
M A R C H / A P R I L 2 0 0 6

W W W . E O S J . C O M

A         P U B L I C A T I O N

  Linux &
Open Source
   Software:
A Strategic Decision for

Consumer Electronics
Manufacturers

————————————————

————————————————

Navigating the
Open Source

Software Jungle

Enterprise Grid
Computing

Open Source
DatabasesFocusing on Open Source Strategies in the EnterpriseFocusing on Open Source Strategies in the Enterprise

www.eosj.com

COMPR_Ad4a.indd 1 2/6/06 5:35:05 PM

www.compiere.org

www.zend.com

9	 CRM Total Cost of Ownership: Comparing Open Source Solutions
	 to Proprietary Solutions

By Bernard Golden

12	 Global Collaborative Software Development & Deployment
	 in the Era of Open Source: The Underwriter’s Role

By Matthew R. Hogg & Daniel Egger

15	 Navigating the Open Source Software Jungle
By Ken Mulcahy

18	 Solution Showcase: Performance Fuels World’s Leading
	 Electronic Marketplace	
	 By Denny Yost

19	 Enterprise Grid Computing: State-of-the-Art
By Rajkumar Buyya, Ph.D., & Krishna Nadiminti

24	 Enterprise Readiness of Open Source Databases
By Alan Radding

27	 Solution Showcase: Training Funding Partners Achieves
	 Improved Scalability and Nationwide Expansion
	 Using an Open Source ERP Solution 	
	 By Denny Yost

 28	 How to Evaluate Community Support for an Open Source Content
	 Management System: Part II–Evaluating the Life of the Community
	 By Boris Kraft

35	 Realities About Open Source: An Evolution Rather Than a Revolution
	 By Mathieu Poujol

M A R C H / A P R I L 2 0 0 6

V O L U M E 2 | N U M B E R 2

W W W . E O S J . C O M

CONTENTS | FEATURES

� | Enterprise Open Source Journal | March/april 2006

www.eosj.com
www.eosj.com

www.sugarcrm.com

38	 Linux and Open Source Software: A Strategic Decision
	 for Consumer Electronics Manufacturers

By Bill Weinberg

43	 Open Source Content Management Systems Deliver a Low TCO
	 By Vasuki Kasturi

6	 Publisher’s Page

8 	 Source Tree: When Proprietary Goes Open
	 By Michael Goulde

14	 Open Issues: What Is Open Source “Development,” Anyway?
	 By Mark Driver

23	 Legal Issues: GPL Prediction Latitude	
	 By David E. Gould

26	 The Devilish Advocate: What’s Your Recommended
	 Daily Allowance of Open Source?	

By Robert Lefkowitz

32	 Open Standards: The Latest Standards Battlefield
By Jim Zemlin

34	 Perspectives on CAOS: New Models of Support
	 By Raven Zachary

41	 Open Systems: The Open Systems Scorecard–Part II	
	 By Larry Smith

42	 Open Mind: What’s With Object Rexx?
	 By Howard Fosdick

47	 Open for Business: Open Source Will Build New Markets
	 by First Breaking Them Apart

By Nathaniel Palmer

CONTENTS | FEATURES

CONTENTS | COLUMNS

� | Enterprise Open Source Journal | March/april 2006

www.jboss.com

B O B T H O M A S ,

P U B L I S H E R ,

E D I T O R - I N - C H I E F

———————————————————————————
Publisher
B ob T homas
b o b @ e o s j . c o m
9 7 2 . 3 5 4 . 1 0 2 4

———————————————————————————
Associate Publisher
D enn y Yost
d e n n y @ e o s j . c o m
9 7 2 . 3 5 4 . 1 0 3 0

———————————————————————————
Managing Editor
am y B . no v otn y
a m y @ e o s j . c o m
3 5 2 . 3 9 4 . 4 4 7 8

———————————————————————————
Online Services Manager
B lair T homas
b l a i r @ e o s j . c o m

———————————————————————————
Copy Editors
D ean L ampman
P at W arner

———————————————————————————
Art Director
M artin W . M assin g er
m a r t i n @ e o s j . c o m

———————————————————————————
Production Manager
K y le R ichardson
k y l e @ e o s j . c o m

———————————————————————————
Advertising Manager
B lair T homas
b l a i r @ e o s j . c o m
9 7 2 . 3 5 4 . 1 0 2 5

———————————————————————————
Advertising Administrator
D enise T . C ullers

———————————————————————————
The editorial material in this magazine is accurate to
the best of our knowledge. No formal testing has been
performed by Enterprise Open Source Journal or Thomas
Communications, Inc. The opinions of the authors
do not necessarily represent those of Enterprise Open
Source Journal, its publisher, editors, or staff.

———————————————————————————
Subscription Rates: Free subscriptions are available to
qualified applicants worldwide at www.eosj.com.

———————————————————————————
Inquiries: All inquiries should be sent to:

Enterprise Open Source Journal
9330 LBJ Freeway, Suite 800
Dallas, Texas 75243
Voice: 214.340.2147
e-Mail: info@eosj.com

———————————————————————————
All products and visual representations are the
trademarks/registered trademarks of their respective
owners.

———————————————————————————
Thomas Communications, Inc. © 2006. All rights
reserved. Reproductions in whole or in part are
prohibited except with permission in writing.

———————————————————————————
Enterprise Open Source Journal Article Submission Guidelines:
Enterprise Open Source Journal accepts submission of articles
on subjects related to open source. Enterprise Open Source
Journal Writer’s Guidelines are available by visiting
www.eosj.com. Articles and article abstracts may be
sent directly via e-mail to managing editor, Amy
Novotny, at amy@eosj.com.

� | Enterprise Open Source Journal | March/april 2006

EOSJ Reader Survey Shows Continued Growth in Use of Open Source

A s a publisher of IT trade magazines, we’re always interested in
learning what’s happening in the world of IT. To help us gain in-

sight into the use of open source solutions, we recently conducted a
reader survey. Additionally, we asked readers about the usefulness of
EOSJ, and what suggestions they had to help us keep the magazine
useful to them. The survey was e-mailed to a randomly selected sub-
set of EOSJ readers. We received 874 responses from the U.S. (56.9
percent) as well as other countries (43.1 percent).
	 Enterprises are without a doubt adopting and implementing many
open source solutions. The most common and best known solutions,
such as the Apache Web Server, MySQL, Linux, PHP and Firefox, are
definitely being implemented by many companies. However, many
other solutions are also being implemented such as iTracker, Sugar-
CRM, GIMP, OpenOffice, Python, Jython, Jakarta, JBoss, ZenCart,
and Thunderbird. Some enterprises are testing various open source
solutions, while others are implementing some of these products into
production. When we asked readers, “Do you believe your company
could significantly benefit in any way from increased use of open
source solutions,” a resounding 85.5 percent answered “Yes.”
	 There also seems to still be many managers across all the various
departments of companies who aren’t aware of open source, the vari-

ous solutions available, or their benefits. When we
asked, “Do you believe just about everyone in your
company (corporate managers, IT managers, corporate

attorneys, etc.) would benefit from learning more about using open
source solutions (beyond Linux),” 76 percent answered “Yes.”
	 The number of companies that have learned about open source,
and are organized to review and implement solutions, is still greater
than anyone might think. When we asked the question, “Does your
company have an open source plan in place for evaluating, adopting,
and licensing open source solutions,” 52.9 percent said “Yes.” As the
number of companies create and implement a plan for evaluating,
adopting, and licensing open source solutions, the quantity of solu-
tions tested and implemented also will increase.

