
Yaws - Yet Another Web Server

Claes Wikstrom
klacke@hyber.org

November 23, 2014

Contents

1 Introduction 4

1.1 Prerequisites . 5

1.2 A tiny example . 5

2 Compile, Install, Config and Run 7

2.0.1 Compile and Install . 7

2.0.2 Configure . 8

3 Static content 11

4 Dynamic content 12

4.1 Introduction . 12

4.2 EHTML . 12

4.3 POSTs . 17

4.3.1 Queries . 17

4.3.2 Forms . 17

4.4 POSTing files . 18

5 Mode of operation 22

5.1 On-the-fly compilation . 22

5.2 Evaluating the Yaws Code . 23

6 SSL 24

7 Applications 25

7.1 Login scenarios . 25

7.1.1 The session server . 25

7.1.2 Arg rewrite . 26

1

CONTENTS 2

7.1.3 Authenticating . 28

7.1.4 Database driven applications . 29

7.2 Appmods . 30

7.3 The opaque data . 30

7.4 Customizations . 31

7.4.1 404 File not found . 31

7.4.2 Crash messages . 32

7.5 Stream content . 32

7.6 All out/1 return values . 33

8 Debugging and Development 36

8.1 Logs . 36

9 External scripts via CGI 37

10 FastCGI 38

10.1 The FastCGI Responder Role . 38

10.2 The FastCGI Authorizer Role . 39

10.3 The FastCGI Filter Role . 39

10.4 FastCGI Configuration . 39

11 Security 40

11.1 WWW-Authenticate . 40

12 Embedded mode 42

12.1 Creating Global and Server Configurations . 42

12.2 Starting Yaws in Embedded Mode . 43

13 The config file - yaws.conf 44

13.1 Global Part . 44

13.2 Server Part . 48

13.3 Configuration Examples . 60

CONTENTS 3

14 WebSocket Protocol Support 63

14.1 Establish a WebSocket connection . 63

14.1.1 Supported options . 63

14.2 WebSocket Callback Modules . 65

14.2.1 Basic Callback Modules . 65

14.2.2 Advanced Callback Modules . 68

14.3 Record definitions . 68

Chapter 1

Introduction

YAWS is an ERLANG web server. It’s written in ERLANG and it uses ERLANG as its embedded language
similar to PHP in Apache or Java in Tomcat.

The advantages of ERLANG as an embedded web page language as opposed to Java or PHP are many.

• Speed - Using ERLANG for both implementing the web server itself as well as embedded script lan-
guage gives excellent dynamic page generation performance.

• Beauty - Well this is subjective

• Scalability - due to the lightweight processes of ERLANG, YAWS is able to handle a very large number
of concurrent connections

YAWS has a wide feature set; it supports:

• HTTP 1.0 and HTTP 1.1

• Static content page delivery

• Dynamic content generation using embedded ERLANG code in the HTML pages

• NCSA combined/XLF/ELF log format traffic logs

• Virtual hosting with several servers on the same IP address

• Multiple servers on multiple IP addresses

• HTTP tracing for debugging

• An interactive interpreter environment in the Web server for use while developing and debugging a
web site

4

CHAPTER 1. INTRODUCTION 5

• RAM caching of commonly accessed pages

• Full streaming capabilities of both upload and download of dynamically generated pages

• SSL

• Support for WWW-Authenticated pages

• Support API for cookie based sessions

• Application Modules where virtual directory hierarchies can be made

• Embedded mode

• WebSockets (RFC 6455)

• Long polling (COMET) applications

• Forward and reverse proxying

1.1 Prerequisites

This document requires that the reader:

• Is well acquainted with the ERLANG programming language.

• Understands basic Web technologies.

1.2 A tiny example

We introduce YAWS by help of a tiny example. The web server YAWS serves and delivers static content
pages similar to any old web server, except that YAWS does this much faster than most web servers. It’s
the dynamic pages that makes YAWS interesting. Any page with the suffix “.yaws” is considered a dynamic
YAWS page. A YAWS page can contain embedded ERLANG snippets that are executed while the page is
being delivered to the WWW browser.

Example 1.1 is the HTML code for a small YAWS page.

It illustrates the basic idea behind YAWS. The HTML code, generally stored in a file ending with a “.yaws”
suffix, can contain <erl> and </erl> tags and inside these tags an ERLANG function called out/1 gets
called and the output of that function is inserted into the HTML document, dynamically.

It is possible to have several chunks of HTML code together with several chunks of ERLANG code in the
same YAWS page.

The Arg argument supplied to the automatically invoked out/1 function is an ERLANG record that contains
various data which is interesting when generating dynamic pages. For example the HTTP headers which
were sent from the WWW client, the actual TCP/IP socket leading to the WWW client. This will be
elaborated on thoroughly in later chapters.

The out/1 function returned the tuple {html, String} and String gets inserted into the HTML output.
There are number of different return values that can be returned from the out/1 function in order to control
the behavior and output from the YAWS web server.

CHAPTER 1. INTRODUCTION 6

<html>

<p> First paragraph

<erl>
out(Arg) ->

{html, "<p>This string gets inserted into HTML document dynamically"}.
</erl>

<p> And here is some more HTML code

</html>

Figure 1.1: Example 1.1

Chapter 2

Compile, Install, Config and Run

This chapter is more of a “Getting started” guide than a full description of the YAWS configuration. YAWS

is hosted on Github at https://github.com/klacke/yaws. This is where the source code resides in a git
repository and the latest unreleased version is available via git through the following commands:

$ git clone https://github.com/klacke/yaws

Released version of YAWS are available at http://yaws.hyber.org/download.

2.0.1 Compile and Install

To compile and install a YAWS release one of the prerequisites is a properly installed ERLANG system.
YAWS runs on ERLANG releases OTP R8 and later. Get ERLANG from http://www.erlang.org/

Compile and install is straight forward:

cd /usr/local/src
tar xfz yaws-X.XX.tar.gz
cd yaws
./configure && make
make install

The make command will compile the YAWS web server with the erlc compiler found by the configure
script.

• make install - will install the executable called yaws in /usr/local/bin/ and a working config-
uration file in /usr/local/etc/yaws.conf

Alternatively, you can compile YAWS with rebar as follows:

rebar get-deps compile

7

 https://github.com/klacke/yaws
http://yaws.hyber.org/download
http://www.erlang.org/

CHAPTER 2. COMPILE, INSTALL, CONFIG AND RUN 8

If you want to build with SOAP support, run the following command:

YAWS_SOAP=1 rebar get-deps compile

To create a YAWS release with reltool, execute the following command:

rebar generate

Because it bundles Erlang/OTP and all of the application’s dependencies, the generated release found in
rel/ is standalone and has no external requirements. A future release of rebar will allow you to create a
slim release that doesn’t bundle Erlang/OTP. This is not yet available.

While developing a YAWS site, it’s typically most convenient to do a local install and run YAWS as a
non-privileged user using --prefix option of the configure script:

./configure --prefix=/path/to/yaws && make install
/path/to/yaws/bin/yaws -i

2.0.2 Configure

Let’s take a look at the config file that gets written after a local install in /home/klacke/yaws/. The file
is /home/klacke/yaws/etc/yaws/yaws.conf:

first we have a set of globals

logdir = /home/klacke/yaws/var/log/yaws
ebin_dir = /home/klacke/yaws/lib/yaws/examples/ebin
include_dir = /home/klacke/yaws/lib/yaws/examples/include

...

and then a set of servers

<server localhost>
port = 8000
listen = 127.0.0.1
docroot = /home/klacke/yaws/var/yaws/www

</server>

Figure 2.1: Minimal Local Configuration

The configuration consists of an initial set of global variables that are valid for all defined servers.

The only global directive we need to care about for now is the logdir. YAWS produces a number of log files.
We start YAWS interactively as

CHAPTER 2. COMPILE, INSTALL, CONFIG AND RUN 9

~/bin/yaws -i
Erlang (BEAM) emulator version 5.1.2.b2 [source]

Eshell V5.1.2.b2 (abort with ^G)
1>
=INFO REPORT==== 30-Oct-2002::01:38:22 ===
Using config file /home/klacke/yaws/etc/yaws/yaws.conf
=INFO REPORT==== 30-Oct-2002::01:38:22 ===
Listening to 127.0.0.1:8000 for servers ["localhost:8000"]

1>

By starting YAWS in interactive mode (using the command switch -i) we get a regular ERLANG prompt.
This is most convenient when developing YAWS pages. For example we:

• Can dynamically compile and load optional helper modules we need.

• Get all the crash and error reports written directly to the terminal.

The configuration in Example 2.1 defined one HTTP server on address 127.0.0.1:8000 called "localhost".
It is important to understand the difference between the name and the address of a server. The name is the
expected value in the client HTTP Host: header. That is typically the same as the fully-qualified DNS name
of the server whereas the address is the actual IP address of the server.

Since YAWS supports virtual hosting with several servers on the same IP address, this matters.

Nevertheless, our server listens to 127.0.0.1:8000 and has the name "localhost", thus the correct URL for
this server is http://localhost:8000.

The document root (docroot) for the server is a copy of the www directory in the YAWS source code distribu-
tion. This directory contains a bunch of examples and we should be able to run all those example now on
the URL http://localhost:8000.

Instead of editing and adding files in the YAWS www directory, we create yet another server on the same IP
address but a different port number — and in particular a different document root where we can add our own
files.

mkdir ~/test
mkdir ~/test/logs

Now change the config so it looks like this:

logdir = /home/klacke/test/logs
ebin_dir = /home/klacke/test
include_dir = /home/klacke/test

<server localhost>
port = 8000

CHAPTER 2. COMPILE, INSTALL, CONFIG AND RUN 10

listen = 127.0.0.1
docroot = /home/klacke/yaws/var/yaws/www

</server>

<server localhost>
port = 8001
listen = 127.0.0.1
docroot = /home/klacke/test

</server>

We define two servers, one being the original default and a new pointing to a document root in our home
directory.

We can now start to add static content in the form of HTML pages, dynamic content in the form of .yaws
pages or ERLANG .beam code that can be used to generate the dynamic content.

The load path will be set so that beam code in the directory ~/test will be automatically loaded when
referenced.

It is best to run YAWS interactively while developing the site. In order to start the YAWS as a daemon, we
give the flags:

yaws -D --heart

The -D or –daemon flags instructs YAWS to run as a daemon and the –heart flag will start a heartbeat program
called heart which restarts the daemon if it should crash or if it stops responding to a regular heartbeat. By
default, heart will restart the daemon unless it has already restarted 5 times in 60 seconds or less, in which
case it considers the situation fatal and refuses to restart the daemon again. The -heart-restart=C,T flag
changes the default 5 restarts in 60 seconds to C restarts in T seconds. For infinite restarts, set both C and T
to 0. This flag also enables the –heart flag.

Once started in daemon mode, we have very limited ways of interacting with the daemon. It is possible to
query the daemon using:

yaws -S

This command produces a simple printout of uptime and number of hits for each configured server.

If we change the configuration, we can HUP the daemon using the command:

yaws -h

This will force the daemon to reread the configuration file.

Chapter 3

Static content

YAWS acts very much like any regular web server while delivering static pages. By default YAWS will cache
static content in RAM. The caching behavior is controlled by a number of global configuration directives.
Since the RAM caching occupies memory, it may be interesting to tweak the default values for the caching
directives or even to turn it off completely.

The following configuration directives control the caching behavior

• max_num_cached_files = Integer

YAWS will cache small files such as commonly accessed GIF images in RAM. This directive sets a
maximum number on the number of cached files. The default value is 400.

• max_num_cached_bytes = Integer

This directive controls the total amount of RAM which can maximally be used for cached RAM files.
The default value is 1000000, 1 megabyte.

• max_size_cached_file = Integer

This directive sets a maximum size on the files that are RAM cached by YAWS. The default value is
8000 bytes, 8 batters.

It may be considered to be confusing, but the numbers specified in the above mentioned cache directives
are local to each server. Thus if we have specified max_num_cached_bytes = 1000000 and have defined
3 servers, we may actually use 3∗1000000 bytes.

11

Chapter 4

Dynamic content

Dynamic content is what YAWS is all about. Most web servers are designed with HTTP and static content in
mind whereas YAWS is designed for dynamic pages from the start. Most large sites on the Web today make
heavy use of dynamic pages.

4.1 Introduction

When the client GETs a page that has a “.yaws” suffix, the YAWS server will read that page from the hard
disk and divide it in parts that consist of HTML code and ERLANG code. Each chunk of ERLANG code will
be compiled into a module. The chunk of ERLANG code must contain a function out/1. If it doesn’t the
YAWS server will insert a proper error message into the generated HTML output.

When the YAWS server ships a .yaws page it will process it chunk by chunk through the .yaws file. If it
is HTML code, the server will ship that as is, whereas if it is ERLANG code, the YAWS server will invoke
the out/1 function in that code and insert the output of that out/1 function into the stream of HTML that
is being shipped to the client.

YAWS will (of course) cache the result of the compilation and the next time a client requests the same .yaws
page YAWS will be able to invoke the already-compiled modules directly.

4.2 EHTML

There are two ways to make the out/1 function generate HTML output. The first and most easy to under-
stand is by returning a tuple {html, String} where String then is regular HTML data (possibly as a deep
list of strings and/or binaries) which will simply be inserted into the output stream. An example:

<html>
<h1> Example 1 </h1>

<erl>
out(A) ->

Headers = A#arg.headers,
{html, io_lib:format("You say that you’re running ~p",

12

CHAPTER 4. DYNAMIC CONTENT 13

[Headers#headers.user_agent])}.

