
red1 Compiere Workshop Mix-Match v1.0

Copyright © 2004, Redhuan D. Oon, All Rights Reserved page 1 of 9

RED1 COMPIERE WORKSHOP

MIX-MATCH
Inquisition of a Missing Match Invoice version 1.0

By Redhuan D. Oon a.k.a. red1

Table of Contents

INTRODUCTION.. 2

THE ‘CREATE FROM’ PROCESS.. 3

THE TABLES OF THE LAST SUPPER.. 5

THE JAVA CLASSES... 6
Examining VCreateFromInvoice.java.. 6
Amending VCreateFromShipment.java.. 6
Examining MInOut.java... 7
Refering to MInvoice.java.. 7
Amending MInOut.java.. 8

CONCLUSION... 9

Copyright © 2004 Redhuan D. Oon, Malaysia. All rights reserved. Any original material
here can be duplicated only with proper tribute as to its sources.
red1.org is dedicated to OPEN KNOWLEDGE – sharing of implementation and experience
know-how on an open basis. Global productivity will be faster and meaningful if such
knowledge is freely available and the learning pain and gap quickly reduced. The author only
benefit from direct consultancy and coaching work.

ComPiere Inc., USA holds sway over the original codes and diagram borrowed in sin.

red1 Compiere Workshop Mix-Match v1.0

Copyright © 2004, Redhuan D. Oon, All Rights Reserved page 2 of 9

 Introduction
Due to remorse and repentance, I am conducting here an exorcism to examine part of the Requisition-
to-Invoice process up close. Here while chasing some bugs, we begin to understand some Java code
patterns used and how to reuse them. We also get to see the underlying table structure and its
influence over Compiere’s design – albeit without excessive flesh.

This article is for those who want a rigorous stroll in the park to understand Compiere’s innards. Its
for a beginner developer like me too. Just that I dare to commit it to writing and invite the wrath of
the Lords of Javanese accent, not to mention also to suffer ignominy at the feet of the priests of
Khomphere.

However its best not to read this after a gluttonous meal as some innards may be too exposed. The
Java class structure and hierarchy will be interesting desert I will say.

Ok then, lets dispense with the rituals of ice breaking – let us break some jars. But first, some
anagram from three feet away:

Requisition
Purchase

Order

Vendor
Invoice

CashBook Open Item
Payment
(CreditCard,
Check, ACH)

generate

Shipment
(Receipt)

generate

paid via paid via

payment rule

Bank
Statement

re
co

nc
ile

create from

create

create from create frommatch

match

match

Sales
Order

generate

red1 Compiere Workshop Mix-Match v1.0

Copyright © 2004, Redhuan D. Oon, All Rights Reserved page 3 of 9

The ‘Create From’ Process
We have a client who has to migrate from an old system, and convert its backlog of invoices and
shipments records into the new Compiere system. The client thus require the process to be Invoice >
Material Receipt > Matching – to keep its document numbering in place.

The usual or normal process cycle was to be Purchase Order > Material Receipt > Invoice >
Matching. Now, both scenarios are flamboyantly allowed as shown in the diagram below (in the
‘create from’s):

It seems that Compiere understands the pressures of disagreeable business scenarios such as coming
from our client where a conversion of a legacy system into Compiere must deal with the backlog of
invoices as described. This is so that - the document numbering is intact as per source materials, to
avoid the auto-numbering and overwriting of the numbers in the documents. So the process is:

1. Recreate the backlog invoice, maintain the same numbering as source.

a. Process Complete it.

2. Go to Material Receipts, create a new record.

a. Create Lines From – from the Invoice created in (1).

b. Process Complete it.

In version 251e there are two sins of omissions from the above 2 steps:-

The ‘create from’ within Material Receipt (Shipment) does not update the Invoice.

The ‘process complete’ within Material Receipt also does not do a Match Invoice.

Requisition
Purchase

Order

Vendor
Invoice

generate

Shipment
(Receipt)

generate

create from
create from create frommatch

match

m
atch

Sales
Order

generate

red1 Compiere Workshop Mix-Match v1.0

Copyright © 2004, Redhuan D. Oon, All Rights Reserved page 4 of 9

Ah! So the high-priest lied, against the Temple’s own holy tablet. But fear not, as soon as this bug
was reported, a new amendment was sneaked into the commandments. Lo! Its now solved in the next
version - 251f.

What these two functions forgot to do is stated in the two text boxes.

This button will launch
VCreateFromShipment which
should put the InOutLine_ID into
InvoiceLine record string

This button will launch
MInOut which should do a
Match Invoice creation.

red1 Compiere Workshop Mix-Match v1.0

Copyright © 2004, Redhuan D. Oon, All Rights Reserved page 5 of 9

The Tables of the Last Supper
Now let’s look at the database level. The Invoice previously created is stored in the C_Invoice table.
The Material Receipt is stored in the M_InOut table. Its children are C_InvoiceLine and
M_InOutLine. Their primary keys have the _ID suffix.

