Programming with the Zope 3
Component Architecture

Tutorial for Python Programmers

http://dev.zope.org/Zope3/
programers_tutorial.pdf

This tutorial provides a short introduction to developing with Zope 3. It
provides an example of creating a content objects and associated views,
adapters, and utilities.

The skills learned here are applied in most facets of Zope 3 development.

Here are some pointers you might want to refer to when going through
this course:

* The Zope 3 web site is http:// dev.zope.org/ Zope3

* Getting and installing Zope from Subversion:
http://dev.zope.org/ Zope3/ SettingUpAZope3Sandbox

* Coding style: http://dev.zope.org/ Zope3/ CodingStyle

Slide 1.

Why Zope 3

* Provide a more familiar programming model
* Lower the “price of admission”
* Smoother learning curve

Simpler software

Better reuse

Better documentation and testing
118n/L10n

ZOPE

We Zope to be much more approachable to Python programmers.

You should be able to use existing Python objects in Zope with few
changes.

We want developers to be able to learn Zope a little bit at a time.

We provide greater support for reuse through components.

Side 2.

src/buddydemo/buddy. py

import persistent

class Buddy(persistent.Persistent):
"""Buddy information"""

def __init__(self, first='', last='"', email='",
address="", pc='"):
self.first = first
self.last = last
self.email = email
self.address = address
self.postal_code = pc

def name(self):
return "%s %s" % (self.first, self.last)

ZOPE

Let's look at a minimal class that is usable in Zope. As an example, we'll
use objects that manage personal information.

We normally organize our software into packages. We can put our
packages anywhere, as long as they are in Zope's Python path.

We'll create a buddydemo package in the src directory, which isin the
Python path. We create an empty __init__.py file in buddydemo, so
that Python will treat buddydemo as a package.

We'll create a buddy.py module to hold our class, named Buddy.

The class is very simple. It stores information in attributes. It provides a
single method that combines the first and last name.

There are no Zope- specific mix- in classes. We do subclass Persistent.
Doing so makes our life easier, because then Zope will manage our data
in its object database. We don't have to subclass Persistent. If we
don't though, we need to manage our data some other way (e.g.in a
relational database).

Slide 3.

@ ~ Need documentation and tests

* We write programmer documentation and
tests using doctest

- Executable documentation
e Main documentation in .txt files

¢ Additional documentation or tests in doc
strings in regular or test modules

* Best tests are written from a documentation
point of view

* Restructured text

ZOPE

Slide 4.

buddy . txt (part 1)

Buddies provide basic contact information:

First name

Last name

Email address
Street address, and
postal code

Buddies can be created by calling the "Buddy class:

>>> from buddydemo.buddy import Buddy
>>> bud = Buddy('Bob', 'Smith', 'bob@smith.org',
e '513 Princess Ann Street', '22401')

You can access the information via attributes:

>>> bud.first, bud.last, bud.email

('Bob', 'Smith', 'bob@smith.org')
>>> bud.address, bud.postal_code Z OP E
('513 Princess Ann Street', '22401')

The Zope project makes heavy use of automated testing. You don't have
to write tests to use Zope, but if you want to have high quality software
that's easy to change, then you really want to do automated testing.

Zope uses the standard Python unittest framework. We also use
Python's doctest testing facility, which has been integrated with
unittest. We like writing our tests as doctest tests because they help
to document our software and make our tests more readable.

Doctest tests are just examples in text files or doc strings that include
code that someone might typeinto an interpreter and what would be
printed back. When we test our software, the examples are rerun and the
actual output is compared to what's shown in the examples. If the output
differs, we get test failures. It's that simple!

Because testing is done by comparing actual and expected output, you
need to be a bit careful about what you have in your output:

* The output needs to be the same on each run, so, for example, avoid
output with addresses, raw dictionaries and floating- point results.

* Output can exceed 79 characters. This is a problem, because the Zope
coding standards call for lines no- longer than 80 characters.

* Blank lines are used by doctest to identify the end of output, so the
output can't contain blank lines. Use the special marker: < BLANKLINE>
» Watch out for lines with trailing spaces

» Watch out for backslashes. If you have those, use raw doc strings.

Slide 5.

buddy . txt (part 2)

Any data not passed to the class are initialized to
empty strings:

>>> bud = Buddy()
>>> bud.first, bud.last, bud.email

(ll’ ll! ll)

>>> bud.address, bud.postal_code

(ll’ ll)
You can get the full name of a buddy by calling its name
method:

>>> bud = Buddy('Bob', 'Smith')
>>> bud.name()
'Bob Smith'

ZOPE

Doctests should tell a story. The main story should go in a .txt file.

Sometimes, you may need to test really odd- ball behaviors that you don't
want to discuss in the main documentation. You can use doctrines in the
test module for that. We'll show how to do that later.

Slide 6.

src/buddydemo/tests.py

import unittest
from zope.testing.doctest import DocFileSuite

def test_suite():
return DocFileSuite('buddy.txt"')

We can then run the tests like this, from the zope
root directory:

python test.py -s buddydemo

ZOPE

We need to get our tests run somehow. We'll look at what it takes to get
tests run by the Zope test runner. Zope's test runner searches the Zope
source tree for modules or packages named “tests”. If it finds a module
name d tests, it will look for a test_suite function in module that
returns a unittest test suite. If it finds a package named tests, it will
search all of the modules in that package who's names begin with “test”.

In this example, we'll create a tests module. For now, we just want to
run thetests in the buddy module. Our test_suite function usesthe
DocTestSuite function to create a test suite from a module. You can
pass either a module or a module name.

We run the tests using the Zope test runner, test.py. This test runner
provides lots of useful features. To find out what they are, run the test
runner with a -h argument:

python test.py -h

Side 7.

src/buddydemo/configure.zcml

<configure
xmlns="http://namespaces.zope.org/zope'
xmlns :browser="http://namespaces.zope.org/browser’
i18n_domain="buddydemo” >

<browser:addMenultem
class=".buddy.Buddy"
title="Buddy"
permission="zope.ManageContent"

/>

</configure>

And, in:

package-includes /buddydemo-configure.zcml:

<include package="buddydemo" /> ZOP E

To get Zope to use our class, we have to tell Zope about it:

1. We create a configuration file in the package that will accumulate
various bits of configuration information.

2. We tell Zope to read our configuration file by including it from a one-
line configuration file that we put in the products directory.

The configuration files are in an XML format called Zope Configuration
Markup Language, ZCML. The format is extensible using XML namespaces
(and ZCML meta- configuration directives). In our example, we use two
namespaces, zope (the default), and browser. The browser namespace is
used for configuration directives that specify web- interface information.

In our main configuration file, we use an addMenuItem directive to add
buddies to the list of things that can be added in the UI.

We use dotted names for two purposes:

1. Dotted names are used to name objects. For example “.buddy.Buddy”
names the Buddy class in the buddy module. The leading dot indicates
the current package, which is the package containing the ZCML file.

2. Dotted names are used for unique identifiers. When used as identifiers,
we base them on packages, but we don't allow them to be shortened. An
example of such an identifier is “zope.ManageContent”.

Slide 8.

i18n domains

* Zope supports software internationalization

* Software defines message ids (often English
text) to be translated

* Zope is an application server
- Multiple applications running simultaneously
- Each application will have it's own translations

- Different applications could have different
translations for the same message ids

- The translation domain effectively identifies the

application Z O P E

Software internationalization (i18n) allows the text defined in our
software to be translated. This is distinct from content i18n, which is a
different problem, the solution to which will generally depend on
particular content- management systems and policies.

We need to specify a domain whenever we have translatable strings.

The value of the title attribute is a translatable string, so we need to
specify a domain in our ZCML file.

Slide 9.

@ | We have buddies!

* Now we can add buddies to folders!

* We can select them and find out what they're
made of. :)

* We can't do much else

- Can't access their data
- Can't view them

* For our next trick, we'll create a view to
display buddies

* But first we need to talk about components

Slide 10.

@ B Hands on

* Check out a zope sandbox, run all unit tests,
run zope and log in

* Pick a simple content type, such as:

Bug report
Project task
Medical claim
Poll

* Implement the class, with unit tests.

* Configure Zope so that you can add

instances of your class.
ZOPE

Side 11.

Components

A component is an object that
connects to other objects via interfaces.

* Components are interchangeable, as defined by the
interfaces they use and provide.

Componentl L — — s Component2
Interface

* Applications can be created by assembling and scripting
components.

* Applications can be reconfigured by swapping

components. ZO P E

What's most important about components is that they get put together
with other components to build things. Interfaces provide the basis for
connecting things together.

Side 12.

Interfaces

* Provide behavioral specification (a.k.a. contract)
* Objects provide interfaces, usually declared in class
* Interfaces support classification, as well as specification

* Python interface support is provided by the
zope.interface package.

* We abuse the Python cl ass statements to define
interfaces.

