
Slide 1.

Programming with the Zope 3
Component Architecture

Tutorial for Python Programmers

http://dev.zope.org/Zope3/
programers_tutorial.pdf

This tutorial provides a short int roduct ion to developing with Zope 3. It
provides an example of creat ing a content objects and associated views,
adapters, and ut il it ies.

The skil ls learned here are appl ied in most facets of Zope 3 development.

Here are some pointers you might want to refer to when going through
this course:

• The Zope 3 web si te is ht tp:/ / dev.zope.org/ Zope3

• Get t ing and install ing Zope f rom Subversion:
 ht tp:/ / dev.zope.org/ Zope3/ Set t ingUpAZope3Sandbox

• Coding style: ht tp:/ / dev.zope.org/ Zope3/ CodingStyle

Slide 2.

Why Zope 3

� Provide a more familiar programming model
� Lower the “price of admission”
� Smoother learning curve
� Simpler software
� Better reuse
� Better documentation and testing
� I18n/L10n

We Zope to be much more approachable to Python programmers.

You should be able to use exist ing Python objects in Zope with few
changes.

We want developers to be able to learn Zope a l it t le bit at a t ime.

We provide greater support for reuse through components.

Slide 3.

src/buddydemo/buddy.py

import persistent

class Buddy(persistent.Persistent):
 """Buddy information"""

 def __init__(self, first='', last='', email='',
 address='', pc=''):
 self.first = first
 self.last = last
 self.email = email
 self.address = address
 self.postal_code = pc

 def name(self):
 return "%s %s" % (self.first, self.last)

Let 's look at a minimal class that is usable in Zope. As an example, we'l l
use objects that manage personal informat ion.

We normally organize our sof tware into packages. We can put our
packages anywhere, as long as they are in Zope's Python path.

We'l l create a buddydemo package in the src directory, which is in the
Python path. We create an empty __init__.py f i le in buddydemo, so
that Python wil l t reat buddydemo as a package.

We'l l create a buddy.py module to hold our class, named Buddy.

The class is very simple. It stores informat ion in at t r ibutes. It provides a
single method that combines the f irst and last name.

There are no Zope- specif ic mix- in classes. We do subclass Persistent.
Doing so makes our l if e easier, because then Zope wil l manage our data
in it s object database. We don't have to subclass Persistent. If we
don't though, we need to manage our data some other way (e.g. in a
relat ional database).

Slide 4.

Need documentation and tests

� We write programmer documentation and
tests using doctest

� Executable documentation
� Main documentation in .txt files
� Additional documentation or tests in doc

strings in regular or test modules
� Best tests are written from a documentation

point of view
� Restructured text

Slide 5.

buddy.txt (part 1)

Buddies
=======

Buddies provide basic contact information:

- First name
- Last name
- Email address
- Street address, and
- postal code

Buddies can be created by calling the `Buddy` class:

 >>> from buddydemo.buddy import Buddy
 >>> bud = Buddy('Bob', 'Smith', 'bob@smith.org',
 ... '513 Princess Ann Street', '22401')

You can access the information via attributes:

 >>> bud.first, bud.last, bud.email
 ('Bob', 'Smith', 'bob@smith.org')
 >>> bud.address, bud.postal_code
 ('513 Princess Ann Street', '22401')

The Zope project makes heavy use of automated test ing. You don't have
to wr ite tests to use Zope, but if you want to have high qual ity sof tware
that 's easy to change, then you really want to do automated test ing.

Zope uses the standard Python unittest f ramework. We also use
Python's doctest test ing facil ity, which has been integrated with
unittest. We l ike writ ing our tests as doctest tests because they help
to document our sof tware and make our tests more readable.

Doctest tests are just examples in text f i les or doc st r ings that include
code that someone might t ype into an interpreter and what would be
printed back. When we test our sof tware, the examples are rerun and the
actual output is compared to what 's shown in the examples. If the output
dif fers, we get test failures. It 's that simple!

Because test ing is done by compar ing actual and expected output , you
need to be a bit careful about what you have in your output :
• The output needs to be the same on each run, so, for example, avoid
output with addresses, raw dict ionaries and f loat ing- point result s.
• Output can exceed 79 characters. This is a problem, because the Zope
coding standards call f or l ines no- longer than 80 characters.
• Blank lines are used by doctest to ident if y the end of output , so the
output can't contain blank lines. Use the special marker : < BLANKLINE>
• Watch out for l ines with t rail ing spaces
• Watch out for backslashes. If you have those, use raw doc st r ings.

Slide 6.

buddy.txt (part 2)

Any data not passed to the class are initialized to
empty strings:

 >>> bud = Buddy()
 >>> bud.first, bud.last, bud.email
 ('', '', '')
 >>> bud.address, bud.postal_code
 ('', '')

You can get the full name of a buddy by calling its name
method:

 >>> bud = Buddy('Bob', 'Smith')
 >>> bud.name()
 'Bob Smith'

Doctests should tell a story. The main story should go in a .txt f i le.

Somet imes, you may need to test really odd- ball behaviors that you don't
want to discuss in the main documentat ion. You can use doct r ines in the
test module for that . We'l l show how to do that later.

Slide 7.

src/buddydemo/tests.py

import unittest
from zope.testing.doctest import DocFileSuite

def test_suite():
 return DocFileSuite('buddy.txt')

We can then run the tests like this, from the zope
root directory:

python test.py –s buddydemo

We need to get our tests run somehow. We'l l look at what it takes to get
tests run by the Zope test runner. Zope's test runner searches the Zope
source t ree for modules or packages named “ tests” . If i t f inds a module
name d tests, it wi ll look for a test_suite f unct ion in module that
returns a unittest test suite. If it f inds a package named tests, it wil l
search al l of the modules in that package who's names begin with “ test ” .

In this example, we'l l create a tests module. For now, we just want to
run the tests in the buddy module. Our test_suite f unct ion uses the
DocTestSuite f unct ion to create a test suite f rom a module. You can
pass either a module or a module name.

We run the tests using the Zope test runner, test.py. This test runner
provides lots of useful features. To f ind out what they are, run the test
runner with a -h argument :

 python test.py -h

Slide 8.

src/buddydemo/configure.zcml

<configure
 xmlns='http://namespaces.zope.org/zope'
 xmlns:browser='http://namespaces.zope.org/browser'
 i18n_domain=”buddydemo”>

<browser:addMenuItem
 class=".buddy.Buddy"
 title="Buddy"
 permission="zope.ManageContent"
 />

</configure>

And, in:
package-includes/buddydemo-configure.zcml:

<include package="buddydemo" />

To get Zope to use our class, we have to tel l Zope about it :

1. We create a conf igurat ion f i le in the package that will accumulate
var ious bi ts of conf igurat ion informat ion.

2. We tell Zope to read our conf igurat ion f i le by including it f rom a one-
l ine conf igurat ion f i le that we put in the products directory.

The conf igurat ion f i les are in an XML format called Zope Conf igurat ion
Markup Language, ZCML. The format is extensible using XML namespaces
(and ZCML meta- conf igurat ion direct ives). In our example, we use two
namespaces, zope (the default), and browser. The browser namespace is
used for conf igurat ion direct ives that specif y web- interface informat ion.

In our main conf igurat ion f i le, we use an addMenuItem direct ive to add
buddies to the l ist of things that can be added in the UI.

We use dot ted names for two purposes:

1. Dot ted names are used to name objects. For example “.buddy.Buddy”
names the Buddy class in the buddy module. The leading dot indicates
the current package, which is the package containing the ZCML f ile.

2. Dot ted names are used for unique ident if iers. When used as ident if iers,
we base them on packages, but we don't al low them to be shortened. An
example of such an ident i f ier is “zope.ManageContent” .

Slide 9.

i18n domains

� Zope supports software internationalization
� Software defines message ids (often English

text) to be translated
� Zope is an application server

� Multiple applications running simultaneously
� Each application will have it's own translations
� Different applications could have different

translations for the same message ids
� The translation domain effectively identifies the

application

Sof tware internat ionalizat ion (i18n) al lows the text def ined in our
sof tware to be t ranslated. This is dist inct f rom content i18n, which is a
dif ferent problem, the solut ion to which wil l general ly depend on
part icular content - management systems and policies.

We need to specif y a domain whenever we have t ranslatable st r ings.

The value of the t it le at t r ibute is a t ranslatable st r ing, so we need to
specif y a domain in our ZCML f ile.

Slide 10.

We have buddies!

� Now we can add buddies to folders!
� We can select them and find out what they're

made of. :)
� We can't do much else

� Can't access their data
� Can't view them

� For our next trick, we'll create a view to
display buddies

� But first we need to talk about components

Slide 11.

Hands on

� Check out a zope sandbox, run all unit tests,
run zope and log in

� Pick a simple content type, such as:
� Bug report
� Project task
� Medical claim
� Poll

� Implement the class, with unit tests.
� Configure Zope so that you can add

instances of your class.

Slide 12.

Components

A component is an object that
connects to other objects via interfaces.

�

Components are interchangeable, as defined by the
interfaces they use and provide.

�

Applications can be created by assembling and scripting
components.

�

Applications can be reconfigured by swapping
components.

What 's most important about components is that they get put together
with other components to build things. Interfaces provide the basis for
connect ing things together.

Slide 13.

Interfaces

� Provide behavioral specification (a.k.a. contract)
�

Objects provide interfaces, usually declared in class
�

Interfaces support classification, as well as specification
� Python interface support is provided by the
zope.interface package.

� We abuse the Python class statements to define
interfaces.

Note that classes are not used for st rong t yping in Zope.

Slide 14.

Content Components

A content component
manages domain information and

provides generic behavior.