Let’s peer into these tables. If we open the C_Invoice, and M_InOut tables, we find some interesting
constructs.

M_InOut table has 2 fields - C_Invoice_ID and C_Order_ID. The later representing Purchase Order
records. This is understandable as the Material Receipt (Shipment) usually happens after the PO
completion. And as it also possess the C_Invoice_ID it also goes to show that the reverse generating
process is also accepted – the generating of a Receipt based on an Invoice.

Now if we go to the tables’ respective child-lines level, which are the C_InvoiceLine and
M_InOutLine tables respectively, we find that the first has a M_InOutLine_ID, whereas the second
has C_OrderLine_ID (PO line). This is a slight error in database design as the Receipt cannot thus
remember who its InvoiceLine counterpart is. This lends to the first omission.

But with the InvoiceLine having a M_InOutLine_ID field will thus show it can still remember the
ReceiptLine counterpart and thus absolved from the said error. However the purpose of that line ID,
was to be populated during a ‘Create Lines From’ process, but from within the Invoice container, and
not within the Receipt (Shipment) container. To correct this error, we have to figure out how to
populate that from the Receipt. This means we now have the arduous task of locating the java class
that handles both this angles and calls for that impregnation to occur on the virginal side.

Glad you are still awake.

I managed to trace the java classes involved by watching closely the debug console and issuing
numerous breaks here and there.

Let’s examine the ‘Create From’ process in both containers, Invoice (Vendor) and Material Receipt
(Shipment) and see what java classes are been called. By the way, Shipment and Material Receipt
seems to be interchangeable verses – presumably Compiere took it from a floating Gospel before it
came to shore. Below we can see the 2 Java classes called.

• Create Material Receipt, then create Invoice with ‘create lines from’ Receipt:

o Calls Java class – VCreateFromInvoice.java

• Create Invoice (Vendor), then create Material Receipt with ‘create lines from’ Invoice:

o Calls Java class – VCreateFromShipment.java

The second Java class is what we want to home in.

Upon dissecting into both classes reveal that the first class populates the M_InOutLine_ID, whereas
the second does not. So now to plug the bug, it’s a matter of repeating the method used in the first
container onto the second class.

Let’s take a closer look at the first snippet to see how it is done:

red1 Compiere Workshop Mix-Match v1.0

Copyright © 2004, Redhuan D. Oon, All Rights Reserved page 6 of 9

The Java Classes
In all, we will only amend two javas – VCreateFromShipment and MInOut.

Examining VCreateFromInvoice.java

package org.compiere.grid;
public class VCreateFromInvoice extends …
…
 // Shipment Info
 if (inoutLine != null)
 invoiceLine.setShipLine(inoutLine);

The above setShipLine a method in MInvoiceLine’s:

 public void setShipLine (MInOutLine sLine)
 {
 setM_InOutLine_ID(sLine.getM_InOutLine_ID());

The last line here sets it!

Amending VCreateFromShipment.java
So now, how do we do the same, reversely in VCreateFromShipment? We say reversely because in
the later class, we are in a different container – in Shipment and not Invoice. We thus have to call the
Invoiceline, and insert the InOut_ID before saving it. And indeed VCreateFromShipment didn’t
contain such an insertion:

 if (!iol.save())
 Log.error("VCreateFromShipment.save - Line NOT cr eated #" + i);
 } // if selected
 } // for all rows

It only seems to commit the InOutLine (iol.save), without any hoot to an InvoiceLine. (It did
reference a C_OrderLine (PO) earlier on (not shown here), but when we are pulling an Invoice, no
POLine work is needed).

So we now have to do the InvoiceLine job in Shipment container.

We do that by injecting the above with our own snippet (in bold) making it look like this:

if (!iol.save())
 Log.error("VCreateFromShipment.save - Line NOT cre ated #" + i);
//red1 save InvoiceLine with this M_InOutLine_ID
 m_invoiceline = new MInvoiceLine (Env.getCtx(), C_InvoiceLine_ID);
//red1 -- get the InvoiceLine
 m_invoiceline.setM_InOutLine_ID(iol.getM_InOutLine_ID());
//red1 -- get the InOutLine, set it to InvLine
 if (!m_invoiceline.save())
 Log.error("VCFS - red1 InvLine.save - Not Updated #" + i);
//red1 saving its InOutLineID -- end --
 } // if selected
} // for all rows

red1 Compiere Workshop Mix-Match v1.0

Copyright © 2004, Redhuan D. Oon, All Rights Reserved page 7 of 9

We deduce the lines in bold by examples within VCreateFromInvoice. You have to undergo a
baptism of fire through many javas before finding the chosen one.

We then check the InvoiceLine in the Oracle Database and found it to have worked. Now that we
have solved the populating of InvoiceLine with the M_InOutLine_ID, we turn our holiest intentions
to the Match Invoice creation.