</erl>

</html>

The second way to generate output is by returning a tuple {ehtml, EHTML} or {exhtml, EHTML}. The
exhtml variant generates strict XHTML code. The term EHTML must adhere to the following structure:

EHT ML = [EHT ML]|{TAG,Attrs,Body}|{TAG,Attrs}|{TAG}|
{Module,Fun, [Args]}| f un/0|
binary()|character()

TAG = atom()

Attrs = [{HtmlAttribute,Value}]

HtmlAttribute = atom()

Value = string()|binary()|atom()|integer()| f loat()|
{Module,Fun, [Args]}| f un/0

Body = EHT ML

We give an example to show what we mean. The tuple

{ehtml, {table, [{bgcolor, grey}],
[
{tr, [],
[
{td, [], "1"},
{td, [], "2"},
{td, [], "3"}
]

},
{tr, [],
[{td, [{colspan, "3"}], "444"}]}]}}.

expands into the following HTML code:

<table bgcolor="grey">
<tr>
<td> 1 </td
<td> 2 </td>
<td> 3 </td>

</tr>
<tr>
<td colspan="3"> 444 </td>

</tr>
</table>

CHAPTER 4. DYNAMIC CONTENT 14

At a first glance it may appears as if the HTML code is more beautiful than the ERLANG tuple. That may
very well be the case from a purely aesthetic point of view. However the ERLANG code has the advantage
of being perfectly indented by editors that have syntax support for ERLANG (read Emacs). Furthermore, the
ERLANG code is easier to manipulate from an ERLANG program.

Note that ehtml supports function calls as values. Functions can return any legal ehtml value, including
other function values. YAWS supports {M,F,[Args]} and fun/0 function value forms.

As an example of some more interesting ehtml we could have an out/1 function that prints some of the
HTTP headers. In the www directory of the YAWS source code distribution we have a file called arg.yaws.
The file demonstrates the Arg #arg record parameter which is passed to the out/1 function.

But before we discuss that code, we describe the Arg record in detail.

Here is the yaws_api.hrl file which is in included by default in all YAWS files. The #arg{} record contains
many fields that are useful when processing HTTP request dynamically. We have access to basically all the
information associated with the client request such as:

• The actual socket leading back to the HTTP client

• All the HTTP headers – parsed into a #headers record

• The HTTP request – parsed into a #http_request record

• clidata – data which is POSTed by the client

• querydata – this is the remainder of the URL following the first occurrence of a ’?’ character, if any.

• docroot – the absolute path to the docroot of the virtual server that is processing the request.

-record(arg, {
clisock, % the socket leading to the peer client
client_ip_port, % {ClientIp, ClientPort} tuple
headers, % headers
req, % request
orig_req, % original request
clidata, % The client data (as a binary in POST requests)
server_path, % The normalized server path

% (pre-querystring part of URI)
querydata, % For URIs of the form ...?querydata

% equiv of cgi QUERY_STRING
appmoddata, % (deprecated - use pathinfo instead) the remainder

% of the path leading up to the query
docroot, % Physical base location of data for this request
docroot_mount, % virtual directory e.g /myapp/ that the docroot

% refers to.
fullpath, % full deep path to yaws file
cont, % Continuation for chunked multipart uploads
state, % State for use by users of the out/1 callback

CHAPTER 4. DYNAMIC CONTENT 15

pid, % pid of the yaws worker process
opaque, % useful to pass static data
appmod_prepath, % (deprecated - use prepath instead) path in front

% of: <appmod><appmoddata>
prepath, % Path prior to ’dynamic’ segment of URI.

% ie http://some.host/<prepath>/<script-point>/d/e
% where <script-point> is an appmod mount point,
% or .yaws,.php,.cgi,.fcgi etc script file.

pathinfo % Set to ’/d/e’ when calling c.yaws for the request
% http://some.host/a/b/c.yaws/d/e
% equiv of cgi PATH_INFO

}).

-record(http_request, {method,
path,
version}).

-record(headers, {
connection,
accept,
host,
if_modified_since,
if_match,
if_none_match,
if_range,
if_unmodified_since,
range,
referer,
user_agent,
accept_ranges,
cookie = [],
keep_alive,
location,
content_length,
content_type,
content_encoding,
authorization,
transfer_encoding,
x_forwarded_for,
other = [] % misc other headers

}).

There are a number of advanced fields in the #arg record such as appmod and opaque that will be discussed
in later chapters.

CHAPTER 4. DYNAMIC CONTENT 16

Now, we show some code which displays the content of the Arg #arg record. The code is available in
yaws/www/arg.yaws and after a local_install a request to http://localhost:8000/arg.yaws will
run the code.

<html>

<h2> The Arg </h2>

<p>This page displays the Arg #argument structure
supplied to the out/1 function.

<erl>

out(A) ->
Req = A#arg.req,
H = yaws_api:reformat_header(A#arg.headers),
{ehtml,
[{h4,[], "The headers passed to us were:"},
{hr},
{ol, [],lists:map(fun(S) -> {li,[], {p,[],S}} end,H)},

{h4, [], "The request"},
{ul,[],
[{li,[], f("method: ~s", [Req#http_request.method])},
{li,[], f("path: ~p", [Req#http_request.path])},
{li,[], f("version: ~p", [Req#http_request.version])}]},

{hr},
{h4, [], "Other items"},
{ul,[],
[{li,[], f("clisock from: ~p", [inet:peername(A#arg.clisock)])},
{li,[], f("docroot: ~s", [A#arg.docroot])},
{li,[], f("fullpath: ~s", [A#arg.fullpath])}]},

{hr},
{h4, [], "Parsed query data"},
{pre,[], f("~p", [yaws_api:parse_query(A)])},
{hr},
{h4,[], "Parsed POST data "},
{pre,[], f("~p", [yaws_api:parse_post(A)])}]}.

</erl>

</html>

http://localhost:8000/arg.yaws

CHAPTER 4. DYNAMIC CONTENT 17

The code utilizes four functions from the yaws_api module. The yaws_api module is a general purpose
www API module that contains various functions that are handy while developing YAWS code. We will see
many more of those functions during the examples in the following chapters.

The functions used are:

• yaws_api:f/2 — alias for io_lib:format/2. The f/2 function is automatically -included in all
YAWS code.

• yaws_api:reformat_header/1 — This function takes the #headers record and unparses it, that is
reproduces regular text.

• yaws_api:parse_query/1 — The topic of the next section.

• yaws_api:parse_post/1 — Ditto.

4.3 POSTs

4.3.1 Queries

The user can supply data to the server in many ways. The most common is to give the data in the actual
URL. If we invoke:

GET http://localhost:8000/arg.yaws?kalle=duck&goofy=unknown

we pass two parameters to the arg.yaws page. That data is URL-encoded by the browser and the server
can retrieve the data by looking at the remainder of the URL following the ’?’ character. If we invoke the
arg.yaws page with the above mentioned URL we get as the result of yaws_api:parse_query/1:

kalle = duck

goo f y = unknown

In ERLANG terminology, the call yaws_api:parse_query(Arg) returns the list:

[{"kalle", "duck"}, {"goofy", "unknown"}]

Both the key and the value are strings. Hence, a web page can contain URLs with a query and thus pass data
to the web server. This scheme works with any kind of requests. It is the easiest way to pass data to the Web
server since no form is required in the web page.

4.3.2 Forms

In order to POST data a form is required. Say that we have a page called form.yaws that contain the following
code:

<html>
<form action="/post_form.yaws"

method="post"

CHAPTER 4. DYNAMIC CONTENT 18

<p> A Input field
<input name="xyz" type="text">
<input type="submit">
</form>
</html>

This will produce a page with a simple input field and a submit button.

If we enter something—say, “Hello there”—in the input field and click the submit button the client will
request the page indicated in the “action” attribute, namely post_form.yaws.

If that YAWS page has the following code:

out(A) ->
L = yaws_api:parse_post(A),
{html, f("~p", [L])}

The user will see the output

[{"xyz", "Hello there"}]

The differences between using the query part of the URL and a form are the following:

• Using the query arg works with any kind of requests. We parse the query argument with the function
yaws_api:parse_query(Arg)

• If we use a form and POST the user data the client will transmit the user data in the body of the request.
That is, the client sends a request to get the page using the POST method and it then attaches the user
data—encoded—into the body of the request.

A POST request can have a query part in its URL as well as user data in the body.

4.4 POSTing files

It is possible to upload files from the client to the server by means of POST. We indicate this in the form by
telling the browser that we want a different encoding. Here is an example form that does this:

CHAPTER 4. DYNAMIC CONTENT 19

out(A) ->
Form =

{form, [{enctype, "multipart/form-data"},
{method, post},
{action, "file_upload_form.yaws"}],
[{input, [{type, submit}, {value, "Upload"}]},
{input, [{type,file}, {width, "50"}, {name, foo}]}]},

{ehtml, {html,[], [{h2,[], "A simple file upload page"},
Form]}}.

As shown in the figure, the page delivers the entire HTML page with enclosing html markers.

The user gets an option to browse the local host for a file or the user can explicitly fill in the file name in the
input field. The file browsing part is automatically taken care of by the browser.

The action field in the form states that the client shall POST to a page called file_upload_form.yaws. This
page will get the contents of the file in the body of the POST message. To read it, we use the yaws_multipart
module, which provides the following capabilities:

1. It reads all parameters — files uploaded and other simple parameters.

2. It takes a few options to help file uploads. Specifically:

(a) {max_file_size, MaxBytes}: if the file size in bytes exceeds MaxBytes, return an error

(b) no_temp_file: read the uploaded file into memory without any temp files

(c) {temp_file,FullFilePath}: specify FullFilePath for the temp file; if not given, a unique
file name is generated

(d) {temp_dir, TempDir}: specify TempDir as the directory to store the uploaded temp file; if this
option is not provided, then by default an OS-specific temp directory such as /tmp is used

(e) list: return file data in list form; this is the default

(f) binary: return file data in binary form

Note that the list and binary options affect only file data, not filenames, headers, or other parameters
associated with each file. These are always returned as strings.

CHAPTER 4. DYNAMIC CONTENT 20

Just call yaws_multipart:read_multipart_form from your out/1 function and it’ll return a tuple with
the first element set to one of these three atoms:

• get_more: more data needs to be read; return this tuple directly to YAWS from your out/1 function
and it will call your out/1 function again when it has read more POST data, at which point you must
call read_multipart_form again

• done: multipart form reading is complete; a dict full of parameters is returned

• error: an error occurred

The dict returned with done allows you to query it for parameters by name. For file upload parameters, it
returns one of the following lists:

[{filename, "name of the uploaded file as entered on the form"},
{value, Contents_of_the_file_all_in_memory} | _T]

or:

[{filename, "name of the uploaded file as entered on the form"},
{temp_file, "full pathname of the temp file"} | _T]

Some multipart/form messages also headers such as Content-Type and Content-Transfer-Encoding for
different subparts of the message. If these headers are present in any subpart of a multipart/form message,
they’re also included in that subpart’s parameter list, like this:

[{filename, "name of the uploaded file as entered on the form"},
{value, Contents_of_the_file_all_in_memory},
{content_type, "image/png"} | _T]

Note that for the temporary file case, it’s your responsibility to delete the file when you’re done with it.

Here’s an example:

-module(my_yaws_controller).
-export([out/1]).

out(Arg) ->
Options = [no_temp_file],
case yaws_multipart:read_multipart_form(Arg, Options) of

{done, Params} ->
io:format("Params : ~p~n", [Params]),
{ok, [{filename, FileName},{value,FileContent}|_]} =

dict:find("my_file", Params),
AnotherParam = dict:find("another_param", Params);

%% do something with FileName, FileContent and AnotherParam
{error, Reason} ->

io:format("Error reading multipart form: ~s~n", [Reason]);
Other -> Other

end.

CHAPTER 4. DYNAMIC CONTENT 21

Here, my_yaws_controller is a user-defined module compiled as usual with erlc with the resulting .beam
file placed in the YAWS load path. The module is then registered with YAWS as an appmod to allow it to
receive and process requests—see section 7.2 for more details.

Chapter 5

Mode of operation

5.1 On-the-fly compilation

When the client requests a YAWS page, YAWS will look in its caches (there is one cache per virtual server)
to see if it finds the requested page in the cache. If YAWS doesn’t find the page in the cache, it will compile
the page. This only happens the first time a page is requested. Say that the page is 400 bytes big and has the
following layout:

100 bytes of HTML code

120 bytes of Erlang code

80 bytes of HTML code

60 bytes of Erlang code

140 bytes of HTML code

The YAWS server will then parse the file and produce a structure which makes it possible to readily deliver
the page without parsing the next time the same page is requested.

When shipping the page it will

1. Ship the first 100 bytes from the file

2. Evaluate the first ERLANG chunk in the file and ship the output from the out/1 function in that chunk.
It will also jump ahead in the file and skip 120 bytes.

3. Ship 80 bytes of HTML code

22

CHAPTER 5. MODE OF OPERATION 23

4. Again evaluate an ERLANG chunk, this time the second and jump ahead 60 bytes in the file.

5. And finally ship 140 bytes of HTML code to the client

YAWS writes the source output of the compilation into a directory /tmp/yaws/$UID. The beam files are
never written to a file. Sometimes it can be useful to look at the generated source code files, for example if
the YAWS/ERLANG code contains a compilation error which is hard to understand.

5.2 Evaluating the Yaws Code

All client requests will execute in their own ERLANG process. For each group of virtual hosts on the same
IP:PORT pair one ERLANG process listens for incoming requests.

This process spawns acceptor processes for each incoming request. Each acceptor process reads and parses
all the HTTP headers from the client. It then looks at the Host: header to figure out which virtual server to
use, i.e. which docroot to use for this particular request. If the Host: header doesn’t match any server from
yaws.conf with that IP:PORT pair, the first one from yaws.conf is chosen.

By default YAWS will not ship any data at all to the client while evaluating a YAWS page. The headers as
well as the generated content are accumulated and not shipped to the client until the entire page has been
processed.

Chapter 6

SSL

Secure Socket Layer (SSL) is a protocol used on the Web for delivering encrypted pages to the WWW client.
SSL is widely deployed on the Internet and virtually all bank transactions as well as all online shopping today
is done with SSL encryption. There are many good sources on the net that describe SSL in detail, so we
will not try to do that here. See for example http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/,
which describes how to manage certificates and keys.

In order to run an SSL server we must have a certificate. Either we can create a so-called self-signed
certificate ourselves or buy a certificate from one of the many CA’s (Certificate Authorities) on the net.
YAWS uses the OTP interface to OpenSSL.