�

Typically represents domain-specific objects
� Usually persistent
�

Other components support content components.
�

Don't provide any presentation logic

Content components are l ike:

• Ent ity beans in J2EE

• Document in Microsof t 's Document - View architecture, and l ike

• Model in the classic Model- View- Cont rol ler (MVC) archi tecture.

Slide 15.

View Components

A view component
presents a view of some other component for some

user interface or protocol.

�

Used for Web and other user interfaces.
� Used for protocols, like FTP, and XML-RPC.
�

Encapsulate UI-framework, protocol details.
�

Don't provide data or behavior except as needed for
presentation.

View components connect a user , represented by a request with an
object .

Note that view components are a special case of presentat ion
components. Presentat ion components are responsible for providing user
interfaces (or interfaces to other external ent it ies). The other kind of
presentat ion component is resources. Resources are used for thinks like
images and style sheets in web inter faces.

Slide 16.

src/buddydemo/interfaces.py
import re, zope.interface
from zope.schema import Text, TextLine
from zope.i18nmessageid import MessageIDFactory
_ = MessageIDFactory("buddydemo")

class IBuddy(zope.interface.Interface):
 """Provides access to basic buddy information"""

 first = TextLine(title=_("First name"))
 last = TextLine(title=_("Last name"))
 email = TextLine(title=_("Electronic mail address"))
 address = Text(title=_("Postal address"))
 postal_code = TextLine(title=_("Postal code"),
 constraint=re.compile("\d{5,5}(-\d{4,4})?$").match)

 def name():
 """Gets the buddy name.

 The buddy name is the first and last name"""

To make our buddy class a component , we'll create an inter face that
describes how to use it .

We use the Python class statement to create the interface. By
subclassing zope.interface.Interface, we arrange for an interface
r ather t han a class to be created. We could use any and mult iple
interfaces as base inter faces. Inter faces support mult iple inheri tance

This interface happens to be a schem a. A schema is an interface that
uses f ields to def ine informat ion at t r ibutes, as wel l as methods. An
at t r ibute def ined in a schema need not be stored by an implementat ion. It
could be a computed property. Fields def ine at t r ibutes by speci fying
documentat ion and constraints f or the at t r ibute values. In IBuddy, we
use Text and TextLine f ields. Text f ields store textual data as unicode.
TextLine f ields are simply Text f ields without newlines. The
postal_code f ield provides an example of using a constraint cal lable.

When we def ine methods in interfaces, we don't include “self ” arguments.
Interfaces specif y how objects are used . Self parameters aren't passed to
methods. They are part of an instance- method's implementat ion. An
interface- specif ied method might not even be implemented by an
instance method (e.g. module funct ions).

Slide 17.

What? _?

� Need to mark translatable strings w _() to
support text extraction

� Need to mark translatable strings with their
“domains” for text translation

� _ is a message id factory. It generates
message ids, which are unicode strings with
domains

We rarely ever t ranslate st r ings direct ly in Zope. Most st r ings are
t ranslated when they are used to create presentat ions. We need to
somehow record the t ranslat ion id for a st r ing. We do this by creat ing
message ids. Message ids are unicode st r ings with ext ra at t r ibutes:

• domain, the message id's t ranslat ion domain

• default , the text to display if there isn't a t ranslat ion for the id. If no
default is specif ied, the id is it 's own text .

• mapping, a mapping object containing data to be interpolated
 Message ids can contain interpolat ion var iables of the form $name, or
 ${name}. The data to be interpolated can be stored with the st r ing. This
 would be done in cases where the message ids are being computed
 dynamically.

We create a message id factory so that we can create message ids by just
cal ling the factory. We use the factory to provide message ids for our
schema t it les, which wil l be shown on generated forms.

We name our message id factory “_” . Why? Because standard message- id
ext ract ion tools look for t ranslatable st r ings in Python source by looking
for st r ings passed to “_” .

Slide 18.

Add declaration to Buddy (buddy.py)

import zope.interface
from buddydemo.interfaces import IBuddy

class Buddy(persistent.Persistent):
 """Buddy information
 """

 zope.interface.implements(IBuddy)

 ...

We add a declarat ion to our class saying that the class “ implements”
IBuddy. When a class implements an interface, that means that the
interface can be used to access the classes instances, which “provide” the
interface. Note that classes don't implicit ly provide the interfaces they
implement.

We can also declare that individual objects (e.g. specif ic instances,
classes, modules, etc.) provide interfaces, independent if what their
classes implement .

Slide 19.

src/buddydemo/info.pt

<html metal:use-macro="context/@@standard_macros/page"
 i18n:domain=”buddydemo”>
<body><div metal:fill-slot="body">
 <table>
 <caption i18n:translate="">Buddy information</caption>
 <tr><td i18n:translate="">Name:</td>
 <td>First
 Last</td>
 </tr>
 <tr><td i18n:translate="">Email:</td>
 <td tal:content="context/email">foo@bar.com</td>
 </tr>
 <tr><td i18n:translate="">Address:</td>
 <td tal:content="context/address">1 First Street</td>
 </tr>
 <tr><td i18n:translate="">Postal code:</td>
 <td tal:content="context/postal_code">12345</td>
 </tr>
 </table>
</div></body></html>

The template wil l be “bound” to the object being viewed. The view has
access to the object being viewed using the context variable.

We can access views in path expressions using “@@viewname”. The
expression context/@@standard_macros looks up a view providing
standard macros for the object being views.

Our ZPT contains i18n markup We specif y the i18n domain using the
i18n:domain at t r ibute on the root node. Nodes containing st r ings to be
t ranslated have i18n:translate at t r ibutes. The i18n:translate
at t r ibute takes a message id as a value, but the message id can be
omit ted, in which case the text to be t ranslated is used as the message id.
 For example, in the name label, the message id is “Name:” . The contents
of the node is t ranslated. If t he contents included HTML markup, then
that would be t ranslated too.

ZPT i18n supports variable interpolat ion using an i18n:name at t r ibute.
Here's an example:

 <p i18n:translate=””>Hello
 bob, how are you?</p>

In this example, the message id is “Hello $customer , how are you?” .

Slide 20.

configure.zcml additions

<content class=".buddy.Buddy">
 <require permission="zope.View"
 interface=".interfaces.IBuddy" />
</content>

<browser:page
 for=".interfaces.IBuddy"
 name="index.html"
 template="info.pt"
 permission="zope.View"
 />

We need to make permission declarat ions to make it possible for the
template to access buddy data. In Zope 3, access protect ion is provided
using security proxies. Because URLs are untrusted code, the result s of
URL t raversal are proxied and the view/ template is bound to a securit y-
proxied context . Secur ity proxies forbid access to at t r ibutes for which
there are no permission declarat ions. We make permission declarat ions
by saying what permission is required to access one or more names.
Names can be specif ied using interfaces. In this example, we require the
zope.View permission to access all of the names def ined by IBuddy.

We def ine our view using the browser:page direct ive. This actual ly
generates a view class that uses the given template to do it 's work. The
view wil l be exposed as a “page” of the content , meaning that we access
the view as if the content was a folder and the view was a page in the
folder. We specif y a name for the page. The name is independent of the
template name. Generally, names should have f i le suf f ixes to deal with
tools that are confused by lack of extensions.

The for at t r ibute specif ies what kinds of objects the view can be used
for. The value of the for at t r ibute is the dot ted name of an interface or
class.

The permission at t r ibute declares what permission is needed to access
the view.

Slide 21.

Functional/integration Testing

� Want to test that everything is hooked up
right

� Can just run Zope and see if we can display
buddies

� But we want automated tests
� We can record an interactive session and

make it into a doctest

The test we saw before was a “unit ” tests. Unit tests test one thing in
isolat ion. We can also write “ funct ional” tests. Funct ional tests test that
the system provides desired funct ional ity at the system boundary - - the
user interface. We'll of ten use funct ional tests to test that our views,
including Python. ZPT and ZCML are working proper ly together.

We'l l use tcpwatch to record our ht tp interact ions with our appl icat ion.

We can get tcpwatch f rom the Zope cvs at
ht tp:/ / cvs.zope.org/ Packages/ tcpwatch/

We'l l also use a script , docht tp, that comes with Zope 3 to convert a
recorded ht tp session to a doctest .

Slide 22.

Recording a test

1. Make directory to record data:

2. Run tcpwatch

3. Add and display a buddy on port 8081

4. Run dochttp to convert the recorded data

5. Edit the test to:
� add words
� remove uninteresting details
� remove port numbers
� Change authorization headers to

use mgr:mgrpw

To record a session:

mkdir record

tcpwatch.py - L8081:localhost :8080 - r record

The command above tells tcpwatch to listed on por t 8081 and forward to
port 8080. (Obviously, you can use dif ferent por t numbers.)

Whi le tcpwatch is running, star t Zope and visit port 8081 (or whatever
port you told it t o l isted on) and perform act ions you want to include in
the test , such as adding a buddy and displaying it .

Note that you may also want to disable HTTP connect keep- alive in your
browser . Otherwise, you may f ind the requests and responses appearing
out of order.

When you are done recording, exit t cpwatch and run:

 python src/ zope/ app/ tests/ docht tp.py record > browser.t xt

This will generate a f i le with lots of data. You wi ll want to f ind the two
requests you care about , the ones that created a buddy and displayed it
and remove the other requests f rom the f i le.

Edit author izat ion headers to use “mgr :mgrpw” rather than the base- 64
encoded authroizat ion credent ials it recorded.

Slide 23.

browser.txt (part 1)

Buddy Browser-Based User Interface
==================================

This document described how to use buddy objects.

