
Whitepaper >

1White Paper

www.xaware.com

XAware > Technology Overview

SER VICE ORIENTED INTEGRATION SOFT WARE

May 2007

Prepared by:

Kirstan Vandersluis

Chief Science Officer

XAware, Inc

www.xaware.com

Whitepaper >

2White Paper

www.xaware.com

Table of Contents

The Need For Integration > 4

Integration Evolution > 4

Integration Using XAware Technology > 4

Technology Overview > 5

XAware Views.. 6

XAware Technology Benefi ts... 6

Data Abstraction ... 6

Service-oriented Architecture .. 6

XML-Enable Information .. 7

Loose Coupling .. 7

Repurpose Business Information .. 7

Centralized Security for Data Access .. 7

XAware Technology Features.. 7

Data Aggregation ... 8

Data Chaining ... 9

Inbound XML Processing ... 10

Information Exchange .. 11

Conditional Logic .. 13

Transformation .. 13

Web Services .. 14

Messaging .. 14

Security .. 15

XAware Metadata Files > 15

BizDocument .. 18

BizComponent .. 19

BizDriver .. 19

Whitepaper >

3White Paper

www.xaware.com

XAware Product Components > 20

XAware Designer ... 21

XAware Engine .. 21

Adapters .. 22

Application Interfaces ... 22

XML View Development Cycle > 22

Design .. 22

Test and Debug .. 23

Deploy ... 23

Manage > 24

Statistics ... 24

System Management Interface .. 24

Remote Log Viewer .. 24

XAware Environment Requirements > 25

Application Server .. 25

Web Server .. 25

Stand-alone ... 25

Extendible Architecture > 26

Synergies With Other Integration Strategies > 27

Business Process Management .. 27

ETL/Data Warehousing .. 28

Summary > 28

Whitepaper >

4White Paper

www.xaware.com

The Need For Integration >

Over the decades, companies have accumulated information processing systems to manage different parts of the business as

effi ciently as possible. Unfortunately, this evolution of information technology infrastructure has most often occurred without an

overarching design, resulting in many stand-alone systems that perform a single function well, but fail to interact with each other.

As companies accelerate electronic business initiatives, communication with customers, business partners, and between internal

divisions demands well-integrated systems with fl uid exchange of information.

Integration Evolution >

Traditional vendors of Enterprise Application Integration (EAI) software have evolved from message-based transaction processing

into business process management platforms. While these platforms have done a good job managing transactions with their

process-centric approach, they have not addressed the key issue facing most enterprises, that of complex data stored in a

myriad of locations. In fact, analysts now claim that up to 70% of the application development effort is consumed by the task

of accessing data. Clearly, there is a need to address this complexity with the same level of sophistication that EAI vendors have

brought to bear on process-oriented solutions. It is this effort for which the XAware integration environment has been created.

This environment has been solving complex, data-centric integration problems since 1999.

Integration Using XAware Technology >

The XAware integration software tools provide an elegant solution to many of the most complex data problems in the enterprise.

By defi ning a data abstraction layer, and exposing information objects as rich business services, XAware provides what industry

analyst ZapThink calls a Service Oriented Integration (SOI) toolset. SOI leads to reduced complexity in accessing information,

reusability, cost savings, and rapid return on investment. XAware reduces or eliminates many of the issues caused by complex

data environments, including:

> Up to 70% of application development resources are consumed by integration efforts to access the right information for an

application.

> Business information is stored in many systems, applications, and databases.

> Data related to one business object, such as a customer, is contained in many locations.

> The dispersed nature of the data forces applications to connect to many different systems to build a single view of business

information

> Effi ciency suffers from lack of access to information critical to running the business.

> Changes in required data sets are diffi cult to manage due to “black box” transformations buried in code or old applications,

hiding the fl ow of data in the enterprise.

The following sections provide an overview of the XAware tools.

Whitepaper >

5White Paper

www.xaware.com

Technology Overview >

As a Service Oriented Integration solution, XAware provides real-time access to multiple information sources within the

enterprise. XAware makes information objects available through data “views”. A view is a representation of an information object

or other collection of data within the enterprise, such as a customer, policy, or invoice. XAware includes software programs

needed for an organization to create and manage these views, then expose them as services in a manner that is optimal for a

particular application.

Figure 1. XAware Technology Architecture

Figure 1 shows the high level architecture of the XAware technology. As shown in the diagram, the XAware technology creates

an XML-based abstraction layer to insulate the applications and users on the right from creating direct connections to enterprise

systems on the left.

The interface into the abstraction layer is XML-based. Interaction with the data abstraction layer occurs using XML. Applications

receive data in XML from the abstraction layer, and can write XML data to the abstraction layer, where it is processed into the

appropriate back end data sources.

Applications

RIXML

FIXML

Other XML
Standards

ACORD

X
M

L
 V

ie
w

s

Service
Interface

XML-Based Abstrac tion L ayer

Portal

Processes

Data Warehouse

Reporting/Monitoring

Partners

X Aware Technology Architec ture

Relational Databases

Mainframe Files

Mainframe Databases

Trading & Transaction Sys

Bus

ERP & CRM

Whitepaper >

6White Paper

www.xaware.com

XAware Views

The abstraction layer provides access to data through views. These views represent information objects of varying complexity,

from a simple, single database table, to a complete customer document containing profi le, account information, and

order history.

Since the interface into the abstraction layer is XML, the views are called “XML views”. Each XML view defi nes an XML format,

transformation rules, commands that interact with data sources, and processing instructions. Together, this information is called

“metadata”, and is itself represented in XML. XAware includes a design environment for creating XML views, and a server which

makes the XML views available as services to applications needing real-time access to an organization’s data sources. The format

of the XAware metadata, and the software components included in the suite will be discussed later in this paper.