ZOPE

Note that classes are not used for strong typing in Zope.

Slide 13.

Content Components

A content component
manages domain information and
provides generic behavior.

Typically represents domain-specific objects

Usually persistent

Other components support content components.

Don't provide any presentation logic

ZOPE

Content components are like:
* Entity beans in J2EE
« Document in Microsoft's Document- View architecture, and like

* Model in the classic Model- View- Controller (MVC) architecture.

Side 14.

View Components

A view component
presents a view of some other component for some
user interface or protocol.

IRequest IContact

User

* Used for Web and other user interfaces.

* Used for protocols, like FTP, and XML-RPC.

* Encapsulate Ul-framework, protocol details.

* Don't provide data or behavior except as needed for

presentation. ZO P E

View components connect a user, represented by a request with an
object.

Note that view components are a special case of presentation
components. Presentation components are responsible for providing user
interfaces (or interfaces to other external entities). The other kind of
presentation component is resources. Resources are used for thinks like
images and style sheets in web interfaces.

Slide 15.

src/buddydemo/interfaces.py

import re, zope.interface

from zope.schema import Text, TextLine

from zope.il8nmessageid import MessageIDFactory
_ = MessageIDFactory("buddydemo")

class IBuddy(zope.interface.Interface):
"""Provides access to basic buddy information

nnn

first = TextLine(title=_("First name"))

last = TextLine(title=_("Last name"))

email = TextLine(title=_("Electronic mail address"))

address = Text(title=_("Postal address"))

postal_code = TextLine(title=_("Postal code"),
constraint=re.compile("\d{5,5}(-\d{4,4})?$") .match)

def name():
"""Gets the buddy name.

nnn

The buddy name is the first and last ZOP E

To make our buddy class a component, we'll create an interface that
describes how to use it.

We use the Python class statement to create the interface. By
subclassing zope.interface.Interface, we arrange for an interface
rather than a class to be created. We could use any and multiple
interfaces as base interfaces. Interfaces support multiple inheritance

This interface happens to be a schema. A schema is an interface that
uses fields to define information attributes, as well as methods. An
attribute defined in a schema need not be stored by an implementation. It
could be a computed property. Fields define attributes by specifying
documentation and constraints for the attribute values. In IBuddy, we
use Text and TextLine fields. Text fields store textual data as unicode.
TextLine fields are simply Text fields without newlines. The
postal_code field provides an example of using a constraint callable.

When we define methods in interfaces, we don't include “self” arguments.
Interfaces specify how objects are used. Self parameters aren't passed to
methods. They are part of an instance- method's implementation. An
interface- specified method might not even be implemented by an
instance method (e.g. module functions).

Slide 16.

What? _7?

* Need to mark translatable strings w _() to
support text extraction

* Need to mark translatable strings with their
“domains” for text translation

* _is a message id factory. It generates
message ids, which are unicode strings with
domains

ZOPE

We rarely ever translate strings directly in Zope. Most strings are
translated when they are used to create presentations. We need to
somehow record the translation id for a string. We do this by creating
message ids. Message ids are unicode strings with extra attributes:

» domain, the message id's translation domain

» default, the text to display if there isn't a translation for theid. If no
default is specified, the id isit's own text.

* mapping, a mapping object containing data to be interpolated
Message ids can contain interpolation variables of the form $name, or
${name}. The datato beinterpolated can be stored with the string. This
would be donein cases where the message ids are being computed
dynamically.

We create a message id factory so that we can create message ids by just
calling the factory. We use the factory to provide message ids for our
schematitles, which will be shown on generated forms.

We name our message id factory “_". Why? Because standard message- id
extraction tools look for translatable strings in Python source by looking
for strings passed to “_”

Side 17.

Add declaration to Buddy (buddy . py)

import zope.interface
from buddydemo.interfaces import IBuddy

class Buddy(persistent.Persistent):
"""Buddy information

zope.interface.implements (IBuddy)

ZOPE

We add a declaration to our class saying that the class “implements”
IBuddy. When a class implements an interface, that means that the
interface can be used to access the classes instances, which “provide” the
interface. Note that classes don't implicitly provide the interfaces they
implement.

We can also declare that individual objects (e.g. specific instances,
classes, modules, etc.) provide interfaces, independent if what their
classes implement.

Slide 18.

src/buddydemo/info.pt

<html metal:use-macro="context/@@standard_macros/page"
i18n:domain="buddydemo”>
<body><div metal:fill-slot="body">
<table>
<caption il8n:translate="">Buddy information</caption>
<tr><td il8n:translate="">Name:</td>
<td>First
Last</td>
</tr>
<tr><td il8n:translate="">Email:</td>
<td tal:content="context/email">foo@bar.com</td>
</tr>
<tr><td il8n:translate="">Address:</td>
<td tal:content="context/address">1 First Street</td>
</tr>
<tr><td il8n:translate="">Postal code:</td>
<td tal:content="context/postal_code">12345</td>

ZOPE

</table>
</div></body></html>

The template will be “bound” to the object being viewed. The view has

access to the object being viewed using the context variable.

We can access views in path expressions using “@@viewname”. The
expression context/@@standard_macros looks up aview providing
standard macros for the object being views.

Our ZPT contains i18n markup We specify the i18n domain using the
118n:domain attribute on the root node. Nodes containing strings to be
translated have 118n:translate attributes. The 118n:translate
attribute takes a message id as a value, but the message id can be
omitted, in which case the text to be translated is used as the message id.
For example, in the name label, the message id is “Name:”. The contents
of thenode istranslated. If the contents included HTML markup, then
that would be translated too.

ZPT i18n supports variable interpolation using an 118n:name attribute.
Here's an example:

<p 118n:translate="">Hello

bob, how are you?</p>

In this example, the message id is “Hello $customer, how are you?'.

Side 19.

configure.zcml additions

<content class=".buddy.Buddy">
<require permission="zope.View"
interface=".interfaces.IBuddy" />
</content>

<browser:page
for=".interfaces.IBuddy"
name="index.html"
template="info.pt"
permission="zope.View"

/>

ZOPE

We need to make permission declarations to make it possible for the
template to access buddy data. In Zope 3, access protection is provided
using security proxies. Because URLs are untrusted code, the results of
URL traversal are proxied and the view/template is bound to a security-
proxied context. Security proxies forbid access to attributes for which
there are no permission declarations. We make permission declarations
by saying what permission is required to access one or more names.
Names can be specified using interfaces. In this example, we require the
zope.View permission to access all of the names defined by IBuddy.

We define our view using the browser:page directive. This actually
generates a view class that uses the given template to do it's work. The
view will be exposed as a “page” of the content, meaning that we access
the view as if the content was a folder and the view was a page in the
folder. We specify a name for the page. The name is independent of the
template name. Generally, names should have file suffixes to deal with
tools that are confused by lack of extensions.

The for attribute specifies what kinds of objects the view can be used
for. The value of the for attribute is the dotted name of an interface or
class.

The permission attribute declares what permission is needed to access
the view.

Slide 20.

Functional/integration Testing

* Want to test that everything is hooked up
right

* Canjust run Zope and see if we can display
buddies

* But we want automated tests

* We can record an interactive session and
make it into a doctest

ZOPE

The test we saw before was a “unit” tests. Unit tests test one thing in
isolation. We can also write “functional” tests. Functional tests test that
the system provides desired functionality at the system boundary -- the
user interface. We'll often use functional tests to test that our views,
including Python. ZPT and ZCML are working properly together.

We'll use tcpwatch to record our http interactions with our application.

We can get tcpwatch from the Zope cvs at
http://cvs.zope.org/ Packages/ tcpwatch/

We'll also use a script, dochttp, that comes with Zope 3 to convert a
recorded http session to a doctest.

Side 21.

Recording a test

1. Make directory to record data:

2. Run tcpwatch

3. Add and display a buddy on port 8081

4. Run dochttp to convert the recorded data

5. Edit the test to:
- add words
- remove uninteresting details
- remove port numbers
- Change authorization headers to

use mgr:mgrpw ZOP E

To record a session:
mkdir record
tcpwatch.py - L8081:localhost:8080 - r record

The command above tells tcpwatch to listed on port 8081 and forward to
port 8080. (Obviously, you can use different port numbers.)

While tcpwatch is running, start Zope and visit port 8081 (or whatever
port you told it to listed on) and perform actions you want to includein
the test, such as adding a buddy and displaying it.

Note that you may also want to disable HTTP connect keep- alive in your
browser. Otherwise, you may find the requests and responses appearing
out of order.

When you are done recording, exit tcpwatch and run:
python src/ zope/ app/tests/ dochttp.py record > browser.txt

This will generate a file with lots of data. You will want to find the two
requests you care about, the ones that created a buddy and displayed it
and remove the other requests from the file.