First, let's create a buddy named bob:

 >>> print http(r"""
 ... POST /@@contents.html HTTP/1.1
 ... Authorization: Basic bWdyOm1ncnB3
 ... Content-Length: 66
 ... Content-Type: application/x-www-form-urlencoded
 ...
 ... type_name=zope.app.browser.add.buddydemo.buddy.Buddy&new_value=bob""")
 HTTP/1.1 303 ...

The docht tp script creates a doctest with a series of cal ls to an “ht tp”
funct ion. The funct ion takes an HTTP request message as an input and
outputs an an object that , when pr inted, outputs an HTTP response
message. When the test is run, doctest compared the expected and actual
response message.

This is the request that adds a buddy. It was recorded by select ing
“Buddy” f rom the add l ist on the lef t - hand side of the page. We've
removed a Referrer input header that we don't care about and that takes
up a lot of space.

We've el ided most of the output by adding a “ ...” af ter the “303” status
code. A 303 status code is used for redirects for HTTP 1.1 clients. The
“ ...” af ter the 303 is a bit of doctest magic.

Doctest has a number of opt ions that can be used to ef fect comparison of
actual and expected outputs and to control error- repor t format t ing.
Opt ions can be specif ied in doctest examples themselves and they can be
specif ied when creat ing tests. Zope's funct ional- test ing doctest support
automat ical ly provides the doctest .ELLIPSIS opt ion. This allows “ ...” in
the expected output to match any text . This makes it easy to skip over
parts we don't care about .

Slide 24.

browser.txt (part 2)
Now, we can visit the buddy and see the basic buddy information
displayed:

 >>> print http(r"""
 ... GET /bob HTTP/1.1
 ... Authorization: Basic bWdyOm1ncnB3
 ... """)
 HTTP/1.1 200 ...
 <table>
 <caption>Buddy information</caption>
 <tr><td>Name:</td>
 <td>
 </td>
 </tr>
 <tr><td>Email:</td>
 <td></td>
 </tr>
 <tr><td>Address:</td>
 <td></td>
 </tr>
 <tr><td>Postal code:</td>
 <td></td>
 </tr>
 </table>
 ...

Here, we've elided all of the output except for the table output by the
template. Normal ly, we wouldn't include so much markup, but , at this
point , we don't have any interest ing data to show.

Slide 25.

src/buddydemo/ftests.py

def test_suite():
 from zope.app.tests.functional \
 import FunctionalDocFileSuite
 return FunctionalDocFileSuite('browser.txt')

if __name__ == '__main__':
 import unittest
 unittest.main(defaultTest='test_suite')

Here, we use Funct ionalDocFileSuite, rather that DocFileSuite.

Funct ionalDocFileSuite actual ly sets up a special Zope test server that
executes tests.

Slide 26.

Hands on

� Create a display view for your content
� Make the necessary security declarations
� Write a functional test for your new view

Slide 27.

Edit and Add views

� Almost free, thanks to schema
� We need to make a security declaration to

allow the data to be changed. We add a
require directive to our content directive:

<content class=".buddy.Buddy">
 <require permission="zope.View"
 interface=".interfaces.IBuddy" />
 <require permission="zope.ManageContent"
 set_schema=".interfaces.IBuddy" />
</content>

One of the benef i ts of schema are that they support automat ic form
generat ion. We'l l let Zope automat ical ly generate our edit and add forms.

Our edit view wi ll need to be able to modif y data by assigning to the
at t r ibutes def ined using f ields in the schema. We make permission
declarat ions for assigning to at t r ibutes. We can use a set_attributes
at t r ibute to list at t r ibutes to be assigned, or, as we've done here, we can
use a set_schema at t r ibute. The set_schema at t r ibute specif ied al l
names that are def ined using f ields in the schema. In this example, we
are not al lowing the name at t r ibute to be assigned, because the name
at t r ibute is not a f ield.

Slide 28.

editform directive (configure.zcml)

<browser:editform
 schema=".interfaces.IBuddy"
 label="Change Buddy Information"
 name="edit.html"
 menu="zmi_views" title="Edit"
 permission="zope.ManageContent"
 />

We def ine our edit view using the editform direct ive. We specif y a
schema that specif ies the data to be included in the form and the objects
the view should be used for. (We could have used a for at t r ibute, to use
the view with a dif ferent type.) The label at t r ibute allows us to specif y a
heading for the form. As in the page direct ive, the name at t r ibute
specif ies the page name and the permission at t r ibute specif ies the
permission needed to access the form.

The menu and title at t r ibutes are used to add an entry to the
zmi_views menu. Zope has a system for def ining menus. The
zmi_views menu is used for displaying object tabs in the standard
management interface. There's a separate menuItem direct ive. We could
have specif ied the “Edit ” menu item separately:

 <menuItem
 menu="zmi_views" title="Edit"
 for=".interfaces.Buddy"
 action="edit.html"
 permission="zope.ManageContent" />
 />

Specifying the menu i tem in the view def ini t ion is a convenient short cut .
The menuItem direct ive provides addit ional opt ions that are somet imes
useful.

Slide 29.

Add Form: configure.zcml

<browser:addform
 schema=".interfaces.IBuddy"
 label="Add buddy information"
 content_factory=".buddy.Buddy"
 arguments="first last email address postal_code"
 name="AddBuddy.html"
 permission="zope.ManageContent"
 />

<browser:addMenuItem
 class=".buddy.Buddy"
 title="Buddy"
 permission="zope.ManageContent"
 view="AddBuddy.html"
 />

We def ine an add form using an addform direct ive. The schema specif ies
the data to be collected. The label specif ies a form heading.

We need to specif y a factory for creat ing the object to be added. We
specif y this using the content_factory at t r ibute. The factory may
require arguments. We can specif y posit ional arguments using the
arguments at t r ibute. The value of the at t r ibute is a list of f ield names.
The corresponding data collected in the form is passed in the given order.
 We can also specif y keyword arguments. In this example, we didn't need
to specif y arguments. The Buddy class doesn't require arguments to it 's
constructor . Any f ields not specif ied as arguments wil l be assigned as
at t r ibutes af ter the object is created.

Having def ined an add form, we need to modif y our addMenuItem
direct ive and specif y the name of the add view. When someone selects the
menu item, the given view wil l be displayed.

Slide 30.

Adding theory: collaborating views

� Container policies implemented by “adding”
object

� Add menu
� Naming
� Page after add

� Item initialization policies implemented by
custom add view

Something to be aware of is that add views are views of special objects
cal led “adding” objects. Adding objects are actually views, so when we
add objects, we are using views of views. Why? Each view represents
dif ferent interests. The adding view represents the interests of the
container . The add view represents the interests of the object being
added.

When objects are added, there is an ent ry in the URL for each view. For
example, when adding a buddy to a root folder, we'l l have a URL l ike:

 http://localhost:8080/+/AddBuddy.html=

The “+ ” in the URL is the name of the adding view. The “AddBuddy.html”
is the name of the add view.

Slide 31.

browser.txt (part 1)

Buddy Browser-Based User Interface
==================================

This document described how to use buddy objects.

First, let's create a buddy named jim.

To do so, we'll display an add form:

 >>> print http(r"""
 ... GET /+/AddBuddy.html= HTTP/1.1
 ... Authorization: Basic bWdyOm1ncnB3
 ... Referrer: http://localhost:8081/@@contents.html
 ... """)
 HTTP/1.1 200 ...

We have to redo the test , because buddies are added dif ferent ly.
Fortunately, this is pret ty easy, as we simply record a session, add some
words and delete bit s we don't care about .

Slide 32.

browser.txt (part 2)

And submit it:

 >>> print http(r"""
 ... POST /+/AddBuddy.html%3D HTTP/1.1
 ... Authorization: Basic bWdyOm1ncnB3
 ... Content-Length: 942

(snip)

 ... -----------------------------13123453072115384505382605611
 ... Content-Disposition: form-data; name="field.postal_code"
 ...
 ... 22401
 ... -----------------------------13123453072115384505382605611
 ... Content-Disposition: form-data; name="UPDATE_SUBMIT"
 ...
 ... Add
 ... -----------------------------13123453072115384505382605611
 ... Content-Disposition: form-data; name="add_input_name"
 ...
 ... jim
 ... -----------------------------13123453072115384505382605611--
 ... """)
 HTTP/1.1 303 ...

The request didn't f it on a the sl ide. I've cut out part of the input ,
indicated by the “ (snip)” .

Slide 33.

browser.txt (part 3)

Now, we can visit the buddy and see the basic buddy information
displayed:

 >>> print http(r"""
 ... GET /jim HTTP/1.1
 ... Authorization: Basic bWdyOm1ncnB3
 ... """)
 HTTP/1.1 200 Ok
 ...Jim...Fulton...jim@zope.com...513 Prince Edward Street...22401...

We can also edit a buddy:

 >>> print http(r"""
 ... GET /jim/@@edit.html HTTP/1.1
 ... Authorization: Basic bWdyOm1ncnB3
 ... Referrer: http://localhost:8081/@@contents.html
 ... """)
 HTTP/1.1 200 ...

Now we have some interest ing data, so we show just the data and omit
the markup, which is subject to change.

Slide 34.

browser.txt (part 4)

Let's add a suite number to the address:

 >>> print http(r"""
 ... POST /jim/@@edit.html HTTP/1.1

(snip)

 ... -----------------------------114539918337121096612820581
 ... Content-Disposition: form-data; name="field.address"
 ...
 ... 513 Prince Edward Street, suite 1300

(snip)

 ... """)
 HTTP/1.1 200 ...

The request didn't f it on a the sl ide. I've cut out part of the input ,
indicated by the “ (snip)” .

Slide 35.

browser.txt (part 5)

If we display the buddy, we'll see the change:

 >>> print http(r"""
 ... GET /jim HTTP/1.1
 ... Authorization: Basic bWdyOm1ncnB3
 ... """)
 HTTP/1.1 200 Ok
 ...Jim...Fulton...jim@zope.com...
 ...513 Prince Edward Street, suite 1300...22401...