Readers Give EOSJ High Marks

	 After only three issues, 95 percent of the respondents said they
would recommend EOSJ to a colleague or friend. When we asked,
“How would you rate EOSJ on the overall quality of articles,” 88 per-
cent said the articles were “Good” or “Great.” For overall breadth of
article coverage, 81.1 percent said the breadth of coverage was “Good”
or “Great.” These are very high marks for a new magazine, and we’ll
continue working to achieve higher marks next year.
	 Where can EOSJ improve? Readers didn’t like the Flash-based dig-
ital reader we use to deliver the digital magazine, preferring us to use
a PDF. Some readers noted they aren’t permitted to use Flash at their
company, while others noted Flash isn’t an open source product. Oth-
er readers either like or don’t mind using the Flash-based reader. So,
we’ve opted to provide both for the time being.
	 Thank you for your continued support, and we hope you enjoy
this issue.

P u b l i s h e r ’s P a g e

www.virtuas.com

Source Tree	 BY MICHAEL GOULDE

P rior to Sun Microsystems announcing it would make
much of its software assets available under open source

licenses, there had been only a handful of instances where
companies had taken commercially licensed software and
made that same software available under open source
license. This was a big risk for Sun, but I think it’s going
to pay off in a big way in the future for the company. The
argument against such a move is pretty obvious—how would
you replace the revenue stream from software licenses?
Customers are already paying for maintenance, so there
aren’t any incremental revenue opportunities from services.
What’s the argument in favor of doing this?
	 Making this move has to be based on a solid understanding
of the many ways the open source model can transform
a product’s position in the market and impact a product’s
roadmap. Naturally, the two main benefits are reduced cost and
increased revenue. The benefits primarily come from gaining
access to additional developer resources. These developers can
contribute more complete testing, faster production of patches
and security fixes, enhanced functionality, and the work
necessary to improve product integration.

Leveraging Developer Resources
	 Developer participation can be attracted from many
sources. Developers working for Independent Software
Vendors (ISVs) that use Open Source Software (OSS) as
the foundation for their business applications have an
interest in improving and enhancing the infrastructure they
use. ISVs that make products that complement the open
source products have an interest in improving integration,
optimizing performance, and enhancing functionality.
System integrators and corporate application developers have
a similar motivation and probably represent a much larger
number of potential community participants.
	 These developers represent a tremendous potential
resource for the owner of the OSS. They can, and have,
reduced the size of the development staff necessary to
maintain and evolve the product. This lowers the cost of
goods for the version that’s sold with support subscriptions.
Sales and marketing costs are reduced as a result of potential
customers freely downloading OSS to evaluate and even pilot
it. Lower cost, combined with enhanced functionality and
higher quality, can increase the potential market for OSS,
thereby increasing the market for support and consulting
services.

Opening the Door to Innovation
	 Software companies have to guide their development
plans with roadmaps for future releases. Difficult decisions
have to be made, trading off features or functionality to

achieve specific strategic objectives. Often, the options
that aren’t chosen may represent high risk—high payoff
bets that conservative management chooses not to make.
An advantage of having that software available in open
source is that someone else can take it and innovate. Those
innovations may or may not reappear in the original version,
depending on the license used, but the market benefits, as
new and innovative features or even new business models
become available.
	 The risk that’s often cited for innovating on an established
base is that a second, incompatible version will complicate
maintenance and support for customers. This is true only
if one thinks of the innovation as a competing version of
the original OSS. There’s every reason for the creator of
the innovative derivative to assume the responsibility for
maintaining their forked version as a new and separate
product. Enhancements to the original software remain
accessible to the developers of the new product as open
source and can easily be incorporated. But even that
isn’t necessary. The innovators can choose to pursue
an independent path of development and handle their
own maintenance. This kind of flexibility and choice are
hallmarks of the open source model.

Implications for the Enterprise
	 Enterprises should be alert to the additional proprietary
products appearing as open source and to take advantage of
the opportunities this presents. A formerly closed product
could become the foundation for new applications that
reach production far more quickly and provide significant
competitive advantage.
	 Newly open sourced software could become the
foundation for entirely new businesses and business models.
The trend toward buying and selling software as services
rather than as products may be largely driven by open source
editions of products that are closed today.
	 This approach won’t necessarily be limited to
commercially sold software. Business applications your
company has invested in for internal use could be made
available as open source and you could reap all the same
benefits as a commercial software supplier. Imagine having
developers from across your industry contributing to the
evolution of a package that you struggle to maintain. We’ve
started to see this in some infrastructure
applications and I expect to see this
happening more and more in the future with
business applications.

Michael Goulde is a senior analyst with Forrester Research.
e-Mail: mgoulde@forrester.com
Website: www.forrester.com

When Proprietary Goes Open

� | Enterprise Open Source Journal | March/april 2006

march/april 2006 | Enterprise Open Source Journal | �

Comparing
Open Source
Solutions to
Proprietary
S o l u t i o n s
By Bernard Golden

CRM
Total Cost of
Ow n e r s h i p

T
oday’s competitive business envi-

ronment requires companies to

stretch their capabilities like nev-

er before. The frenetic pace of today’s

global economy encourages innova-

tion and advanced resource utiliza-

tion as new entrants enter a market >

or existing competitors launch newer, more
compelling offerings.
	 For more than a decade, companies have
used Customer Relationship Management
(CRM) software to help meet these chal-
lenges. CRM software provides companies
with a complete view of their customers by
supplying a centralized repository of cus-
tomer interaction history where every cus-
tomer interaction has an ongoing context.
This ensures consistent customer communi-
cation, which can increase customer satis-
faction. CRM systems also can provide early
warning signs of competitive advances.
	 First-generation CRM systems weren’t
completely satisfactory. They were expensive
to purchase and even more expensive to
customize and administer, putting them fi-
nancially out of reach for all but the largest
organizations (see Figure 1).
	 More recently, many vendors have be-
gun to offer CRM as a service (a hosted ap-
plication). That approach requires little up-
front capital investment from companies
and typically looks appealing because of the
quick launch time. Because they offer a low
initial price point and fast uptime, these
providers legitimately claim a Total Cost of
Ownership (TCO) advantage compared
with first-generation CRM software.
	 However, an emphasis on price fails to ac-
count for the variety of other factors that in-
fluence TCO. This article examines CRM
TCO from a holistic perspective—one that
considers system flexibility, control, and
price.

TCO Factor #1: Deployment Flexibility
	 In today’s competitive, dynamic envi-
ronment, corporate computing systems

must easily adapt to rapidly changing busi-
ness requirements. While first-generation
CRM was adaptable, making changes with
client/server applications was expensive and
time-consuming. Second-generation CRM
vendors, who offer standardized Web
browser-accessible services, purposefully
restrict adaptive capabilities to sustain a
standardized delivery platform to maintain
low costs. The third-generation CRM Web-
based solutions have low setup costs due to
the versatility of the open source architec-
ture stack, and flexibility for deploying in
many different environments.