Edit authorization headers to use “mgr:mgrpw” rather than the base- 64
encoded authroization credentials it recorded.

Slide 22.

browser.txt (part 1)

Buddy Browser-Based User Interface

This document described how to use buddy objects.
First, let's create a buddy named bob:

>>> print http(r"""
... POST /@@contents.html HTTP/1.1
... Authorization: Basic bWdyOmlncnB3
.. Content-Length: 66
. Content-Type: application/x-www-form-urlencoded

..: type_name=zope.app .browser.add.buddydemo.buddy.Buddy&new_value=bob""")
HITP/1.1 303 ...

ZOPE

The dochttp script creates a doctest with a series of calls to an “http”
function. The function takes an HTTP request message as an input and
outputs an an object that, when printed, outputs an HTTP response
message. When the test is run, doctest compared the expected and actual
response message.

Thisistherequest that adds a buddy. It was recorded by selecting
“Buddy” from the add list on the left- hand side of the page. We've
removed a Referrer input header that we don't care about and that takes
up a lot of space.

We've elided most of the output by adding a “...” after the “303” status
code. A 303 status code is used for redirects for HTTP 1.1 clients. The
“...” after the 303 is a bit of doctest magic.

Doctest has a number of options that can be used to effect comparison of
actual and expected outputs and to control error-report formatting.
Options can be specified in doctest examples themselves and they can be
specified when creating tests. Zope's functional- testing doctest support
automatically provides the doctest.ELLIPSISoption. This allows “...” in
the expected output to match any text. This makes it easy to skip over
parts we don't care about.

Slide 23.

browser.txt (part 2)

Now, we can visit the buddy and see the basic buddy information
displayed:

>>> print http(r"""
. GET /bob HITP/1.1
. Authorization: Basic bWdyOmlncnB3

.)
HTTP/1.1 200 ...
<table>
<caption>Buddy information</caption>
<tr><td>Name:</td>
<td>
</td>
</tr>
<tr><td>Email:</td>
<td></td>
</tr>
<tr><td>Address:</td>
<td></td>
</tr>
<tr><td>Postal code:</td>
<td></td>
</tr>

ZOPE

Here, we've elided all of the output except for the table output by the
template. Normally, we wouldn't include so much markup, but, at this
point, we don't have any interesting data to show.

Side 24.

src/buddydemo/ftests.py

def test_suite():
from zope.app.tests.functional \
import FunctionalDocFileSuite
return FunctionalDocFileSuite('browser.txt')

if __name__ == '_main__':

import unittest
unittest.main(defaultTest="'test_suite')

ZOPE

Here, we use FunctionalDocFileSuite, rather that DocFileSuite.

FunctionalDocFileSuite actually sets up a special Zope test server that
executes tests.

Slide 25.

@ ; Hands on

* Create a display view for your content

* Make the necessary security declarations
* Write a functional test for your new view

ZOPE

Slide 26.

Edit and Add views

* Almost free, thanks to schema

* We need to make a security declaration to
allow the data to be changed. We add a
require directive to our content directive:

<content class=".buddy.Buddy">
<require permission="zope.View"
interface=".interfaces.IBuddy" />
<require permission="zope.ManageContent"
set_schema=".interfaces.IBuddy" />

ZOPE

One of the benefits of schema are that they support automatic form
generation. We'll let Zope automatically generate our edit and add forms.

Our edit view will need to be able to modify data by assigning to the
attributes defined using fields in the schema. We make permission
declarations for assigning to attributes. We can use a set_attributes
attribute to list attributes to be assigned, or, as we've done here, we can
use a set_schema attribute. The set_schema attribute specified all
names that are defined using fields in the schema. In this example, we
are not allowing the name attribute to be assigned, because the name
attribute is not afield.

Slide 27.

editform directive (configure.zcml)

<browser:editform
schema=".interfaces.IBuddy"
label="Change Buddy Information"
name="edit.html"
menu="zmi_views" title="Edit"
permission="zope.ManageContent"

/>

ZOPE

We define our edit view using the editformdirective. We specify a
schema that specifies the datato beincluded in the form and the objects
the view should be used for. (We could have used a for attribute, to use
the view with a different type.) The 1label attribute allows us to specify a
heading for theform. Asin the page directive, the name attribute
specifies the page name and the permission attribute specifies the
permission needed to access the form.

Themenu and title attributes are used to add an entry to the
zmi_views menu. Zope has a system for defining menus. The
zmi_views menu is used for displaying object tabs in the standard
management interface. There's a separate menultem directive. We could
have specified the “Edit” menu item separately:

<menultem
menu="zmi_views" title="Edit"
for=".interfaces.Buddy"
action="edit.html"
permission="zope.ManageContent" />

/>

Specifying the menu item in the view definition is a convenient short cut.
The menultem directive provides additional options that are sometimes
useful.

Side 28.

Add Form: configure.zcml

<browser:addform
schema=".1interfaces.IBuddy"
label="Add buddy information"
content_factory="".buddy.Buddy"
arguments="first last email address postal_code"
name="AddBuddy .html"
permission="zope.ManageContent"

/>

<browser:addMenultem
class=".buddy.Buddy"
title="Buddy"
permission="zope.ManageContent"
view="AddBuddy.html"
/>

ZOPE

We define an add form using an addform directive. The schema specifies
the data to be collected. The label specifies a form heading.

We need to specify afactory for creating the object to be added. We
specify this using the content_factory attribute. The factory may
require arguments. We can specify positional arguments using the
arguments attribute. The value of the attribute is a list of field names.
The corresponding data collected in the form is passed in the given order.
We can also specify keyword arguments. In this example, we didn't need
to specify arguments. The Buddy class doesn't require arguments to it's
constructor. Any fields not specified as arguments will be assigned as
attributes after the object is created.

Having defined an add form, we need to modify our addMenuItem
directive and specify the name of the add view. When someone selects the
menu item, the given view will be displayed.

Slide 29.

Adding theory: collaborating views

* Container policies implemented by “adding”
object
* Add menu
* Naming
* Page after add

* |tem initialization policies implemented by
custom add view

Folder ayiew: <yigws
O — Folderadding U= 1 Contacaddview

|Container lAdding

Something to be aware of is that add views are views of special objects
called “adding” objects. Adding objects are actually views, so when we
add objects, we are using views of views. Why? Each view represents
different interests. The adding view represents the interests of the
container. The add view represents the interests of the object being
added.

When objects are added, thereis an entry in the URL for each view. For
example, when adding a buddy to aroot folder, we'll have a URL like:

http://localhost:8080/+/AddBuddy.html=

The “+” in the URL is the name of the adding view. The “AddBuddy.html”
is the name of the add view.

Slide 30.

browser.txt (part 1)

Buddy Browser-Based User Interface

This document described how to use buddy objects.
First, let's create a buddy named jim.

To do so, we'll display an add form:

>>> print http(r
.. GET /+/AddBuddy.html= HTTP/1.1
.. Authorization: Basic bWdyOmlncnB3
. Referrer: http://localhost:8081/@@contents.html

HTTP/1.1 200 ...

ZOPE

We have to redo the test, because buddies are added differently.
Fortunately, this is pretty easy, as we simply record a session, add some
words and delete bits we don't care about.

Slide 31.

browser. txt (part 2)

And submit it:

>>> print http(r"""
. POST /+/AddBuddy.html%3D HITP/1.1
. Authorization: Basic bWdyOmlncnB3

. Content-Length: 942
(snip)

. 13123453072115384505382605611
. Content-Disposition: form-data; name="field.postal_code"

.. 22401
.. 13123453072115384505382605611
. Content-Disposition: form-data; name="UPDATE_SUBMIT"

.. Add

. 13123453072115384505382605611
. Content-Disposition: form-data; name="add_input_name"

. Jjim

13123453072115384505382605611-~

Ié[”JE."”J.."P/l.l 303 ... ZOP E

Therequest didn't fit on a the slide. I've cut out part of the input,
indicated by the “(snip)”.

Slide 32.

browser. txt (part 3)

Now, we can visit the buddy and see the basic buddy information
displayed:

>>> print http(r"""
. GET /jim HTTP/1.1
. Authorization: Basic bWdyOmlncnB3

.)

HITP/1.1 200 Ok

...Jim...Fulton...jim@zope.com...513 Prince Edward Street...22401...
We can also edit a buddy:

>>> print http(r"""

... GET /jim/@@edit.html HTITP/1.1

... Authorization: Basic bWdyOmlncnB3

. Referrer: http://localhost:8081/@@contents.html

e)
HTTP/1.1 200 ...

ZOPE

Now we have some interesting data, so we show just the data and omit
the markup, which is subject to change.

Slide 33.

browser.txt (part4)

Let's add a suite number to the address:

>>> print http(r"""
. POST /jim/@@edit.html HTTP/1.1

(snip)

e 114539918337121096612820581
. Content-Disposition: form-data; name="field.address"

..: 513 Prince Edward Street, suite 1300

(snip)

|
HTTP/1.1 200 ...