Slide 36.

Hands on

� provide add and edit forms for your content
types

� Don't forget ftests

Slide 37.

Meta data

� We aren't getting creation and modification
times set

� Zope manages meta data as annotations
� To allow meta data, must be annotatable

(IAnnotatable)
<content class=".buddy.Buddy">
 <implements interface="
 zope.app.annotation.IAttributeAnnotatable"
 />
 ...

Some def init ions:

• “Data” are managed by content implementat ions direct ly

• “Meta data” are data managed by f rameworks. Content
implementat ions don't manage meta data. If they did, i t wouldn't be meta
data.

Note that the def init ions of data and meta data are relat ive to an
implementat ion. Imagine an automated l ibrary card catalog system. The
system manages card catalog entr ies. Relat ive to the card catalog ent r ies,
the catalog ent ry informat ion is data. Relat ive to the books in the l ibrary,
they are meta data. The catalog system might keep t rack of when entr ies
were updated. This informat ion is meta- data relat ive to the entr ies.

Zope manages meta data using annotat ions. Annotat ions are managed
independent of an object 's implementat ion. The details of this f ramework
are beyond the scope of this course.

We need to conf igure objects to indicate whether they are annotatable
and how. Current ly, we only support at t r ibute annotat ions, which are
stored in an __annotations__ at t r ibute on objects. We make an object
at t r ibute annotatable by declaring the IAttributeAnnotatable marker
interface. Because this is pr imari ly a conf igurat ion task, so we do it in
ZCML.

Slide 38.

Translations

� Extract strings
 PYTHONPATH=src python2.3 utilities/i18nextract.py \
 -p src/buddydemo -d buddydemo -o locales

� Create language directories
 mkdir src/buddydemo/locales/fr/LC_MESSAGES

� Copy (or merge) .pot file .po file
� Compile the .po files to .mo files
� Configure the translations in ZCML:
<configure
 ...
 xmlns:i18n="http://namespaces.zope.org/i18n">

<i18n:registerTranslations directory="locales" />

The extract ion tool extracts t ranslatable st r ings f rom Python, ZPT, and
ZCML. You need to provide a path (-p) to a directory to be searches, a
t ranslat ion domain (-d) and the name of a directory (-o) to extract to.
The output directory wi ll be created if i t doesn't exist .

The output directory wi ll contain a f i le with a name equal to the
t ranslat ion domain and a “ .pot” suf f ix. This is a t ranslat ion template.

To create a t ranslat ion for a par t icular language:

• Create a subdirectory of the t ranslat ion directory who's name is a
language code (e.g. “ f r” or “en- us”).

• Within the language directory, create the directory, LC_MESSAGES.

• Copy the template f i le to the LC_MESSAGES directory, but with a “ .po”
suf f ix. For example, a German t ranslat ion of the buddydemo applicat ion
would live in the f i le:
src/buddydemo/locales/de/LC_MESSAGES/buddydemo.po.
Later, when you update your sof tware, you'l l ext ract the st r ings into a
new “ .pot” f i le and use the get text merger's tool to merge the “ .pot” f i le
changes into your “ .po” f i le.

• Edit the “ .po” f i le to add t ranslat ions.

• Compile the t ranslat ions using the get text msgfmt tool.

Slide 39.

Hands on

� Add an IAttributeAnnotatable declaration to
your ZCML and verify that you get
modification times.

� Run the extraction tool and create a
translation for your application.

Slide 40.

Application functionality components

� Adapters provide new interfaces
(functionality) for existing objects

� Always created when used
� Views and resources are

adapters
� Tools provide pluggable

application logic:
� Utilities
� Reuse existing objects

Simple adapters adapt one thing. Adapters can adapt zero, one, or many
things. Views are actual ly mult i- adapters that adapt an object (or
mult iple objects) and a request .

Whenever we ask the system for an adapter , a new object is created.
Adapters are general ly very t ransient . They are typical ly def ined via
classes with constructors that take the objects adapted as arguments.

Tools include ut il it ies and services, but most , by far, are ut il it ies. Tools
are generally created once and used over and over. Mult iple tool ret r ievals
will return the same component . Tools are of ten persistent .

Ut il i t ies are registered by inter face and name, although an empty st r ing is
of ten used as the name. We of ten register many ut il it ies with the same
interface. Database connect ions are registered as ut il it ies implement ing
IZopeDatabaseAdapter. We may register several with dif ferent names
and select which one to use in a context (e.g. an sql method).

Services are components that provide foundat ional funct ional ity. Soon,
we wil l have so few of these that we wil l stop talking about them.

Slide 41.

Adapter Zen

� Adapter-oriented programming is a new
paradigm

� Extremely powerful
� Different mind set

Adapters provide a fundamental ly di f ferent way to think about
organizing sof tware. Prepare yourself for a paradigm shif t . The next few
sl ides t ry to provide some mot ivat ion and int roduct ion.

Ask lots of quest ions!

Getting value from objects

� Lot of work to create objects
� Want to reduce the work by keeping objects

simple
� Want to use them in any application
� Want to keep using them as applications

change
� Change is inevitable

We want to be able to reuse the sof tware we create. Why? Sof tware is
expensive to create and m aintain . This is even more so for qual ity
sof tware that has documentat ion and tests.

We also want to reduce the ef for t to create and maintain sof tware by
keeping the sof tware as simple as we can. It 's much easier to create,
document , test and understand sof tware that does one thing.

We want sof tware components that survive change. This includes
changing requirements and changing execut ion environments. We want
to minim ize dependencies betw een com ponents and their
env i ronm ent .

Standard APIs Not the Answer

� Very hard to standardize across applications
(or developers)

� Objects get locked into APIs
� Difficult to evolve APIs

� Stagnation
� Chaos

One way to reuse out objects across applicat ions is through standard
APIs. This rarely works.

It 's usually too much work to achieve standardizat ion. When we do, we
of ten end up with lowest- common- denominator standards that don't
meet the needs of appl icat ions or the f ramework.

When standards are achieved, it becomes hard to change to ref lect new
requirements. Either standards don't change to meet changing needs, or
an evolving standards and appl icat ions that use them have to deal with
components support ing di f ferent versions of the standard.

Adapters

� Objects define their own APIs
� Independent of applications
� Usually very focused and simple

� Applications define the APIs they need
� Can be focused and simple

� Adapters bridge the gap
� Easy to call YAGNI

With adapters (and interfaces), components do just what they need to do.
They don't need to ant icipate possible f ramework requirements.

Likewise, f rameworks can require only what they need. They can change
what they need fair ly easily, so they don't have to ant icipate future needs.

Adapters take care of t ranslat ing between APIs. Changing APIs isn't
painless, but it can, at least , be cont rol led through adaptat ion.

APIs don't hav e to include featu res they don't need but m ight need
later . API designers can cal l YAGNI. If t heir wrong, change is
st raight forward.

Extending objects

� Want to provide new functionality for other
people's objects

� Inheritance doesn't work very well:
� Can't extend existing objects
� Tight coupling

� Adapters make it easy to extend

You get a useful component f rom someone, but it lacks some feature you
need. Maybe you want to add some operat ions, or perhaps you need to
give i t a user interface. Perhaps it just needs to have an API that makes it
f it your applicat ion.

You could modify the component source, but that wil l cause a
maintenance head ache. Every t ime you get a new version of the
component f rom it 's author, you'll have to redo your modif icat ions.

You could subclass the component 's class and create your own version.
Your new version of the component will be t ight ly coupled to the
components implementat ion. New versions of the component could
change their implementat ions in ways that break your subclass.

If you use persistent objects, you have another problem with subclassing.
Any persistent instances of the component won't get any of your new
features. You ei ther need to l ive with that , or write a conversion script
that replaces instances of the old component with instances of the
subclass.

Object interactions: Multi Adapters

� Adapters can extend or implement an
interaction among multiple objects

� adapter(ob1, ob2) provides I3
� Views support UIs by adapting a user

(request) and one or more application objects

Somet imes you want to implement an appl icat ion feature that depends
on mult iple objects. The most common example of this is a user
interface, which involves some applicat ion object(s) and a user, where the
user is represented by some object in the system, a request in Zope. We
use mult i- adapters for this. Like simple adapters, mult i- adapters are
def ined by factories, but unl ike simple adapters, we don't check for
__conform__ methods on the objects being adapted or whether an object
already provides the interface.

Of course, mult i- adapter factor ies are passed arguments for each of the
objects being adapted.

Named Adapters

� Sometimes useful to have multiple variations
on an adapter type.

� We can create named adapters
� Select which one we want by providing a name
� List available names

� Used to provide named web pages, which
are (essentially) named adapters

� Not used much elsewhere -- yet

Named adapters let you have mult iple versions of the same basic adapter
type, where an adapter t ype a combinat ion of a provided type and zero or
more adapted t ypes.

Note that , as with mult i- adapters, an adapted objects __conform__
method and provided interfaces are not considered when looking up
named adapters.

Named adapters can be single or mult i- adapters.

Extending processing: subscribers

� Sometimes need to extend processing
� Want to provide plug points during

processing
� Events provide plug points
� Subscribers respond to events
� Provides a type of rule-based system:

� When X happens, do Y

Somet imes, rather than providing or replacing funct ional ity, we want to
extend exist ing funct ionalit y. One way to do this is to def ine points in
normal processing where extra processing could occur. At these points,
we not if y event subscribers.