XAware Technology Benefits

There are several architectural benefi ts to using this XML-based abstraction layer. These benefi ts are discussed in the following

paragraphs.

Data Abstraction

Applications interface to the abstraction layer, removing the concern about where or how many data sources are required

to manage a logical business object. The data abstraction layer makes many physical data sources act as a single logical data

source, greatly reducing the complexity of developing applications.

Service-oriented Architecture

The abstraction layer facilitates a service oriented architecture, where the manipulation of business information is handled

through loosely coupled services with coarse-grained interfaces. Information exchanged with the service is defi ned by XML

standards like ACORD or RIXML. Thus, the services are specifi ed in terms of well understood business information like a Policy or

Research Report. Using the nomenclature of the business analyst is a key aspect of SOA, which enables the rapid orchestration

of new processes out of the rich business services layer.

Whitepaper >

7White Paper

www.xaware.com

XML-Enable Information

Because the abstraction layer is XML-based, the XAware technology transforms enterprise data to XML. This means that the

growing number of XML-enabled applications can access the enterprise data. In addition, a growing number of industries are

defi ning XML formats for common information within the industry. The XML abstraction layer “puts an XML face” on the enterprise

data, enabling easy sharing and exchange of information conforming to a specifi ed XML format.

Loose Coupling

Applications are no longer directly coupled to data sources. The physical layout of the source systems can change without

affecting the applications. The abstraction layer is simply reconfi gured to point to a new data source, and the application

continues working without knowledge of the underlying physical change.

Repurpose Business Information

Because of the inertia within IT departments, there is great hesitancy to replace systems or rearrange the organization of data.

The abstraction layer allows a system currently responsible for managing a particular information type, like a customer profi le, to

continue acting as the database of record, while enabling that information to be used for other purposes.

Centralized Security for Data Access

The XAware technology provides features to provide authentication, authorization, and encryption of information moving in

and out of the abstraction layer. Organizations can manage data access to conform to existing security policies so that access to

information sources is provided only to authorized applications or users.

XAware Technology Features

XAware has a set of features that combine to provide a fl exible environment to create integration applications. These features are

discussed in the following paragraphs.

Whitepaper >

8White Paper

www.xaware.com

Data Aggregation

The average organization has many sources of information, whether from multiple databases, applications, or other source. The

ability to pull information from multiple sources, and package this information into a single logical unit is called data aggregation.

XAware aggregates data from disparate enterprise system into logical XML views. A special case of supported aggregation is a

“heterogeneous join” sometimes referred to as “XML join”. This feature is similar to a database join between tables, except that it

supports joins across data sets in any type of data source. For example, a customer data set from a mainframe can be joined with

a data set retrieved from an enterprise application like Siebel or PeopleSoft.

Figure 2 shows a data aggregation operation for a bank. This particular bank has separate systems to manage accounts, consumer

loans, and mortgages. It is desirable to view a consolidated list of all products for a particular customer. The XML abstraction layer

retrieves information from each system, and packages the information into a single logical XML document. Presumably, a front

end application would make a request to the XML abstraction layer, specifying a particular customer, then render the information

in a form that is easily viewable, for example on a web page.

Figure 2. Data Aggregation

 Data Aggregation

Mortgage
Database

<products>
 <item>
 <type>Checking</type>
 <id>00158-10</id>
 </item>
 <item>
 <type>Savings</type>
 <id>00158-11</id>
 </item>
 <item>
 <type>Auto</type>
 <id>7306591</id>
</item>
<item>
 <type>Home Mrtg</type>
 <id>952004</id>
 </item>
</products>

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Consumer
Loans

Bank Account
Management

XML
Abstraction

Layer

Whitepaper >

9White Paper

www.xaware.com

Data Chaining

Often, the various systems within an organization contain related data. Continuing with the previous bank example, a bank

may require that a consumer establish a checking or savings account prior to obtaining a consumer loan. Thus, each loan in the

Consumer Loans system has a link to a customer represented in the Account Management system. Data Chaining is a technique

used to exploit such a link, to allow retrieving related information from multiple data sources. A data chaining operation is a

sequence of requests into related system, where a second request depends on results from the fi rst request. Said another way, a

data chaining operation fi rst retrieves a data set from one system, then uses information from that data set to send a request into

a second system to retrieve related information. Data chaining is actual a specialized form of data aggregation.

Figure 3 shows a data chaining operation. The XML abstraction layer fi rst queries the Account Management system for a

customer ID. The input for the query differs based on the application, but as an example, the query could take a consumer’s social

security number or bank account number, or some other unique identifi er. The result of the query is a set of data which includes

the Customer ID. This Customer ID is then used to query into the Consumer Loans system to retrieve any related loans for this

consumer. The results are combined and returned as XML to a requesting application.

Figure 3. Data Chaining

 Data Chaining

<products>
<custID>563001</custID>

 <item>
 <type>Auto</type>
 <id>7306591</id>
 </item>
</products>

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Bank Account
Management

Consumer
Loans

XML
Abstraction

Layer

2. Query for all loans for
 this Customer ID

1. Query for
 Customer ID

Whitepaper >

10White Paper

www.xaware.com

The difference between simple data aggregation and data chaining is that with data chaining, there is a dependency on a fi rst

request before the second request can be sent. Usually, a parameter for the second request includes information that must be

retrieved from the fi rst request. In contrast, data aggregation creates requests that do not depend on one another. Often, these

requests can be carried out in parallel to improve performance of building the view.