ZOPE

Therequest didn't fit on a the slide. I've cut out part of the input,
indicated by the “(snip)”.

Slide 34.

browser. txt (part5)

If we display the buddy, we'll see the change:
>>> print http(r"""
... GET /jim HTTP/1.1
. Authorization: Basic bWdyOmlncnB3

HTTP/1.1 200 Ok

...Jim...Fulton...jim@zope.com. ..

...513 Prince Edward Street, suite 1300...22401...

ZOPE

Slide 35.

@ Hands on

* provide add and edit forms for your content
types
* Don't forget ftests

ZOPE

Slide 36.

Meta data

* We aren't getting creation and modification
times set

* Zope manages meta data as annotations

* To allow meta data, must be annotatable
(IAnnotatable)

<content class=".buddy.Buddy">
<implements interface="
zope.app.annotation.IAttributeAnnotatable"
/>

ZOPE

Some definitions:
« “Data” are managed by content implementations directly

* “Meta data” are data managed by frameworks. Content
implementations don't manage meta data. If they did, it wouldn't be meta
data.

Note that the definitions of data and meta data are relative to an
implementation. Imagine an automated library card catalog system. The
system manages card catalog entries. Relativeto the card catalog entries,
the catalog entry information is data. Relative to the books in the library,
they are meta data. The catalog system might keep track of when entries
were updated. This information is meta- data relative to the entries.

Zope manages meta data using annotations. Annotations are managed
independent of an object's implementation. The details of this framework
are beyond the scope of this course.

We need to configure objects to indicate whether they are annotatable
and how. Currently, we only support attribute annotations, which are
stored in an _annotations__ attribute on objects. We make an object
attribute annotatable by declaring the TAttributeAnnotatable marker
interface. Because this is primarily a configuration task, so we do it in
ZCML.

Slide 37.

Translations

* Extract strings
PYTHONPATH=src python2.3 utilities/il8nextract.py \
-p src/buddydemo -d buddydemo -o locales

* Create language directories
mkdir src/buddydemo/locales/fr/LC_MESSAGES

* Copy (or merge) .pot file .po file
* Compile the . po files to .mo files

* Configure the translations in ZCML:
<configure

Qﬁins:il8n="http://namespaces.zope.org/il8n">

<il8n:registerTranslations directory="locales" />

ZOPE

The extraction tool extracts translatable strings from Python, ZPT, and
ZCML. You need to provide a path (-p) to a directory to be searches, a
translation domain (-d) and the name of a directory (-0) to extract to.
The output directory will be created if it doesn't exist.

The output directory will contain afile with a name equal to the
translation domain and a “.pot” suffix. Thisis a translation template.

To create atranslation for a particular language:

» Create a subdirectory of the translation directory who's name is a
language code (e.g. “fr” or “en-us”).

» Within the language directory, create the directory, LC_MESSAGES.

* Copy the template file to the LC_MESSAGES directory, but with a“.po”
suffix. For example, a German translation of the buddydemo application
would live in the file:
src/buddydemo/locales/de/LC_MESSAGES/buddydemo. po.

Later, when you update your software, you'll extract the strings into a

new “.pot” file and use the gettext merger's tool to merge the “.pot” file
changes into your “.po” file.

» Edit the “.po” file to add translations.

* Compile the translations using the gettext msgfmt tool.

Slide 38.

@ B Hands on

* Add an IAttributeAnnotatable declaration to
your ZCML and verify that you get
modification times.

* Run the extraction tool and create a
translation for your application.

ZOPE

Slide 39.

Application functionality components

* Adapters provide new interfaces

(functionality) for existing objects s

cadapters
- Always created when used BuddyCiryState
- Views and resources are .
adapters i eudey
* Tools provide pluggable iostaiookup
application logic: 7
- Utilities el

Lookup

- Reuse existing objects

ZOPE

Smple adapters adapt one thing. Adapters can adapt zero, one, or many
things. Views are actually multi- adapters that adapt an object (or
multiple objects) and a request.

Whenever we ask the system for an adapter, a new object is created.
Adapters are generally very transient. They are typically defined via
classes with constructors that take the objects adapted as arguments.

Tools include utilities and services, but most, by far, are utilities. Tools
are generally created once and used over and over. Multiple tool retrievals
will return the same component. Tools are often persistent.

Utilities are registered by interface and name, although an empty string is
often used as the name. We often register many utilities with the same
interface. Database connections are registered as utilities implementing
IZopeDatabaseAdapter. We may register several with different names
and select which one to use in a context (e.g. an sql method).

Services are components that provide foundational functionality. Soon,
we will have so few of these that we will stop talking about them.

Slide 40.

Adapter Zen

* Adapter-oriented programming is a new
paradigm

* Extremely powerful
* Different mind set

ZOPE

Adapters provide a fundamentally different way to think about
organizing software. Prepare yourself for a paradigm shift. The next few
slides try to provide some motivation and introduction.

Ask lots of questions!

Side 41.

Getting value from objects

* Lot of work to create objects

* Want to reduce the work by keeping objects
simple

* Want to use them in any application

* Want to keep using them as applications
change

* Change is inevitable

ZOPE

We want to be able to reuse the software we create. Why? Software is
expensive to create and maintain. Thisis even more so for quality
software that has documentation and tests.

We also want to reduce the effort to create and maintain software by
keeping the software as simple as we can. It's much easier to create,
document, test and understand software that does one thing.

We want software components that survive change. Thisincludes
changing requirements and changing execution environments. We want
to minimize dependencies between components and their
environment.

Standard APIs Not the Answer

* Very hard to standardize across applications
(or developers)

* Objects get locked into APIs

* Difficult to evolve APIs
- Stagnation
- Chaos

ZOPE

One way to reuse out objects across applications is through standard
APIs. Thisrarely works.

It's usually too much work to achieve standardization. When we do, we
often end up with lowest- common- denominator standards that don't
meet the needs of applications or the framework.

When standards are achieved, it becomes hard to change to reflect new
requirements. Either standards don't change to meet changing needs, or
an evolving standards and applications that use them have to deal with
components supporting different versions of the standard.

Adapters

* Objects define their own APIs
- Independent of applications
- Usually very focused and simple

* Applications define the APIs they need
- Can be focused and simple

* Adapters bridge the gap

* Easy to call YAGNI

ZOPE

With adapters (and interfaces), components do just what they need to do.
They don't need to anticipate possible framework requirements.

Likewise, frameworks can require only what they need. They can change
what they need fairly easily, so they don't have to anticipate future needs.

Adapters take care of translating between APIs. Changing APIsisn't
painless, but it can, at least, be controlled through adaptation.

APIsdon't have to include features they don't need but might need
later. API designers can call YAGNI. If their wrong, change is
straightforward.

Extending objects

* Want to provide new functionality for other
people's objects

* Inheritance doesn't work very well:
- Can't extend existing objects
- Tight coupling

* Adapters make it easy to extend

ZOPE

You get a useful component from someone, but it lacks some feature you
need. Maybe you want to add some operations, or perhaps you need to
give it a user interface. Perhaps it just needs to have an APl that makes it
fit your application.

You could modify the component source, but that will cause a
maintenance head ache. Every time you get a new version of the
component from it's author, you'll have to redo your modifications.

You could subclass the component's class and create your own version.
Your new version of the component will be tightly coupled to the
components implementation. New versions of the component could
change their implementations in ways that break your subclass.

If you use persistent objects, you have another problem with subclassing.
Any persistent instances of the component won't get any of your new
features. You either need to live with that, or write a conversion script
that replaces instances of the old component with instances of the
subclass.

Object interactions: Multi Adapters

* Adapters can extend or implement an
interaction among multiple objects

- adapter(ob1l, ob2) provides I3

* Views support Uls by adapting a user
(request) and one or more application objects

ZOPE

Sometimes you want to implement an application feature that depends
on multiple objects. The most common example of thisis a user
interface, which involves some application object(s) and a user, where the
user is represented by some object in the system, arequest in Zope. We
use multi- adapters for this. Like simple adapters, multi- adapters are
defined by factories, but unlike simple adapters, we don't check for
__conform__ methods on the objects being adapted or whether an object
already provides the interface.

Of course, multi- adapter factories are passed arguments for each of the
objects being adapted.

Named Adapters

* Sometimes useful to have multiple variations
on an adapter type.

* We can create named adapters
- Select which one we want by providing a name
- List available names

* Used to provide named web pages, which
are (essentially) named adapters

* Not used much elsewhere -- yet

ZOPE

Named adapters let you have multiple versions of the same basic adapter
type, where an adapter type a combination of a provided type and zero or
more adapted types.

Note that, as with multi- adapters, an adapted objects _ conform__
method and provided interfaces are not considered when looking up
named adapters.