To setup a YAWS server with SSL we could have a yaws.conf file that looks like:

logdir = /var/log/yaws

<server www.funky.org>
port = 443
listen = 192.168.128.32
docroot = /var/yaws/www.funky.org
<ssl>

keyfile = /etc/funky.key
certfile = /etc/funky.cert
password = gazonk

</ssl>
</server>

This is the easiest possible SSL configuration. The configuration refers to a certificate file and a key file.
The certificate file must contain the name "www.funky.org" as it "Common Name".

The keyfile is the private key file and it is encrypted using the password "gazonk".

24

http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/

Chapter 7

Applications

YAWS is well suited for Web applications. In this chapter we will describe a number of application templates.
Code and strategies that can be used to build Web applications.

There are several ways of starting applications from YAWS.

• The first and most easy variant is to specify the -r Module flag to the YAWS startup script. This will
apply(Module,start,[])

• We can also specify runmods in the yaws.conf file. It is possible to have several modules specified if
want the same YAWS server to run several different applications.

runmod = myapp
runmod = app_number2

• It is also possible to do it the other way around, let the main application start YAWS. We call this
embedded mode, which we will discuss in chapter 12.

7.1 Login scenarios

Many Web applications require the user to login. Once the user has logged in the server sets a cookie and
then the user will be identified by help of the cookie in subsequent requests.

7.1.1 The session server

The cookie is passed in the headers and is available to the YAWS programmer in the Arg #arg record. The
YAWS session server can help us to maintain a state for a user while the user is logged in to the application.
The session server has the following 5 API functions to aid us:

1. yaws_api:new_cookie_session(Opaque) — This function initiates a new cookie-based session.
The Opaque data is typically some application-specific structure which makes it possible for the ap-
plication to read a user state, or it can be the actual user state itself.

25

CHAPTER 7. APPLICATIONS 26

2. yaws_api:cookieval_to_opaque(Cookie) — This function maps a cookie to a session.

3. yaws_api:replace_cookie_session(Cookie, NewOpaque) — Replace the opaque user state in
the session server with NewOpaque.

4. yaws_api:delete_cookie_session(Cookie) — This function should typically be called when the
user logs out or when our web application decides to automatically logout the user.

All cookie-based applications are different but they have some things in common. In the following ex-
amples we assume the existence of a function myapp:auth(UserName, Passwd) and it returns ok or
{error, Reason}.

Let’s assume the following record:

-record(session, {user,
passwd,
udata = []}).

The following function is a good template function to check the cookie.

get_cookie_val(CookieName, Arg) ->
H = Arg#arg.headers,
yaws_api:find_cookie_val(CookieName, H#headers.cookie).

check_cookie(A, CookieName) ->
case get_cookie_val(CookieName, A) of

[] ->
{error, "not logged in"};

Cookie ->
yaws_api:cookieval_to_opaque(Cookie)

end.

We need to check all requests and make sure the session_server has our cookie registered as an active
session. Also, if a request comes in without a working cookie we want to present a login page instead of the
page the user requested. Another quirky issue is that the pages necessary for display of the login page must
be shipped without checking the cookie. The next sections explain how these needs can be met.

7.1.2 Arg rewrite

In this section we describe a feature whereby the user is allowed to rewrite the Arg at an early stage in the
YAWS server. We do that by specifying an arg_rewrite_mod in the yaws.conf file.

CHAPTER 7. APPLICATIONS 27

arg_rewrite_mod = myapp

Then in the myapp module we have:

arg_rewrite(Arg) ->
OurCookieName = "myapp_sid"
case check_cookie(A, OurCookieName) of

{error, _} ->
do_rewrite(Arg);

{ok, _Session} ->
%return Arg untouched
Arg

end.

%% these pages must be shippable without a good cookie
login_pages() ->

["/banner.gif", "/login.yaws", "/post_login.yaws"].

do_rewrite(Arg) ->
Req = Arg#arg.req,
{abs_path, Path} = Req#http_request.path,
case lists:member(Path, login_pages()) of

true ->
Arg;

false ->
Arg#arg{req = Req#http_request{path = {abs_path, "/login.yaws"}},

state = Path}
end.

Our arg rewrite function lets all Args go through untouched that either have a good cookie or belong to a set
of predefined pages that are acceptable to get without being logged in. If we decide that the user must log
in, we change the path of the request, thereby making the YAWS server ship a login page instead of the page
the user requested. We also set the original path in the Arg state argument so that the login page can redirect
the user to the original page once the login procedure is finished.

Within an arg rewrite function, examining and modifying HTTP headers can be achieved using the following
functions from the yaws_api module:

• set_header/2, set_header/3

• get_header/2, get_header/3

• merge_header/2, merge_header/3

• delete_header/2

All functions operate on instances of the #headers{} record type defined in the yaws_api.hrl include file.

CHAPTER 7. APPLICATIONS 28

7.1.3 Authenticating

Now we’re approaching the login.yaws page, the page that displays the login prompt to the user. The login
page consists of two parts: one part that displays the login data as a form, and one form processing page that
reads the data the user entered in the login fields and performs the actual authentication.

The login page performs a tiny well-known Web trick where it passes the original URL request in a hidden
field in the login page and thereby passing that information to the form processing page.

The page login.yaws:

<erl>

out(A) ->
{ehtml,
{html,[],
[{h2, [], "Login page"},
{hr},
{form, [{action,"/login_post.yaws"},

{method,post}],

[{p,[], "Username"}, {input, [{type,text},{name,uname}]},
{p,[],"Password"}, {input, [{type,password},{name,passwd}]},
{input, [{type,submit},{value,"Login"}]},
{input, [{type,hidden},{name,url},

{value, A#arg.state}]}]}]}}.

</erl>

The form processing page which gets the POST data from the code above:

<erl>

-include("myapp.hrl").
%% we have the session record there
%% we must set the include_path in the yaws.conf file
%% in order for the compiler to find that file

kv(K,L) ->
{value, {K, V}} = lists:keysearch(K,1,L),
V.

out(A) ->
L = yaws_api:parse_post(A),
User = kv(user, L),
Pwd = kv(passwd, L),

CHAPTER 7. APPLICATIONS 29

case myapp:auth(User, Pwd) of
ok ->

S = #session{user = User,
passwd = Pwd,
udata = []},

%% Now register the session to the session server
Cookie = yaws_api:new_cookie_session(S),
[{redirect_local, kv(url, L)},

yaws_api:set_cookie("myapp_sid",Cookie,[])]
Err ->

{ehtml,
{html, [],
{p, [], f("Bad login: ~p",[Err])}}}

end.

</erl>

The function returns a list of two new (not previously discussed) return values: instead of returning HTML
output as in {html, Str} or {ehtml,Term} we return a list of two new values. (There are many different
possible return values from the out/1 function and they will all be described later.) The two new values are:

1. The tuple {redirect_local, Path} makes the YAWS web server return a 302 redirect to the speci-
fied Path. Optionally a different status code can be supplied which will be used in place of 302, e.g.
{redirect_local, Path, 307}.

2. yaws_api:set_cookie("myapp_sid",Cookie,[]) generates a Set-Cookie header.

Now if we put all this together we have a full-blown cookie-based login system. The last thing we did in the
form processing code was to register the session with the session server thereby letting any future requests
go straight through the Arg rewriter.

This way both YAWS pages as well as all or some static content is protected by the cookie login code.

7.1.4 Database driven applications

We can use code similar to the code in the previous section to associate a user session to entries in a database.
Mnesia fits perfectly together with YAWS and keeping user persistent state in Mnesia is both easy and
convenient.

Once the user has logged in we can typically use the user name as key into the database. We can mix
ram_tables and disc_tables to our liking. The Mnesia database must be initialized via create_table/2
before it can be used. This is typically done while installing the web application on a machine.

Another option is to let the application check that Mnesia is initialized whenever the application starts.

If we don’t want or need to use Mnesia, it’s of course possible to use a simple dets file or a text file as well.

CHAPTER 7. APPLICATIONS 30

7.2 Appmods

Appmods is mechanism to invoke different applications based upon the URL. A URL—as presented to the
web server in a request—has a path part and a query part.

It is possible to install several appmods in the yaws.conf file as shown below:

appmods = foo myapp

Now, if the user requests a URL where any component in the directory path is an appmod, the parsing of the
URL will terminate there and instead of reading the actual file from the disk, YAWS will invoke the appmod
with the remainder of the path inserted into Arg#arg.appmoddata.

Say the user requests the URL http://www.funky.org/myapp/xx/bar.html. YAWS will not ship the file
bar.html to the client, instead it will invoke myapp:out(Arg) with Arg#arg.appmoddata set to the string
xx/bar.html. Any optional query data—that is, data that follows the first ’?’ character in the URL—is
removed from the path and passed as Arg#arg.querydata.

Appmods can be used to run applications on a server. All requests to the server that has an appmod in the
URL will be handled by that application. If the application decides that it want to ship a page from the disk
to the client, it can return the tuple {page, Path}. This return value will make YAWS read the page from
the disk, possibly add the page to its cache of commonly accessed pages and ship it back to the client.

The {page, Path} return value is equivalent to a redirect, but it removes an extra round trip, and is thus
faster.

Appmods can also be used to fake entire directory hierarchies that don’t exist on disk.

7.3 The opaque data

Sometimes an application needs application-specific data such as the location of its data files. There exists
a mechanism to pass application-specific configuration data from the YAWS server to the application.

When configuring a server we have an opaque field in the configuration file that can be used for this purpose.
Say we have the following fields in the config file:

<server foo>
listen = 192.168.128.44
<opaque>

foo = bar
somefile = /var/myapp/db
myname = hyber

</opaque>
</server>

http://www.funky.org/myapp/xx/bar.html

CHAPTER 7. APPLICATIONS 31

This will create a normal server that listens to the specified IP address. An application has access to the
opaque data that was specified in that particular server through Arg#arg.opaque.

If we have the opaque data specified above, the Arg opaque field will have the value:

[{foo, "bar"},
{somefile, "/var/myapp/db"},
{myname, "hyber"}

]

7.4 Customizations

When actually deploying an application at a live site, some of the standard YAWS behaviors are not accept-
able. Many sites want to customize the web server behavior when a client requests a page that doesn’t exist
on the web server. The standard YAWS behavior is to reply with status code 404 and a message explaining
that the page doesn’t exist.

Similarly, when YAWS code crashes, the reason for the crash is displayed in the Web browser. This is very
convenient while developing a site but not acceptable in production.

7.4.1 404 File not found

We can install a special handler for 404 messages. We do that by specifying a errormod_404 in the
yaws.conf file.

If we have:

<server foo>
..
..
..
errormod_404 = myapp

</server>

When YAWS gets a request for a file that doesn’t exist, it invokes the errormod_404 module to generate
both the status code as well as the content of the message.

If Module is specified as the errormod_404 module, YAWS will invoke Module:out404(Arg, GC, SC),
passing the arguments as described below:

• Arg is an #arg{} record

• GC is a #gconf{} record (defined in yaws.hrl)

• SC is a #sconf{} record (defined in yaws.hrl)

The function can and must do the same things that a normal out/1 function does.

CHAPTER 7. APPLICATIONS 32

7.4.2 Crash messages

We use a similar technique for generating the crash messages: we install a module in the yaws.conf file and
let that module generate the crash message. We have:

errormod_crash = Module

The default is to display the entire formatted crash message in the browser. This is good for debugging but
not good for production.

If Module is specified as the errormod_crash module, the function Module:crashmsg(Arg, SC, Str)
will be called. The Str argument is the real crash message formatted as a string.

7.5 Stream content

If the out/1 function returns the tuple {content, MimeType, Content} YAWS will ship that data to the
Client. This way we can deliver dynamically generated content to the client which is of a different MIME
type than "text/html".

If the generated response is very large and it not possible or practical to generate the whole thing, we can
return the value:

{streamcontent, MimeType, FirstChunk}

which delivers data back to the client using HTTP chunked transfer (see RFC 2616 section 3.6.1) and then
from a different ERLANG process deliver the remaining chunks by using the functions described below:

1. yaws_api:stream_chunk_deliver(YawsPid, Data) where the YawsPid is the process id of the
YAWS worker process. That pid is available in Arg#arg.pid.

2. stream_chunk_end(YawsPid) which must be called to indicate the end of the stream.

A streaming alternative is also available for applications that need a more direct way to deliver data to clients,
such as those dealing with data too large to buffer in memory but not wishing to use chunked transfer, or
applications that use long-polling (Comet) techniques that require them to hold client connections open for
extended periods. For these situations we can return the value:

{streamcontent_from_pid, MimeType, Pid}

to tell YAWS we wish to deliver data of MIME type MimeType to the client from process Pid. In this case,
YAWS will prepare the socket for delivery from Pid and then send one of the following messages to Pid:

• {ok, YawsPid} tells Pid that it is now OK to proceed with sending data back to the client using the
socket. The socket is accessible as Arg#arg.clisock.

• {discard, YawsPid} informs Pid that it should not attempt to use the socket, typically because the
requested HTTP method requires no response body.

CHAPTER 7. APPLICATIONS 33

We call one of the following functions to send data:

• yaws_api:stream_process_deliver(Socket, IoList) sends data IoList using socket Socket
without chunking the data. To ensure chunking is not in effect, return

{header, {transfer_encoding, erase}}

in a list with the streamcontent_from_pid directive (which must always be last in such a list).

• yaws_api:stream_process_deliver_chunk(Socket, IoList) sends data IoList using socket
Socket but converts the data into chunked transfer form before sending it.

Pids using chunked transfer must indicate the end of their transfer by calling the following function:

• yaws_api:stream_process_deliver_final_chunk(Socket, IoList)

which delivers a special HTTP chunk to mark the end of the data transfer to the client.

Finally, Pid must always call yaws_api:stream_process_end(Socket, YawsPid) when it finishes send-
ing data or when it receives the {discard, YawsPid} message from YAWS — this is required to inform
YAWS that Pid has finished with the socket and will not use it directly anymore. If the application has to
close the socket while it’s in control of it, though, it must pass the atom closed as the first argument to
yaws_api:stream_process_end in place of the socket to inform YAWS that the socket has been closed
and it should no longer attempt to use it.