Inbound XML Processing

In addition to supporting views that return aggregated XML to an application, XAware’s XML abstraction layer supports creating

views that take XML as input, and send the data to appropriate processing resources. Very often, the inbound XML must be

decomposed into multiple data sets to achieve the desired result.

Figure 4. Inbound XML Processing

Let’s assume in our banking example that our bank has acquired a smaller bank, and now needs to import business information

into its systems. The acquired bank makes the information available in an XML format, which the parent bank needs to accept

and decompose into its internal systems. Figure 4 shows the process. The inbound XML is received by the XML abstraction layer,

decomposed into its constituent parts, and send to the proper system.

 Inbound XML Processing

Mortgage
Database

Consumer
Loans

Bank Account
Management

XML
Abstraction

Layer

<products>
 <item>
 <type>Checking</type>
 <id>00158-10</id>
 </item>
 <item>
 <type>Savings</type>
 <id>00158-11</id>
 </item>
 <item>
 <type>Auto</type>
 <id>7306591</id>
</item>
<item>
 <type>Home Mrtg</type>
 <id>952004</id>
 </item>
</products>

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Whitepaper >

11White Paper

www.xaware.com

For inbound processing, the XML abstraction layer supports distributed transaction processing at the document level. This means

that the processing of the entire inbound document into the multiple back end systems is performed within a transaction, so

that either all the systems are updated, or none of the systems are updated. This prevents the highly undesirable situation where

only a portion of the systems successfully process the new consumer information, resulting in an inconsistent set of data.

It is important to note that the distributed transaction processing requires that all systems participating in the inbound XML

view must themselves support transactions, as the facilities of the individual systems are used to commit or roll back the overall

transaction. If systems do not support transactions, signifi cant programming effort is likely required to support what is known

as “compensating transactions”. This means that the state of the system needs to be managed manually, where the initial state

before the transaction must be saved, then restored if a rollback occurs. At fi rst glance, this may mean that the new information

given to a system, such as a new savings account, simply needs to be deleted. While this may work for some cases, if the system

has side effects, such as generating information downstream for other systems, then simply deleting the new savings account

is insuffi cient. The dependent systems also need to be rolled back to their pre-transaction state. Compensating transactions is a

complicated subject whose complete discussion is beyond the scope of this book.

Information Exchange

As its name implies, information exchange is the activity of moving information from one location to another location. This

broadly stated activity can be applied both within an organization and outside an organization. Applications of information

exchange include:

> Exchange Network. Many industries and government agencies have a need to exchange information with constituent

organizations. Generally, common information formats are defi ned and agreed upon within the community, and all

participants develop the ability to transform their data into the common format. XML is the most frequent technology chosen

to defi ne the common standard.

> Migration. Moving information from one set of systems to another. For example, a company changing its applications from

older systems to more modern systems needs to move business information from the older systems to the newer systems.

The application generally requires extraction and transformation from the older environment, and possibly additional transfor-

mation and loading into the target environment.

> Synchronization. Often, a company designates one or more “database of record” for business information. For example, the

database of record for customer information may be a mainframe. For order information, the database of record may be a

custom order management system built on an RDBMS. Often, it is desirable to maintain a copy of this information to make it

readily available to other applications. While maintaining multiple copies of information generally complicates an enterprise’s

architecture, a replicated copy acts as a cache, reducing the need for real-time access to the primary source, and increasing

retrieval performance for applications using the cache.

Whitepaper >

12White Paper

www.xaware.com

Figure 5 shows a typical information exchange architecture using the XML abstraction layer for both the sender and receiver of

the information. While the diagram implies XAware technology is used for both, because of the non-proprietary nature of XML,

any technology whatsoever can be used on either side. This is an important benefi t of XML that has help speed its adoption in so

many areas, especially when information exchange is required.

In fi gure 5, the information exchange relies on a common XML format agreed to by the participants. The sender transforms data

in from its particular IT infrastructure and set of systems into the common format. The receiver transforms the common format

and loads it into its systems.

The technique of using a common format for exchange is called a “common information model” (CIM) approach. CIM-based

exchange can be successfully used for exchange networks, migration, and synchronization, and is ideal when the exchange

participants have vastly different architectures. It abstracts the exchange process into two phases: extraction and transformation

of source data to the CIM format, and transformation and loading from the CIM format into the target environment. This

abstraction into two phases makes the overall process easier to implement, and also facilitates reuse. For example, a CIM-based

migration which moves business information from a legacy system into a new application creates both the source to CIM

transformation, and the CIM to target transformation. Each of these transformations can be used for other purposes. For example,

a later migration from a different set of source systems requires only that the source to CIM transformation be developed. The

previous CIM to target transformation and loading can be completely reused.

Figure 5. Information Exchange

 Information Exchange

Mortgage
Database

Consumer
Loans

Bank Account
Management

XML
Abstraction

Layer

<products>
 <item>
 <type>Checking</type>
 <id>00158-10</id>
 </item>
 <item>
 <type>Savings</type>
 <id>00158-11</id>
 </item>
 <item>
 <type>Auto</type>
 <id>7306591</id>
</item>
<item>
 <type>Home Mrtg</type>
 <id>952004</id>
 </item>
</products>

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

XML
Abstraction

Layer

Banking
System

Loan
System

Whitepaper >

13White Paper

www.xaware.com

Conditional Logic

XAware’s XML abstraction layer allows the specifi cation of processing instructions. The processing instructions are specifi ed

within an XML view, which controls the sequencing and fl ow of data within the view. The instruction set includes commands

to read and write data sets, check results, alter the processing fl ow based on dynamic conditions, manipulate the XML to be

returned to the application, control transaction and threading behavior, and handle error conditions within the view. In essence,

the processing instructions constitute a scripting language defi ned by XAware that is executed in the XML abstraction layer.