Evaluating Deployment Costs
	 Deployment flexibility costs should be
evaluated based on business needs and the
ability for a CRM deployment to constantly
change to meet those needs. Evaluate the
CRM solution’s cost and capability for these
considerations:

•	Deployment timeline: How much upfront
testing can be done before making a pur-
chasing decision?

•	Total cost: What will the platform, data-
base, and services layer cost? Are there ad-
ditional costs for end-user tools? Data
storage? Data access?

•	Migration path: What’s the path and the
costs associated with transferring a de-
ployment to a hosted or on-premise facili-
ty?

•	Flexibility: What are the options and costs
for attaining adequate data accessibility,
application customization, and system in-
tegration?

•	Maintenance and support: What is re-
quired and how much will it cost?

10 | Enterprise Open Source Journal | March/april 200610 | Enterprise Open Source Journal | March/april 2006

While

some CRM

solutions

can initially

appear

significantly

less expensive,

additional

charges for

integration

and other

add-ons

can be

considerable.
Figure 1: Popular CRM Trends

Proprietary On-Premise

• Client/Server Application
• Closed Development
• Low User Adoption
• Long Implementation
• Expensive to Own

Proprietary Service

• Hosted Software
• Web-based Application
• Improved User Adoption
• Fast Implementations
• Generic Functionality
• Expensive to Rent

Open Source
(Multi-Deployment)

• On-Premise or Hosted
• Web-based Application
• Open Source Platform
• No Vendor Lock-in
• Smart, Fast Friendly UI
• Best Price-to-Value Ratio
• Easily Customizable

1999 2002 2005

Technology Chasm

Technology Chasm

2008

march/april 2006 | Enterprise Open Source Journal | 11

•	Restrictions: Is there a vendor restriction
on CRM enhancements or components for
your deployment?

TCO Factor #2: Control
	 The initial deployment of a CRM prod-
uct is only the first step toward realizing the
full benefits. Tight integration must occur
between the CRM product and existing
computing systems for maximum effective-
ness and payback. Integration was possible
with first-generation CRM systems but
these systems were closed and restrictive.
Integration was consequently expensive,
time-consuming and not well-suited to
changing conditions.
	 Second-generation systems are charac-
terized by their lack of customization flexi-
bility. Since a customer’s CRM data is stored
with the vendor, integration with other sys-
tems is difficult to achieve; this also slows
the pace of most integration efforts. The
hosted multi-tenant environment inhibits
opportunity for customization and flexibility
because many customers share the same ap-
plication and database (see Figure 2).
	 Third-generation CRM systems give or-
ganizations far greater control over the im-
plementation options than prior CRM solu-
tions. Source code availability and SOAP
integration are key capabilities that make

this possible. Each insulates an organization
from vendor dependence and provides more
flexibility than other offerings.

Source Code Availability
	 Traditionally, the act of selecting a ven-
dor represented a shift of control from IT to
the software provider. When a company
commits to a particular vendor, it loses con-
trol of implementation decisions such as if
and when a necessary piece of functionality
is made available or when bugs are fixed.
	 Vendor dependence is inherent to the old
mode of product delivery in which the vendor
provides only a binary (the work product) and
the product’s source (the intellectual property)
remains firmly in the vendor’s control. Be-
cause the vendor retains exclusive control of
product source, the customer is wholly depen-
dent upon the vendor’s decisions regarding
release schedules and content.
	 Third-generation systems present a re-
freshing change to this antiquated delivery
model by including source code. This frees
organizations from the tyranny of vendor
dependence. For instance, if a company re-
quires an immediate bug fix, it has the ability
to make the fix itself, to obtain a fix from the
development community, or to wait for the
fix to be included in a future release. Addi-
tionally, the company can add custom exten-
sions even if they’re not delivered in the
standard product. Furthermore, customer
product modifications may be provided for
testing, certifying, and inclusion in the sup-
ported product.

Easy Integration
	 Some third-generation CRM systems
bundle a SOAP interface that facilitates ac-
cess by external systems. Such an interface
makes integration into a company’s existing
computing infrastructure easier than restric-
tive Dynamic Link Libraries (DLLs) or
Component Object Model (COM) objects.
Many modern applications offer a SOAP in-
terface and this makes integration with other
applications a straightforward process.
	 When you compare third-generation
CRM systems, always determine the com-
pleteness of the product. Look at deployment
options to determine the flexibility of their se-
curity, the performance of the system, and
how well it can scale to handle increased de-
mand. Does the product provide an on-prem-
ise integration solution affording you the ut-
most in security and performance at no
additional cost to integrate with other applica-

tions? On-demand-only solutions charge ex-
tra for this capability, and that can significantly
increase the cost of your CRM deployment.
Such solutions also foster vendor dependence,
making it difficult to change applications inte-
grated with the CRM system or change the
CRM system itself.

TCO Factor #3: Pricing
	 Pricing remains a key customer concern
and major component of system TCO. As
noted earlier, the exceedingly high costs as-
sociated with first-generation CRM products
precluded most businesses the opportunity
to improve customer service. On-demand,
second-generation CRM applications reduce
initial capital expenditures but often result
in large recurring fees. On-demand users of-
ten suffer sticker shock when the real cost of
their CRM application becomes apparent in:

•	An increasing number of user accounts
•	A demand for data storage that exceeds the

allocated amount of storage
•	The need to integrate with non-standard

systems.

	 As an organization grows, particularly by
acquisitions, it can quickly outstrip the abili-
ty for first- and second-generation CRM sys-
tems to keep up with increasingly complex
customization and integration requirements,
more stringent security measures, and other
technology initiatives. The way you’ll learn
this is constantly facing additional charges
for customization of the product to keep
pace with your needs. Furthermore, while
some CRM solutions can initially appear
significantly less expensive, additional charg-
es for integration and other add-ons can be
considerable. In all cases, these factors will
contribute to an increased TCO. It’s for this
reason that all costs must be taken into con-
sideration when evaluating a CRM solution.

Conclusion
	 Companies today must form and main-
tain strong, profitable relationships with their
customers. Failing to maintain a holistic view
of all customers’ interactions leaves a compa-
ny in a vulnerable competitive position.

Bernard Golden is CEO of Navica, a consulting firm offering
open source strategy, implementation, and training services. He
is a well-known authority on open source, particularly regarding
enterprise adoption and use of open source. He is the author of
Succeeding With Open Source (Addison-Wesley, 2005), and the
forthcoming Open Source Best Practices.
e-Mail: bgolden@navicasoft.com
Website: www.navica.com

1st-generation CRM:
Closed source system
Web Services layer
Integration points
Few vendor-made integration sockets
Artificial integration costs

2nd-generation CRM:
Closed source system
Remotely hosted
Lengthy local to remote data exchanges
Few vendor-made integration sockets
Artificial integration costs

3rd-generation CRM:
Visible source code
Integrate with application, database or
SOAP API
No integration socket restrictions
No additional integration costs

Figure 2: Qualities of the Three Generations of
CRM Solutions

For more than 300 years, innovation in
underwriting in the London market has

facilitated global trade and supported new
forms of economic organization. In fact,
there’s remarkable continuity between the
first activities of Lloyd’s of London and the
recent development by our respective com-
panies of the first open source insurance.