Subscribers are another kind of adapters. They dif fer f rom other adapters
in the way that they are registered and looked up. With non- subscribers,
we register a single adapter for an adapter type (required and provided
interfaces) and name. When you look up a non- subscriber adapter , you
get a single adapter back (if any) that represents the best f it for the
object being adapted and the desired inter face. You can register mult iple
subscript ion adapters for the same adapter type and, when you look up
subscribers, you get al l t hat match.

There's a special case for subscript ions. Normal ly, creat ing adapters
doesn't have any side ef fects. For subscribers, we of ten register funct ions
as subscribers that return None. In this case, the factories do al l of the
work, which usually involves side ef fects. This special case is vary
valuable, as it allows event subscribers to be implemented by simple
funct ions, rather than classes.

Slide 49.

City and State information adapter

In this example, we'll create an adapter
for obtaining city and state information
for buddies.

�

Use the buddy postal code
� Use a utility to look up the

city and state information
given the postal code.

The buddy example is contr ived to provide an opportunity to use an
adapter and a ut il ity. We didn't include a city and state in the buddy data
because we can compute them from the postal code. To do this, we need
to be able to lookup a ci ty and state given a postal code. It seems likely
that one would want to do such lookup in other places, so we factor the
lookup into a separate ut il ity.

Slide 50.

Postal-lookup interfaces

class IPostalInfo(zope.interface.Interface):
 "Provide information for postal codes"

 city = TextLine(title=u"City")
 state = TextLine(title=u"State")

class IPostalLookup(zope.interface.Interface):
 "Provide postal code lookup"

 def lookup(postal_code):
 """Lookup information for a postal code.

 An IPostalInfo is returned if the postal
 code is known. None is returned otherwise.
 """

Our ut il i ty wil l implement IPostalLookup.

IPostalInfo is used to describe the data returned. IPostalInfo is an
example of a non- persistent content - component inter face.

Slide 51.

src/buddydemo/stubpostal.py

import zope.interface
from buddydemo.interfaces import IPostalInfo, IPostalLookup

class Info:

 zope.interface.implements(IPostalInfo)

 def __init__(self, city, state):
 self.city, self.state = city, state

class Lookup:

 zope.interface.implements(IPostalLookup)

 _data = {
 '22401': ('Fredericksburg', 'Virginia'),
 '44870': ('Sandusky', 'Ohio'),
 '90051': ('Los Angeles', 'California'),
 }

 def lookup(self, postal_code):
 data = self._data.get(postal_code)
 if data:
 return Info(*data)

���������	�
��! ����"�# ��#$%�&�����'�#$)(*�!����+��-,.�/��0�10�# ��2��3�4�
��5768���&��9���:�;5<�#���=�8���3��$?>��������.4�&����@�A#��6��B6������%CEDF�/6��#$HG �I(J�#$��H���B9�����+��#�
(*��������+?���K$?�L(*M���J(1�1A
���������2�*�&�# ��������#���NO�P��9)�� ������# ��#$Q���������#$)�=�����#�-C

R $?�/��5?��+?�1 ��#�!$S9��#$��
5"�T��U��5?�����V�'�T������W�'��X+?�-�K�� ������# ��L$Q�&�������#$?UA��#$�9��
O(/��������6)�����I(;�T��+?�����Y�#5�5<�#A
�Z��$?>)A0�����#$Q���C

[�$�5��B��90\4��A-�]������,3��6%�/9���^��AE��$�5��3�O ������'�3$S����#�0�#>��;5<�#�U�2A:�T���N�#$�6_`�����&��a

bEbcb 5����# d9���6�6L�%6%�# ��1�� ����3�4�eO�P��9�����`�����
bEbcb ��$�5���fgO�P��9%�	��`�����ZCh["$�5<�.iPG jI�=�-,%�����#$?6�G M7G R +%����Glk
bEbcb ��$�5��QChA:�����3M��!$�5<�%Cm`�����&�
iPGnjH���-,%���=�#$Q6�G M7G R +�����Gnk

o��8���.�%�p��9:\O��A0�4�������,3��6%�2�#$S[Zq��.4�&���=o��.�������)�! ������# ��#$%�&�������#$�(;�V��+r�B` S�
���
�&����Y6%������9���:�%C

[�57�/�3$?�L(/$N���8O�&����A���6��1�'���:��6�M�(/�B>����Y6%������a

bEbcb ���.���8���sft��Z��9����.4�&���ZCho��.�������	i<k
bEbcb ��$�5���fu�=���v�����HCn�=���v������iZGxw%w8y�z	{.Gxk
bEbcb ��$�5��QChA:�����3M��!$�5<�%Cm`�����&�
iPGn|��0�#6%�#�O��A
�.`9��Q�0>�G M7G }K����>.��$�����Glk

~	���e>����K$��v��+���$?>2��57�#$S�Q$Q�3$?�L(/$SA
�.6��;�'U>Q�h,.�#$]a

bEbcb ���.���8���7Cn�"�����8���	iPG!{%{�{�{�{.Glk

Slide 52.

Add stubpostal to tests.py

import unittest
from doctest import DocTestSuite

def test_suite():
 return DocFileSuite('buddy.txt', 'stubpostal.txt'))

Note that the notes for the previous sl ide contain most of the text of
stubpostal.txt.

Slide 53.

configure.zcml utility changes

<content class=".stubpostal.Info">
 <allow interface=".interfaces.IPostalInfo" />
</content>

<utility
 factory=".stubpostal.Lookup"
 provides=".interfaces.IPostalLookup"
 permission="zope.Public"
 />

As m ent ioned ear l ier , IPostalInfo is a content type. We need to provide
secur i ty declarat ions so t hat we can access it 's m et hods. We use a new
secur i ty- declarat ion di rect ive, allow. The allow di rect ive declares that access
to an inter f ace or at t r ibutes is alw ay s al lowed.

We use a utility direct ive to regist er our ut i l i t y. We speci f y a f actory f or
creat ing t he ut i l i t y. We could, inst ead, speci f y an exist ing ut i l i t y inst ance using
a component at t r ibute. This would be necessary i f we needed t o supply data to
ini t ial ize the component . In this case, using t he factory at t r ibute is m ore
convenient , since i t al lows us to avoid creat ing an instance in our Pyt hon
module.

We specif y what int er face t he ut i l i t y provides using t he provides at t r ibute. We
could also supply a nam e. In this exam ple, we accept the def aul t name, which
is an empty st r ing.

We specif y t he perm ission necessary to use the ut i l i t y. The permission is
opt ional , however , i f i t isn't set , t hen unt rust ed code wi l l be unable t o use the
ut i l i t y.

In the ut i l i t y def ini t ion, we used the special permission, zope.Public. The
zope.Public perm ission is special because i t provides uncondi t ional access.
Anyt hing that requires zope.Public is always uncondit ional ly avai lable.

As you might have guessed, the allow direct ive is equivalent to t he require
direct ive wi th a perm ission of zope.Public.

Slide 54.

More tests in buddy.txt

Getting City and State Information

We can get city and state information for a buddy using the buddy
city-state adapter:

 >>> from buddydemo.buddy import BuddyCityState
 >>> bob = Buddy('Bob', 'Smith', 'bob@zope.com', '4 foo street',
 ... '22401')
 >>> info = BuddyCityState(bob)
 >>> info.city, info.state
 ('Fredericksburg', 'Virginia')

The city state adapter provides empty strings of the postal code is
omitted or not in whatever database is provided by a postal-lookup
utility:

 >>> info = BuddyCityState(Buddy('Bob'))
 >>> info.city, info.state
 ('', '')

 >>> info = BuddyCityState(Buddy('Bob', pc='11111'))
 >>> info.city, info.state
 ('', '')

Slide 55.

tests.py

import unittest
from zope.testing.doctest import DocFileSuite, DocTestSuite
from zope.app.tests import placelesssetup
from zope.app.tests import ztapi
from buddydemo import interfaces, stubpostal

def setUp(test):
 placelesssetup.setUp(test)
 ztapi.provideUtility(interfaces.IPostalLookup,
 stubpostal.Lookup())

def test_suite():
 suite = unittest.TestSuite()
 suite.addTest(DocFileSuite('buddy.txt', setUp=setUp,
 tearDown=placelesssetup.tearDown))
 suite.addTest(DocFileSuite('stubpostal.txt'))
 return suite

Because our adapter is going to look up a ut il i ty, we need to arrange for
the component architecture to be init ialized. We do this with
zope.app.tests.placelesssetup.setUp.

Once that 's done, we need to register a stub ut il ity. We use helper
funct ion zope.app.tests.ztapi.provideUt il it y. The module
zope.app.tests.ztapi has a number of methods that help set up
components for tests.

We do al l of this in a setUp funct ion. zope.app.tests.placelesssetup
def ines setUp and tearDown funct ions that set up and tear down the
basic component environment . We can use the tearDown method as is,
but we need to augment the setUp funct ion to register our stub ut il i ty.

The setUp and tearDown funct ions take an argument , which is a
doctest .DocTest object . This is passed to allow us to get to the test
“globals” (test.globs). This is useful for some advanced situat ions. We
don't need it here.

Slide 56.

BuddyCityState, in buddy.py

class BuddyCityState:

 zope.interface.implements(IPostalInfo)

 __used_for__ = IBuddy

 def __init__(self, buddy):
 lookup = zapi.getUtility(IPostalLookup)
 info = lookup.lookup(buddy.postal_code)
 if info is None:
 self.city, self.state = '', ''
 else:
 self.city, self.state = info.city, info.state

Our adapt er im plem ents IPostalInfo.

We set a __used_for__ at t r ibute t o document the inter f ace we depend on.
This is purely a document at ion convent ion at this point . In the f ut ure, we
might use t his to check conf igurat ions.

The const ructor takes t he object t o be adapted, which is an IBuddy. In t his
example, al l of the work is done in t he const ructor .

