thus gaining low-level access
to all web interactions. The advantage is that no transfor-
mation of HTML response being generated is required, and
secure connections can be handled. The disadvantages of
needing to extract higher-level semantic information from
HTML responses still applies. Moreover, writing server ex-
tensions is tricky (since they should not impact reliability
or scalability) and server speci�c.
We conclude this subsection with some general remarks

about these techniques and our experience with two of them.
We �rst consider session tracking. Three techniques are

commonly used for tracking a session in web sites: encod-
ing the session ID into the URLs sent and requested by
the customer, placing cookies on the customer machine, and
placing the session ID into a hidden form �eld. (The latter
technique requires that all pages transmitted to the user are
generated via form submissions.) In order for the decision

304

engine to know the session of a page request, the session ID
must be passed to the engine along with other page infor-
mation. The session ID can be sent explicitly, or it can be
sent as it occurs in the HTML of the requested page, and
the encoding scheme used by the web site can be used to
extract the session ID.
We now turn to the issue of scalability. In particular, how

do the above techniques work when a web site is supported
by a web server farm rather than a single web server? There
are two main issues. First, in the case of a web server farm
there may also need to be a farm of decision engines. Be-
cause the log of a given customer session will generally be
maintained in the main memory of a single decision engine,
it will be important that all decisions about that session
be made by the same decision engine, even if di�erent web
servers are being used to serve the pages. This can be ac-
complished by encoding the decision engine ID inside the
session ID. A load-balancing strategy can be implemented
to distribute customer sessions across the decision engines.
Furthermore, in applications such as MIHU, if all of the de-
cision engines reach saturation then the system can decide
for some customers that they will not receive any MIHU
decisions. This permits a graceful degradation of service in
the face of unexpectedly high load.
The second scalability issue concerns how the added ex-

pense of transmitting information from web server to deci-
sion engine will impact performance. In all cases except for
proxies, the processing involved in transmitting to the deci-
sion engine can be performed on the web server. Thus, each
server will be more loaded, but no architectural problems
arise. In the case of proxies (and wrapper scripts if they are
implemented on separate machines) there is a possibility of
the proxy becoming a bottleneck.
We have built two versions of the MIHU prototype at

Bell Labs, that explored some of the issues discussed above.
In the �rst case, we modi�ed the content generation CGI-
scripts used by the web site. In the second case, we wrote a
wrapper servlet. Here, actual request URLs were passed to
the wrapper servlet via its PATH INFO environment variable.
The servlet then performed the original request and parsed
the HTML response generated to extract the relevant infor-
mation. Before shipping the response to the customer, the
servlet also modi�ed the links/forms/frames in the page to
go through the servlet, and inserted a BASE tag that pointed
to the original URL so that any relative accesses (e.g., pre-
loaded images inside Javascript) would work. None of the
actual pages stored at the web site needed to be modi�ed.
Importantly, with any of the above monitoring methods

presented, the method can be phased into the site { e.g.,
initially the tracking can focus only on part of the site, and
only on part of the relevant data.

4.3 Impacting the Web Site
So far, we have focused on tracking the user experience

and using the on-line decision engine to recommend how the
customer experience should be impacted. We now consider
the kinds of recommendations that can be made, and how
they can be acted upon.
A natural kind of recommendation is the placement of

an icon or image on a page transmitted to the customer.
The image could either correspond to a promotion, or could
even o�er the customer live agent help (for web sites with
call centers). If the customer clicks on the image, the web

server could assign a live agent to interact with the customer.
These techniques are common in existing personalization ap-
proaches, and easily supported in our approach.
It is also possible for the decision engine to generate en-

tire pages or frames. For example, at Bell labs we have used
the Vortex engine to choose from a number of parameterized
page templates, and then choose values for the parameters.
In this way, simple automated conversations with the cus-
tomer can be performed. Extending this technique to sup-
port more complete, highly personalized generation of web
sites is an important direction, and will require the creation
of a rich development environment, and perhaps another
layer of abstraction on top of the current Vortex language.

5. RELATED WORK
This section compares the DFP approach with related

work, including other e-commerce personalization solutions,
other decision speci�cation paradigms, and �nally a system
that provides some aspects of the MIHU functionality.
Existing e-commerce personalization tools based on on-

line decision support use rules languages that are quite lim-
ited in expressive power. For example, Manna [15] provides
an event-condition-action rules language, where the actions
result in side e�ects outside of the rules system. There is
no chaining of rules, which limits the expressive power. For
example, it is not feasible in these systems to use a cluster of
rules to compute a business opportunity score, another clus-
ter of rules to compute a customer frustration score, and a
�nal cluster of rules that combines the two scores and other
information to select an appropriate action. The scripting
language of Blaze [2] provides
owchart constructs, where a
node in a
owchart may contain a set of rules. Inside such

owchart nodes there is no chaining of the rules. And so any
rule chaining that needs to be expressed is explicit in the use
of
owchart constructs between the rules nodes. As a result,
users must explicitly specify essentially all
ow of control for
the decision-making process. For complex decisions this is
too cumbersome for business analysts and managers.
What about using some other, existing decision speci�ca-