Named adapters can be single or multi- adapters.

Extending processing: subscribers

* Sometimes need to extend processing

* Want to provide plug points during
processing

* Events provide plug points
* Subscribers respond to events

* Provides a type of rule-based system:
- When X happens, do Y

ZOPE

Sometimes, rather than providing or replacing functionality, we want to
extend existing functionality. One way to do thisis to define points in
normal processing where extra processing could occur. At these points,
we notify event subscribers.

Subscribers are another kind of adapters. They differ from other adapters
in the way that they are registered and looked up. With non- subscribers,
we register a single adapter for an adapter type (required and provided
interfaces) and name. When you look up a non-subscriber adapter, you
get asingle adapter back (if any) that represents the best fit for the
object being adapted and the desired interface. You can register multiple
subscription adapters for the same adapter type and, when you look up
subscribers, you get all that match.

There's a special case for subscriptions. Normally, creating adapters
doesn't have any side effects. For subscribers, we often register functions
as subscribers that return None. In this case, the factories do all of the
work, which usually involves side effects. This special case is vary
valuable, as it allows event subscribers to be implemented by simple
functions, rather than classes.

City and State information adapter

In this example, we'll create an adapter
for obtaining city and state information
for buddies.

° Use the buddy postal Code ?Ipostallnfo

«adapters

* Use a utility to look upthe ~ —————+ Bud dyCiryState
city and state information
given the postal code.

IPostallookup T

sutilitys IBuddy
Lookup

Buddy

ZOPE

The buddy example is contrived to provide an opportunity to use an
adapter and a utility. We didn't include a city and state in the buddy data
because we can compute them from the postal code. To do this, we need
to be able to lookup a city and state given a postal code. It seems likely
that one would want to do such lookup in other places, so we factor the
lookup into a separate utility.

Slide 49.

Postal-lookup interfaces

class IPostalInfo(zope.interface.Interface):
"Provide information for postal codes"

city = TextLine(title=u"City")
state = TextLine(title=u"State")

class IPostalLookup(zope.interface.Interface):
"Provide postal code lookup"

def lookup(postal_code):
"""Lookup information for a postal code.

An IPostalInfo is returned if the postal
code is known. None is returned otherwise.

ZOPE

Our utility will implement TPostalLookup.

TIPostalInfo is used to describe the data returned. IPostalInfo is an
example of a non- persistent content- component interface.

Slide 50.

src/buddydemo/stubpostal.py

import zope.interface
from buddydemo.interfaces import IPostalInfo, IPostalLookup

class Info:
zope.interface.implements(IPostalInfo)

def __init_ (self, city, state):
self.city, self.state = city, state

class Lookup:
zope.interface.implements(IPostalLookup)
_data = {
'22401': ('Fredericksburg', 'Virginia'),
'44870': ('Sandusky', 'Ohio'),
'90051': ('Los Angeles', 'California'),
}

def lookup(self, postal_code):
data = self._data.get(postal_code)
if data:
return Info(*data)

A proper postal lookup utility implementation will have use some sort
of database for looking up postal-code data. We don't want to bother
will that now, so we create a temporary stub implementation later.

One of the main benefits of utilities is that implementations can be
swapped out without affecting clients.

Info object provide basic information storage for a city and state:
>>> from buddydemo import stubpostal
>>> info = stubpostal.Info('Cleveland', 'Ohio')
>>> info.city, info.state
(‘Cleveland’, 'Ohio")

Lookup objects provide an IPostalLookup implementation with a small
test database.

If a known postal code is used, we get data:
>>> lookup = stubpostal.Lookup()
>>> info = lookup.lookup('22401")
>>> info.city, info.state
('Fredericksburg', 'Virginia')
But get nothing if an unknown code is given:

>>> lookup.lookup('11111")

Slide 51.

Add stubpostal to tests.py

import unittest
from doctest import DocTestSuite

def test_suite():
return DocFileSuite('buddy.txt', 'stubpostal.txt'))

ZOPE

Note that the notes for the previous slide contain most of the text of
stubpostal. txt.

Slide 52.

configure.zcml utility changes

<content class=".stubpostal.Info">
<allow interface=".interfaces.IPostalInfo" />
</content>

<utility
factory=".stubpostal.Lookup"
provides=".interfaces.IPostalLookup"
permission="zope.Public"

/>

ZOPE

As mentioned earlier, IPostalInfo is a content type. We need to provide
security declarations so that we can access it's methods. We use a new
security- declaration directive, allow. The allow directive declares that access
to an interface or attributes is always allowed.

We use autility directive to register our utility. We specify a factory for
creating the utility. We could, instead, specify an existing utility instance using
a component attribute. This would be necessary if we needed to supply data to
initialize the component. In this case, using the factory attribute is more
convenient, since it allows us to avoid creating an instance in our Python
module.

We specify what interface the utility provides using the provides attribute. We
could also supply a name. In this example, we accept the default name, which
isan empty string.

We specify the permission necessary to use the utility. The permission is
optional, however, if it isn't set, then untrusted code will be unable to use the
utility.

In the utility definition, we used the special permission, zope.Public. The
zope.Public permission is special because it provides unconditional access.
Anything that requires zope.Public is always unconditionally available.

As you might have guessed, the allow directive is equivalent to the require
directive with a permission of zope.Public.

Slide 53.

More tests in buddy . txt

Getting City and State Information

We can get city and state information for a buddy using the buddy
city-state adapter:

>>> from buddydemo.buddy import BuddyCityState

>>> bob = Buddy('Bob', 'Smith', 'bob@zope.com', '4 foo street',

. '22401")

>>> info = BuddyCityState(bob)

>>> info.city, info.state

('Fredericksburg', 'Virginia')
The city state adapter provides empty strings of the postal code is
omitted or not in whatever database is provided by a postal-lookup
utility:

>>> info = BuddyCityState(Buddy('Bob'))
>>> info.city, info.state

[
>>> info = BuddyCityState(Buddy('Bob', pc='11111"))

>>> info.city, info.state
ZOPE

Slide 54.

tests.py

import unittest

from zope.testing.doctest import DocFileSuite, DocTestSuite
from zope.app.tests import placelesssetup

from zope.app.tests import ztapi

from buddydemo import interfaces, stubpostal

def setUp(test):
placelesssetup.setUp(test)
ztapi.provideUtility(interfaces.IPostalLookup,
stubpostal.Lookup())

def test_suite():
suite = unittest.TestSuite()
suite.addTest (DocFileSuite('buddy.txt', setUp=setUp,
tearDown=placelesssetup.tearDown))
suite.addTest (DocFileSuite('stubpostal.txt'))
return suite

ZOPE

Because our adapter is going to look up a utility, we need to arrange for
the component architecture to be initialized. We do this with
zope.app.tests.placelesssetup.setUp.

Once that's done, we need to register a stub utility. We use helper
function zope.app.tests.ztapi.provideUtility. The module
zope.app.tests.ztapi has a number of methods that help set up
components for tests.

We do all of thisin a setUp function. zope.app.tests.placelesssetup
defines setUp and tearDown functions that set up and tear down the
basic component environment. We can use the tearDown method as is,
but we need to augment the setUp function to register our stub utility.

The setUp and tearDown functions take an argument, which is a
doctest.DocTest object. Thisis passed to allow us to get to the test
“globals” (test.globs). Thisis useful for some advanced situations. We
don't need it here.

Slide 55.

BuddyCityState, in buddy.py

class BuddyCityState:
zope.interface.implements(IPostalInfo)
_used_for__ = IBuddy

def __init_ (self, buddy):
lookup = zapi.getUtility(IPostalLookup)
info = lookup.lookup(buddy.postal_code)
if info is None:
self.city, self.state = "'', "'
else:
self.city, self.state = info.city, info.state

ZOPE

Our adapter implements IPostalInfo.

We set a __used_for__ attribute to document the interface we depend on.
Thisis purely adocumentation convention at this point. In the future, we
might use this to check configurations.

The constructor takes the object to be adapted, which is an IBuddy. In this
example, all of thework isdonein the constructor.

We look up autility by calling zapi.getUtility. The zapi moduleisa
convenience module that gathers together a variety of widely used application
programming interfaces. See zope/app/interfaces/zapi.py (and the
modules it imports) for details.

The getUtility method raises an exception if a utility can't be found.
Generally "get" methods raise errors if they can't find something. There are
usually "query" methods (e.g. queryUtility) that return a default value
(defaulting to None) if a value can't be found. The first argument to
getUtilityis an object that provides a place to look up a utility. Generally,
components can be defined locally to a site. When we look something up, we
provide alocation to look for the component in. Thisis aform of acquisition.
The second argument to getUtility specifies the desired interface. A name
may also be provided as an additional argument or as a name keyword
argument, and defaults to an empty string.

The constructor uses the utility to look up postal information, saving the
information away for later use.