We look up a ut i l i t y by cal l ing zapi.getUtility. The zapi module is a
convenience module t hat gathers t ogether a var iety of widely used appl icat ion
program ming inter f aces. See zope/app/interfaces/zapi.py (and t he
modules it impor ts) f or detai ls.

The getUtility method raises an except ion i f a ut i l i t y can't be f ound.
General l y "get " m et hods raise er rors i f they can't f ind som ething. There are
usual ly "query" methods (e.g. queryUtility) that return a def aul t value
(def aul t ing to None) i f a value can't be f ound. The f i rst argument to
getUtility is an object that provides a place t o look up a ut i l i t y. General ly,
component s can be def ined local ly to a si te. When we look something up, we
provide a locat ion t o look f or the component in. This is a f orm of acquisit ion.
The second argument to getUtility speci f ies the desired inter f ace. A name
may also be provided as an addit ional argum ent or as a name keyword
argument , and def aul t s t o an empt y st r ing.

The const ructor uses the ut i l i t y to look up postal inf orm at ion, saving t he
inf ormat ion away f or lat er use.

Slide 57.

configure.zcml adapter change

<adapter
 factory=".buddy.BuddyCityState"
 provides=".interfaces.IPostalInfo"
 for=".interfaces.IBuddy"
 permission="zope.Public"
 />

The adapter directive is similar to the utility directive. Like the utility directive, it
specifies the provided interface, a factory and a permission. As with utilities, a name
may be provided.

The adapter directive also requires the use of a for attribute, which specifies the interface
the adapter is used for. You can specify that an adapter is for all objects by supplying
and asterisk (*) for the interface. You can specify many interfaces, separated by spaces,
or you can specify no interfaces.

Slide 58.

Change the display: browser.py

import zope.interface
from buddydemo.interfaces import IBuddy, IPostalInfo

class BuddyInfo:
 """Provide an interface for viewing a Buddy
 """

 zope.interface.implements(IPostalInfo)
 __used_for__ = IBuddy

 def __init__(self, context, request):
 self.context = context
 self.request = request

 info = IPostalInfo(context)
 self.city, self.state = info.city, info.state

Now that we have a way to get a city and state, we can improve our
display view to include the city and state. We'll create a view class that
provides city and state at t r ibutes to be used by our ZPT template. The
view uses the adapter in the constructor to get the ci ty and state
informat ion.

We get an adapter by just call ing the inter face. If t he object passed to the
interface already implements i t , t hen the object wi ll be returned.

Slide 59.

Add a test to tests.py (1)

def test_BuddyInfo():
 """
 This view mainly provides access to city and state
 information for a buddy. It relies on having a
 buddy that is adaptable to IPostalInfo. Imagine we
 have a buddy that already implements IPostalInfo:

 >>> import zope.interface
 >>> from buddydemo.interfaces import IPostalInfo
 >>> class FakeBuddy:
 ... zope.interface.implements(IPostalInfo)
 ... city = 'Cleveland'
 ... state = 'Ohio'
 >>> fake = FakeBuddy()

In this case, we decided to put the test in the test f i le. To do that , we just
put a funct ion in the test f i le with the desired doc st r ing.

To test the view, we need an object that can be adapted to IPostalInfo.
We could set up an adapter, but then we'd need to set up the component
architecture and register the adapter. An easier way to accompl ish this is
to pass a stub object that already implements the desired interface. Then
the adapter ret r ieval (interface call) will just return the stub object ,

Slide 60.

Add a test to tests.py (2)

 We should be able to create a BuddyInfo on this
 fake buddy and get the right city and state back:

 >>> from buddydemo.browser import BuddyInfo
 >>> info = BuddyInfo(fake, 42)
 >>> info.city, info.state
 ('Cleveland', 'Ohio')

 We cheated a bit and used 42 as the request.

 As with all views, we expect to be able to access
 the thing being viewed and the request:

 >>> info.context is fake
 True
 >>> info.request
 42
 """

We normally have to pass a request to a view. We know that this view
ignores it 's request , so we just pass 42.

A view that uses ZPT is required to expose “ context” and “ request ”
at t r ibutes. These are needed so that the ZPT template can expose the
informat ion as ZPT context and view t op- level names.

Slide 61.

Add a test to tests.py (3)

def test_suite():
 suite = unittest.TestSuite()
 suite.addTest(DocFileSuite('buddy.txt', setUp=setUp,
 tearDown=placelesssetup.tearDown))
 suite.addTest(DocFileSuite('stubpostal.txt'))
 suite.addTest(DocTestSuite())
 return suite

� We also need to update our functional tests
to reflect the new output!

When the tests are in the test module, we need to tel l DocTestSuite to
look for tests in the cal ling module. We do that by cal ling DocTestSuite
without an argument.

It can be very useful to write unit tests for the Python code in views. This
is especially t rue i f t he Python code is compl icated. It 's much easier to
debug code in a unit test that in the web server , or even in a funct ional
test .

Given that we need to create a funct ional test anyway, however, I would
normally not bother to write tests for very simple code l ike the code we
have here, as long as the funct ional test exercises the code.

Slide 62.

Update info.pt
<html metal:use-macro="context/@@standard_macros/page">
<body><div metal:fill-slot="body">
 <table>
 <caption i18n:translate="">Buddy information</caption>
 <tr><td i18n:translate="">Name:</td>
 <td>First
 Last</td>
 </tr>
 <tr><td i18n:translate="">Email:</td>
 <td tal:content="context/email">foo@bar.com</td>
 </tr>
 <tr><td i18n:translate="">Address:</td>
 <td tal:content="context/address">1 First Street</td>
 </tr>
 <tr><td>City:</td>
 <td tal:content="view/city | default">City</td>
 </tr>
 <tr><td>State:</td>
 <td tal:content="view/state | default">State</td>
 </tr>
 <tr><td i18n:translate="">Postal code:</td>
 <td tal:content="context/postal_code">12345</td>
 </tr>
 </table>
</div></body></html>

We update the display template to include the cit y and state.

Note that we use the view variable to refer to the view and get the view's
at t r ibutes, city and state. When a ZPT template is used in a view, it has
a view top- level variable to provide access to the view.

Slide 63.

Update index.html in configure.zcml

<browser:page
 for=".interfaces.IBuddy"
 name="index.html"
 template="info.pt"
 permission="zope.View"
 class=".browser.BuddyInfo"
 />

We update the page direct ive to include a class. The class is used as a
mix- in class for the view.

Slide 64.

Hands on

� Use an adapter to add some functionality to
your application

� You don't have to use a utility, but if you do,
don't forget to use placelesssetup in the
tests.

Slide 65.

Creating an edit view the “hard” way

� Used an automatically-generated edit view
� Hid some details

� Publishing Python methods
� Event publishing

We took advantage of schemas to avoid most of the drudgery of creat ing
edit and add views. This caused us to miss some important concepts.

As an example, we'l l create a “ rename” view that lets us enter f i rst and
last names.

Slide 66.

src/buddydemo/rename.pt

<html metal:use-macro="context/@@standard_macros/page"
 i18n:domain="buddydemo">
<body><div metal:fill-slot="body">
<p i18n:translate="">Enter the Buddy information</p>
<form action="renameAction.html" method="post">
<table>
 <tr><td i18n:translate="">First name</td>
 <td><input type="text" name="first" size="40" value=""
 tal:attributes="value context/first" /> </td>
 </tr>
 <tr><td i18n:translate="">Last name</td>
 <td><input type="text" name="last" size="40" value=""
 tal:attributes="value context/last" /> </td>
 </tr>
</table>
<input type="submit" name="submit" value="Save Changes" />
</form></div></body></html>

Slide 67.

BuddyRename in browser.py

from zope.event import notify
from zope.app.event.objectevent import ObjectModifiedEvent

class BuddyRename:
 """Rename a buddy"""

 def __init__(self, context, request):
 self.context = context
 self.request = request

 def update(self, first, last):
 self.context.first = first
 self.context.last = last
 notify(ObjectModifiedEvent(self.context))
 self.request.response.redirect("rename.html")

Here we'l l use Python code to implement a “page” that serves as the
act ion of a form.

As usual, we have a constructor that takes a context and request and
assigns them to at t r ibutes.

The update method implements the form act ion. The Zope publ isher wi ll
cal l t his method direct ly, marshaling arguments f rom form variables. The
update method assigns the data passed to it 's context 's (buddy's)
at t r ibutes.

The view generates an ObjectModif iedEvent . Events provide a mechanism
for plugging logic into ex ist ing processes. There are a number of
act ivit ies that we might want to perform, such as updat ing meta data or
catalog indexes when an object is modif ied. We don't want to make each
method that modif ied an object responsible for these, so, instead we
generate an event , and, separately register event subscr ibers.

Finally, we redirect to the original rename form.

Slide 68.

test_BuddyRename in tests.py (1)

def test_BuddyRename():
 r"""
 This view provides a method for changing buddies.
 It is the action of a form in rename.html and
 redirects back there when it's done.

 Use a fake buddy class:

 >>> import zope.interface
 >>> class FakeBuddy:
 ... first = 'bob'
 ... last = 'smoth'
 >>> fake = FakeBuddy()

Again we put the test in the test module. The test code will include a
backslash “ \ ” . Whenever we include backslashes in doc tests, we need to
mark the doc st r ing as a “ raw” st r ing.

Our stub object has some or iginal data that we wil l change.

Slide 69.

test_BuddyRename in tests.py (2)

 Because the view needs to redirect, we have to give
 it a request:

 >>> from zope.publisher.browser import TestRequest
 >>> request = TestRequest()

 Our rename view is going to generate an event.
 Because of that, we need to setup an event service:

 >>> from zope.app.tests import placelesssetup
 >>> placelesssetup.setUp()

Here we need a real request , because the view is going to use the request
response to do a redirect .