Applications that use the streamcontent_from_pid directive that also want to avoid chunked transfer
encoding for their streams should be sure to include a setting for the Content-Length header in their
out/1 return value. YAWS automatically sets the Transfer-Encoding header to chunked if it does not
detect a Content-Length header.

7.6 All out/1 return values

• {html, DeepList} This assumes that DeepList is formatted HTML code. The code will be inserted
in the page.

• {ehtml, Term} This will transform the ERLANG term Term into a stream of HTML content.

• {exhtml, Term} This will transform the ERLANG term Term into a stream of strict XHTML code.

• {content, MimeType, Content} This function will make the web server generate different content
than HTML. This return value is only allowed in a YAWS file which has only one <erl> </erl> part
and no html parts at all.

• {streamcontent, MimeType, FirstChunk} This return value plays the same role as the content
return value above. However it makes it possible to stream data to the client using HTTP chunked
transfer if the YAWS code doesn’t have access to all the data in one go. (Typically if a file is very large
or if data arrives from back end servers on the network.)

CHAPTER 7. APPLICATIONS 34

• {streamcontent_with_timeout, MimeType, FirstChunk, Timeout} Similar to the above, but
with an explicit timeout. The default timeout is 30 secs, i.e. if the application fails to deliver data
to the YAWS process, the streaming will stop. This is often not the desired behaviour in Comet/Ajax
applications. It’s possible to provide ’infinity’ as the timeout.

• {streamcontent_from_pid, MimeType, Pid} This return value is similar to the streamcontent
return value above. However it makes it possible to stream data to the client directly from an appli-
cation process to the socket. This approach can be useful for applications that employ long-polling
(Comet) techniques, for example, and for applications wanting to avoid buffering data or avoid HTTP
chunked mode transfer for streamed data.

• {streamcontent_with_size, Sz, MimeType, Pid} This is similar to the streamcontent return
value above. However it makes it possible to stream data to the client by setting the content length of
the response. As the opposite of other ways to stream data, in this case, the response is not chunked
encoded.

• {header, H} Accumulates a HTTP header. The trailing CRNL which is supposed to end all HTTP
headers must NOT be added. It is added by the server. The following list of headers are given special
treatment.

– {connection, What} - This sets the Connection: header. If What is the special value c̈lose¨,
the connection will be closed once the yaws page is delivered to the client.

– {server, What} - Sets the Server: header. By setting this header, the server’s signature will be
dynamically overloaded.

– {location, What} - Sets the Location: header. This header is typically combined with the
{status, 302} return value.

– {cache_control, What} - Sets the Cache-Control: header.

– {expires, What} - Sets the Expires: header.

– {date, What} - Sets the Date: header.

– {allow, What} - Sets the Allow: header.

– {last_modified, What} - Sets the Last-Modified: header.

– {etag, What} - Sets the Etag: header.

– {set_cookie, What} - Prepends a Set-Cookie: header to the list of previously set Set-Cookie
headers.

– {content_range, What} - Sets the Content-Range: header.

– {content_type, What} - Sets the Content-Type: header.

– {content_encoding, What} - Sets the Content-Encoding: header. If this header is defined,
no deflate is performed by YAWSṠo you can compress data by yourself.

– {content_length, What} - Normally YAWS will ship Yaws pages using Transfer-Encoding:
chunked. This is because we generally can’t know how long a yaws page will be. If we for
some reason want to force a Content-Length: header (and we actually do know the length of the
content, we can force yaws to not ship the page chunked.

– {transfer_encoding, What} - Sets the Transfer-Encoding: header.

– {www_authenticate, What} - Sets the WWW-Authenticate: header.

– {vary, What} - Sets the Vary: header.

CHAPTER 7. APPLICATIONS 35

All other headers must be added using the normal HTTP syntax. Example:

{header, {"My-X-Header", "gadong"}} or {header, "My-X-Header: gadong"}

• {header, {H, erase}} A specific case of the previous directive; use this to remove a specific header
from a response. For example, streaming applications and applications using server-sent events (see
http://www.w3.org/TR/eventsource/) should use {header, {transfer_encoding, erase}}
to turn off chunked encoding for their responses.

• {allheaders, HeaderList} Will clear all previously accumulated headers and replace them.

• {status, Code} Sets the response HTTP status code to Code.

• break Will stop processing of any consecutive chunks of erl or HTML code in the YAWS file.

• ok Do nothing.

• flush Flush remaining data sent by the client.

• {redirect, Url} Erase all previous headers and accumulate a single HTTP Location header. Set
the status code to 302.

• {redirect, Url, Status} Same as redirect above with the additional option of supplying the status
code. The default for a redirect is 302 but 301, 303 and 307 are also valid redirect status codes.

• {redirect_local, Path} Does a redirect to the same Scheme://Host:Port/Path in which we
are currently executing. Path can be either be the path directly (equivalent to abs_path), or one of
{{abs_path, Path} or {{rel_path, RelativePath}}

• {redirect_local, Path, Status} Same as redirect_local above with the additional option of
supplying the status code. The default for a redirect is 302 but 301, 303 and 307 are also valid redirect
status codes.

• {get_more, Cont, State} When we are receiving large POSTs we can return this value and be
invoked again when more data arrives.

• {page, Page} Make YAWS returns a different local page than the one being requested. Page is a
Request-URI, so it must be url-encoded and can contain a query-string.

• {page, {Options, Page}} Like the above, but supplying an additional deep list of options. Sup-
ported options types are:

– {status, C} - Set the HTTP response status code C for page Page.

– {header, H} - Accumulate the HTTP header H for page Page.

– {disable_cache, Bool} - if set to true, disable the cache of Page for this call.

• {websocket, CallbackModule, Options} Tell YAWS to use CallbackModule as a WebSockets
Protocol handler for traffic on the client socket. See chapter 14 for more details.

• [ListOfValues] It is possible to return a list of the above defined return values. Any occurrence of
the atoms streamcontent, streamcontent_with_timeout, streamcontent_with_size,
streamcontent_from_pid, get_more, page or break in this list is legal only if it is the last position
of the list. If not, remaining values in the list are ignored.

http://www.w3.org/TR/eventsource/
Scheme://Host:Port/Path

Chapter 8

Debugging and Development

YAWS has excellent debugging capabilities. First and foremost we have the ability to run the web server
in interactive mode by means of the command line switch -i, which gives us a regular ERLANG command
line prompt we can use to compile helper code or reload helper code. Furthermore all error messages are
displayed there. If a .yaws page producees any regular ERLANG I/O, that output will be displayed at the
ERLANG prompt, assuming we are running in interactive mode.

If we give the command line switch -d we get some additional error messages. Also YAWS does some
additional checking of user supplied data such as headers.

8.1 Logs

YAWS produces various logs. All log files are written into the YAWS logdir directory. This directory is
specified in the config file.

We have the following log files:

• The access log. Access logging is turned on or off per server in the yaws.conf file. If access_log
is turned on for a server, YAWS will produce a log in Common Access Log Format called Host-
Name:PortNumber.access

• The auth log. Auth logging is turned on or off per server in the yaws.conf file. If auth_log is turned
on for a server, YAWS will produce a log called HostName:PortNumber.auth which contains all HTTP
auth-related messages.

• report.log This file contains all error and crash messages for all virtual servers in the same file.

• Trace files. The two command line flags -t and -T tells YAWS to trace all traffic or just all HTTP
messages and write them to files.

36

Chapter 9

External scripts via CGI

YAWS can also interface to external programs generating dynamic content via the Common Gateway Inter-
face (CGI). This has to be explicitly enabled for a virtual host by listing cgi in the allowed_scripts line
in the configuration file. Any request for a page ending in .cgi (or .CGI) will then result in trying to execute
the corresponding file.

If you have a PHP executable compiled for using CGI in the PATH of the YAWS server, you can enable PHP
support by adding php to allowed_scripts. Requests for pages ending in .php will then result in YAWS

executing php (configurable via php_handler) and passing the name of the corresponding file to it via the
appropriate environment variable.

These ways of calling CGI scripts are also available to .yaws scripts and appmods via the functions
yaws_api:call_cgi/2 and yaws_api:call_cgi/3. This makes it possible to write wrappers for CGI
programs, irrespective of the value of allowed_scripts.

The author of this YAWS feature uses it for self-written CGI programs as well as for using a standard
CGI package. You should not be surprised however, should some scripts not work as expected due to
an incomplete or incorrect implementation of certain CGI meta-variables. The author of this feature is
interested in hearing about your experiences with it. He can be contacted at carsten@codimi.de.

37

Chapter 10

FastCGI

YAWS supports the responder role and the authorizer role of the FastCGI protocol. See www.fastcgi.com
for details on the FastCGI protocol.

The benefits of using FastCGI include:

1. Unlike CGI, it is not necessary to spawn a new process for every request; the application server can
handle multiple requests in a single process.

2. The fact that the application server can run on a different computer benefits scalability and security.

3. The application server can be written in any language for which a FastCGI library is available. Exist-
ing applications which have been written for other web servers can be used with YAWS.

4. FastCGI can also be used to implement external authentication servers (in addition to generating
dynamic content).

Support for FastCGI was added to YAWS by Bruno Rijsman (brunorijsman@hotmail.com).

10.1 The FastCGI Responder Role

The FastCGI responder role allows YAWS to communicate with an application server running on a different
(or on the same) computer to generate dynamic content.

The FastCGI protocol (which runs over TCP) is used to send the request information from YAWS to the
application server and to send the response information (e.g. the generated dynamic content) from the
application server back to YAWS.

FastCGI responders can be invoked in two ways:

1. By including fcgi in the allowed_scripts line in the configuration file (note that the default value
for allowed_scripts includes fcgi).

In this case a request for any resource with the .fcgi extension will result in a FastCGI call to the
application server to dynamically generate the content.

Note: the YAWS server will only call the application server if a file corresponding to the resource
name (i.e. a file with the .fcgi extension) exists locally on the YAWS server. The contents of that file
are not relevant.

38

CHAPTER 10. FASTCGI 39

2. By creating an appmod which calls yaws_api:call_fcgi_responder. See the yaws_api(5) man
page for details.

10.2 The FastCGI Authorizer Role

The FastCGI authorizer role allows YAWS to communicate with an authentication server to authenticate
requests.

The FastCGI protocol is used to send the request information from YAWS to the authentication server and
the authentication response back from the authentication server to YAWS.

If access is allowed, YAWS proceeds to process the request normally.

If access is denied, the authentication server provides the response which is sent back to the client. This is
typically a “not authorized” response or a redirect to a login page.

FastCGI authorizers are invoked by creating an appmod which calls yaws_api:call_fcgi_authorizer.
See the yaws_api(5) man page for details.

10.3 The FastCGI Filter Role

FastCGI defines a third role, the filter role, which YAWS does not currently support.

10.4 FastCGI Configuration

The following commands in the yaws.conf file control the operation of FastCGI.

If you use FastCGI, you must include the fcgi_app_server setting in the configuration file to specify the
host name (or IP address) and TCP port of the FastCGI application server.

You may include the fcgi_trace_protocol setting to enable or disable tracing of FastCGI protocol mes-
sages. This is useful for debugging.

You may include the fcgi_log_app_error setting to enable or disable logging application errors (any
output to stderr and non-zero exit codes).

You may include the extra_cgi_vars command to pass additional environment variables to the application.

Chapter 11

Security

YAWS is of course susceptible to intrusions. YAWS has the ability to run under a different user than root,
even if we need to listen to privileged port numbers. Running as root is generally a bad idea.

Intrusions can happen basically at all places in YAWS code where the YAWS code calls either the BIF
open_port or when YAWS code calls os:cmd/1. Both open_port and os:cmd/1 invoke the /bin/sh
interpreter to execute its commands. If the commands are nastily crafted bad things can easily happen.

All data that is passed to these two function must be carefully checked.

Since YAWS is written in ERLANG a large class of cracks are eliminated since it is not possible to perform
any buffer overrun cracks on a YAWS server. This is very good.

Another possible point of entry to the system is by providing a URL which takes the client out from the
docroot. This should not be possible – and the impossibility relies on the correctness of the URL parsing
code in YAWS.

11.1 WWW-Authenticate

YAWS has support for WWW-Authentication. WWW-Authenticate is a standard HTTP scheme for the basic
protection of files with a username and password. When a client browser wants a protected file, it must send
a Authenticate: username:password header in the request. Note that this is plain text. If there is no
such header or the username and password is invalid the server will respond with status code 401 and the
realm. Browsers will then tell the user that a username and password is needed for “realm”, and will resend
the request after the user enters the information.

WWW-Authentication is configured in the yaws.conf file, in as many <auth> directives as you desire:

<server foo>
docroot = /var/yaws/www/

..

..

<auth>
realm = secretpage

40

CHAPTER 11. SECURITY 41

dir = /protected
dir = /anotherdir
user = klacke:gazonk
user = jonny:xyz
user = ronny:12r8uyp09jksfdge4

</auth>
</server>

YAWS will require one of the given username:password pairs for all files in the /protected and /anotherdir
directories. Note that these directories are specified as a server path, that is, the filesystem path that is
actually protected here is /var/yaws/www/protected .

Chapter 12

Embedded mode

YAWS is a normal OTP application. It is possible to integrate YAWS into another larger application. The
YAWS source tree must be integrated into the larger application’s build environment. YAWS is then sim-
ply started by application:start() from the larger application’s boot script, or the YAWS components
needed for the larger application can be started individually under the application’s supervisor(s).

By default YAWS reads its configuration data from a config file, the default is /usr/local/etc/yaws/yaws.conf
. If YAWS is integrated into a larger application, however, that application typically has its configuration data
kept at some other centralized place. Sometimes we may not even have a file system to read the configuration
from if we run a small embedded system.

YAWS reads its application environment. If the environment key embedded is set to true, YAWS starts in
embedded mode. Once started it must be fed a configuration, and that can be done after YAWS has started
by means of the function yaws_api:setconf/2.

It is possible to call setconf/2 several times to force YAWS to reread the configuration.