The scripting language can be used to alter the course of processing for an XML view. This is useful both for inbound processing,

and for generating XML views serving documents to applications. For inbound views, the conditional logic can direct the

performance of multiple activities during processing. For example, if a company is processing inbound purchase orders, the view

can fi rst validate the customer, verify credit limits, send notifi cations to required systems, then fi nally decompose the XML and

send each piece to the correct processing resource. For outbound views, those whose main purpose is to return aggregated XML

to requesting applications, the conditional logic can be used to dynamically determine the proper data sources. For example,

our initial banking example which provides an aggregated list of products for a customer queries three separate systems. Large

companies may need to query dozens of systems to build such a view. Using conditional logic, an initial query can be made into

a customer profi le system to determine what products a customer has. Then, additional queries can be sent only to systems

managing information pertinent to this customer. Using conditional logic, the processing of the view is more effi cient because it

only touches the systems needed, based on a run-time determination for the current customer.

Transformation

The XML abstraction layer provides the ability to transform data between almost any format. In general, transformation occurs

from a system’s native format into XML, from XML to a system’s native format, or from one XML format to another.

Two categories of transformation are provided by the XML abstraction layer. The fi rst is a series of tools that allow mapping a

system’s native data format to and from XML. These tools provide a graphical interface showing the source and target data sets,

and allows visual mapping by dragging a source data element onto a target data element. The second category of transformation

uses the standard XSL transformation tools, XML Stylesheet Language (XSL) Transformation (XSLT) and XSL Formatting (XSL-FO).

XSL can be applied to either a subset of the view, or the entire view.

Whitepaper >

14White Paper

www.xaware.com

Whereas the two categories mentioned above are very good at performing structural transformation, and also support some

fi eld-level transformation, it is desirable to have greater fl exibility in programming style and performance characteristics for some

fi eld-level transformations. For example, an insurance company may have a complex formula that creates a value for a fi eld.

To provide greater fl exibility and performance for fi eld-level transformations, the XML abstraction layer includes two additional

transformation features specifi cally targeted at fi eld-level manipulation. First, JavaScript (also known as ECMAScript) can be

applied to any fi eld to perform a fi eld-level transformation. This provides a highly fl exible fi eld-level transformation feature, as

the possible types of transformation are limited only by what is possible with the JavaScript programming language. Second,

compiled Java functions can be custom-built and applied. These functions can take multiple parameters as input, and apply any

type of processing to create output for the designated element.

Web Services

Web services enable organizations to create loosely coupled interfaces into system functionality. The XML abstraction layer

provides a web service interface to XML views, exposing all the features of this layer to the growing number of applications that

can work with web services.

Once an XML view is created, a web service interface can be generated by the software tools. This feature creates a WSDL

fi le describing the interface, and enables a SOAP-based interface to initiate the view. Both inbound and outbound views are

supported, so applications can both read and write enterprise application of any complexity using an industry standard interface.

Messaging

The XAware technology is provided with a standard interface to the Java Message Service. In addition to providing the interface

to the messaging service, XAware resells a choice of J2EE-based application servers that include messaging. The result is a

package that includes robust messaging capabilities, compliant with the JMS standard.

Two categories of messaging are included in JMS. Point-to-point messaging allows the asynchronous delivery of a message using

a queue. Interactions can be loosely coupled, in that the sender does not need to know which application is actually receiving the

message. Because of its asynchronous nature, the receiving application does not even need to be running at the time the sender

places the message on the queue. The sender can simply place the message on the queue, then continue on with its work.

Whitepaper >

15White Paper

www.xaware.com

The second supported category is the publish/subscribe model. This model allows the sender to send a message to a

queue, which can be read by many readers. In JMS parlance, the queue is called a “topic”, and the act of sending a message

to the queue is called “publishing”. The applications that read from the queue must register this intention in a process called

“subscribing”. When a message is published, it is sent immediately to all applications that subscribed to it, and then deleted

from the queue.

In addition to sending XML messages to a queue, XML views can be invoked using a message bean. In this way, an XML

view can be asynchronously initiated based on the receipt of an XML message. For example, an order processing application

can be confi gured to process inbound XML-based orders received on the queue. The corresponding XML view is executed,

processing the order and updating back end systems as appropriate.

Security

The XML abstraction layer includes a role-based security scheme providing authentication and authorization capabilities that

conform to J2EE standards. XAware’s security model conforms to the JAAS (Java Authentication and Authorization Service)

specifi cation, to provide a consistent J2EE-based security framework. Using the JAAS model, security can be confi gured to

integrate with LDAP and single-sign-on frameworks.

Within the security framework, each XML view can be enabled for a specifi c role or set of roles. Each role is managed via an

access control list, which determines which users are part of the role. The roles are generally managed by the application

server environment, and exposed to the XAware software via JAAS. In addition to controlling access to XML views, individual

sets of data, of which the view is composed, can be controlled, so that data sets can only be aggregated and viewed by

appropriate applications or individuals.

XAware Metadata Files >

As mentioned previously, XML views are defi ned by various characteristics such as an XML format, requests to data sources,

transformation rules, and processing rules, which are stored as “metadata”. XAware’s metadata is stored as XML, in 3 types of

fi les called metadata fi les. Figure 6 shows the relationship of the metadata fi les that make up XML views. Table 1 defi nes each

type of metadata fi le.

Whitepaper >

16White Paper

www.xaware.com

Figure 6. Metadata Files

Metadata File Description

XML View Primary metadata fi le representing the view. This fi le defi nes the XML format, and references data sets

used to read or write to the data sources.