Origin of Lloyd’s in Global Trade
	 Lloyd’s of London is probably the world’s
best-known global insurance market, pro-
viding insurance services to businesses in
more than 120 countries. Lloyd’s began in
the late 17th century when ship owners and
their financial backers would gather to drink
coffee and share the latest news in a shop
owned by Edward Lloyd. British sailing ships
were the cutting-edge technology of their
time. Navigating the world’s oceans in small
wooden craft with only rudimentary naviga-
tional equipment was a capital-intensive, and
high-risk—although potentially high re-
turn—business. If their “ship came in” after
several years at sea, merchants could make
tremendous profits, but if it were lost, they
could just as easily be bankrupt.
	 Merchants faced an investment environ-

ment familiar to high-tech entrepreneurs
today. Each voyage aimed to purchase goods
at low cost in some far away port and sell
them at huge profits in London, or vice ver-
sa. The London-based shipping business
was highly profitable when considered as a
whole, but concentration of risk made
scraping together sufficient capital for any
particular voyage difficult.
 	 Merchants developed syndication as the
solution. They began to purchase fractional
shares in multiple voyages for the same rea-
son modern venture capitalists back a port-
folio of companies: risk diversification. Just
as today’s successful technology investors
need specialized expertise to distinguish
good deals from bad, merchants would con-
sider the design and state of repair of each
ship, the experience and judgment of its
captain and crew, and the relative difficulty
and potential profitability of its planned
route and cargo. A contract would circulate
in the Lloyd’s coffee house, and those who
wanted to participate would add their name
to a list on the bottom of the page to “un-
derwrite” the voyage.
	 Over time, individuals emerged who,
for a fixed fee, would take on a portion of

the risk of a ship being lost. These “under-
writers” made all their money through their
superior analysis of maritime risk. It’s worth
noting that this original insurance risk was
not liability risk. No one would sue you if
your ship sank; in those days no one was
even necessarily at fault. Rather, it was what
insurance experts would call loss-of-value,
business interruption, or “first-party” risk.
By assuming first-party risk, the Lloyd’s un-
derwriters made possible an exponential
expansion of global trade that—along with
the British Navy—made the British mer-
chant fleet the largest in the world by ton-
nage—leadership it maintained for nearly
200 years.

Open Source and Global Trade
	 Today’s comparable frontier of global
trade is in the area of IT, and in particular,
in the emergence of the global collaborative
model for software development. What does
global collaborative software development
mean in practice? It means, for example,
that a corporate office based in any one
country can hire developers living in a sec-
ond country to write software that’s de-
bugged and tested in a third country, hosted

12 | Enterprise Open Source Journal | March/april 2006

Global Collaborative
Software Development
& Deployment in the
Era of Open Source:
The Underwriter’s Role
By Matthew R. Hogg and Daniel Egger

on hardware located in a fourth country,
and that’s ultimately used by that corpora-
tion’s employees and customers located any-
where in the world.
	 This model represents a profound, irre-
versible leveling of global boundaries to
communication and commerce. And this
new model relies extensively on the use of
shared open source libraries, components,
and applications. In fact, it’d be impossible
without a shared code base made available
under the license terms contained in the
more than 50 open source licenses.
	 Because the Linux kernel and the Free
Software Foundation’s C Libraries and util-
ities are made available universally under
the General Public License (GPL), devel-
opers anywhere can write applications for
the combined operating system’s standard
Unix-based Application Program Interfac-
es (APIs) without fear that their projects
will later become obsolete or be hijacked
by any commercial entity. Open standards
for interaction of software using the most
critical of the Internet protocols are of
practical commercial value only because
the open source Apache Web Server and
the Perl and Python scripting tools provide
neutral, royalty-free infrastructure by
which commercial developers of all kinds
can use them to develop standardized, in-
teroperable offerings.
	 One of the remarkable things about liv-
ing in a time of fundamental transformation
in the global economy is that what would
have seemed extraordinary even a few years
ago now seems natural and obvious. Bor-
derless, transnational information technol-
ogy based on open standards and open
source licenses is easy and allows for the
best resources for any given task to be
brought to bear without friction or delay,
and without needless duplication of effort.
But the world’s legal systems don’t move at
revolutionary speed, and are still struggling
to catch up with most of the implications of
this transformation.
	 Business decisions to invest large sums
of money in new technology often depend
on a prior determination that the resulting
software won’t need to be “open sourced”
under the GPL or similar license, but in-
stead can be maintained as proprietary in-
tellectual property, offering its owners a
source of license revenue or competitive dif-
ferentiation.
	 Most software engineers have a good in-
tuitive grasp of what’s meant in most cir-

cumstances by a “work based on the pro-
gram”—the language in the GPL that
triggers a requirement that, if the new, de-
rivative work is also “distributed,” the new
work must also be made available under the
GPL, along with the work’s underlying
source code, to all those who receive it. Nev-
ertheless, good faith differences will invari-
ably arise, regarding either whether the pro-
prietary code is a “work based on the
program” in that specific context, or wheth-
er the company’s use of the proprietary code
constitutes “distribution.” Good faith differ-
ences that fall within the possible scope of
future judicial interpretations are often
called by insurers “legal” risk—to distin-
guish them from risk caused by the fault of
the insured.
	 In a global economy, it can be difficult or
impossible for corporate decision-makers to
anticipate whose interpretation of license
language and relevant law would ultimately
be binding to resolve a situation where an
open source developer decides to enforce
his or her perceived rights under the GPL
through a lawsuit. Because open source li-
cense disputes are both global and novel,
they push the world’s legal systems into un-
charted territory.
	 For example, consider the previous ex-
ample, where the disputed software’s origi-
nal authors, current owners, hosting site,
and commercial use are all in different
countries. The open source developer seek-
ing to enforce his rights may live in yet a
different country. And, even if none of these
activities occurred in the U.S. or Germany
(the two countries that, to date, have the
most experience with judicial interpretation
of the GPL in compliance situations), and
the developer doesn’t live in either country,
he might still try to bring his case there. Al-
most completely unresolved today are the
following:

•	What exactly do “work based on the pro-
gram” and “distribution” mean to judges
with little or no technical training?

•	Does the GPL open sourcing requirement
apply only to “derivative works” as that
term is defined in U.S. Copyright law?
(That seems to be the case in the U.S., but
certain other authors’ rights, such as moral
rights, may come in to play in other juris-
dictions.)

•	How much contact must an open source
developer have with the forum where he
chooses to bring a lawsuit for the courts in

that country to get involved?
•	Is there a minimum level of contacts a de-

fendant must have with that same jurisdic-
tion for a court to hear the case?

•	What happens if courts in more than one
country claim jurisdiction over the same
dispute?

•	What remedies can courts impose?