Examining MInOut.java
We deduce the java class that handles the process by looking at the debug console again. Noticing
that MInOut java was called along the way when we press the ‘Complete’ button. This is logical as
we are in the Material Receipt window where the button is.

MInOut.java thus handles the creation of the Material Receipt record, but didn’t create the Matching
Invoice record that is needed to affect the match. When we examine the innards of it, we found the
reason:

package org.compiere.model;
public class MInOut extends…
…
// PO Matching
 if (!isSOTrx() && line.getC_OrderLine_ID() != 0)
 {
 log.debug("completeIt - PO Matching");
 BigDecimal matchQty = line.getMovementQty();
 MMatchPO po = new MMatchPO(line, getMovementDate(), matchQty);
 if (!po.save())
 {
 m_processMsg = "Could not create PO Matching";
 return DocAction.STATUS_Invalid;
 }
 } // PO Matching

Ahah! It only does PO Matching instead! Which is true, because its thinking that a Shipment occurs
after a PO – another proof that the early design is suspect. So what then? Well, we just have to add a
method to do Match Invoice. We find that method by looking at its counter java class. This last
deduction is elementary, my dear Watson, ;). The counter class is MInvoice.java.

Refering to MInvoice.java
The counter class to MInOut here would be MInvoice, and sure enough we find the scriptures:
// Matching
 if (!isSOTrx() && line.getM_InOutLine_ID() != 0)
 {
 BigDecimal matchQty = line.getQtyInvoiced();
 MMatchInv inv = new MMatchInv(line, getDateInvoic ed(),
matchQty);
 if (!inv.save())
 {
 m_processMsg = "Could not create Inventory Matchi ng";
 return DocAction.STATUS_Invalid;
 }

red1 Compiere Workshop Mix-Match v1.0

Copyright © 2004, Redhuan D. Oon, All Rights Reserved page 8 of 9

Amending MInOut.java
Now just move this Noah’s Ark over to the MInOut.java and we can all go home. So under the PO
Matching, we give an else routine after the PO Matching and… :

} // PO Matching
else //red1 Inv Matching
{
 int InvLineID = DB.getSQLValue(
 "SELECT C_InvoiceLine_ID FROM C_InvoiceLine WHERE M_InOutLine_ID=?",
 line.getM_InOutLine_ID());
 if (!isSOTrx() && InvLineID != -1)
 {
 mInvLine = new MInvoiceLine(Env.getCtx(), InvLineID);
 BigDecimal matchQty = mInvLine.getQtyInvoiced();

 MMatchInv inv = new MMatchInv(mInvLine, getMovementDate(), matchQty);
 if (!inv.save())
 {
 m_processMsg = "Could not create Inventory Matching";
 return DocAction.STATUS_Invalid;
 }

}
} //red1 -- end --

Just that the first part is a hack, a rewriting of the scriptures as our context has changed. Since we are
in the MInOut.java we do not have the InvoiceLine context. We thus have to recreate it. We have to
find out which InvoiceLine bears the InOutLine_ID, done by our first fix job.
We call that InvoiceLine with the

 int InvLineID = DB.getSQLValue(
 "SELECT C_InvoiceLine_ID FROM C_InvoiceLine WHERE M_InOutLine_ID=?",
 line.getM_InOutLine_ID());

construct, which on finding it will proceed to give us the InvoiceLine_ID for the Match
record string. If it fails, it will return a -1 value and this is checked by an if ... :

 if (!isSOTrx() && InvLineID != -1)

When its not, signified by the ‘!’, then it is ready to call the MatchInv.java that will form the
Match Invoice record:

MMatchInv inv = new MMatchInv(mInvLine, getMovementDate(), matchQty);

When I hover my mouse pointer over the method I discover the arguments needed are the
InvoiceLine, a Date and a Qty, so I deduce the above 3, deciding that the Date should be the
when the Shipment Receipt is created. Then we have to a final confession to the priest:

 if (!inv.save()) - this ensures the record is saved or else.

red1 Compiere Workshop Mix-Match v1.0

Copyright © 2004, Redhuan D. Oon, All Rights Reserved page 9 of 9

Conclusion
Upon testing we find that the Match Record is created, and thus the accounting consequence
is correct and both bugs considered plugged.

As these two issues are fixed in the next version, you may consider switching to 251f,
otherwise you can do this plugs for your earlier version at 251e.

~ the End ~
1.15am GMT+8, 12th September, v0.1

6.41pm, v1.0

Happiness is the X quantity of what you achieve,

Divided by the Y quantity of what you expect.

Thus to be infinitely happy,

Reduce Y to zero.

- Bertrand Russell

The World is Enough for ALL People,

But not enough for one greedy person.

- Mahatma Gandhi

IN GOD WE TRUST;

The rest of you pay cash.

- the evil of paper money

A tree falls in the forest,

But no one is around to see it fall,

Did the tree really fall?

- Zen

To allow the gods to look favourably upon you please sign http://red1.org/guestbook/

To get further blessings please register with http://red1.org/forum/

And slap your other cheek.