Data Set Represents a single set of data from a single data source. Each data set fi le includes a request to

the back end data source (for example, a select statement), plus formatting instructions on how to

translate the raw data to or from XML.

Driver A fi le containing connection information, specifying how to connect to the back end data source. For

example, for relational sources, this fi le contains the connect string. Some data sets do not use a driver,

and instead send requests directly to a data source. For example, HTTP-based data sets are retrieved

directly by invoking an HTTP get, for example.

Table 1. Metadata Files

The previous discussion discusses the metadata fi les in generic terms. Within XAware, different terms are used for these items.

Figure 7 shows the metadata fi le structure using XAware-specifi c terms. Table 2 defi nes the terms.

XML Abstraction Layer

Data Set

Data Set

Data Set

Data Set Driver

Driver

Driver

XM
L

V
ie

w
Applications

Databases

Legacy

Data Sources

Business
Applications

Whitepaper >

17White Paper

www.xaware.com

Figure 7. XAware Metadata Files

Figure 8. XAware Metadata Files

Metadata File XAware Name for Metadata File

XML View BizDocument

Data Set BizComponent

Driver BizDriver

Table 2. XAware Metadata Files

In addition to the XAware-specifi c names for each metadata fi le, you may notice in fi gure 7 that the combination of BizDocument,

BizComponents, and BizDrivers for a specifi c XML view also has a name, “BizView”. The BizView is referenced frequently in

the XAware documentation and also the remainder of this book, and is logically the same concept of an XML view. It is the

manifestation of an XML view by a set of metadata fi les.

The next sections discuss BizDocuments, BizComponents

BizView

BizComponent

BizComponent

BizComponent

BizComponent BizDriver

BizDriver

BizDriver

B
iz

D
o

cu
m

en
t

Databases

Legacy

Applications Data Sources

Business
Applications

Whitepaper >

18White Paper

www.xaware.com

BizDocument

An XAware BizDocument contains a hierarchical set of elements representing the XML view of business data. In addition to

defi ning the XML format, a BizDocument may contain processing instructions, transformation instructions, and importantly,

references to dynamically generated data sets called BizComponents. Each element in the BizDocument can be a static XML

element, or a dynamic element. Static elements in the BizDocument are simply returned unmodifi ed to the requesting client.

In fact, the simplest BizDocument is one that is simply an XML fi le with no dynamic elements whatsoever. Dynamic elements

contain processing instruction, such as conditionals, hierarchy manipulation commands, or references to BizComponents or

other BizDocuments for execution. Because BizComponents present an XML-based interface, hiding the complexities of the data

sources, all BizDocument processing instructions operate on XML structures. These commands are ambivalent to the original data

sources, and operate equally well on static XML, or XML generated from a relational, non-relational, mainframe, or other source. For

example, this layering enables an XML join between an RDBMS and a mainframe data source.

Elements in a BizDocument are processed in depth-fi rst order. This means that the children of an element are processed before

its siblings. In addition, many BizComponents create a data set of XML which actually contains additional dynamic elements.

Once such a BizComponent is executed, its results are then processed, potentially accessing additional data sources and creating

additional dynamic elements, all of which eventually get executed.

BizDocuments can also be defi ned with an interface accepting one or more parameters. Each parameter is a scalar value, such

as a string or integer. In addition, a BizDocument may accept as input an XML document. Parameterization using either scalar or

input XML allows customization of BizDocument processing for a particular purpose. For example, a BizDocument creating an

XML view of a customer would likely be designed to accept an input parameter specifying a customer ID or perhaps a customer

search string. The value of the parameter passed in at run time would drive the actual data retrieved from the back end data

source. A common use of such a parameter is to reference it in an SQL ‘where’ clause to select just the required data.

The parameter thus acts as a fi lter providing just the requested data to the application. We will see later that all the XAware

metadata fi les have the capability to defi ne an interface with parameters that drive processing within that component.

In addition to supporting parameters, BizDocuments allow the referencing of dynamic values from anywhere in the

BizDocument. The references themselves follow a syntax similar to XPath, and allow manipulation of dynamically generated.

A common example is generating a data set from one source, then referencing one of the generated elements in a parameter

into another BizComponent. This is a typical process in data chaining, for example, where one data set contains a key into a

second data set housed in a different system. The key is fi rst retrieved using on BizComponent, then the dynamically generated

element is referenced in the parameter to the second data set, allowing retrieval of related information.

Whitepaper >

19White Paper

www.xaware.com

BizComponent

The BizComponent is the dynamic data component of an XML view. A BizComponent can retrieve data, insert new data, update

data in a back end data source, or send a data set to another processing resource. BizComponents can also provide processing

capabilities not associated with data reads and writes, for example, to apply a processing algorithm to a data set. BizComponents

are intended to be designed as reusable components representing the manipulation of a particular data set. For example, a

BizComponent may be designed to retrieve a list of customers from an application’s database. Once defi ned, this BizComponent

may be called from many different BizDocuments.

BizComponents create an XML-based abstraction layer for BizDocuments. While BizComponents have widely varying interfaces

to the many possible data sources in the enterprise, they all expose a common XML-based interface to the BizDocument. Thus,

the BizComponent hides the complexity of communication to other data sources from the BizDocument. The BizDocument can

manipulate data sources in a consistent way by using the common XML-based interface to BizComponents. Once data sets are

converted to XML by the BizComponent, BizDocument commands can manipulate and process the XML without regard to the

actual source. This enables common operations such as the XML join, hierarchy modifi cation, and conditional operations.