12.1 Creating Global and Server Configurations

The yaws_api:setconf/2 function mentioned in the previous section takes two arguments:

• a #gconf record instance, specifying global YAWS configuration

• a list of lists of #sconf record instances, each specifying configuration for a particular server instance

These record types are specified in yaws.hrl, which is not normally intended for inclusion by applications.
Instead, YAWS provides the yaws_api:embedded_start_conf/1,2,3,4 functions that allow embedded
mode applications to specify configuration data using property lists (lists of {key, value} pairs).

The yaws_api:embedded_start_conf functions all return a tuple containing the following four items:

• the atom ok.

• a list of lists of #sconf record instances. This variable is intended to be passed directly to
yaws_api:setconf/2 as its second argument.

42

CHAPTER 12. EMBEDDED MODE 43

• a #gconf record instance. This variable is intended to be passed directly to yaws_api:setconf/2 as
its first argument.

• a list of supervisor child specification for the YAWS components the embedded mode application’s
configuration specified should be started. This allows embedded mode applications to start YAWS

under its own supervisors.

Note that yaws_api:embedded_start_conf does not actually start any servers, but rather it only returns
the configuration information and child specifications needed for the embedded mode application to start
and configure YAWS itself.

If you have difficulty figuring out how to set up your #gconf or #sconf records for embedded mode, you
should first consider getting something running in non-embedded mode using a yaws.conf file. Once you’re
satisfied with the setup and YAWS is running, execute the following command:

yaws --running-config

This command will show the YAWS configuration from your yaws.conf file in terms of #gconf and #sconf
records, thus showing you how to set up those records for embedded mode.

12.2 Starting Yaws in Embedded Mode

An embedded mode application can start YAWS in one of two ways:

• It can call yaws_api:embedded_start_conf to obtain configuration and YAWS startup information
as described in the previous section, start YAWS under its own supervisors, and then pass the global
and server configuration settings to yaws_api:setconf/2.

• It can call yaws:start_embedded/1,2,3,4, each of which takes exactly the same arguments as the
corresponding yaws_api:embedded_start_conf/1,2,3,4 function. Instead of just returning start
and configuration information, however, yaws:start_embedded also starts and configures YAWS,
which can be more convenient but does not allow the embedded mode application any supervision
control over YAWS.

Both of these functions take care of setting the environment key embedded to true. Neither approach
requires any special settings in the embedded mode application’s .app file nor any special command-line
switches to the ERLANG runtime.

For an example of how to use yaws_api:embedded_start_conf along with yaws_api:setconf, please
see the files www/ybed_sup.erl and www/ybed.erl in the YAWS distribution.

Chapter 13

The config file - yaws.conf

In this section we provide a complete listing of all possible configuration file options. The configuration
contains two distinct parts: a global part which affects all the virtual hosts and a server part where options
for each virtual host is supplied.

13.1 Global Part

• logdir = Directory — All YAWS logs will be written to files in this directory. There are several
different log files written by YAWS.

– report.log — this is a text file that contains all error logger printouts from YAWS.

– <Host>.access — for each virtual host served by YAWS, a file <Host>.access will be written
which contains an access log in NCSA combined/XLF/ELF log format.

– <Host>.auth — for each virtual host served by YAWS, a file <Host>.auth will be written
which contains all HTTP auth related messages.

– trace_<YYYYMMDD_hhmmss> - Trace files are written in this subdirectory, suffixed by the cre-
ation date.

∗ trace.<Pid>.http - this file contains the HTTP trace if that is enabled, where Pid is the
process id handling the TCP connection.
∗ trace.<Pid>.traffic - this file contains the traffic trace if that is enabled, where Pid is

the process id handling the TCP connection.

Note that <Host>.access and <Host>.auth files will be used only if the directive logger_mod is
not set or set to yaws_log.

The default value for logdir is "."

• ebin_dir = Directory — This directive adds Directory to the ERLANG search path. It is possible
to have several of these command in the configuration file.

• src_dir = Directory — This directive defines a Directory as a source directory. YAWS will com-
pile all erlang modules found in this directory and all its subdirectories. The compilation occurs when
the configuration is loaded or reloaded. The include_dir directives are used to search for includes
files. Multiple src_dir directives may be used. There is no such directory configured by default.

44

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 45

• id = String — It is possible run multiple Yaws servers on the same machine. We use the id of a
Yaws server to control it using the different control commands such as:

/usr/local/bin/yaws --id foobar --stop

To stop the Yaws server with id "foobar". Each YAWS server will write its internals data into a file
called $HOME/.yaws/yaws/ID where ID is the identity of the server. Yaws also creates a file called
$HOME/.yaws/yaws/ID/CTL which contain the port number where the server is listening for control
commands. The default id is "default".

• server_signature = String — This directive sets the "Server: " output header to the custom
value. The default value is "yaws/VSN, Yet Another Web Server".

• include_dir = Directory — This directive adds Directory to the path of directories where the
ERLANG compiler searches for include files. We need to use this if we want to include .hrl files in our
YAWS ERLANG code.

• max_num_cached_files = Integer — YAWS will cache small files such as commonly accessed
GIF images in RAM. This directive sets a maximum number on the number of cached files. The
default value is 400.

• max_num_cached_bytes = Integer — This directive controls the total amount of RAM which can
maximally be used for cached RAM files. The default value is 1000000, 1 megabyte.

• max_size_cached_file = Integer — This directive sets a maximum size on the files that are
RAM cached by YAWS. The default value is 8000 bytes.

• cache_refresh_secs = Integer — The RAM cache is used to serve pages that sit in the cache.
An entry sits in cache at most cache_refresh_secs number of seconds. The default is 30. This means
that when the content is updated under the docroot, that change doesn’t show until 30 seconds have
passed. While developing a YAWS site, it may be convenient to set this value to 0. If the debug flag
(-d) is passed to the YAWS start script, this value is automatically set to 0.

• trace = traffic | http — This enables traffic or HTTP tracing. Tracing is also possible to
enable with a command line flag to YAWS.

• use_old_ssl = true | false — This re-enables the old OTP SSL implementation. By default we
use the new SSL implementation.

• auth_log = true | false — Deprecated and ignored. Now, this target must be set in server part.

• max_connections = nolimit | Integer — This value controls the maximum number of connec-
tions from HTTP clients into the server. This is implemented by closing the last socket if the threshold
is reached.

• keepalive_maxuses = nolimit | Integer — Normally, YAWS does not restrict the number of
times a connection is kept alive using keepalive. Setting this parameter to an integer X will ensure
that connections are closed once they have been used X times. This can be a useful to guard against
long-running connections collecting too much garbage in the ERLANG VM.

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 46

• process_options = undefined | Proplist — Set process spawn options for client acceptor pro-
cesses. Options must be specified as a quoted string of either the atom undefined or as a pro-
plist of valid process options. The supported options are fullsweep_after, min_heap_size, and
min_bin_vheap_size, each taking an associated integer value. Other process options are ignored.
The proplist may also be empty. See erlang:spawn_opt/4 for details on these options.

• large_file_chunk_size = Integer — Set the chunk size used by YAWS to send large files when
sendfile is not supported or disabled. The default value is 10240.

• large_file_sendfile = erlang | yaws | disable — Set the version of sendfile method to use
to send large files (if supported):

– erlang — use file:sendfile/5, if supported.

– yaws — use Yaws sendfile linked-in driver, if supported.

– disable — do not use any sendfile method, but gen_tcp:send/2.

The default value is yaws.

• acceptor_pool_size = Integer — Set the size of the pool of cached acceptor processes. The
specified value must be greater than or equal to 0. The default value is 8. Specifying a value of 0
effectively disables the process pool.

• log_wrap_size = Integer — The logs written by YAWS are all wrap logs, the default value at the
size where they wrap around and the original gets renamed to File.old is 1000000, 1 megabyte. This
value can changed.

If we set the value to 0 the logs will never wrap. If we want to use YAWS in combination with a more
traditional log wrapper such as logrotate, set the size to 0 and YAWS will reopen the logfiles once they
have be renamed/removed.

• log_resolve_hostname = true | false — By default the client host IP is not resolved in the
access logs.

• fail_on_bind_err = true | false — Fail completely or not if YAWS fails to bind a listen socket
Default is true.

• soap_srv_mods = ListOfModuleSetting — If enable_soap is true, a startup YAWS will invoke
yaws_soap_srv:setup() to setup modules set here. ModuleSetting is either a triad like
<Mod, HandlerFun, WsdlFile> or a tetrad like <Mod, HandlerFun, WsdlFile, Prefix>
which specifies the prefix. A prefix will be used as argument of yaws_soap_lib:initModel() and
then be used as a XML namespace prefix. Note, the WsdlFile here should be an absolute-path file in
local file systems.

For example, we can specify

soap_srv_mods=<Mod1,Handler,WsdlFile1> <Mod2,Handler,Wsdl2,SpecifiedPrefix>

• php_exe_path = Path — this target is deprecated and useless. use ’php_handler’ target in server
part instead.

The name of (and possibly path to) the php executable used to interpret php scripts (if allowed).
Default is php-cgi.

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 47

• copy_error_log = true | false — Enable or disable copying of the error log. When we run in
embedded mode, there may very well be some other systems process that is responsible for writing
the errorlog to a file whereas when we run in normal standalone mode, we typically want the Erlang
errorlog written to a report.log file. Default value is true.

• ysession_mod = Module — Allows to specify a different YAWS session storage mechanism instead
of an ETS table. One of the drawbacks of the default yaws_session_server implementation is that
server side cookies are lost when the server restarts. Specifying a different module here will pass all
writes/read operations to this module (it must implements appropriate callbacks).

• runmod = ModuleName — At startup YAWS will invoke ModuleName:start() in a separate process.
It is possible to have several runmods. This is useful if we want to reuse the Yaws startup shell script
for our own application.

• pick_first_virthost_on_nomatch = true | false — When YAWS gets a request, it extracts
the Host: header from the client request to choose a virtual server amongst all servers with the same
IP/Port pair. This configuration parameter decides whether Yaws should pick the first (as defined in
the yaws.conf file) if no name match or not. In real live hosting scenarios we typically want this to be
false whereas in testing/development scenarios it may be convenient to set it to true. Default is true.

• keepalive_timeout = Integer | infinity — If the HTTP session will be kept alive (i.e., not
immediately closed) it will close after the specified number of milliseconds unless a new request is
received in that time. The default value is 30000. The value infinity is legal but not recommended.

• subconfig = File — Load specified config file. Absolute paths or relative ones to the configuration
location are allowed. Unix-style wildcard strings can be used to include several files at once. See
filelib:wildcard/1 for details. Hidden files, starting by a dot, will be ignored. For example:

subconfig = /etc/yaws/global.conf
subconfig = /etc/yaws/vhosts/*.conf

Or, relatively to the configuration localtion:

subconfig = global.conf
subconfig = vhosts/*.conf

WARNING: because of a bug in filelib:wildcard/2, wildcard strings are forbidden for Erlang/OTP
R15B03 and previous.

• subconfigdir = Directory — Load all config files found in the specified directory. The given
Directory can be an absolute path or relative to the configuration location. Hidden files, starting by a
dot, will be ignored.

• x_forwarded_for_log_proxy_whitelist = ListOfUpstreamProxyServerIps — This target is
deprecated and will be ignored.

• default_type = MimeType — Defines the default MIME type to be used where YAWS cannot de-
termine it by its MIME types mappings. Default is text/plain.

• default_charset = Charset — Defines the default charset to be added when a response content-
type is text/*. By default, no charset is added.

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 48

• mime_types_file = File — Overloads the default mime.types file included with YAWS. This file
must use the following format:

Lines beginning with a ’#’ or a whitespace are ignored
blank lines are also ignored
<MIME type> <space separated file extensions>

The default file is located at $PREFIX/lib/yaws/priv/mime.types. You should not edit this file because
it may be replaced when you upgrade your server.

• add_types = ListOfTypes — Specifies one or more mappings between MIME types and file ex-
tensions. More than one extension can be assigned to a MIME type. ListOfTypes is defined as follows:

add_types = <MimeType1, Ext> <MimeType2, Ext1 Ext2 ...> ...

The mappings defined using this directive will overload all other definitions. If a file extension is
defined several times, only the last one is kept. Multiple add_types directives may be used.

• add_charsets = ListOfCharsets — Specifies one or more mappings between charsets and file
extensions. More than one extension can be assigned to a charset. ListOfCharsets is defined as
follows:

add_charsets = <Charset1, Ext> <Charset2, Ext1 Ext2 ...> ...

The mappings defined using this directive will overload all other definitions. If a file extension is
defined several times, only the last one is kept. Multiple add_charsets directives may be used.

13.2 Server Part

YAWS can virthost several web servers on the same IP address as well as several web servers on different IP
addresses. The only limitation here is that there can be only one server with SSL enabled per each individual
IP address. Each virtual host is defined within a matching pair of <server ServerName> and </server>.
The ServerName will be the name of the web server.

The following directives are allowed inside a server definition.

• port = Port — This makes the server listen on Port. Default is 8000.

• listen = IpAddress — This makes the server listen on IpAddress when virthosting several servers
on the same IP/port address, if the browser doesn’t send a Host: field, YAWS will pick the first server
specified in the config file. Multiple listen directives may be used to specify several addresses to
listen on. The default listen interface is 127.0.0.1.

• listen_backlog = Integer — This sets the TCP listen backlog for the server to define the maxi-
mum length the queue of pending connections may grow to. The default is 1024.

• <listen_opts> </listen_opts> — Defines extra options to be set on the listen socket and,
by inheritance, on accepted sockets. See inet:setopts/2 for details. Supported options are:

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 49

– Bbuffer = Integer (default: same as inet:setopts/2)

– delay_send = true | false (default: same as inet:setopts/2)

– linger = Integer | false (default: same as inet:setopts/2)

– nodelay = true | false (default: same as inet:setopts/2)

– priority = Integer (default: same as inet:setopts/2)

– sndbuf = Integer (default: same as inet:setopts/2)

– recbuf = Integer (default: same as inet:setopts/2)

– send_timeout = Integer | infinity (default: same as inet:setopts/2)

– send_timeout_close = true | false (default: same as inet:setopts/2)

• server_signature = String — This directive sets the "Server: " output header to the custom value
and overloads the global one for this virtual server.

• subconfig = File — Same as subconfig directive of the global part, but here files should only
contain directives allowed in the server part.