tion system to support e-commerce personalization? Deci-
sion trees are too con�ning in their logic. Logic program-
ming [14], including variants that incorporate negation (e.g.,
[21, 10]), while Turing complete, is both too expressive (be-
cause it is hard to develop reports that easily explain how
decisions are reached) and too con�ning (because it forces a
single semantics for combining rules which makes it hard to
directly express both formal and heuristic styles of reason-
ing). Expert systems (e.g., OPS5 [3]) are also too expressive,
because it is di�cult to explain how decisions are reached,
and di�cult to predict the overall e�ect of modifying a rule.
One candidate that met several of the user requirements is
the RAISE system [9]; however, the adherence to a logic-
programming style of rules did not support directly express-
ing both formal and heuristic styles of reasoning.
Personalization based on o�-line decision support (e.g.,

Epiphany [8], Net Perceptions [17]) performs periodic bulk
data analysis using data mining and statistical techniques to
infer correspondences between, e.g., customer types, prod-
ucts already selected, and products that would be appro-
priate for targeted promotion. As with other on-line ap-
proaches, DFP is complimentary to the o�-line approach,
and decisions made using DFP can access the results of o�-
line analysis.

305

Another tool that can be used for on-line decision sup-
port is described in [16], which presents a formalism for
scoring the quality of data assembled from multiple sources.
The formalism uses vectors giving scores to various criteria,
along with operators to combine vectors; these combinations
correspond to combinations of scienti�c data performed in
the underlying work
ow. The Decision Flow paradigm can
express this formalism, because it supports direct manip-
ulation of record types, and can include the operators for
combining vectors as named combining policies.
We contrast our approach with another popular approach

for customizing web-sites, that is based on guiding the cus-
tomer through a series of questions that are used to identify
customer preferences and their relative weights (e.g., Per-
sonalogic [19]). More generally, [1] presents a framework
for specifying and combining preferences, that provides high

exibility and satis�es mathematical properties such as clo-
sure under certain operations. The Decision Flow paradigm
can simulate this preference model by using record struc-
tures and specialized combining policies.
The DFP approach consists of using an on-line decision

engine that is separate from the web server. An alternative
would be to use some form of server-side scripting language
(e.g., ASP, JSP, or PHP), that could hold the business logic
for on-line decision making. The fundamental problem here
is that these scripting languages do not satisfy several of
the requirements on the decision speci�cation language, such
as the explicit presence of rules, the ability to combine in-
formation in di�erent ways, or the correspondence between
programs and reports.
Finally, the MIHU system presented here di�ers from pre-

vious systems for presenting live CSR assistance to cus-
tomers. For example, iContact [13] uses a simple rules mech-
anism to identify customer sessions on a web store-front that
are \good" candidates for live CSR assistance. However,
with iContact the CSRs are given a listing of these candi-
dates, and the CSRs make the �nal decision about whether
or not to o�er live intervention. With the MIHU system
the entire decision can be automated (taking into account
not only the business opportunity a�orded by the customer,
but also the current availability of CSRs to help realize this
opportunity). This permits treatment of customers which is
more uniform than with the iContact approach. The MIHU
system also permits more careful selection of a CSR whose
skill matches the expected needs of a given web-based cus-
tomer. Finally, it can support more sophistication in the use
of \blended" CSRs, who spend some time with web-hosted
customers and other time with traditional telephone-based
customers.

6. DISCUSSION AND FUTURE WORK
This paper presents the DFP framework for personalizing

web sites that is based on the use of an expressive on-line
decision engine. Key requirements on the language used by
the decision engine were identi�ed, and the Vortex language
with Decision Flows was introduced to satisfy these require-
ments. Various approaches to implementing our approach
on new or existing web sites were explored, and our expe-
riences with implementing some of them discussed. Finally,
the paper described the May-I-Help-You prototype system,
which applies the technology to decrease the number of e-
commerce transactions that are abandoned. We close by
mentioning several directions for future work.

VorteXML. The current Vortex language and engine is
geared primarily towards relational data. We are working
to extend Vortex so that it can also work with XML-based
data, thus allowing a uniform paradigm for converting the
raw data into higher-level semantic information and for an-
alyzing that higher-level information (see [5]). There are
various ways in which a web site can pass data to the de-
cision engine. For example, the web server might do some
initial processing and cleaning to transform the HTML to
XML (e.g., using XPath [6]), and then pass the XML to the
VorteXML engine. The ability for Vortex to specify vari-
ous heuristics would be useful in converting that XML into
higher level semantics, especially for web sites that represent
information in non-uniform ways.
Another approach is to annotate the HTML content pro-

duced by a web site, by adding custom tags that are ignored
by the client browsers, but which the decision engine can
scan to extract the desired information. This would make
the task of extraction easier, since the decision engine now
only needs to look at a subset of the raw input.
There is also a move towards separating content from pre-

sentation on web sites, i.e., for each customer request, a web
site would retrieve the actual content as an XML document,
and then apply an XSL stylesheet to transform it into an
HTML document before shipping it to the client. In such
a case, the web site could simply forward the XML con-
tent to the decision engine, which would remove the task of
transforming the HTML into XML.