When a BizDocument calls a BizComponent, that BizComponent is loaded and executed, generating XML results. The call to a

BizComponent includes a reference to the appropriate metadata fi le, plus any parameters needed by the BizComponent. The

BizComponent call acts just like a method or procedure call in a procedural programming language. The XML result set replaces

the call to the BizComponent in the BizDocument. A BizComponent is called from a BizDocument or another BizComponent.

BizComponents can be nested so that one BizComponent calls one or more other BizComponents. For example, you can create

nested BizComponents to query multiple databases, the fi rst for customer information and the embedded BizComponent for

order information, resulting in an aggregated view of the customer and order data.

BizDriver

A BizDriver enables a BizComponent to connect to a back-end data source. A BizDriver is generally required for each data source

your BizComponent will access. Some BizComponent types, like HTTP and FTP, do not require a BizDriver for the BizComponent.

These are generally stateless BizComponents that perform some action, such as copying a remote fi le using FTP. Multiple

BizComponents can reuse any BizDriver as long as they are connecting to the same back-end data source.

As with BizDocuments and BizComponents, a BizDriver can have parameters. This feature is most often used to pass connection

information to specify authentication and authorization information such as user name and password to the physical data source.

Whitepaper >

20White Paper

www.xaware.com

XAware Product Components >

XAware’s XML abstraction layer includes several distinct layers of functionality and software components. Figure 9 shows these

software components in relation to applications using the XML abstraction layer, and the data sources accessed. The software

components are listed in table 3, and described in detail in the following paragraphs.

Figure 9. XAware software components

Software Component Description

XAware Designer Design environment used to create XML Views

Application Interfaces Interface technologies used by applications to access the XML abstraction layer

XAware Engine Run-time XML abstraction layer

Adapters Software components providing access to data sources within an organization.

Management

Adapters

MQ

JMS

SAP

SQL

3270

FTP

EJB

Java

Copybook

File / Text

Excel

LDAP

RMI

Secu
rit

y Roles

Logging

SNMP MIB

Cach
ing / Poolin

g

JM
X Interfa

ce

Process
Dash

board

Java API
SOAP

HTTP(S)
JM

S
EJB

Servi ce Capabiliti es

Extend

Manage

Console

Br o wse r

Mapping

Validate

Complex Logic

Transform

Orchestrate

Debug

Designer

Ecl i p se Deploy

Connec tors

Whitepaper >

21White Paper

www.xaware.com

XAware Designer

XAware Designer is a design environment for creating and deploying XML views. XAware Designer guides a designer through

he creation of the metadata fi les required by an XML view, which involves creating BizDocuments, BizComponents and BizDrivers.

The tool is a visual, drag and drop design and development environment. Many of the features in XAware Designer are wizard

based, which expedites development of XML-based applications.

Components developed utilizing XAware Designer are reusable. For example, once you create a BizComponent accessing

a particular data set in Siebel, the same BizComponent can be used in any number of BizDocuments. XAware Designer also

provides a cataloging feature, which presents a description of BizDocuments, BizComponents, and BizDrivers developed utilizing

XAware Designer.

XAware Engine

XAware Engine is the core of XAware’s tool set. It is an information integration server that serves XML views of disparate data,

reducing the burden on applications to access the complex information within an enterprise. XAware Engine functions as a

transformation server, transient workfl ow engine, business rule processing engine, and a virtual XML database. XAware Engine is

multi-threaded, scalable, clusterable, robust, and offers high volume transaction processing capabilities.

XAware Engine is essentially a processing engine whose instructions are XAware metadata fi les. Client applications request

a particular XML view. XAware Engine associates the request with a particular set of metadata fi les, and processes those fi les,

returning the results to the requesting application.

A typical transaction inside the XAware Engine would proceed as follows:

1. A client application sends a request to the XAware Engine, identifying the XML view and appropriate input parameters

and/or input XML.

2. The XAware Engine identifi es the BizDocument corresponding to the XML view and creates a copy in memory.

3. The XAware Engine visits each element, one by one, in recursive fashion. For each, it performs the following activities:

> Perform variable substitution. This means that any reference to a parameter or other XPath reference to an element or

attributes value, is replaced with the actual value.

Whitepaper >

22White Paper

www.xaware.com

> Process any commands. This could include checking a conditional, modifying the hierarchy, executing a BizComponent,

and others. If the element references a BizComponent for execution, the referenced metadata is loaded to determine the

BizComponent type. The corresponding BizComponent class is loaded and executed. The results of the BizComponent

replace the current element.

> The next element for execution is determined. If a BizComponent was processed, the fi rst element in the returned results is

he next element to be executed. Otherwise, the fi rst child of the current element is processed. If there are no children, then

the next sibling becomes the next element.

4. Once the BizDocument is completely processed, its results are returned to the calling application.

Adapters

Adapters are used to provide connectivity between the XAware Engine and backend data systems. Using XAware Designer, users

can quickly confi gure Adapters for use in web services or integration applications. Through a wizard process, users can confi gure

Adapters to semantically map data between source and target structures and transform data by directly applying complex

logical expressions. XAware includes a large set of adapters and provides you with the tools to build your own, when necessary.

XAware can also build custom adapters to meet any data connectivity needs.

Application Interfaces

Application interfaces enable applications to communicate with XAware Engine via various protocols. XML views and their

associated metadata fi les (BizDocuments, BizComponents, and BizDrivers) are designed and deployed to XAware Engine from

XAware Designer. The application interfaces include both synchronous and asynchronous interfaces, providing fl exibility in

accessing a particular view to meet the needs of an application. Application interfaces include EJB, Servlet, Java API, SOAP, COM,

ISAPI, HTTP, and JMS.