• subconfigdir = Directory — Same as subconfigdir directive of the global part, but here files
should only contain directives allowed in the server part.

• rhost = Host[:Port] — This forces all local redirects issued by the server to go to Host. This is
useful when YAWS listens to a port which is different from the port that the user connects to. For
example, running YAWS as a non-privileged user makes it impossible to listen to port 80, since that
port can only be opened by a privileged user. Instead YAWS listens to a high port number port, 8000,
and iptables are used to redirect traffic to port 80 to port 8000 (most NAT:ing firewalls will also do
this for you).

• rmethod = http | https — This forces all local redirects issued by the server to use this method.
This is useful when an SSL off-loader, or stunnel, is used in front of YAWS.

• auth_log = true | false — Enable or disable the auth log for this virtual server. Default is true.

• access_log = true | false — Setting this directive to false turns off traffic logging for this virtual
server. The default value is true.

• logger_mod = Module — It is possible to set a special module that handles access and auth logging.
The default is to log all web server traffic to <Host>.access and <Host>.auth files in the configured
or default logdir.

This module must implement the behaviour yaws_logger. Default value is yaws_log.

The following functions should be exported:

– Module:open_log(ServerName, Type, LogDir) — When YAWS is started, this function
is called for this virtual server. If the initialization is successful, the function must return
{true, State} and if an error occurred, it must return false.

– Module:close_log(ServerName, Type, State) – This function is called for this virtual
server when YAWS is stopped.

– Module:wrap_log(ServerName, Type, State, LogWrapSize) — This function is used to
rotate log files. It is regularly called by YAWS and must return the possibly updated internal
NewState.

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 50

– Module:write_log(ServerName, Type, State, Infos) – When it needs to log a message,
YAWS will call this function. The parameter Infos is {Ip, Req, InHdrs, OutHdrs, Time}
for an access log and {Ip, Path, Item} for an auth log, where:

∗ Ip — IP address of the accessing client (as a tuple).
∗ Req — The HTTP method, URI path, and HTTP version of the request (as an
#http_request{} record).
∗ InHdrs — The HTTP headers which were sent from the WWW client (as a #headers{}

record).
∗ OutHdrs — The HTTP headers sent to the WWW client (as a #outh{} record).
∗ Path — The URI path of the request (as a string).
∗ Item – The result of an authentication request. May be {ok, User}, 403 or
{401, Realm}.
∗ Time — The time taken to serve the request, in microseconds.

For all of these callbacks, ServerName is the virtual server’s name, Type is the atom access or
auth and State is the internal state of the logger.

• shaper = Module — Defines a module to control access to this virtual server.

Access can be controlled based on the IP address of the client. It is also possible to throttle HTTP re-
quests based on the client’s download rate. This module must implement the behaviour yaws_shaper.

There is no such module configured by default.

• dir_listings = true | true_nozip | false — Setting this directive to false disallows the au-
tomatic dir listing feature of YAWS. A status code 403 Forbidden will be sent. Set to true_nozip to
avoid the auto-generated all.zip entries. Default is false.

• extra_cgi_vars = — Add additional CGI or FastCGI variables. For example:

<extra_cgi_vars dir=’/path/to/some/scripts’>
var = val
...

</extra_cgi_vars>

• statistics = true | false — Turns on/off statistics gathering for a virtual server. Default is
false.

• fcgi_app_server = Host:Port — The hostname and TCP port number of a FastCGI application
server. To specify an IPv6 address, put it inside square brackets (ex: "[::1]:9000"). The TCP port
number is not optional. There is no default value.

• fcgi_trace_protocol = true | false — Enable or disable tracing of FastCGI protocol mes-
sages as info log messages. Disabled by default.

• fcgi_log_app_error = true | false — Enable or disable logging of application error messages
(output to stderr and non-zero exit value). Disabled by default.

• deflate = true | false — Turns on or off deflate compression for a server. Default is false.

• <deflate> ... </deflate> — This begins and ends the deflate compression configuration for this
server. The following items are allowed within a matching pair of <deflate> and </deflate> delimiters.

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 51

– min_compress_size = nolimit | Integer — Defines the smallest response size that will
be compressed. If nolimit is not used, the specified value must be strictly positive. The default
value is nolimit.

– compress_level = none | default | best_compression | best_speed | 0..9 —
Defines the compression level to be used. 0 (none), gives no compression at all, 1 (best_speed)
gives best speed and 9 (best_compression) gives best compression. The default value is default.

– window_size = 9..15 — Specifies the zlib compression window size. It should be in the
range 9 through 15. Larger values of this parameter result in better compression at the expense
of memory usage. The default value is 15.

– mem_level = 1..9 — Specifies how much memory should be allocated for the internal com-
pression state. mem_level=1 uses minimum memory but is slow and reduces compression ratio;
mem_level=9 uses maximum memory for optimal speed. The default value is 8.

– strategy = default | filtered | huffman_only — This parameter is used to tune the
compression algorithm. See zlib(3erl) for more details on the strategy parameter. The
default value is default.

– use_gzip_static = true | false — If true, YAWS will try to serve precompressed versions
of static files. It will look for precompressed files in the same location as original files that end
in ".gz". Only files that do not fit in the cache are concerned. The default value is false.

– mime_types = ListOfTypes | defaults | all — Restricts the deflate compression to par-
ticular MIME types. The special value all enable it for all types (It is a synonym of ‘*/*’). MIME
types into ListOfTypes must have the form ‘type/subtype’ or ‘type/*’ (indicating all subtypes
of that type). Here is an example:

mime_types = default image/*
mime_types = application/xml application/xhtml+xml application/rss+xml

By default, the following MIME types are compressed (if deflate is set to true):

∗ text/*

∗ application/rtf

∗ application/msword

∗ application/pdf

∗ application/x-dvi

∗ application/javascript

∗ application/x-javascript

Multiple mime_types directive can be used.

• docroot = Directory ... — This makes the server serve all its content from Directory.

It is possible to pass a space-separated list of directories as docroot. If this is the case, the various
directories will be searched in order for the requested file. This also works with the ssi and yssi
constructs where the full list of directories will be searched for files to ssi/yssi include. Multiple
docroot directives can be used. You need at least one valid docroot, other invalid docroots are skipped
with their associated auth structures.

• auth_skip_docroot = true | false — If true, the docroot will not be searched for .yaws_auth
files. This is useful when the docroot is quite large and the time to search it is prohibitive when YAWS

starts up. Defaults to false.

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 52

• partial_post_size = Integer — When a YAWS file receives large POSTs, the amount of data
received in each chunk is determined by this parameter. The default value is 10240. Setting it to
nolimit is potentially dangerous.

• dav = true | false — Turns on the WebDAV protocol for this server. The WebDAV support adds
class 1, 2 and 3 compliancy which includes:

– XML request body parsing and multistatus responses

– PROPFIND and PROPPATCH methods returning properties asked for

– all RFC4918 properties, the Apache executable property plus some Microsoft extensions

– locking mechanism (class 2 compliancy) on all destructive methods

– If header parsing

– Passes most litmus tests, except those concerning unknown properties

If WebDAV is turned on, processing of .yaws pages is turned off. Default is false. The dav=true
configuration option is short for:

runmod = yaws_runmod_lock
...
<server>

...
appmods = </, yaws_appmod_dav>

<server>

• tilde_expand = true|false — If this value is set to false YAWS will never do tilde expansion.
Tilde expansion takes a URL of the form http://www.foo.com/~username and changes it into a
request where the docroot for that particular request is set to the directory ~username/public_html/.
The default value is false.

• allowed_scripts = ListOfSuffixes — The allowed script types for this server. Recognized are
yaws, cgi, fcgi, php. Default is allowed_scripts = yaws php cgi fcgi.

• tilde_allowed_scripts = ListOfSuffixes — The allowed script types for this server when ex-
ecuting files in a users public_html folder Recognized are yaws, cgi, fcgi, php. Default is
tilde_allowed_scripts = (i.e., empty).

• index_files = ListOfResources — This directive sets the list of resources to look for, when a
directory is requested by the client. If the last entry begins with a ‘/’, and none of the earlier resources
are found, YAWS will perform a redirect to this uri.
Default is index_files = index.yaws index.html index.php.

• appmods = ListOfModuleNames — If any the names in ListOfModuleNames appear as components
in the path for a request, the path request parsing will terminate and that module will be called. There
is also an alternate syntax for specifying the appmods if we don’t want our internal erlang module
names to be exposed in the URL paths. We can specify

appmods = <Path1, Module1> <Path2, Modules2> ...

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 53

Assume for example that we have the URL http://www.hyber.org/myapp/foo/bar?user=joe
while we have the module foo defined as an appmod, the function foo:out(Arg) will be invoked
instead of searching the filesystems below the point foo.

The Arg argument will have the missing path part supplied in its appmoddata field.

It is also possible to exclude certain directories from appmod processing. This is particulaly interesting
for ’/’ appmods. Here is an example:

appmods = </, myapp exclude_paths icons js top/static>

The above configuration will invoke the myapp erlang module on everything except any file found in
directories icons, js and top/static relative to the docroot.

• dispatchmod = DispatchModule — Set DispatchModule as a server-specific request dispatching
module. YAWS expects DispatchModule to export a dispatch/1 function. When it receives a
request, YAWS passes an #arg{} record to the dispatch module’s dispatch/1 function, which returns
one of the following atom results:

– done — this indicates the dispatch module handled the request itself and already sent the re-
sponse, and YAWS should resume watching for new requests on the connection

– closed — same as done but the DispatchModule also closed the connection

– continue — the dispatch module has decided not to handle the request, and instead wants
YAWS to perform its regular request dispatching

Note that when DispatchModule handles a request itself, YAWS does not support tracing, increment
statistics counters or allow traffic shaping for that request. It does however still keep track of maximum
keepalive uses on the connection.

• errormod_404 = Module — It is possible to set a special module that handles 404 Not Found mes-
sages. The function
Module:out404(Arg, GC, SC) will be invoked. The arguments are

– Arg — a #arg{} record

– GC — a #gconf{} record (defined in yaws.hrl)

– SC — a #sconf{} record (defined in yaws.hrl)

The function can and must do the same things that a normal out/1 does.

• errormod_401 = Module — It is possible to set a special module that handles 401 Unauthorized
messages. This can for example be used to display a login page instead. The function
Module:out401(Arg, Auth, Realm) will be invoked. The arguments are

– Arg — a #arg{} record

– Auth — a #auth{} record

– Realm — a string

The function can and must do the same things that a normal out/1 does.

http://www.hyber.org/myapp/foo/bar?user=joe

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 54

• errormod_crash = Module — It is possible to set a special module that handles the HTML gen-
eration of server crash messages. The default is to display the entire formated crash message in the
browser. This is good for debugging but not in production.

The function Module:crashmsg(Arg, SC, Str) will be called. The Str is the real crash message
formated as a string.

The function must return, {content,MimeType,Cont} or {html, Str} or {ehtml, Term}. That
data will be shipped to the client.

• expires = ListOfExpires — Controls the setting of the Expires HTTP header and the max-age
directive of the Cache-Control HTTP header in server responses for specific MIME types. The
expiration date can set to be relative to either the time the source file was last modified, or to the time
of the client access. ListOfExpires is defined as follows:

expires = <MimeType1, access+Seconds> <MimeType2, modify+Seconds> ...

These HTTP headers are an instruction to the client about the document’s validity and persistence.
If cached, the document may be fetched from the cache rather than from the source until this time
has passed. After that, the cache copy is considered "expired" and invalid, and a new copy must be
obtained from the source. Here is an example:

expires = <image/gif, access+2592000> <image/png, access+2592000>
expires = <image/jpeg, access+2592000> <text/css, access+2592000>

• arg_rewrite_mod = Module — It is possible to install a module that rewrites all the Arg #arg{}
records at an early stage in the YAWS server. This can be used to do various things such as checking
a cookie, rewriting paths etc.

The module yaws_vdir can be used in case you want to serve static content that is not located in your
docroot. See the example at the bottom of this man page for how to use the opaque + vdir elements
to instruct the yaws_vdir module what paths to rewrite.

• start_mod = Module — Defines a user-provided callback module. At startup of the server,
Module:start/1 will be called. The #sconf{} record (defined in yaws.hrl) will be used as the
input argument. This makes it possible for a user application to synchronize the startup with the
YAWS server as well as getting hold of user specific configuration data, see the explanation for the
<opaque> context.

• revproxy = Prefix Url [intercept_mod Module] — Make YAWS a reverse proxy. Prefix is a
path inside our own docroot and Url is a URL pointing to a website we want to "mount" under the
Prefix path. For example:

revproxy = /tmp/foo http://yaws.hyber.org

This makes the hyber website appear under /tmp/foo.

It is possible to have multiple reverse proxies inside the same server by supplying multiple revproxy
directives.

If the optional keyword intercept_mod and Module are supplied in the revproxy directive, then
Module indicates a proxy request and response interception module. When the reverse proxy receives
a request from a client, it will first pass #http_request{} and #headers{} records representing the
client request to the intercept module’s rewrite_request/2 function. The function must return a
3-tuple of the following form:

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 55

{ok, #http_request{}, #headers{}}

where the record instances can be the original values passed in or new values. The reverse proxy will
use these record instances when passing the request to the backend server.

Similarly, when the backend server returns a response, the reverse proxy will call the intercept mod-
ule’s rewrite_response/2 function, passing it an #http_response{} record and a #headers{}
record. The function must return a 3-tuple of the following form:

{ok, #http_response{}, #headers{}}

where the record instances can be the original values passed in or new values. The reverse proxy will
use these record instances when returning the response to the client.

Any failure within an intercept module function results in HTTP status code 500 (Internal Server
Error) being returned to the client.

Intercept modules can use the following functions from the yaws_api module to retrieve, set, or delete
HTTP headers from #headers{} records:

– set_header/2, set_header/3

– get_header/2, get_header/3

– merge_header/2, merge_header/3

– delete_header/2

• fwdproxy = true|false — Make YAWS a forward proxy. By enabling this option you can use
YAWS as a proxy for outgoing web traffic, typically by configuring the proxy settings in a web-
browser to explicitly target YAWS as its proxy server.