Because we publ ish an event , we need to init ial ize the event service.
zope.app.tests.placelesssetup.setUp not only sets up the event
service; it also registered a logging event subscriber that we can use to
make asser t ions about generated events.

Slide 70.

test_BuddyRename in tests.py (3)

 We should be able to create a BuddyRename on this
 fake buddy and change it's name:

 >>> from buddydemo.browser import BuddyRename
 >>> rename = BuddyRename(fake, request)
 >>> rename.update('Bob', 'Smith')
 >>> fake.first, fake.last
 ('Bob', 'Smith')

 Make sure it redirected to rename.html:

 >>> request.response.getStatus()
 302
 >>> request.response.getHeader('location')
 'rename.html'

We check that call ing the update modif ied the buddy.

We also check to make sure the response has been redirected.

Slide 71.

test_BuddyRename in tests.py (4)

 There should be an ObjectModifiedEvent event logged:

 >>> from zope.app.event.tests.placelesssetup \
 ... import getEvents
 >>> from zope.app.event.interfaces \
 ... import IObjectModifiedEvent
 >>> [event] = getEvents(IObjectModifiedEvent)
 >>> event.object is fake
 True

 Finally, we'll put things back the way we
 found them:

 >>> placelesssetup.tearDown()
 """

Finally, we check to make sure that an object- modif ied event has been
generated for our fake buddy.

Not ice that we used backslashes to break some imports. This was
necessary to f i t the source onto a sl ide for this presentat ion. The
backslashes, in turn, required that we use a raw doc st r ing.

Slide 72.

Define the pages in configure.zcml

<browser:page
 for=".interfaces.IBuddy"
 name="rename.html"
 menu="zmi_views" title="Rename"
 template="rename.pt"
 permission="zope.ManageContent"
 />

<browser:page
 for=".interfaces.IBuddy"
 name="renameAction.html"
 class=".browser.BuddyRename" attribute="update"
 permission="zope.ManageContent"
 />

We've def ined two pages. The f i rst page displays the form using the page
template, rename.pt. As we did for the edit form, we use menu and t i t le
at t r ibutes to specif y a menu i tem so that we get a “Rename” tab that
displays the form.

The second page is implemented by a view at t r ibute def ined by the class,
the update method.

Slide 73.

We can combine the pages

<browser:pages
 for=".interfaces.IBuddy"
 permission="zope.ManageContent"
 class=".browser.BuddyRename"
 >
 <browser:page
 name="rename.html"
 menu="zmi_views" title="Rename"
 template="rename.pt"
 />
 <browser:page
 name="renameAction.html"
 attribute="update"
 />
</browser:pages>

Because the for and the permission at t r ibutes had the same values, we
can combine the pages into a pages grouping direct ive. The main benef it
of this is to provide some logical grouping.

Slide 74.

Subscribers

Here's the subscriber that sets object's
modification time:

from datetime import datetime
from zope.app.dublincore.interfaces import
IZopeDublinCore

def ModifiedAnnotator(event):
 dc = IZopeDublinCore(event.object, None)
 if dc is not None:
 dc.modified = datetime.utcnow()

This subscriber is a simple subscriber that takes only an event .
Subscribers can be def ined to take mult iple objects.

Note that any object can be an event .

In this example, we used a funct ion rather than a class to def ine an
adapter. Essent ially, we're adapt ing to None. We aren't returning
anything useful , but are doing al l our work when we are called. This is a
compromise of the adapter model, but a just if iable one. Without this
compromise, one would general ly have to def ine subscr ibers with classes
or by call ing some API funct ion that converted a funct ion to a factory
that creates an object that cal ls the funct ion. It 's much cleaner to be able
to just use funct ions as subscribers.

Slide 75.

Subscriber registration

 <subscriber
 factory=".timeannotators.ModifiedAnnotator"
 for="zope.app.event.interfaces.IObjectModifiedEvent"
 />

Subscribers can be def ined for any number of objects. For subscribers on
mult iple objects, simply l ist mult iple interfaces in the for at t r ibute,
separated by white space.

Note that we use a factory at t r ibute here. That 's because subscribers are
adapters and we specif y factor ies for adapters. This adapter is unusual
because we aren't providing an interface. Subscribers can provide an
interface, but they don't have to. In fact , most subscribers are just Python
funct ions, as in this example, that do some work when they are cal led.
They are real ly handlers, not factories. In the future, we'l l add a
“handler” at t r ibute to this direct ive to be used when def ining handlers
rather than factories.

Slide 76.

Hands on

� Create an edit page for your content type
using a Python action

Slide 77.

Containment

� Objects can be aware of their location via
__parent__ and __name__

� Container framework
� Containers are mapping
� Responsible for maintaining item locations
� Responsible for location-relevant events
� Support for pluggable item types
� Automated through mix-ins and API functions

The main purpose of the container f ramework is to create containers that
can hold many di f ferent kinds of objects, including objects not created by
the container authors. The f ramework provides mechanisms to decide
which kinds of objects a container can hold and which containers an
object can be placed in. If you don't need this f lexibil it y, then you are
f ree not to use the f ramework.

In addit ion to providing a mapping protocol, containers are responsible
for making sure that their items have locat ion informat ion. This may
require placing containment proxies around items to assure that they
implement ILocat ion and set t ing the item's __parent__ and __name__
at t r ibutes.

In addit ion, when containers are modif ied, they need to generate
locat ion- relevant events.

Carrying out these responsibili t ies is quite involved. Fortunately (or
unfortunately, depending on your point of view), there are some base
classes and ut il it y funct ions that automate these responsibil it ies.

Slide 78.

ILocation

class ILocation(Interface):
 """Objects that have a structural location
 """

 __parent__ = Attribute(
 "The parent in the location hierarchy")

 __name__ = schema.TextLine(
 __doc__=
 """The name within the parent

 The parent can be traversed with this name
 to get the object.
 """)

ILocation specif ies basic locat ion informat ion. It al lows us to per form
acquisit ion and to compute object locat ions.

In Zope 3, we store locat ion informat ion direct ly, rather than through
t ransient context wrappers. An object has a single canonical locat ion. An
object can have many references, and, f rom a reference, you can compute
an object 's t rue locat ion.

Slide 79.

Base classes

zope.app.container provides several base
classes that simplify container implementation:

� BTreeContainer
� SampleContainer
� OrderedContainer

BTreeContainer is the most commonly used. It supports very large
containers.

SampleContainer is rarely used. It provides a hook for specif ying lower-
level storage. BTreeContainer subclasses this.

OrderedContainer provides for ordered items. An API is provided for
manipulat ing order. This should not be used for larger containers.

Slide 80.

Containment constraints

We control the containment relationship
through containment constraints:

� Precondition on container __setitem__ limits
what can be added.

� ItemTypePrecondition allows limiting by type
� Constraint on __parent__ limits what

container can be used.
� ContainerTypeConstraint allows limiting parent by

type

Slide 81.

Buddy folder (interfaces.py)

from zope.app.container.interfaces import IContained, IContainer
from zope.app.container.constraints import ContainerTypesConstraint
from zope.app.container.constraints import ItemTypePrecondition
from zope.schema import Field

class IBuddyFolder(IContainer):

 def __setitem__(name, object):
 """Add a buddy"""

 __setitem__.precondition = ItemTypePrecondition(IBuddy)

class IBuddyContained(IContained):
 __parent__ = Field(
 constraint = ContainerTypesConstraint(IBuddyFolder))

Precondit ions are tagged values on interface at t r ibute def init ions. When
def ining interfaces with class statements, we express the precondit ions as
funct ion at t r ibutes. We can also express precondit ions af ter an interface
has been created. To do so, we use the get item operat ion on the interface
to get an at t r ibute def init ion and then use the setTaggedValue method
on the def init ion to set the value:

IContactFolder['__setitem__'].setTaggedValue(
 precondition', ItemTypePrecondition(IContact)

We decided not to modif y IBuddy. There are a number of reasons why
we did this:

�

We didn't want __parent__ to become part of IBuddy's
schema. This would have compl icated form generat ion.

�

We didn't want to require al l IBuddys to be contained
�

By creat ing a separate interface, we avoided a circular
dependency between IBuddyFolder and IBuddyConstrained.

Slide 82.

Improvements on trunk

from zope.app.container.interfaces import IContained, IContainer
from zope.app.container.constraints import contains, containers

class IBuddyFolder(IContainer):

 contains(IBuddy)

class IBuddyContained(IContained):

 containers(IBuddyFolder)

On the subversion t runk (and in the next release, Zope X3.1) there are
improved APIs for def ining containment constraints. The lower- level
mechanisms def ined in the previous sl ide are st il l suppor ted, and are
necessary in some cases, however, they are rather error prone.

One problem with this mechanism is that what we of ten real ly want to do
is to constrain a relat ionship between two types. This is a bit clumsy to
express as propert ies of the individual types. It makes more sense in
some ways to express the constraint independent ly of either t ype,
perhaps as some sort of subscriber.

Slide 83.

Buddy folder (buddy.py)

from zope.app.container.btree import BTreeContainer
from buddydemo.interfaces import IBuddyFolder

class BuddyFolder(BTreeContainer):
 zope.interface.implements(IBuddyFolder)

Here, all we do is subclass BTreeContainer and add an interface.

Alternat ively, we could provide a factory that simply instant iated
BTreeContainers and provided instance- specif ic interface declarat ions.

Slide 84.

Buddy changes (buddy.py)

from buddydemo.interfaces import IBuddyContained

class Buddy(persistent.Persistent):
 ...

 zope.interface.implements(IBuddy, IBuddyContained)

 __parent__ = __name__ = None

Here we added an ext ra interface to the declarat ion for the buddy class.