Slide 56.

configure.zcml adapter change

<adapter
factory=".buddy.BuddyCityState"
provides=".interfaces.IPostalInfo"
for=".interfaces.IBuddy"
permission="zope.Public"

/>

ZOPE

The adapter directive is similar to the utility directive. Like the utility directive, it
specifies the provided interface, a factory and a permission. As with utilities, a name
may be provided.

The adapter directive also requires the use of a for attribute, which specifies the interface
the adapter is used for. You can specify that an adapter is for all objects by supplying
and asterisk (*) for the interface. You can specify many interfaces, separated by spaces,
or you can specify no interfaces.

Slide 57.

Change the display: browser.py

import zope.interface
from buddydemo.interfaces import IBuddy, IPostalInfo

class BuddyInfo:
"""Provide an interface for viewing a Buddy

zope.interface.implements(IPostalInfo)
_used_for__ = IBuddy

def __init_ (self, context, request):
self.context context
self.request = request

info = IPostalInfo(context)
self.city, self.state = info.city, info.state

ZOPE

Now that we have a way to get a city and state, we can improve our
display view to include the city and state. We'll create a view class that
provides city and state attributes to be used by our ZPT template. The
view uses the adapter in the constructor to get the city and state
information.

We get an adapter by just calling the interface. If the object passed to the
interface already implements it, then the object will be returned.

Slide 58.

Add a testto tests.py (1)

def test_BuddyInfo():

This view mainly provides access to city and state
information for a buddy. It relies on having a
buddy that is adaptable to IPostalInfo. Imagine we
have a buddy that already implements IPostalInfo:

>>> import zope.interface

>>> from buddydemo.interfaces import IPostalInfo

>>> class FakeBuddy:

.. zope.interface.implements(IPostalInfo)
city = 'Cleveland'

e state = 'Ohio'

>>> fake = FakeBuddy()

ZOPE

In this case, we decided to put the test in the test file. To do that, we just
put afunction in the test file with the desired doc string.

To test the view, we need an object that can be adapted to IPostallnfo.
We could set up an adapter, but then we'd need to set up the component
architecture and register the adapter. An easier way to accomplish thisis
to pass a stub object that already implements the desired interface. Then
the adapter retrieval (interface call) will just return the stub object,

Slide 59.

Add a test to tests.py (2)

We should be able to create a BuddyInfo on this
fake buddy and get the right city and state back:

>>> from buddydemo.browser import BuddyInfo
>>> info = BuddyInfo(fake, 42)

>>> info.city, info.state

('Cleveland', 'Ohio')

We cheated a bit and used 42 as the request.

As with all views, we expect to be able to access
the thing being viewed and the request:

>>> info.context is fake
True

>>> info.request

42

ZOPE

We normally have to pass arequest to a view. We know that this view
ignores it's request, so we just pass 42.

A view that uses ZPT is required to expose “context” and “request”
attributes. These are needed so that the ZPT template can expose the
information as ZPT context and view top-level names.

Slide 60.

Add a testto tests.py (3)

def test_suite():
suite = unittest.TestSuite()
suite.addTest(DocFileSuite('buddy.txt', setUp=setUp,
tearDown=placelesssetup.tearDown))
suite.addTest(DocFileSuite('stubpostal.txt"'))
suite.addTest(DocTestSuite())
return suite

* We also need to update our functional tests
to reflect the new output!

ZOPE

When the tests are in the test module, we need to tell DocTestSuite to

look for testsin the calling module. We do that by calling DocTestSuite
without an argument.

It can be very useful to write unit tests for the Python code in views. This
is especially true if the Python code is complicated. It's much easier to
debug code in a unit test that in the web server, or even in a functional
test.

Given that we need to create a functional test anyway, however, | would
normally not bother to write tests for very simple code like the code we
have here, as long as the functional test exercises the code.

Slide 61.

Update info.pt

<html metal:use-macro="context/@@standard_macros/page">
<body><div metal:fill-slot="body">
<table>

<caption il8n:translate="">Buddy information</caption>

<tr><td il8n:translate="">Name:</td>
<td>First

Last</td>

</tr>

<tr><td il8n:translate="">Email:</td>
<td tal:content="context/email">foo@bar.com</td>
</tr>

<tr><td il8n:translate="">Address:</td>
<td tal:content="context/address">1 First Street</td>
</tr>

<tr><td>City:</td>
<td tal:content="view/city | default">City</td>
</tr>

<tr><td>State:</td>
<td tal:content="view/state | default">State</td>
</tr>

<tr><td il8n:translate="">Postal code:</td>
<td tal:content="context/postal_code">12345</td>
</tr>

</table>

</div></body></html> ZO P E

We update the display template to include the city and state.

Note that we use the view variable to refer to the view and get the view's
attributes, city and state. When a ZPT template is used in a view, it has
a view top- level variable to provide access to the view.

Slide 62.

Update index.html in configure.zcml

<browser:page
for=".interfaces.IBuddy"
name="index.html"
template="info.pt"
permission="zope.View"
class=".browser.BuddyInfo
/>

ZOPE

We update the page directive to include a class. The class is used as a
mix-in class for the view.

Slide 63.

@ - Hands on

* Use an adapter to add some functionality to
your application

* You don't have to use a utility, but if you do,
don't forget to use placelesssetup in the
tests.

ZOPE

Slide 64.

Creating an edit view the “hard” way

* Used an automatically-generated edit view
* Hid some details

- Publishing Python methods
- Event publishing

ZOPE

We took advantage of schemas to avoid most of the drudgery of creating
edit and add views. This caused us to miss some important concepts.

As an example, we'll create a “rename” view that lets us enter first and
last names.

Slide 65.

src/buddydemo/rename.pt

<html metal:use-macro="context/@@standard_macros/page"
i18n:domain="buddydemo">

<body><div metal:fill-slot="body">

<p il8n:translate="">Enter the Buddy information</p>

<form action="renameAction.html" method="post">

<table>

<tr><td il8n:translate="">First name</td>
<td><input type="text" name="first" size="40" value=
tal:attributes="value context/first" /> </td>

</tr>
<tr><td il8n:translate="">Last name</td>
<td><input type="text" name="last" size="40" value=
tal:attributes="value context/last" /> </td>

</tr>
</table>
<input type="submit" name="submit" value="Save Changes" />

</form></div></body></html>

Slide 66.

BuddyRename in browser.py

from zope.event import notify
from zope.app.event.objectevent import ObjectModifiedEvent

class BuddyRename:
mnn "Rename a buddyll mnmn

def __init_ (self, context, request):
self.context context
self.request = request

def update(self, first, last):
self.context.first = first
self.context.last = last
notify(ObjectModifiedEvent(self.context))
self.request.response.redirect("rename.html")

ZOPE

Here we'll use Python code to implement a “page” that serves as the
action of aform.

As usual, we have a constructor that takes a context and request and
assigns them to attributes.

The update method implements the form action. The Zope publisher will
call this method directly, marshaling arguments from form variables. The
update method assigns the data passed to it's context's (buddy's)
attributes.

The view generates an ObjectModifiedEvent. Events provide a mechanism
for plugging logic into existing processes. There are a number of
activities that we might want to perform, such as updating meta data or
catalog indexes when an object is modified. We don't want to make each
method that modified an object responsible for these, so, instead we
generate an event, and, separately register event subscribers.

Finally, we redirect to the original rename form.

Slide 67.

test_BuddyRename in tests.py (1)

def test_BuddyRename():

r

This view provides a method for changing buddies.
It is the action of a form in rename.html and
redirects back there when it's done.

Use a fake buddy class:
>>> import zope.interface
>>> class FakeBuddy:
.. first = 'bob'

e last = 'smoth'
>>> fake = FakeBuddy()

ZOPE

Again we put thetest in the test module. The test code will include a
backslash “\”. Whenever we include backslashes in doc tests, we need to
mark the doc string as a “raw” string.

Our stub object has some original data that we will change.

Slide 68.

test_BuddyRename in tests.py (2)

Because the view needs to redirect, we have to give
it a request:

>>> from zope.publisher.browser import TestRequest
>>> request = TestRequest()

Our rename view is going to generate an event.
Because of that, we need to setup an event service:

>>> from zope.app.tests import placelesssetup
>>> placelesssetup.setUp()

ZOPE

Here we need a real request, because the view is going to use the request
response to do a redirect.

Because we publish an event, we need to initialize the event service.
zope.app.tests.placelesssetup.setUp not only sets up the event
service; it also registered a logging event subscriber that we can use to
make assertions about generated events.

Slide 69.

test_BuddyRename in tests.py (3)

We should be able to create a BuddyRename on this
fake buddy and change it's name:

>>> from buddydemo.browser import BuddyRename
>>> rename = BuddyRename(fake, request)
>>> rename.update('Bob', 'Smith')
>>> fake.first, fake.last
('Bob', 'Smith'")
Make sure it redirected to rename.html:
>>> request.response.getStatus()

302
>>> request.response.getHeader('location')

ZOPE

We check that calling the update modified the buddy.