• servername = Name — If we’re virthosting several servers and want to force a server to match
specific Host: headers we can do this with the servername directive. This name doesn’t necessarily
have to be the same as the name inside <server Name> in certain NAT scenarios. Rarely used feature.

• serveralias = ListOfNames — This directive sets the alternate names for a virtual host. A server
alias may contain wildcards:

– ’*’ matches any sequence of zero or more characters

– ’?’ matches one character unless that character is a period (’.’)

Multiple serveralias directives may be used. Here is an example:

<server server.domain.com>
serveralias = server server2.domain.com server2
serveralias = *.server.domain.com *.server?.domain.com
...

</server>

• php_handler — Set handler to interpret .php files. It can be one of the following definitions:

– php_handler = <cgi, Filename> — The name of (and possibly path to) the PHP executable
used to interpret PHP scripts (if allowed).

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 56

– php_handler = <fcgi, Host:Port> — Use the specified FastCGI server to interpret .php
files (if allowed).
YAWS does not start the PHP interpreter in FastCGI mode for you. To run PHP in FastCGI
mode, call it with the -b option. For example:

php5-cgi -b ’127.0.0.1:54321’

This starts PHP5 in FastCGI mode listening on the local network interface. To make use of this
PHP server from YAWS, specify:

php_handler = <fcgi, 127.0.0.1:54321>

If you need to specify an IPv6 address, use square brackets:

php_handler = <fcgi, [::1]:54321>

The PHP interpreter needs read access to the files it is to serve. Thus, if you run it in a different
security context than YAWS itself, make sure it has access to the .php files.
Please note that anyone who is able to connect to the PHP FastCGI server directly can use it to
read any file to which it has read access. You should consider this when setting up a system with
several mutually untrusted instances of PHP.

– php_handler = <extern, Module:Function | Node:Module:Function> — Use an exter-
nal handler, possibly on another node, to interpret .php files (if allowed).
To interpret a .php file, the function Module:Function(Arg) will be invoked (evaluated inside
an rpc call if a Node is specified), where Arg is a #arg{} record.
The function must do the same things that a normal out/1 does.

Default value is <cgi, "/usr/bin/php-cgi">.

• phpfcgi = HostPortSpec — this target is deprecated. use php_handler target in server part in-
stead.

Use this directive is same as: php_handler = <fcgi, HostPortSpec>.

• default_type = MimeType — Overloads the global default_type value for this virtual server.

• default_charset = Charset — Overloads the global default_charset value for this virtual
server.

• mime_types_file = File — Overrides the global mime_type_file value for this virtual server.
Mappings defined in File will not overload those defined by add_types directives in the global part.

• add_types = ListOfTypes — Overloads the global add_types values for this virtual server. If
a mapping is defined in the global part and redefined in a server part using this directive, then it is
replaced. Else it is kept.

• add_charsets = ListOfCharsets — Overloads the global add_charsets values for this virtual
server. If a mapping is defined in the global part and redefined in a server part using this directive,
then it is replaced. Else it is kept.

• nslookup_pref = [inet | inet6] — For fcgi servers and revproxy URLs, define the name reso-
lution preference. For example, to perform only IPv4 name resolution, use [inet]. To do both IPv4
and IPv6 but try IPv6 first, use [inet6, inet]. Default value is [inet].

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 57

• <ssl> </ssl> This begins and ends an SSL configuration for this server. It’s possible to
virthost several SSL servers on the same IP given that they all share the same certificate configuration.
In general it is complicated to virthost several SSL servers on the same IP address since the certificate
is typically bound to a domainname in the common name part of the certificate. One solution (the
only?) to this problem is to have a certificate with multiple subjectAltNames. See http://wiki.
cacert.org/VhostTaskForce#Interoperability_Test

– keyfile = File — Specifies which file contains the private key for the certificate.

– certfile = File — Specifies which file contains the certificate for the server.

– cacertfile = File — A file containing trusted certificates to use during client authentication
and to use when attempting to build the server certificate chain. The list is also used in the list
of acceptable client CAs passed to the client when a certificate is requested.

– verify = 0 | 1 | 2 | verify_none | verify_peer — Specifies the level of verification
the server does on client certs. 0 means that the server will not ask for a cert (verify_none),
1 means that the server will ask the client for a cert but not fail if the client does not supply a
client cert (verify_peer, fail_if_no_peer_cert = false), 2 means that the server requires
the client to supply a client cert (verify_peer, fail_if_no_peer_cert = true).
Setting verify_none means that the x509 validation will be skipped (no certificate request
is sent to the client), verify_peer means that a certificate request is sent to the client (x509
validation is performed.
You might want to use fail_if_no_peer_cert in combination with verify_peer.

– fail_if_no_peer_cert = true | false — If verify is set to verify_peer and set to true
the connection will fail if the client does not send a certificate (i.e. an empty certificate). If
set to false the server will fail only if an invalid certificate is supplied (an empty certificate is
considered valid).

– depth = Int — Specifies the depth of certificate chains the server is prepared to follow when
verifying client certs. For the OTP new SSL implementation it is also used to specify how far
the server, i.e. we, shall follow the SSL certificates we present to the clients. Hence, using self
signed certs, we typically need to set this to 0.

– password = String — If the private key is encrypted on disk, this password is the 3des key to
decrypt it.

– ciphers = String — This string specifies the SSL cipher string. The syntax of the SSL cipher
string is a little horrible sub-language of its own. It is documented in the SSL man page for
"ciphers".

– secure_renegotiate = true | false — Specifies if to reject renegotiation attempt that
does not live up to RFC 5746. By default secure_renegotiate is set to false i.e. secure
renegotiation will be used if possible but it will fallback to unsecure renegotiation if the peer
does not support RFC 5746.

– honor_cipher_order = true | false — If true (the default), use the server’s preference for
cipher selection. If false, use the client’s preference.
WARNING: This option was introduced in SSL application in Erlang/OTP 17.0, so it will
be ignored by Yaws for previous releases.

– protocol_version = ProtocolList — Specifies the list of SSL protocols that will be sup-
ported. If not set, defaults to all protocols supported by the erlang ssl application. For example,
to support only TLS versions 1.2, 1.1, and 1:

http://wiki.cacert.org/VhostTaskForce#Interoperability_Test
http://wiki.cacert.org/VhostTaskForce#Interoperability_Test

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 58

protocol_version = tlsv1.2, tlsv1.1, tlsv1

• <redirect> ... </redirect> — Defines a redirect mapping. The following items are allowed
within a matching pair of <redirect> and </redirect> delimiters.

We can have a series of redirect rules in one of formats below:

Path = URL
Path = code
Path = code URL

Path must be an url-decoded path beginning with a slash. URL may be either a relative URL (a path
beginning with a slash), or an absolute URL. In the first case, the scheme:hostname:port of the current
server will be added. All accesses to Path will be redirected to URL/Path (or
scheme:hostname:port/URL/Path if URL is relative). URL must be url-encoded. Note that the orig-
inal path is appended to the redirected URL.

For example, assume we have the following redirect configuration:

<redirect>
/foo = http://www.mysite.org/zapp
/bar = /tomato.html

</redirect>

Assuming this config resides on a site called http://abc.com, we have the following redirects:

http://abc.com/foo -> http://www.mysite.org/zapp/foo
http://abc.com/foo/test -> http://www.mysite.org/zapp/foo/test
http://abc.com/bar -> http://abc.com/tomato.html/bar
http://abc.com/bar/x/y/z -> http://abc.com/tomato.html/bar/x/y/z

By default, YAWS will perform a 302 redirect. The HTTP status code can be changed using the code
parameter. Note that YAWS must have knowledge of the status code value.

– For 3xx status codes, the URL parameter must be present and will be used to build the new
location.

– For other status codes (1xx, 2xx, 4xx and 5xx), the URL can be omitted. In the absence of URL,
YAWS will return a generic response with the specified status code.

– Otherwise, the URL parameter must be a relative URL and will be used to customize the response.

Sometimes we do not want to have the original path appended to the redirected path. To get that
behaviour we specify the config with ’==’ instead of ’=’.

<redirect>
/foo == http://www.mysite.org/zapp
/bar = /tomato.html

</redirect>

http://abc.com

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 59

With this configuration, a request for http://abc.com/foo/x/y/z simply gets redirected to
http://www.mysite.org/zapp. This is typically used when we simply want a static redirect at
some place in the docroot.

When we specify a relative URL as the target for the redirect, the redirect will be to the current http(s)
server.

• <auth> ... </auth> — Defines an auth structure. The following items are allowed within a match-
ing pair of <auth> and </auth> delimiters.

– docroot = Docroot — If a Docroot is defined, this auth structure will be tested only for re-
quests in the specified docroot. No docroot configured means all docroots. If two auth structures
are defined, one with a docroot and one with no docroot, the first of both overrides the second
one for requests in the configured docroot.

– dir = Dir — Makes Dir to be controlled by WWWauthenticate headers. In order for a user to
have access to WWWAuthenticate controlled directory, the user must supply a password. The
Dir must be specified relative to the docroot. Multiple dir can be used. If no dir is set, the default
value, "/", will be used.

– realm = Realm — In the directory defined here, the WWW-Authenticate Realm is set to this
value.

– authmod = AuthMod — If an AuthMod is defined then AuthMod:auth(Arg, Auth) will be
called for all access to the directory. The auth/2 function should return one of: true, false,
{false, Realm}, {appmod, Mod}. If {appmod, Mod} is returned then a call to
Mod:out401(Arg, Auth, Realm) will be used to deliver the content. If errormod_401 is
defined, the call to Mod will be ignored. (Mod:out(Arg) is deprecated).
This can, for example, be used to implement cookie authentication. The auth() callback would
check if a valid cookie header is present, if not it would return {appmod, ?MODULE} and the
out401/1 function in the same module would return {redirect_local, "/login.html"}.

– user = User:Password — Inside this directory, the user User has access if the user supplies
the password Password in the popup dialogue presented by the browser. We can obviously have
several of these value inside a single <auth> </auth> pair.
The usage of User:Password in the actual config file is deprecated as of release 1.51. It is
preferred to have the users in a file called .yaws_auth in the actual directory. The .yaws_auth
file has to be file parseable by file:consult/1.
Each row of the file must contain terms on the form.

– pam service = pam-service — If the item pam is part of the auth structure, Yaws will also
try to authenticate the user using "pam" using the pam service indicated. Usual services are
typically found under /etc/pam.d. Usual values are "system-auth" etc.
pam authentication is performed by an Erlang port program which is typically installed as suid
root by the Yaws install script.

– allow = all | ListOfHost — The allow directive affects which hosts can access an area of
the server. Access can be controlled by IP address or IP address range. If all is specified, then
all hosts are allowed access, subject to the configuration of the deny and order directives. To
allow only particular hosts or groups of hosts to access the server, the host can be specified in
any of the following formats:
A full IP address

http://abc.com/foo/x/y/z
http://www.mysite.org/zapp

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 60

allow = 10.1.2.3
allow = 192.168.1.104, 192.168.1.205

network/netmask pair

allow = 10.1.0.0/255.255.0.0

network/nnn CIDR specification

allow = 10.1.0.0/16

– deny = all | ListOfHost — This directive allows access to the server to be restricted based
on IP address. The arguments for the deny directive are identical to the arguments for the allow
directive.

– order = Ordering — The order directive, along with allow and deny directives, controls a
three-pass access control system. The first pass processes either all allow or all deny directives,
as specified by the order directive. The second pass parses the rest of the directives (deny or
allow). The third pass applies to all requests which do not match either of the first two.
Ordering is one of (Default value is deny,allow):

∗ allow,deny — First, all allow directives are evaluated; at least one must match, or the
request is rejected. Next, deny directives are evaluated. If any matches, the request is
rejected. Last, any requests which do not match an allow or a deny directive are denied by
default.
∗ deny,allaw — First, all deny directives are evaluated; if any matches, the request is denied

unless it also matches an allow directive. Any requests which do not match any allow or
deny directives are permitted.

• <opaque> ... </opaque> — This begins and ends an opaque configuration context for this server,
where ’Key = Value’ directives can be specified. These directives are ignored by YAWS (hence the
name opaque), but can be accessed as a list of tuples {Key,Value} stored in the #sconf.opaque
record entry. See also the description of the start_mod directive.

This mechanism can be used to pass data from a surrounding application into the individual .yaws
pages.

13.3 Configuration Examples

The following example defines a single server on port 80.

logdir = /var/log/yaws
<server www.mydomain.org>

port = 80
listen = 192.168.128.31
docroot = /var/yaws/www

</server>

And this example shows a similar setup but two web servers on the same IP address:

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 61

logdir = /var/log/yaws
<server www.mydomain.org>

port = 80
listen = 192.168.128.31
docroot = /var/yaws/www

</server>

<server www.funky.org>
port = 80
listen = 192.168.128.31
docroot = /var/yaws/www_funky_org

</server>

When there are several virtual hosts defined for the same IP number and port, and an HTTP request arrives
with a Host field that does not match any defined virtual host, then the one which defined “first” in the file
is chosen.

An example with www-authenticate and no access logging at all.

logdir = /var/log/yaws
<server www.mydomain.org>

port = 80
listen = 192.168.128.31
docroot = /var/yaws/www
access_log = false
<auth>

dir = /var/yaws/www/secret
realm = foobar
user = jonny:verysecretpwd
user = benny:thequestion
user = ronny:havinganamethatendswithy

</auth>

</server>

And finally a slightly more complex example with two servers on the same IP, and one SSL server on a
different IP.

The is_default is used to select the funky server if someone types in for example urlhttp://192.168.128.31/
in his/her browser.

logdir = /var/log/yaws
max_num_cached_files = 8000
max_num_cached_bytes = 6000000

<server www.mydomain.org>
port = 80
listen = 192.168.128.31

CHAPTER 13. THE CONFIG FILE - YAWS.CONF 62

docroot = /var/yaws/www
</server>

<server www.funky.org>
port = 80
is_default = true
listen = 192.168.128.31
docroot = /var/yaws/www_funky_org

</server>

<server www.funky.org>
port = 443
listen = 192.168.128.32
docroot = /var/yaws/www_funky_org
<ssl>

keyfile = /etc/funky.key
certfile = /etc/funky.cert
password = gazonk

</ssl>
</server>

Chapter 14

WebSocket Protocol Support

YAWS supports the WebSocket Protocol (RFC 6455), which enables two-way communication between
clients and web servers. YAWS also provides support for working drafts of the WebSocket protocol, specif-
ically drafts 10 to 17 of the hybi working group. No support for other drafts, such as those from the hixie
working group, is provided.