Because IContained requires __parent__ and __name__ at t r ibutes, we
need to provide default values for them. It 's easiest to do so by providing
default values at the class level . Alternat ively, we could have modif ied the
__init__ method. We could also have subclasses
zope.app.container.Contained, which provides this t r ivial
implementat ion.

Slide 85.

Buddy folder (configure.zcml)

<content class=".buddy.BuddyFolder">
 <require permission="zope.View"
 interface="
 zope.app.container.interfaces.IReadContainer"
 />
 <require permission="zope.ManageContent"
 interface="
 zope.app.container.interfaces.IWriteContainer"
 />
</content>

<browser:addMenuItem
 title="Buddy Folder"
 class=".buddy.BuddyFolder"
 permission="zope.ManageContent"
 />

Containers provide read and wri te interfaces, which we need to make
security declarat ions for . (This borders on being a dead chicken.)

Slide 86.

Container views

<browser:containerViews
 for=".interfaces.IBuddyFolder"
 contents="zope.ManageContent"
 index="zope.View"
 add="zope.ManageContent"
 />

Specify one or more of contents, index, or add at t r ibutes. For each of
these at t r ibutes, a view wil l be def ined requir ing the permission given as
an at t r ibute value.

This direct ive is, ef fect ively, a macro. It generates (actual ly calls the ZCML
handlers for) the more detailed direct ives on the previous sl ide.

Slide 87.

Hands on

� Create a container for your content type
� Arrange that your content type can only live

in that container

Slide 88.

Security Architecture

� Permission declaration
� Authentication
� Protection
� Authorization

We use ZCML to declare permissions needed to access names in classes or
to use certain components.

We use authent icat ion services to extract credent ials f rom a request and
give us principals. Pr incipals are ent it ies that we can grant access to. (The
details of what kind of grants we can make and how are determined by
the authorizat ion system.

The protect ion system is responsible for enforcing securit y in a Zope
applicat ion. The protect ions system prevents access to at t r ibutes or
operat ions unless “ interact ions” have required permissions. The
protect ion system uses the authorizat ion system to determine whether
“ interact ions” have the needed permissions.

An interact ion is the use of one or more external ent it ies with the system.
 A common case is that a user interacts with the system by making a web
request . The authent icat ion system is used to determine a principal
corresponding to the user and the principal is associated with the
interact ion through the request . General ly, an interact ion has a
permission on an object if each of it 's pr incipals do.

The authorizat ion system is pluggable. It is responsible for making
authorizat ion decisions and for managing the grants used to make those
decisions. The authorizat ion system determines what kinds of grants can
be made and provides mechanisms for making and managing the grants.

Slide 89.

Protection

� Security proxies
� Mediate access to objects and operations
� Basic objects aren't proxied
� Proxies spread “everywhere”
� Use declarations in the form of checkers

� Untrusted interpreters
� Only allow basic object or proxied objects in
� All nob-basic attribute-access results are proxied
� Examples: URLs, through-the-web templates

and python

The protect ion system makes sure that interact ions have the required
permissions.

The cent ral protect ion mechanism is secur ity proxied. When an object
enters untrusted code (e.g. when t raversing a URL):

– We pass the object to a proxy factory

– We look up a checker for the object . We may get a result
indicat ing that the object is “basic” , meaning we don't need to
proxy it .

– Otherwise, we get a checker object . We create a proxy around
the object , passing the checker. The proxy delegates to the
checker to:

• Make access decisions

• Create new proxies

Basic objects are immutable and contain immutable data. Examples are
objects l ike st r ings, numbers, and dates (but not tuples).

Checkers represent permission declarat ions. They are looked up for
individual instances, or for their classes. They may be found either as
__Security_checker__ at t r ibutes or in a special regist ry.

Slide 90.

Authorization

� Pluggable security policy and associated
grant management

� Security policies are instantiated as (and
thus determine the semantics of) interactions

� Typically use some scheme (e.g. acquisition)
to share grants among objects

� Constants:
� Permissions
� Principals

Typically, the secur ity policy is simple an interact ion class. Interact ions
are stored as thread- local data. The protect ions system gets an
interact ion for the current thread and cal ls a method on i t to determine if
it has a permission on an object .

Current ly have a “classic” role- based security policy:

– principal roles

– role permissions

– principal permissions

– allow and deny

– acquired grants

In this example, the use of roles is speci f ic to this secur ity pol icy, as is
the use of acquisit ion.

We're planning a major change in the basic model by allowing hierarchical
pr incipals (groups) and permissions (permission sets). This largely
el iminates the need for roles.

Slide 91.

Trusted vs Untrusted

� Untrusted code
� Only has access to proxied, basic or “owned”

objects
� Must use an untrusted interpreter

� Through-the-Web vs File-system
� Local vs Global
� Policy choice
� Proxies reduce the differences

See zope/ security/ untrustedinterpreter.t xt for a detailed def init ion of an
untrusted interpreter.

Usual ly (e.g. X3.0) through- the- web (TTW) code is untrusted and f i le-
system based code is t rusted.

Usual ly, local components are TTW, but this need not be the case.

Global components are always f i le- system based.

Someday, it wi ll be possible to set policy for when code is t rusted. Sites
will be able to say that local or TTW code is t rusted.

Because of the way proxies mult iply (operat ions on proxies return
proxies), even t rusted code is mediated by the secur ity system. This is a
good thing because:

– It makes it much harder to t r ick t rusted code into per forming
operat ions inaccessible to unt rusted code

– It makes it harder to ignore securit y

Slide 92.

Non-public objects without grants

� A non-public object is one that requires a
permission other than zope.Public to access
it's data.

� It's data will be inaccessible without grants
� There are many objects for which we don't

make grants directly:
� Computation results
� Adapters

� Common technique is to acquire grants, but
need location to do that

I suspect that this is the thorniest aspect of Zope 3 development. That 's
not surpr ising, as it 's probably the thorniest aspect of Zope 2
development too.

It 's “worse” for Zope 3 because the protect ion system is more robust .
Even t rusted code is of ten subject to the secur ity system by vir tue of
being passed untrusted code.

Funct ional tests are very helpful for detect ing secur ity problems.

Key issue is objects without grants. They are much easier to create that
you might expect . This most commonly applies to t ransient objects. Even
if you make grants on al l of your content objects, you st il l have to
content with the protect ion of computat ion result s.

Slide 93.

What needs to be protected?

� Not everything needs to be protected
� Results from protected methods or attributes

often don't need to be protected
� Pure logic generally doesn't need to be protected

� It's the assets the code operates on that we care
about

� but we have to be careful ...
� zope.Public is your friend
� Dictionaries, lists, and tuples have

convenient declarations

If a permission is needed to cal l a method, then you might not need to
protect the result . Protect ing the method ef fect ively prevents
unauthorized access to the result . If the result is a basic value or a
dict ionary, tuple, or l ist , then we don't need to do much else.

If a result is an applicat ion- def ined instance, then you will need to make
security declarat ions. Consider using zope.Publ ic.

It is always “safe” to return dict ionaries and list s. The declarat ions of
these al low unfet tered access to their data, but prevent modif icat ion.

In theory, we almost never need to protect code. It 's not the code we care
about , but the objects it accesses. In part icular, if adapters adapted
security proxies, there would be no point in prevent ing access to the
adapters, since protect ion is provided by the proxies around the adapted
objects. Unfortunately, there's no way to guarantee this at this t ime.

Slide 94.

self is never proxied

� Methods called on proxied objects are
passed unproxied self (at least in trusted
code)

� Major relief from protection system
� major source of unproxied data

Slide 95.

Adapter approaches

� Trusted adapters
� Always adapt unproxied objects
� Almost always protected
� Move the protection boundary out

� Untrusted adapters (some day)
� Always adapt proxied objects
� Never protected
� Move protection boundary in

� Local adapters (adapters with __parent__)
can acquire permissions

Trusted adapters are very useful when you have APIs that you never want
to expose direct ly to untrusted code. You can provide indirect access
through t rusted adapters. When a t rusted adapter is created for a
proxied object , the proxy is removed and a new proxy is created around
the result ing adapter.

Untrusted adapters will al low us to avoid protect ing code. Rather than
protect ing the code, we'll rely on the protect ions on the adapted objects.
Most adapters behave this way today as a consequence of the way they
are usually accessed. For example, views are almost always created f rom
untrusted code (URLs). Adapters created f rom t rusted code may not
adapt proxies, if the t rusted code has access to unproxied data.

The thing that makes untrusted adapters dif f icult to implement is that
we don't want to create security proxies unless we need to. This of ten
means that we can't create the proxies unt il af ter an adapter has been
created. To make this work, we'll need to invent some sort of “ re-
adaptat ion” mechanism.

A simple, i f int rusive technique is to provide adapters with __parent__
at t r ibutes. This is of ten set to the adapter context , so that an adapter can
acquire grants f rom it 's context . Views created with the ZCML browser
direct ives implement Ilocat ion and get __parent__ set automat ical ly.

The good news is that adapters are usual ly not used f rom untrusted
code, so their protect ion is less cr it ical .

Slide 96.

Utility protection

� We currently have no good ways to make
grants on global utilities, so protecting them
is pointless. Fortunately, we usually don't
need to.

� We can make grants on local utilities
� If a utility provides access to external assets

(e.g. relational databases) than protecting
them may be important.

Ut ili t ies are generally used f rom t rusted code, so protect ing them is not
crucial .

Ut il i t ies that encapsulate algorithms are not a problem, as they can be
declared to require zope.Publ ic. We don't need to protect code.

Ut il i t ies that provide access to external assets are more problemat ic. The
simplest approach is to make them local and store them in site-
management folders, where we can make grants for them.