XML View Development Cycle >

Using XAware, a designer creates an XML view in a standard development cycle that includes XML view design, testing, and

deployment to the XAware Engine. The following paragraphs describe these activities.

Design

XAware Designer is used to design XML views of data by creating the necessary XAware metadata fi les. The design process

includes the following major steps:

Whitepaper >

23White Paper

www.xaware.com

1. Defi ne the XML format for the XML view. An XML Schema or example instance can be imported for this purpose, or can be

created. It is this XML format that represents the XML view. For an outbound view, the BizDocument will generate XML of this

format. For an inbound XML view, the BizDocument will expect XML of this format as input, and will process the XML into one

or more data sources.

2. Defi ne the BizDocument Interface. Each view can be parameterized, so as a designer, you need to decide what information

is passed into the BizDocument to help determine what information is returned or processed. For example, in creating a

customer view, a customer identifi er might be an appropriate parameter to determine which customer data to return to the

calling application.

3. Convert XML structures to BizComponents. When the XML Schema or example instance is imported into XAware Designer,

it displays the static hierarchy of the document structure. The next step, and the most important, is to convert the static

structures to dynamically generated or processed XML. XAware Designer is optimized to perform this task, by letting the

designer select a section of XML, then create a BizComponent to read or write that data to/from a back end data source.

Converting to BizComponents is an iterative process, where one section of the hierarchy is treated at a time, potentially

mapping each section to a different back end data source.

4. Provide control fl ow as necessary. Some XML views require control fl ow to process correctly. For example, the results of one

BizComponent may need to be evaluated to determine the next BizComponent to process. While shown here as the last step

in the process, injecting control logic into the fl ow can occur at any time during the design process.

Test and Debug

XAware Designer includes the features necessary to test and debug an XML view prior to deployment. At any time during

the design process, a designer can execute the BizDocument to view and verify the accuracy of intermediate results. When a

BizDocument is executed, detailed diagnostics are displayed in the log window and log fi le. Component calling structure in the

Execution Profi le shows each BizDocument and BizComponent that is called, and the execution time for each. A debugger is also

provided, allowing you set breakpoints, single step through execution, and evaluate state at every step of the execution process.

Items such as variable substitution, formatting of requests to back-end systems, and command results are available for viewing. In

addition, when a data source provides native error diagnostics, that information is made available to the designer.

Deploy

Deployment of the XAware application involves packaging all related fi les into an archive fi le, called an XAware Archive (XAR) fi le.

Security roles can be set during the packaging process to restrict execution privileges of BizDocuments and BizComponents. The

archive fi le is then deployed to the server, where the XAware views become immediately available. In add, a web service interface

can be created, in which case a WSDL fi le is generated for web service-enabled applications to access.

Whitepaper >

24White Paper

www.xaware.com

Manage >

Once deployed, XAware applications can be monitored for proper operation and performance in the production environment.

A number of key management features are provided specifi cally to ease operational support concerns in the typical mission-

critical, enterprise IT environment.

Statistics

The web-based management console and JMX interface provide detailed statistics about the execution of BizDocuments,

BizComponents, and BizDrivers. For each component, execution counts are provided for successful and unsuccessful runs, plus

minimum, maximum, and average execution time.

System Management Interface

The XAware engine includes an SNMP interface to enable common system management applications to monitor execution of

BizDocuments, BizComponents, and BizDrivers. The interface lets operations personnel see at a glance the execution profi le of

components, what components are currently running, and success and error counts. Notifi cations can be confi gured to alert

personnel of errors and of slow running components.

Remote Log Viewer

The Remote Log Viewer helps support personnel pinpoint problems by providing a query capability into the history of execution

activity. Multiple levels of granularity are provided, showing component executions, BizDocument and BizComponent hierarchy

fl ow, and detailed log events. A user can query by time range and search for errors, specifi c BizDocument executions, and

keywords within the logs. For example, a support personnel can search for a specifi c end user or other parameter in a request or

resoponse to narrow the problem search, then view specifi c information regarding the issue. Support personnel can individually

set logging levels, to save highly detailed information for potential problem areas or components of interest.

Together, the management features enable enterprise-class capabilities to support production implementations. When problems

do arise, support personnel can quickly locate and analyze available diagnostics to identify and correct problems.

Whitepaper >

25White Paper

www.xaware.com

XAware Environment Requirements >

XAware is a Java application with components that can be confi gured to run in multiple environments. XAware Designer is a

Java application used to design and deploy XML views to the XAware Engine. As a Java application, XAware Designer can run on

almost any computer with a modern graphical, mouse-based interface with a Java Virtual Machine, version 1.4 or above. XAware

directly supports Microsoft Windows-based environments and Sun’s Solaris-based workstations.

XAware can be confi gured to run in 3 different confi gurations, application servers, web servers, and stand-alone.

Application Server

The standard deployment option from XAware includes a J2EE application server from one of the leading application server

vendors, including IBM WebSphere BEA Systems WebLogic Server, JBoss, and Sun. For organizations that already have an

application server, the XAware Engine can be deployed to application servers from BEA Systems, IBM, Sun, and Oracle. A

development version is also available which includes the popular JBOSS application server. Within the application server

environment, the XAware Engine can be confi gured to run as a servlet, EJB, or message bean.

Web Server

XAware Engine can be confi gured to run in conjunction with a web server, without a full J2EE application server. In this

confi guration, XML views can be invoked using web service SOAP invocations, or using HTTP GET or POST commands. Other

application interface technologies, like the EJB interface or message bean interface, are not available.