	 Over the past year, Kiln—a managing
agency at Lloyd’s of London—has developed
a risk-transfer product—Open Source Com-
pliance Insurance—that can provide com-
mercial users and developers of software
anywhere in the world with global certainty
regarding their risk in these uncharted ar-
eas. The goal is to let companies proceed
with global collaborative software develop-
ment in confidence. The Compliance Insur-
ance coverage, like the original Lloyd’s mari-
time coverage, is “first-party”: It reimburses
client companies for the loss in commercial
value of proprietary software if it must be
unexpectedly open-sourced.
	 Even with all the uncertainties sur-
rounding legal interpretation of the GPL
and other similar copyleft licenses, we’ve de-
veloped risk-assessment protocols that let us
determine that a company’s code use and
ongoing development procedures put it in a
zone of reasonable open source use and in-
surable risk. Most companies will be eligible
for coverage, although the cost of coverage
may vary depending on that company’s cur-
rent practices.
	 The initial target market is in mergers
and acquisitions of technology companies,
where representations and warranties of
compliance are absolutely necessary. How-
ever, on a case-by-case basis, an offering of
annual renewable coverage based on the
same risk-assessment
model can be made gener-
ally available.

Matthew R. Hogg is an underwriter at
Kiln, a managing agency at Lloyd’s of
London. As part of the Risk Solutions
team, he is Kiln’s specialist in the field
of Intellectual Property insurance and
first-party cover.
e-Mail: matthew.hogg@kilnplc.com
Website: www.kiln.co.uk

Founder and CEO of Open Source Risk
Management, Daniel Egger is a serial
entrepreneur and lawyer and is well-
versed in both the engineering and
legal aspects surrounding open
source use.
Voice: 919-680-4511
e-Mail: degger@osriskmanagement.com
Website: www.osriskmanagement.com

march/april 2006 | Enterprise Open Source Journal | 13

Open Issues	 BY MARK DRIVER

Open source licensing is distinctly different from closed
source; however, other elements of the model have more

in common with traditional practices and are less easily
distinguished. Open source “development” is a good example.
Clearly, the development practices around most successful
open source efforts differ from traditional projects, yet they
also share many common elements.
	 Open source development is a mixture of “open”
principles such as open standards combined with a distrib-
uted team and a strong community that provides direct
development assistance, quality control, and feature feedback.
These best practices are the heart of every successful open
source project.
	 Unlike traditional development efforts, open source
projects often include a widely distributed approach with a
decentralized focus. They allow overlapping efforts where the
most appropriate technologies are selected downstream. This
allows developers to try many approaches without having to
plan ahead for all contingencies. Ultimately, the absolute rule
remains true for all open source efforts: The sharing of source
code is the means and not the end of the effort.
	 Open source is more than a license definition; it’s also a
methodology significantly different from the approach used
by most mainstream software vendors and IT organizations.
Eric Raymond’s famous “Cathedral and Bazaar” paper refers
to the open source phenomenon as the “bazaar” software
development style and the standard commercial operating
system development approach as the “cathedral” style. In the
bazaar style, bugs are generally viewed as shallow phenomena
because they quickly turn shallow under the scrutiny of a
thousand co-developers. Thus, the maxim of the bazaar style
is to release early and often. Alternatively, the typical “closed
source” approach is characterized by infrequent (once or
twice a year) release dates and deep, time-consuming
debugging efforts after initial code construction. In contrast,
the open source approach implies frequent beta releases that
encourage parallel debugging efforts by the user community.
Debugging can be viewed as a “parallelizable” activity that
doesn’t require significant coordination between debuggers.
	 Metcalfe’s law states that the value of a network equals
approximately the square of the number of users of the
system (n2 − n). If we relate this to open source, the “users”
are actually the developers within the project. As the number
of developers increases, the number of “eyes” on the source
code creates a network effect that increases the value of that
source code. Some developers provide defect removal; others
optimize the code for performance; while others add new

features. The key is the ability to compartmentalize in
modular units that minimize dependences across the project
source. The degree of this modularity directly affects the
potential size of the network, since complex relationships
work directly against the network effect.
	 There are many motivators to initial open source projects.
Some of the most successful open source projects began as
developers “scratching their own itch.” This is a core principle
that binds the community together toward a common goal.
This personal need is the most common factor in early project
efforts. In addition, many projects begin by developers
expressing their creativity. For some, the hacker ethic is as
much an art form as an engineering process. Others push the
ideal of free software to political and ideological extremes
(e.g., The Free Software Foundation). For these developers,
open source and free software represent a larger statement
focused on intellectual property concerns.
	 Once established, an open source project focuses on
building community credibility. Projects must attract like-
minded developers and establish an infrastructure that
provides a balance between command and control but also
allows for flexibility and freedom of collaboration. Version
control is the first step to allow contributors to clearly track
and manage additions and changes to source. However, a
larger set of design and governance structures is also
required. Peer review and conflict resolution policies must be
clearly set up and articulated to the community.
	 Based on the choices made during the inception and
early organizational efforts, projects may grow rapidly,
settle within a small but active niche, or die away altogeth-
er. Very few projects ever reach the critical mass of
products such as Linux, Apache, or PHP. However,
numerous projects enjoy successful lifecycles within small
and more focused communities.
	 While the core “tools” of an open source development
model share many common elements with traditional
application development efforts, the “vision” and intent of
the model has many aspects that set it apart. Traditional
IT organizations can learn a great deal from these best
practices.

Mark Driver is a research vice president with Gartner. He has
more than 18 years of experience in IT focused primarily on
client/server and open systems technologies. At Gartner, he
covers application development tools and best practices. He
also serves as the agenda manager for Gartner’s open source
research initiatives.
e-Mail: mark.driver@gmail.com
Website: www.gartner.com

What Is Open Source “Development,” Anyway?

14 | Enterprise Open Source Journal | March/april 2006

march/april 2006 | Enterprise Open Source Journal | 15

When it comes to selecting open
source products, most developers
and users have the same basic re-

quirements: longevity, cost, and functional-
ity. Ultimately, it all boils down to one basic
concept: bang for the buck. The question ev-
ery open source consumer must ask is,
“What’s the most utility I can get for the least
amount of resources?”
	 If you’re an EOSJ subscriber, you’re proba-
bly an Open Source Software (OSS) user or
developer and have been thinking about soft-
ware in these terms for a while. You’ve prob-
ably adopted OSS as a means to satisfy many
of these issues. You’re likely an above-average
technologist, a forward or strategic thinker, >

Navigating the
Open Source

Software Jungle
By Ken Mulcahy

Navigating the
Open Source

Software Jungle
By Ken Mulcahy

and not adverse to risk.
	 Perhaps you’ve already taken the OSS
leap to small proof points and maybe even a
reference implementation. People in your
group respect your judgment and view you
as a leading-edge technologist. Yet, you’re
still faced with selling open source solutions
to the rest of the organization if you expect
support and adoption.
	 Given the amount of Fear, Uncertainty,
and Doubt (FUD) spread by your proprie-
tary competitors and the typical lack of ex-
perience with OSS within the rest of the or-
ganization, you likely now have an uphill
sales job on your hands. The management
and evaluation teams will express concerns
about each of these topics:

•	Licenses
•	Liability
•	Intellectual property
•	Support
•	Costs (initial and recurring)
•	Long-term viability
•	Quality
•	Reliability.