We also check to make sure the response has been redirected.

Slide 70.

test_BuddyRename in tests.py (4)

There should be an ObjectModifiedEvent event logged:

>>> from zope.app.event.tests.placelesssetup \
e. import getEvents

>>> from zope.app.event.interfaces \

e import IObjectModifiedEvent

>>> [event] = getEvents(IObjectModifiedEvent)
>>> event.object is fake

True

Finally, we'll put things back the way we
found them:

>>> placelesssetup.tearDown()

ZOPE

Finally, we check to make sure that an object- modified event has been
generated for our fake buddy.

Notice that we used backslashes to break some imports. This was
necessary to fit the source onto a slide for this presentation. The
backslashes, in turn, required that we use a raw doc string.

Side 71.

Define the pages in configure.zcml

<browser:page
for=".interfaces.IBuddy"
name="rename.html"
menu="zmi_views" title="Rename"
template="rename.pt"
permission="zope.ManageContent"

/>

<browser:page
for=".interfaces.IBuddy"
name="renameAction.html"
class=".browser.BuddyRename" attribute="update"
permission="zope.ManageContent"

/>

ZOPE

We've defined two pages. The first page displays the form using the page
template, rename.pt. As we did for the edit form, we use menu and title
attributes to specify a menu item so that we get a “Rename” tab that
displays the form.

The second page is implemented by a view attribute defined by the class,
the update method.

Slide 72.

We can combine the pages

<browser:pages
for=".interfaces.IBuddy"
permission="zope.ManageContent"
class=".browser.BuddyRename"
>
<browser:page
name="rename.html"
menu="zmi_views" title="Rename"
template="rename.pt"
/>
<browser:page
name="renameAction.html"
attribute="update"
/>

</browser :pages>

ZOPE

Because the for and the permission attributes had the same values, we
can combine the pages into a pages grouping directive. The main benefit
of thisisto provide some logical grouping.

Slide 73.

Subscribers

Here's the subscriber that sets object's
modification time:

from datetime import datetime
from zope.app.dublincore.interfaces import
IZopeDublinCore

def ModifiedAnnotator(event):
dc = IZopeDublinCore(event.object, None)
if dc is not None:
dc.modified = datetime.utcnow()

ZOPE

This subscriber is a simple subscriber that takes only an event.
Subscribers can be defined to take multiple objects.

Note that any object can be an event.

In this example, we used a function rather than a class to define an
adapter. Essentially, we're adapting to None. We aren't returning
anything useful, but are doing all our work when we are called. Thisis a
compromise of the adapter model, but a justifiable one. Without this
compromise, one would generally have to define subscribers with classes
or by calling some API function that converted a function to a factory
that creates an object that calls the function. It's much cleaner to be able
to just use functions as subscribers.

Slide 74.

Subscriber registration

<subscriber
factory=".timeannotators.ModifiedAnnotator"
for="zope.app.event.interfaces.IObjectModifiedEvent"

/>

ZOPE

Subscribers can be defined for any number of objects. For subscribers on
multiple objects, simply list multiple interfaces in the for attribute,
separated by white space.

Note that we use a factory attribute here. That's because subscribers are
adapters and we specify factories for adapters. This adapter is unusual
because we aren't providing an interface. Subscribers can provide an
interface, but they don't have to. In fact, most subscribers are just Python
functions, as in this example, that do some work when they are called.
They are really handlers, not factories. In the future, we'll add a
“handler” attribute to this directive to be used when defining handlers
rather than factories.

Slide 75.

@ Hands on

* Create an edit page for your content type
using a Python action

ZOPE

Slide 76.

Containment

* Objects can be aware of their location via
__parent__ and __name__

* Container framework
- Containers are mapping
- Responsible for maintaining item locations
- Responsible for location-relevant events
- Support for pluggable item types
- Automated through mix-ins and API functions

ZOPE

The main purpose of the container framework is to create containers that
can hold many different kinds of objects, including objects not created by
the container authors. The framework provides mechanisms to decide
which kinds of objects a container can hold and which containers an
object can be placed in. If you don't need this flexibility, then you are
free not to use the framework.

In addition to providing a mapping protocol, containers are responsible
for making sure that their items have location information. This may
require placing containment proxies around items to assure that they
implement ILocation and setting the item's __parent__ and __name___
attributes.

In addition, when containers are modified, they need to generate
location-relevant events.

Carrying out these responsibilities is quite involved. Fortunately (or
unfortunately, depending on your point of view), there are some base
classes and utility functions that automate these responsibilities.

Side 77.

ILocation

class ILocation(Interface):
"""Objects that have a structural location

__parent__ = Attribute(
"The parent in the location hierarchy")
__name__ = schema.TextLine(
__doc_=

"""The name within the parent

The parent can be traversed with this name
to get the object.
mn llll)

ZOPE

ILocation specifies basic location information. It allows us to perform
acquisition and to compute object locations.

In Zope 3, we store location information directly, rather than through
transient context wrappers. An object has a single canonical location. An
object can have many references, and, from a reference, you can compute
an object's true location.

Slide 78.

Base classes

zope.app.container provides several base
classes that simplify container implementation:

* BTreeContainer
e SampleContainer
* OrderedContainer

ZOPE

BTreeContainer is the most commonly used. It supports very large
containers.

SampleContainer is rarely used. It provides a hook for specifying lower-
level storage. BTreeContainer subclasses this.

OrderedContainer provides for ordered items. An APl is provided for
manipulating order. This should not be used for larger containers.

Slide 79.

@ I Containment constraints

We control the containment relationship
through containment constraints:

* Precondition on container __setitem___ limits
what can be added.

* [temTypePrecondition allows limiting by type

* Constraint on __parent__ limits what
container can be used.

* ContainerTypeConstraint allows limiting parent by

ZOPE

Slide 80.

Buddy folder (interfaces.py)

from zope.app.container.interfaces import IContained, IContainer
from zope.app.container.constraints import ContainerTypesConstraint
from zope.app.container.constraints import ItemTypePrecondition
from zope.schema import Field

class IBuddyFolder(IContainer):

def __setitem__(name, object):
"iipAdd a buddy"""

__setitem__.precondition = ItemTypePrecondition(IBuddy)

class IBuddyContained(IContained):
__parent__ = Field(
constraint = ContainerTypesConstraint(IBuddyFolder))

ZOPE

Preconditions are tagged values on interface attribute definitions. When
defining interfaces with class statements, we express the preconditions as
function attributes. We can also express preconditions after an interface
has been created. To do so, we use the getitem operation on the interface
to get an attribute definition and then use the setTaggedValue method
on the definition to set the value:

IContactFolder['__setitem__'].setTaggedValue(
precondition’', ItemTypePrecondition(IContact)

We decided not to modify IBuddy. There are a number of reasons why
we did this:

* Wedidn't want __parent__ to become part of IBuddy's
schema. This would have complicated form generation.

* Wedidn't want to require all IBuddys to be contained

* By creating a separate interface, we avoided a circular
dependency between TBuddyFolder and IBuddyConstrained.

Slide 81.

Improvements on trunk

from zope.app.container.interfaces import IContained, IContainer
from zope.app.container.constraints import contains, containers

class IBuddyFolder(IContainer):
contains (IBuddy)
class IBuddyContained(IContained):

containers(IBuddyFolder)

ZOPE

On the subversion trunk (and in the next release, Zope X3.1) there are
improved APIs for defining containment constraints. The lower- level

mechanisms defined in the previous slide are still supported, and are
necessary in some cases, however, they are rather error prone.

One problem with this mechanism is that what we often really want to do
is to constrain a relationship between two types. Thisis a bit clumsy to
express as properties of the individual types. It makes more sense in
some ways to express the constraint independently of either type,
perhaps as some sort of subscriber.

Slide 82.

Buddy folder (buddy . py)

from zope.app.container.btree import BTreeContainer
from buddydemo.interfaces import IBuddyFolder

class BuddyFolder(BTreeContainer):
zope.interface.implements(IBuddyFolder)

ZOPE

Here, all we do is subclass BTreeContainer and add an interface.

Alternatively, we could provide a factory that simply instantiated
BTreeContainers and provided instance- specific interface declarations.

Slide 83.

Buddy changes (buddy . py)

from buddydemo.interfaces import IBuddyContained

class Buddy(persistent.Persistent):

zope.interface.implements(IBuddy, IBuddyContained)

__parent__ = __name__ = None

ZOPE

Here we added an extrainterface to the declaration for the buddy class.

Because IContained requires __parent__ and __name__ attributes, we
need to provide default values for them. It's easiest to do so by providing
default values at the class level. Alternatively, we could have modified the
__1init__ method. We could also have subclasses
zope.app.container.Contained, which provides this trivial
implementation.