Distributed Rules Processing. Section 4 described how
DFP can be scaled, in an architectural sense, to environ-
ments with web server farms. Another challenge concerns
scaling to large web sites, as found in the B2B sites of large
corporations. These typically span multiple sub-organiza-
tions and span multiple geographic locations. For example,
in Lucent a customer might enter the Lucent home page that
is supported by web servers in New Jersey, but then access
product information about the latest IP telephony switches
via web servers in Illinois. Furthermore, while some decision
policies might be applicable to all customers, others might
be relevant only to certain products. This means that the
rule sets used in connection with di�erent locations may be
overlapping but di�erent. The challenge is to support the
development of such overlapping rule sets, have appropriate
rules apply to the pages being examined, and pass relevant
data between geographic locations as the customer's session
moves between those locations.

Reliability. We are currently experimenting with the use of
fault-tolerant CORBA to provide reliability for the Vortex
engine, and thus for the DFP approach. Another way to
achieve reliability, and scalability for that matter, would be
to implement the Vortex language as part of an application
server platform (e.g., based on EJB).

Automated learning. Following the lead of companies
such as Manna [15], it will be important to incorporate au-
tomated learning into any personalization technology. Be-
cause Vortex provides rules-constructs that are richer than
many business rules systems, it will be more di�cult to de-
velop learning technology for Vortex. On the other hand, the
structure of the rule sets and the availability of meaningful
reports should provide important handles to the problem.

306

Acknowledgments
The authors thank Greg Anderson of Avaya Communication
for suggesting \May I Help You" as a useful test case and
illustration of the Vortex Decision Flow technology.

7. REFERENCES
[1] R. Agrawal and E. Wimmers. A framework for

expressing and combining preferences. In Proc. ACM
SIGMOD Symp. on the Management of Data, pages
297{306, 2000.

[2] Blaze Software Home Page, 2000.
http://www.blazesoft.com.

[3] L. Brownston, R. Farrell, E. Kant, and N. Martin.
Programming Expert Systems in OPS5: An
Introduction to Rule-Based Programming.
Addison-Wesley, Reading Massachusetts, 1985.

[4] R. Cattell. The Object Database Standard: ODMG-93.
Morgan Kaufmann Publishers, San Mateo, California,
1993.

[5] V. Christophides, R. Hull, A. Kumar, and J. Sim�eon.
Work
ow mediation using VorteXML. IEEE Data
Engineering Bulletin, 24(1), March 2001.

[6] J. Clark and S. DeRose. XML Path Language
(XPath). Technical report, World Wide Web
Consortium, 1999. W3C Recommendation 16
November 1999.

[7] Datamonitor, Inc. The U.S. market for internet-based
customer service, 2000.

[8] Epiphany Home Page, 2000.
http://www.epiphany.com.

[9] B. N. Grosof, D. W. Levine, H. Y. Chan, C. J. Parris,
and J. S. Auerbach. Reusable architecture for
embedding rule-based intelligence in information
agent. In Proceedings of the Workshop on Intelligent
Information Agents, December 1995. Held in
conjunction with the ACM Conference on Information
and Knowledge Management (CIKM-95).

[10] G. N. Grosof. Compiling prioritized default rules into
ordinary logic programs. Technical Report RC 21472,
IBM Yorktown, May 1999.

[11] R. Hull, F. Llirbat, B. Kumar, G. Zhou, G. Dong, and
J. Su. Optimization techniques for data-intensive
decision
ows. In Proc. IEEE Intl. Conf. on Data
Engineering, pages 281{292, 2000.

[12] R. Hull, F. Llirbat, E. Simon, J. Su, G. Dong,
B. Kumar, and G. Zhou. Declarative work
ows that
support easy modi�cation and dynamic browsing. In
Proc. of Intl. Joint Conf. on Work Activities
Coordination and Collaboration (WACC), pages
69{78, February 1999.

[13] iContact Home Page, 2000.
http://www.icontact.com.

[14] J. W. Lloyd. Foundations of Logic Programming
(Second Edition). Springer-Verlag, Berlin, 1987.

[15] Manna Home Page, 2000. http://www.mannainc.com.

[16] F. Naumann, U. Leser, and J. Freytag. Quality-driven
integration of heterogeneous information systems. In
Proc. of Intl. Conf. on Very Large Data Bases, pages
447{458, 1999.

[17] Net Perceptions Home Page, 2000.
http://www.netperceptions.com.

[18] D. Peppers and M. Rogers. The One to One Future.
Doubleday, New York, 1993.

[19] Personalogic Home Page, 2000.
http://www.personalogic.com.

[20] P. B. Seybold and R. T. Marshak. customers.com.
Random House, New York, 1998.

[21] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The
well-founded semantics for general logic programs. J.
ACM, 38(3):620{650, 1991.

307