	 Before you address these issues, it helps
to start the evaluation or analysis with an
overview of what OSS actually is and the
different OSS product marketing approach-
es you may encounter.
	 Convincing management that you un-
derstand various commercial market mod-
els will facilitate future discussions and ease
your path to adoption. It gives everyone a
common base from which to operate.

Matching OSS Solutions to Your Enterprise
	 The commercialization of OSS projects
has generated controversy over the years.
Companies have struggled to develop viable,
realistic OSS commercial revenue models.
Numerous models have been developed
over the past five years, with several emerg-
ing as the most successful ones:

•	Proprietary license model
•	Subscription service model
•	Services revenue model.

	 There are significant differences between
these approaches. Each provides an infra-
structure to make its implementations suc-
cessful. Choosing the approach that fits your
company’s infrastructure, capabilities, and
business model is crucial. Choosing a model
that’s incompatible with your needs is likely

to result in failure. The rewards for imple-
menting OSS properly are high, but so are
the penalties for mistakes.

Proprietary License Model
	 When OSS companies market their
products as completely proprietary, they
generally do so to exert greater control over
changes and functionality to reduce their
ongoing support costs. Actually, the cost to
the customer is similar to an OSS subscrip-
tion service model for the same reasons.
	 Essentially, if you market an OSS prod-
uct or solution like a proprietary product,
customers will view it as a proprietary prod-
uct. Customers usually aren’t impressed by
this type of OSS marketing and tend to view
it as nothing more than a low-cost proprie-
tary product. However, they do appreciate
the huge difference in cost vs. a typical pro-
prietary licensed product.
	 Only companies comfortable with rela-
tively stable software with infrequent feature
enhancements should choose this model.
You should be comfortable with the prod-
uct’s feature set and functionality because
what you see is what you get and change will
occur slowly. Low cost and stability drive
this solution.
	 In summary, with the proprietary license
model, the software is proprietary and cus-
tomers have no access to the source code.
The software doesn’t handle custom or
unique environments. Proprietary support
services typically include phone, e-mail, and
help desk. Patches and bugs are available
only in the next release. Enhancements are
released to the company’s roadmap. Profes-
sional services are limited and often offered
through third parties, but product training
is usually available.
	 Customers who are a good fit for this
model are those that like to manage their
own OSS site administration. This model
provides OSS integration services with en-
terprise hardware and software; some OSS
companies may provide integration support.
With this model, the OSS provider controls
application development and provides its
own performance tuning.

Subscription Service Model
	 The subscription service model keeps
the OSS software as a public project. The
model relies on an initial subscription fee
and a recurring annual maintenance sub-
scription fee. While this model is similar to
a proprietary software license model, it’s

typically significantly less expensive. In the-
ory, this great difference in cost is due to the
product company’s lower expenses in the
form of original engineering development,
marketing, sales, and ongoing support costs,
which are greatly reduced by the open
source development community’s efforts
and those of the user base.
	 This model works well for a large enter-
prise that has a solid support infrastructure
and can manage its own integration and ad-
ministration, relying on help desk and revi-
sion control services for the software stack.
This is similar to how commercial compa-
nies support their proprietary licensed soft-
ware implementations.
	 Only companies that are comfortable
with relatively stable software with infre-
quent feature enhancements should choose

16 | Enterprise Open Source Journal | March/april 2006

When it comes to

selecting open

source products,

most developers

and users have

the same basic

requirements:

longevity, cost,

and functionality.

this model. You should be quite comfortable
with the product’s feature set and function-
ality, as they will slowly change. Subscription
service model characteristics include:

•	An OSS company that offers a subscription
service model usually offers a supported
OSS build, rather than the public project
build, and sometimes includes proprietary
software. Sometimes the software is ex-
tendable, depending on the OSS license
type and whether the user has access to the
source code, especially in the proprietary
portions.

•	This model doesn’t support extensions or
customizations because they’re difficult to
support and manage. Custom or unique
environments aren’t feasible with this
model and support services are often lim-
ited in scope and similar in nature to pro-
prietary support services.

•	Customers who are a good fit for this mod-
el are those able to manage their own OSS
site administration. Customers will find
that OSS integration services are available
with enterprise hardware and software and
some OSS companies may provide integra-
tion support. Solution providers in this
model control application development
and provide general enterprise support.
Typically, a subscription services OSS com-
pany doesn’t have a large professional ser-
vices component built into its business
model. This lets it maintain a relatively low
support cost infrastructure so it can focus
on product development, maintenance,
and enhancement.

	
Services Revenue Model
	 The services revenue model is truly a
pure-play OSS product model; it retains all
the attributes of a non-commercial project
with the principal exceptions being that the
products are commercially supported and
are generally driving standards. A classic ex-
ample are the Apache projects because they
drive commercial standards and enjoy wide-
spread adoption. This sets the stage for wide-
ly available commercial support coupled
with stability and a rich feature set.
	 While some may think enterprise adop-
tion takes courage, the rewards can be ex-
tremely high. The services revenue model
embraces the community as a whole, bring-
ing the Small and Medium-size Businesses
(SMBs) and enterprise users together to de-
velop, extend, and support a rich set of func-
tionality.

	 The real goal for commercializing OSS is
to establish a standard to which all users can
work. Vibrant open source communities, not
competing proprietary ones, establish stan-
dards. Standards-based OSS will consistently
deliver highly useful, complex software func-
tionality at a relatively low initial cost, cou-
pled with low, ongoing support costs.
	 When the user community is large and
heterogeneous, markets tend to be large and
growing. Organizations demand services at
many levels, with room for large and small
participants. Encouraging service competi-
tors tends to grow the market, extending the
service providers’ market reach.
	 The measurements for success for any
software program and particularly for OSS
programs are the adoption rate and utility in
their respective user communities. Com-
mercial service model companies that focus
on customer enablement and active commu-
nity participation really facilitate adoption
and growth.
	 Companies that strive for leading-edge
OSS functionality and are interested in con-
tributing to an active community environ-
ment should choose this model. While many
companies are often satisfied with an OSS
product’s initial features and functionality,
many others are interested in enhancing and
expanding that functionality to fit their
needs. This scenario can provide the best of
both worlds for companies wanting to use a
product at low cost that will grow well into
the future.
	 The emergence of the service model fills
a huge gap in the adoption of OSS in that the
commercial companies supporting this
model base their entire business models on
professional services and are well-positioned
to deliver sophisticated commercial solu-
tions, drive standards, and enable customers
to be self-sufficient. This provides customers
with solutions at a relatively low cost that are
likely to be technologically current.

•	This is not a “what you see is what you get”
scenario, as with the other models. Fea-
tures and functionality grow rapidly due to
a large user and developer base. Low cost,
functionality, and growth drive this solu-
tion. With the service model, software is
actually open source; the customer has
complete access to source code. The OSS
service model company supports a com-
plex set of professional services, including
administration, implementation, integra-
tion, consulting, extension, application de-

velopment, performance tuning and test-
ing. Standard support services typically
include phone, e-mail and help desk.
Patches and bugs are rapidly addressed.
Enhancements generally occur in keeping
with an OSS release schedule and training
is available.