Stand-alone

XAware Engine features can be embedded in other applications by using the stand-alone confi guration. Here, the software

representing the server features are packaged as a Java archive (JAR) fi le, and can be directly accessed by another Java program

through an application programming interface.

Whitepaper >

26White Paper

www.xaware.com

Extendible Architecture >

The XAware environment is extendible both in the server and in the design environment. Processing within XAware Engine

is carried out by various processing components, and the set of components can be extended to add functionality to the

environment. Each type of metadata fi le has a code component associated with it. When the metadata fi le gets invoked,

the appropriate processing component is loaded and run. For example, when a BizDocument is invoked, the BizDocument

processing class is loaded and run. This class knows how to interpret and execute the XML commands in a BizDocument

metadata fi le. Likewise, when a BizComponent is called, an appropriate class is loaded that knows how to execute the

BizComponent.

While there is only one BizDocument processor, there are many classes to process the various types of BizComponents and

BizDrivers. There is exactly one class for each BizComponent type and each BizDriver type. For example, the BizComponent type

that interacts with relational database systems is called the SQLBizComponent type. The corresponding class, SQLBizComponent.

class, knows how to read and interpret the XML in a BizComponent with that type. Thus, the code module and XML format of

the BizComponent are closely aligned, so that the code module understands the instructions in the corresponding metadata.

Interfaces are standardized, so that the BizDocument processor relies on a standard interaction with all BizComponent classes.

As you might guess, this means that BizComponent classes all implement the same base BizComponent interface. A similar

relationship exists between BizComponents and BizDrivers, where BizDriver code modules implement a standard interface, which

a BizComponent class relies on for standard interactions with BizDriver classes.

Extending XAware Engine, then, involves creating new BizComponent classes that conform to the standard BizComponent

interface, then creating a metadata format that the new class understands how to process. The precise interactions between

a BizComponent class and the BizDocument processor, though straightforward, are beyond the scope of this book. For more

information, contact XAware at support@xaware.com.

The design environment, XAware Designer, can also be extended with new templates accessible from the environment. When a

new BizComponent type is created, a new template can be installed in XAware Designer that helps in the construction of new

BizComponents of that type. For more information, contact XAware at support@xaware.com.

Whitepaper >

27White Paper

www.xaware.com

Synergies With Other Integration Strategies >

We have stated that XAware is an SOI environment. However, in many IT environments, the complexity and diversity of

integration problems requiring solutions means that no single integration strategy is a good fi t for every problem. Often,

companies take advantage of the focused solutions from different strategies such as EAI, SOI, and extraction, transformation,

and loading (ETL)/Data Warehousing, so that the most effi cient tools are used for particular integration problems. This section

describes how XAware provides complimentary features to the other integration strategies, including Business Process

Management, and ETL.

Business Process Management

Business Process Management (BPM) and EAI have the goal of automating business processes within the enterprise. BPM

environment generally provide a fl ow graph-style programming environment, so that business analysts can graphically lay out a

business process, and assign processing responsibilities to each activity in the fl ow. XAware provides a data abstraction layer that

simplifi es implementation of data-related activities within a process. As an example, fi gure 10 show a portion of a fl ow graph

representing a business process. Two of the activities, Accept Order, and Verify Customer require interaction with enterprise

systems. As shown, the data abstraction layer provided by XAware eases the complexity of accessing the data.

In addition to providing an information access layer for BPM/EAI, XAware provides a light-weight workfl ow control engine.

The types of workfl ows that are implemented by the XAware Engine are “transient” workfl ows, those that run within a period of

a transaction. This contrasts with general BPM/EAI platforms that can also handle long-term workfl ows, such as those required

with multiple steps of human intervention. While XAware Engine can implement such a workfl ow with a series of coordinated

transient workfl ows, BPM/EAI platforms focus on these types of long term processes, and so are better suited for that type of

implementation.

Figure 10. Abstraction layer reduces BPM complexity

Valid Order?

Valid Customer?

Accept Order

Reject Order
no

yes

no

Verify Customer

Web-based Order

Whitepaper >

28White Paper

www.xaware.com

ETL/Data Warehousing

Companies with data warehouses have the complex problem of defi ning business information that will be stored in the

warehouse, then populating the common schema from disparate data sources across the enterprise. Moving data into the

warehouse involves extracting, transforming, and loading the data (ETL). Additionally, these companies must make data available

in a variety of formats for consumers of the information across the enterprise.

XAware assists organizations for both the ETL process, and for publishing data to consumers in customized formats. The ETL

process generally requires that two views be built. The fi st view is the input into a particular business object defi nition in the data

warehouse. For example, a customer order may be represented in the warehouse, and an XML view is created refl ected the data

stored within it. The second view is created to extract and transform the data from one or more source data systems.

If more than one source system feeds the customer order object in the data warehouse, one view is established for each. When

combined, the two views work together to extract and transform the data into a common XML format, then load the data into

the data warehouse.

Consumers of information in the data warehouse also benefi t from XAware’s capabilities to expose views of information in the

warehouse. XML views can be defi ned that extract data from the warehouse in a format appropriate for an application. Because

of the aggregation features in these views, data from the warehouse can be combined with operational data where it makes

sense for the applications.

Summary >

In this paper, we provide an overview of the XAware technology, a Service Oriented Integration product from XAware, Inc. It

provides an XML-based data abstraction layer, exposing business information as services which greatly reducing the complexity

of accessing information. As 70% of application development resources are spent accessing data, XAware’s focus on reducing

the complexity of data access leads to dramatic cost savings and shortened development times. XAware’s SOI features provide

a robust and fl exible integration tool set leading to reusability of information objects, and rapid development of integration

projects for data access and information sharing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