Slide 84.

~ Buddy folder (configure.zcml)

<content class=".buddy.BuddyFolder">
<require permission="zope.View"
interface="
zope.app.container.interfaces.IReadContainer"
/>
<require permission="zope.ManageContent"
interface="
zope.app.container.interfaces.IWriteContainer"
/>
</content>

<browser:addMenultem
title="Buddy Folder"
class=".buddy.BuddyFolder"
permission="zope.ManageContent"

/>

ZOPE

Containers provide read and write interfaces, which we need to make
security declarations for. (This borders on being a dead chicken.)

Slide 85.

Container views

<browser:containerViews
for=".interfaces.IBuddyFolder"
contents="zope.ManageContent"
index="zope.View"
add="zope.ManageContent"

/>

ZOPE

Specify one or more of contents, index, or add attributes. For each of
these attributes, a view will be defined requiring the permission given as
an attribute value.

This directive is, effectively, a macro. It generates (actually calls the ZCML
handlers for) the more detailed directives on the previous slide.

Slide 86.

@ Hands on

* Create a container for your content type

* Arrange that your content type can only live
in that container

ZOPE

Slide 87.

Security Architecture

* Permission declaration
* Authentication

* Protection

* Authorization

ZOPE

We use ZCML to declare permissions needed to access names in classes or
to use certain components.

We use authentication services to extract credentials from a request and
give us principals. Principals are entities that we can grant access to. (The
details of what kind of grants we can make and how are determined by
the authorization system.

The protection system is responsible for enforcing security in a Zope
application. The protections system prevents access to attributes or
operations unless “interactions” have required permissions. The
protection system uses the authorization system to determine whether
“interactions” have the needed permissions.

An interaction is the use of one or more external entities with the system.
A common case is that a user interacts with the system by making a web
request. The authentication system is used to determine a principal
corresponding to the user and the principal is associated with the
interaction through the request. Generally, an interaction has a
permission on an object if each of it's principals do.

The authorization system is pluggable. It is responsible for making

authorization decisions and for managing the grants used to make those
decisions. The authorization system determines what kinds of grants can
be made and provides mechanisms for making and managing the grants.

Slide 88.

Protection

* Security proxies
- Mediate access to objects and operations
- Basic objects aren't proxied
- Proxies spread “everywhere”
- Use declarations in the form of checkers
* Untrusted interpreters
— Only allow basic object or proxied objects in
- All nob-basic attribute-access results are proxied
- Examples: URLs, through-the-web templates

and python ZO P E

The protection system makes sure that interactions have the required
permissions.

The central protection mechanism is security proxied. When an object
enters untrusted code (e.g. when traversing a URL):

— We pass the object to a proxy factory

— Welook up achecker for the object. We may get aresult
indicating that the object is “basic”, meaning we don't need to
proxy it.

— Otherwise, we get a checker object. We create a proxy around
the object, passing the checker. The proxy delegates to the
checker to:

« Make access decisions
e Create new proxies

Basic objects are immutable and contain immutable data. Examples are
objects like strings, numbers, and dates (but not tuples).

Checkers represent permission declarations. They are looked up for
individual instances, or for their classes. They may be found either as
__Security_checker__ attributes or in a special registry.

Slide 89.

Authorization

* Pluggable security policy and associated
grant management

* Security policies are instantiated as (and
thus determine the semantics of) interactions

* Typically use some scheme (e.g. acquisition)
to share grants among objects

¢ Constants:

- Permissions
- Principals

ZOPE

Typically, the security policy is simple an interaction class. Interactions
are stored as thread- local data. The protections system gets an
interaction for the current thread and calls a method on it to determine if
it has a permission on an object.

Currently have a “classic” role- based security policy:

principal roles

role permissions
principal permissions
allow and deny

acquired grants

In this example, the use of roles is specific to this security policy, as is
the use of acquisition.

We're planning a major change in the basic model by allowing hierarchical
principals (groups) and permissions (permission sets). This largely
eliminates the need for roles.

Slide 90.

Trusted vs Untrusted

Untrusted code

- Only has access to proxied, basic or “owned”
objects

- Must use an untrusted interpreter
Through-the-Web vs File-system

Local vs Global

Policy choice

Proxies reduce the differences

ZOPE

See zope/ security/ untrustedinterpreter.txt for a detailed definition of an
untrusted interpreter.

Usually (e.g. X3.0) through- the- web (TTW) code is untrusted and file-
system based code is trusted.

Usually, local components are TTW, but this need not be the case.
Global components are always file- system based.

Someday, it will be possible to set policy for when code is trusted. Stes
will be able to say that local or TTW code is trusted.

Because of the way proxies multiply (operations on proxies return
proxies), even trusted code is mediated by the security system. Thisis a
good thing because:

— It makes it much harder to trick trusted code into performing
operations inaccessible to untrusted code

— It makes it harder to ignore security

Slide 91.

Non-public objects without grants

* A non-public object is one that requires a
permission other than zope.Public to access
it's data.

* It's data will be inaccessible without grants

* There are many objects for which we don't
make grants directly:
- Computation results
- Adapters

* Common technique is to acquire grants, but

need location to do that ZOP E

| suspect that thisis the thorniest aspect of Zope 3 development. That's
not surprising, as it's probably the thorniest aspect of Zope 2
development too.

It's “worse” for Zope 3 because the protection system is more robust.
Even trusted code is often subject to the security system by virtue of
being passed untrusted code.

Functional tests are very helpful for detecting security problems.

Key issue is objects without grants. They are much easier to create that
you might expect. This most commonly applies to transient objects. Even
if you make grants on all of your content objects, you still have to
content with the protection of computation results.

Slide 92.

What needs to be protected?

* Not everything needs to be protected

- Results from protected methods or attributes
often don't need to be protected
- Pure logic generally doesn't need to be protected

* It's the assets the code operates on that we care
about

* but we have to be careful ...
* zope.Public is your friend

* Dictionaries, lists, and tuples have
convenient declarations

ZOPE

If a permission is needed to call a method, then you might not need to
protect the result. Protecting the method effectively prevents
unauthorized access to the result. If the result is a basic value or a
dictionary, tuple, or list, then we don't need to do much else.

If aresult is an application- defined instance, then you will need to make
security declarations. Consider using zope.Public.

It is always “safe” to return dictionaries and lists. The declarations of
these allow unfettered access to their data, but prevent modification.

In theory, we almost never need to protect code. It's not the code we care
about, but the objects it accesses. In particular, if adapters adapted
security proxies, there would be no point in preventing access to the
adapters, since protection is provided by the proxies around the adapted
objects. Unfortunately, there's no way to guarantee this at this time.

Slide 93.

@ B self is never proxied

* Methods called on proxied objects are
passed unproxied self (at least in trusted
code)

* Major relief from protection system
* major source of unproxied data

ZOPE

Slide 94.

Adapter approaches

* Trusted adapters

- Always adapt unproxied objects

- Almost always protected

- Move the protection boundary out
* Untrusted adapters (some day)

- Always adapt proxied objects

- Never protected

- Move protection boundary in

* Local adapters (adapters with __parent__
can acquire permissions Z P E

Trusted adapters are very useful when you have APIs that you never want
to expose directly to untrusted code. You can provide indirect access
through trusted adapters. When a trusted adapter is created for a
proxied object, the proxy is removed and a new proxy is created around
theresulting adapter.

Untrusted adapters will allow us to avoid protecting code. Rather than
protecting the code, we'll rely on the protections on the adapted objects.
Most adapters behave this way today as a consequence of the way they
are usually accessed. For example, views are almost always created from
untrusted code (URLs). Adapters created from trusted code may not
adapt proxies, if the trusted code has access to unproxied data.

The thing that makes untrusted adapters difficult to implement is that
we don't want to create security proxies unless we need to. This often
means that we can't create the proxies until after an adapter has been
created. To make this work, we'll need to invent some sort of “re-
adaptation” mechanism.

A simple, if intrusive technique is to provide adapters with __parent__
attributes. This is often set to the adapter context, so that an adapter can
acquire grants from it's context. Views created with the ZCML browser
directives implement llocation and get _ parent__ set automatically.

The good news is that adapters are usually not used from untrusted
code, so their protection is less critical.

Slide 95.

Utility protection

* We currently have no good ways to make
grants on global utilities, so protecting them
is pointless. Fortunately, we usually don't
need to.

* We can make grants on local utilities

* If a utility provides access to external assets
(e.g. relational databases) than protecting
them may be important.

ZOPE

Utilities are generally used from trusted code, so protecting them is not
crucial.

Utilities that encapsulate algorithms are not a problem, as they can be
declared to require zope.Public. We don't need to protect code.

Utilities that provide access to external assets are more problematic. The
simplest approach is to make them local and store them in site-
management folders, where we can make grants for them.

Slide 96.