	 Customers who are a good fit for this
model will take responsibility for OSS site
administration and actively participate in
the OSS project by, for example, making fea-
ture requests, managing patches or other-
wise contributing to the OSS development.
With this model, the OSS provider controls
application development and project inte-
gration may be a joint responsibility between
the customer and OSS provider.

Conclusion
	 The promise of OSS is delivering highly
useful, complex software functionality at a
relatively low initial cost to customers, cou-
pled with self-sufficiency and low, ongoing
support cost.
	 The measures of success for any software
program, particularly an OSS program, are
the adoption rate and utility in its respective
user community. For OSS programs, this is
accomplished best through ongoing custom-
er enablement programs. The goal is to facil-
itate program adoption, use, and self-suffi-
ciency for the developer and user
communities.
	 Commercial OSS products have matured
considerably. Many companies are adopting
and commercially supporting OSS. Choos-
ing the right OSS strategy for your company
is vital to success. A great deal of opportuni-
ty is available for companies that can take a
methodical approach to adopting OSS prod-
ucts and solutions that solve real problems
in their environments.
	 The business rewards in cost, competi-
tive advantage, time to market, and perfor-
mance can be outstanding if your OSS is
correctly implemented. Many commercial
models for OSS exist today, so proper dili-
gence and alignment to your company’s ob-
jectives are critical.

Ken Mulcahy is vice president of Sales at Virtuas Solutions, an
enterprise OSS solutions company. He has held a variety of
management, sales, and marketing roles, spanning a career of
more than 20 years. During the past five years, he has held key
leadership positions at open source firms, including president of
Tungsten Graphics, an open source graphics engineering firm,
and regional manager at VA Linux, one of the industry’s most
successful open source companies.
e-Mail: ken@virtuas.com
Website: www.virtuas.com

march/april 2006 | Enterprise Open Source Journal | 17

IntercontinentalExchange (NYSE: ICE) is the world’s
leading electronic marketplace for energy trading and

price discovery. ICE’s transparent and efficient market
structure, coupled with its secure, electronic trading
platform, allow ICE to provide market participants with
direct access to energy futures and thousands of Over-the-
Counter (OTC) commodity products for oil and refined
products, natural gas, power, and emissions. Today, more
than 30 percent of the world’s oil trading is handled by ICE.

It is easy to see how performance is a key and constant issue
for the company.
	 ICE requires high-performance out of its technology and
exchange systems. “We are constantly looking to improve our
technology and we focus on best-of-breed solutions,” says
Edwin Marcial, senior vice president and CTO. “We don’t
take anything at face value. In order to prove a technology is
best-of-breed, we put it through a rigorous proof-of-concept
process. Each technology must prove itself in our intended
application before we adopt it into our core systems. This
goes for both open source and proprietary solutions.
We simply want the best products that deliver the best
performance and the most reliability.”
	 In 2002, ICE embarked on a new project that drove the
IT department to try a new application server solution.
“We had a couple of developers who suggested we should
replace our current application server solution with an
open source software application server product named
JBoss. They argued that JBoss was easier to work with, more
reliable, and true to the standard,” says Marcial. “We were

not necessarily unhappy with our current application server,
and I was hesitant to move mission-critical systems to an
unproven product and open source paradigm. After months
of prodding by my developers, I decided to test the JBoss
application server on a pilot project for a market data feed to
wireless devices. This was not a mission-critical application
for us, so it was a low risk way to put the JBoss application
server to the test. The pilot went very well—completing very
quickly and with little issues. Over time, we implemented

other projects with JBoss and our confidence in the product
and open source in general grew.”
	 The success of using JBoss for an initial project led to the
product being used for mission-critical applications. “Today,
we use JBoss to drive our new Website, which delivers
more dynamic content than in the past,” Marcial continues.
“The entire Website runs on JBoss Apache Web servers and
JBoss Application Server. JBoss also powers our Clearing
Infrastructure as well as our Market Price Validation service,
which provides a method of pricing long-dated trades.”
	 While ICE has a best-of-breed strategy for selecting
solutions, the company does feel open source software gives
them a competitive advantage. “Open Source solutions
allow us to be more efficient and have more control over
our software solutions,” says Marcial. ”We want products
that are best-of-breed, fast, reliable, and come with excellent
support—JBoss gives us that.”

For more information, contact JBoss Inc., 3340 Peachtree Road, NE, Suite 1200, Atlanta,
GA 30326. Voice: 404-467-8555; Website: www.jboss.com.

Performance Fuels World’s Leading
Electronic Marketplace

18 | Enterprise Open Source Journal | March/april 2006

BY DENNY YOST

Today, more than 30 percent of
the world’s oil trading is handled
by ICE. It is easy to see how
performance is a key and
constant issue for the company.

march/april 2006 | Enterprise Open Source Journal | 19march/april 2006 | Enterprise Open Source Journal | 19

	 Enterprise	Grid
	 Computing:
	State-of-the-Art

By Rajkumar Buyya, Ph.D.,
and Krishna Nadiminti

T he term “grid” as
used today means
many different

things to different people. It’s
often used to refer to various
forms of distributed systems,
such as cluster-based systems,
Point-to-Point (P2P) networks,
wide-area distributed storage
solutions, and the like.
Numerous large companies add
to the confusion by liberally
using the term grid while
describing their products and
services. So, it has now become
such a common industry >

buzzword that the actual meaning needs to
be inferred from the context.
	 Let’s provide yet another definition, one
that encompasses several existing defini-
tions and describes some basic attributes of
a grid:
	 “Grid is a type of parallel and distributed
system that enables the sharing, selection, and
aggregation of geographically distributed, ‘au-
tonomous’ resources dynamically at run-time
depending on their availability, capability,
performance, cost, and users’ quality-of-ser-
vice requirements.” (Source: Grid Computing
Info Centre: Frequently Asked Questions,
accessible at www.gridcomputing.com/grid-
faq.html)
	 Given this definition, today’s distributed
systems have a varying degree of grid-like
characteristics. There are many systems de-
veloped and deployed for various purposes
and myriad names have emerged to describe
these: compute grid, data/storage grid, cam-
pus grid, enterprise grid, global grid, knowl-
edge grid, sensor grid, cluster grid, PC grid,
commodity/utility grid, and so on. Ian Fos-
ter has written an interesting article titled
“What Is the Grid? A Three Point Checklist,”
that describes some characteristics of a grid
system. (You can access this article at www.
gridtoday.com/02/0722/100136.html.)
	 This article lists the benefits of grid com-

puting for the enterprise and describes a
grid-oriented open source project with a
compelling service-oriented framework.