You can find example usage of the WebSocket Protocol in the file www/websockets_example.yaws. This
example, intended for use with any browser supporting RFC 6455, returns HTML and JavaScript that allow
the client to establish a WebSocket connection to the server. These connections are handled by the code in
www/websockets_example_endpoint.yaws, which when invoked simply establishes
examples/src/basic_echo_callback.erl as the WebSocket callback module for the connection.

14.1 Establish a WebSocket connection

First of all, to establish a WebSocket connection, a client must send a valid HTTP Upgrade request. Then,
from the server side, the YAWS script (or the appmod or whatever) should return:

{websocket, CallbackMod, Options}

where CallbackMod is an atom identifying the WebSocket callback module, and Options is a (possibly
empty) list (see below for details).

From here, YAWS spawns an Erlang process to manage the WebSocket connection. Once the handshake
response is returned by YAWS, the connection is established and the handling process is ready to send or
receive data. If something goes wrong during this step, YAWS returns an HTTP error (400, 403 or 500
depending of the error type).

14.1.1 Supported options

The following options are available:

• {callback, CallbackType} — Specify the type of the callback module. CallbackType can be
either of the following:

63

CHAPTER 14. WEBSOCKET PROTOCOL SUPPORT 64

– basic — Same as {basic, []}. This is the default.

– {basic, InitialState} — Indicate your callback module is a basic callback module.
InitialState is the callback’s initial state for handling this client.

– {advanced, InitialState} — Same as above but for an advanced callback module.

• {origin, Origin} — Specify the Origin URL from which messages will be accepted. This is
useful for protecting against cross-site attack. The option defaults to any, meaning calls will be
accepted from any origin.

• {keepalive, KeepAliveBoolean} — If true, YAWS will automatically send a ping message every
keepAliveTimeout milliseconds. By default keepalive pings are disabled.

• {keepalive_timeout, keepAliveTimeout} — Specify the interval in milliseconds to send
keepalive pings, by default 30000. Ignored if KeepAliveBoolean is false.

• {keepalive_grace_period, KeepAliveGracePeriod} — Specify the amount of time, in mil-
liseconds, to wait after sending a keepalive ping. If no message is received within
KeepAliveGracePeriod milliseconds, a timeout will occur. Depending on the DropBoolean value,
a close frame is sent with the status code 1006 (if DropBoolean is true) or the callback module is
notified (see Module:handle_info/2 below). By default, KeepAliveGracePeriod is set to 2000.
Ignored if KeepAliveBoolean is false.

• {drop_on_timeout, DropBoolean} — If true, a close frame is sent with the status code 1006 when
a timeout occurs after a keepalive ping has been sent (see KeepAliveGracePeriod). Disabled by
default. Ignored if KeepAliveBoolean is false.

• {close_timeout, CloseTimeout} — After sending a close frame to a client, YAWS will wait for
the client acknowledgement for CloseTimeout milliseconds. Then it will close the underlying TCP
connection. By default CloseTimeout is set to 5000.

• {close_if_unmasked, CloseUnmaskedBoolean} — If true, YAWS will reject any unmasked in-
coming frame by sending a close frame with the status code 1002. Disabled by default. Note: Ac-
cording to RFC 6455, a client must mask all frames that it sends to the server (see RFC 6455 section
5.1).

• {max_frame_size, MaxFrameSize} — Specify the maximum allowed size, in bytes, for received
frames. By default 16MB. It is also the maximum size for unfragmented messages. This limit is
checked for all types of callback module.

• {max_message_size, MaxMsgSize} — Specify the maximum allowed message size in bytes, by
default 16MB. This limit is checked only for basic callback modules.

• {auto_fragment_message, AutoFragBoolean} — If true, outgoing messages will be automati-
cally fragmented if their payload exceeds OutFragSize bytes. This flag is set to false by default.

• {auto_fragment_threshold, OutFragSize} — Specify the maximum payload size of each frag-
ment if AutoFragBoolean is true. OutFragSize is set to 1MB by default. This setting is ignored if
AutoFragBoolean is false.

CHAPTER 14. WEBSOCKET PROTOCOL SUPPORT 65

14.2 WebSocket Callback Modules

All frames received on a WebSocket connection are passed to the callback modules specified during the con-
nection establishment by calling Module:handle_message/1 or Module:handle_message/2. depending
on whether it’s a basic or an advanced callback module.

14.2.1 Basic Callback Modules

When a basic callback module is used, the messages defragmentation is handled by YAWS. From the
callback module point of view, all incoming messages are unfragmented. This implies that fragmented
frames will be accumulated, thus basic callback modules does not support data streaming.

A basic callback module MUST define the stateless function Module:handle_message/1:

Module:handle_message(Message) -> Result

Message :: {Type, Data} | {close, Status, Reason}
Result :: noreply | {reply, Reply} | {close, CloseReason}
Type :: text | binary
Data :: binary()
Reply :: {Type, Data} | #ws_frame{} |

[{Type, Data}] | [#ws_frame{}]
CloseReason :: Status | {Status, Reason}
Status :: integer() %% RFC 6455 Status Code
Reason :: binary()

This function is called when a message is received. {text, Data} (or {binary, Data}) is
the unfragmented text (or binary) message. When the client closes the connection, the callback
module is notified with the message {close, Status, Reason}, where Status is the numer-
ical status code sent by the client or the value 1000 (see RFC 6455 section 7.4.1) if the client
sent no status code. For an abnormal client closure, the status code is 1006 (as specified by
RFC 6455 section 7.1.5). Reason is a binary containing any text the client sent to indicate the
reason for closing the socket; this binary may be empty.

If the function returns {reply, Reply}, Reply is sent to the client. It is possible to send
one or more unfragmented messages by returning {Type, Data} or [{Type, Data}]. It is
also possible to send one or more frames using the #ws_frame{} record instead, defined in
include/yaws_api.hrl (useful to fragment messages by hand).

If the function returns noreply, nothing happens.

If the function returns {close, CloseReason}, the handling process closes the connection
sending a close control frame to the client. CloseReason is used to set the status code and the
(optional) close reason of the close control frame. Then the handling process terminates calling
Module:terminate(CloseReason, State) (if defined, see below).

Because just handling messages is not enough for real applications, a basic callback module can define
optional functions, mainly to manage a callback state. It can define one, some or all of the following
functions:

CHAPTER 14. WEBSOCKET PROTOCOL SUPPORT 66

Module:init(Args) -> Result

Args :: [ReqArg, InitialState]
Result :: {ok, State} | {ok, State, Timeout} | {error, Reason}
ReqArg :: #arg{}
InitialState :: term()
State :: term()
Timeout :: integer() >= 0 | infinity
Reason :: term()

If defined, this function is called to initialize the internal state of the callback module.

ReqArg is the #arg{} record supplied to the out/1 function and InitialState is the term
associated to the CallbackType described above.

If an integer timeout value is provided, it will overload the next keepalive timeout (see the
keepalive_timeout option above). The atom infinity can be used to wait indefinitely. If
no value is specified, the default keepalive timeout is used.

If something goes wrong during initialization, the function should return {error, Reason},
where Reason is any term.

Module:handle_open(WSState, State) -> Result

WSState :: #ws_state{}
State :: term()
Result :: {ok, NewState} {error, Reason}

NewState :: term()
Reason :: term()

If defined, this function is called when the connection is upgraded from HTTP to WebSocket.

WSState is the state of the WebSocket connection. It can be used to send messages to the client
using yaws_api:websocket_send(WSState, Message).

State is the internal state of the callback module.

If the function returns {ok, NewState}, the handling process will continue executing with the
possibly updated internal state NewState.

If the function returns {error, Reason}, the handling process closes the connection and ter-
minates calling Module:terminate({error, Reason}, State) (if defined, see below).

Module:handle_message(Message, State) -> Result

Message :: see Module:handle_message/1
State :: term()
Result :: {noreply, NewState} | {noreply, NewState, Timeout} |

{reply, Reply} | {reply, Reply, NewState} |
{reply, Reply, NewState, Timeout} |
{close, CloseReason, NewState} |
{close, CloseReason, Reply, NewState}

CHAPTER 14. WEBSOCKET PROTOCOL SUPPORT 67

NewState :: term()
Timeout :: integer() >= 0 | infinity
Reply :: see Module:handle_message/1
CloseReason :: see Module:handle_message/1

If defined, this function is called in place of Module:handle_message/1. The main difference
with the previous version is that this one handles the internal state of the callback module.

State is internal state of the callback module.

See Module:handle_message/1 for a description of the other arguments and possible return
values.

Module:handle_info(Info, State) -> Result

Info :: timeout | term()
State :: term()
Result :: {noreply, NewState} | {noreply, NewState, Timeout} |

{reply, Reply} | {reply, Reply, NewState} |
{reply, Reply, NewState, Timeout} |
{close, CloseReason, NewState} |
{close, CloseReason, Reply, NewState}

NewState :: term()
Timeout :: integer() >= 0 | infinity
Reply :: see Module:handle_message/1
CloseReason :: see Module:handle_message/1

If defined, this function is called when a timeout occurs (see drop_on_timeout option above)
or when the handling process receives any unknown message.

Info is either the atom timeout, if a timeout has occurred, or the received message.

See Module:handle_message/1 for a description of the other arguments and possible return
values.

Module:terminate(Reason, State) -> ok

Reason :: Status | {Status, Text} | {error, Error}
State :: term()
Status :: integer() %% RFC 6455 status code
Text :: binary()
Error :: term()

If defined, this function is called when the handling process is about to terminate. it should be
the opposite of Module:init/1 and do any necessary cleaning up.

Reason is a term denoting the stop reason and State is the internal state of the callback module.

CHAPTER 14. WEBSOCKET PROTOCOL SUPPORT 68

14.2.2 Advanced Callback Modules

Advanced callback modules should be used when automatic messages defragmentation done by YAWS is
not desirable or acceptable. One could be used for example to handle data streaming over WebSockets. So,
such modules should be prepared to handle frames directly (fragmented or not).

Unlike basic callback modules, Advanced ones MUST manage an internal state. So it MUST define the
stateful function Module:handle_message/2 :

Module:handle_message(Frame, State) -> Result

Frame :: #ws_frame_info{} | {fail_connection, Status, Reason}
State :: term()
Result :: {noreply, NewState} | {noreply, NewState, Timeout} |

{reply, Reply} | {reply, Reply, NewState} |
{reply, Reply, NewState, Timeout} |
{close, CloseReason, NewState} |
{close, CloseReason, Reply, NewState}

Status :: integer() %% RFC 6455 status code
Reason :: binary()
NewState :: term()
Timeout :: integer() >= 0 | infinity
Reply :: see Module:handle_message/1
CloseReason :: see Module:handle_message/1

This function is called when a frame is received. The #ws_frame_info{} record, defined in
include/yaws_api.hrl, provides all details about this frame. State is the internal state of
the callback module.

If an error occurs during the frame parsing, the term {fail_connection, Status, Reason}
is passed, where Status is the numerical status code corresponding to the error (see RFC 6455
section 7.4.1) and Reason the binary containing optional information about it.

This function returns the same values as specified for the basic callback module’s
Module:handle_message/2 function. See section 14.2.1 for details.

Advanced callback modules can also define the same optional functions as basic callback modules (except
Module:handle_messages/2 which is mandatory here, of course). See section 14.2.1 for details.

14.3 Record definitions

Here is the definition of records used in callback modules, defined in include/yaws_api.hrl:

%% Corresponds to the frame sections as in
%% http://tools.ietf.org/html/rfc6455#section-5.2
%% plus ’data’ and ’ws_state’. Used for incoming frames.
-record(ws_frame_info, {

fin,

CHAPTER 14. WEBSOCKET PROTOCOL SUPPORT 69

rsv,
opcode,
masked,
masking_key,
length,
payload,
data, % The unmasked payload. Makes payload redundant.
ws_state % The ws_state after unframing this frame.

% This is useful for the endpoint to know what type of
% fragment a potentially fragmented message is.

}).

%% Used for outgoing frames. No checks are done on the validity of a frame. This
%% is the application’s responsability to send valid frames.
-record(ws_frame, {

fin = true,
rsv = 0,
opcode,
payload = <<>>

}).

%%--
%% The state of a WebSocket connection.
%% This is held by the ws owner process and passed in calls to yaws_api.
%%--
-type frag_type() :: text

| binary
| none. % The WebSocket is not expecting continuation

% of any fragmented message.
-record(ws_state, {

vsn :: integer(), % WebSocket version number
sock, % gen_tcp or gen_ssl socket
frag_type :: frag_type()

}).

	Introduction
	Prerequisites
	A tiny example

	Compile, Install, Config and Run
	Compile and Install
	Configure

	Static content
	Dynamic content
	Introduction
	EHTML
	POSTs
	Queries
	Forms

	POSTing files

	Mode of operation
	On-the-fly compilation
	Evaluating the Yaws Code

	SSL
	Applications
	Login scenarios
	The session server
	Arg rewrite
	Authenticating
	Database driven applications

	Appmods
	The opaque data
	Customizations
	404 File not found
	Crash messages

	Stream content
	All out/1 return values

	Debugging and Development
	Logs

	External scripts via CGI
	FastCGI
	The FastCGI Responder Role
	The FastCGI Authorizer Role
	The FastCGI Filter Role
	FastCGI Configuration

	Security
	WWW-Authenticate

	Embedded mode
	Creating Global and Server Configurations
	Starting Yaws in Embedded Mode

	The config file - yaws.conf
	Global Part
	Server Part
	Configuration Examples

	WebSocket Protocol Support
	Establish a WebSocket connection
	Supported options

	WebSocket Callback Modules
	Basic Callback Modules
	Advanced Callback Modules

	Record definitions