Grid Benefits and Challenges
	 In a typical Small or Medium-Size Enter-
prise (SME), there are many resources that
are generally underutilized for long periods.
A resource in this context means any entity
that could be used to fulfill any user require-
ment; this includes compute power (CPU),
data storage, applications, and services. An
enterprise grid can be loosely defined as a
distributed system that aims to dynamically
aggregate and coordinate various resources
across the enterprise and improve their utili-
zation for greater productivity.
	 Grid computing technology provides
enterprises an effective solution for aggre-
gating distributed resources and prioritizing
allocation of resources to different users,
projects, and applications based on their
Quality of Service (QoS) requirements.
These benefits ultimately result in huge cost
savings for the business.
	 There are various applications of grid
computing. Many commercial compute-in-
tensive applications, such as drug discovery,
clinical modeling, simulation, investment
and credit-risk analysis, large-scale docu-
ment processing, and data-intensive appli-

cations that involve aggregation and man-
agement of distributed data storage centers,
can vastly benefit from the performance en-
hancements and resource aggregation capa-
bilities that can accrue from the use of grid
technologies.
	 However, grids today don’t address all
the issues important to the enterprise. That’s
because they were born in academic com-
munities where such issues aren’t a high pri-
ority. There are some important distinctions
between the types of grids used in research
communities and those that can be used in
an enterprise or commercial environment.
Figure 1 outlines the characteristics that dif-
ferentiate an enterprise grid from a re-
search-oriented grid. The stars reflect the
importance/desirability of the attribute to
each type of grid.

The Current State of the Enterprise Grid
	 Grid technology is evolving to provide
solutions that more fully address enterprise
requirements. The technology is rapidly
moving from academia and scientific re-
search and applications toward mainstream
enterprise applications with a special em-
phasis on Service-Oriented Architectures
(SOAs) and utility computing. The enter-
prise grid currently includes a range of ap-
plications that use data centers and applica-
tion clusters to distribute workloads of
applications such as:

•	Accounts receivable
•	Investment portfolio risk analysis
•	Pricing securities in the finance and insur-

ance sector
•	Finding solutions to bottlenecks in prod-

uct design and development cycles in the
manufacturing sector

•	Drug discovery in the pharmaceutical sec-
tor

•	Digital media creation, rendering, and dis-
tribution management.

	 While most early-adopters are still run-
ning batch-oriented applications, the con-
cepts of SOA and virtual organizations are
already being used to explore the possibili-
ties of running transactional and interactive
applications on enterprise grids where the
QoS is expected to be reliable, especially
when bound by Service Level Agreements
(SLAs).
	 Investment in enterprise grids is expect-
ed to grow manifold in the next five years as
more companies come up with value-added

20 | Enterprise Open Source Journal | March/april 2006

Figure 1: Comparison of Features/Characteristics of a Commercial and Non-Commercial Distributed Systems

	 Enterprise Grid 	No n-commercial
	 Systems	 Grids

Criticality of efficient and optimal resource usage	 	

Sharing of inter-organizational resources	 	

Authentication and authorization	 	

Security of stored data and programs	 	

Secure communication	 	

Centralized / semi-centralized control	 	

License Management issues	 	

Auditing	 	

Quality of Service (QoS) and Service Level Agreements (SLAs)	 	

Economy-based & Service-Oriented Architecture (to support QoS)	 	

Interoperability of different grids	 	
(and, hence, the basis of open standards)

Support for transactions	 	
Note: A maximum of five stars means the particular feature/attribute is of utmost importance. Absence of a star
means the attribute isn’t required/desirable.

20 | Enterprise Open Source Journal | March/april 2006

services, according to a Network World arti-
cle titled “Grid Taking Shape in Enterprise
Nets” (accessible at www.networkworld.
com/news/2005/101005-grid.html). Various
major companies are already offering a
range of services such as:

•	IBM’s “Grid and Grow,” (described at www-
1.ibm.com/grid/) includes IBM’s grid hard-
ware, operating systems, schedulers, servic-

es and client training, and is intended to
give businesses a competitive edge by using
available resources more efficiently.

•	Oracle’s grid computing solution (de-
scribed at www.oracle.com/technology/
tech/grid/index.html) lets businesses stan-
dardize on modular servers and storage;
consolidate servers and storage with Ora-
cle Database (10g) and Real Application
Clusters; and automate daily management
tasks.

•	Sun Microsystems’ “Grid Utility Comput-
ing” (described at www.sun.com/servers/
grid/) is a pay-per-use service that lets users
dynamically provision compute power, de-
pending on application requirements. Sun
provides access to a standardized grid com-
puting infrastructure that lets you offload
your compute-intensive workloads with
minimal risk and no capital investment.

•	HP is delivering grid-based storage prod-
ucts today that are built according to their
“StorageWorks” architecture (described at
http://h71028.www7.hp.com/enterprise/
cache/125369-0-0-0-121.html). These
products either use early versions of smart
cell technology or exemplify other design
attributes of the architecture, such as sin-

gle system image management.

	 The Enterprise Grid Alliance (EGA) is
an open, non-profit, vendor-neutral consor-
tium formed to develop enterprise grid so-
lutions and accelerate the deployment of
grid computing in enterprises. It consists of
more than 30 members, including grid us-
ers, vendors and solution providers such as
IBM, Oracle, Sun, Intel, HP, DataSynapse,

Univa, and Dell. The EGA, as described at
www.gridalliance.org, aims to encourage
and accelerate movement to an open grid
environment through interoperability solu-
tions. It will work on grid computing stan-
dards by endorsing and supporting existing
specifications, assembling and profiling
component specifications, and defining new
specifications where needed.
	 Open Source Software (OSS) is involved
in a big way in the development of enter-
prise grids. Many grid solutions (including
IBM’s grid service offerings for the enter-
prise) are currently based on the open
source Globus toolkit developed by the Glo-
bus Alliance, Argonne National Laboratory,
and the University of Chicago and described
at www.globus.org. It’s a set of software ser-
vices and libraries for resource monitoring,
discovery, and management plus security
and file management that facilitate con-
struction of computational grids and grid-
based applications, across corporate, institu-
tional and geographic boundaries.
	 Globus offers grid middleware that
mainly runs on the Unix-like platforms.
Several open source grid projects have de-
veloped user-level middleware that work

with the Globus toolkit. One such effort is
the Gridbus project at the University of Mel-
bourne, which developed the Grid Service
Broker. As described at www.gridbus.org/
broker/, the grid service broker supports
creation, scheduling, and deployment of
computational or data grid applications (in-
cluding work flows) on enterprise and glob-
al grids.
	 Another open source grid initiative from

the Gridbus project is the Alchemi enter-
prise grid-computing framework that har-
nesses the power of a network of computers
running Windows.

Alchemi: An OS Enterprise Grid Computing Framework
	 Alchemi, as described at www.alchemi.
net, is an open source, .NET-based enter-
prise grid computing framework developed
by researchers at the GRIDS lab, in the Com-
puter Science and Software Engineering De-
partment at the University of Melbourne,
Australia. It lets you painlessly aggregate the
computing power of networked machines
into a virtual supercomputer and develop
applications to run on the grid with no addi-
tional investment and no discernible impact
to users. It’s been designed to be easy to use
without sacrificing power and flexibility. It
supports the Microsoft Windows operating
system, which is seen as a key factor in in-
dustry adoption of grid computing technol-
ogy, since more than 90 percent of machines
worldwide run variants of Windows.
	 The main features offered by the Alche-
mi framework are:

•	Virtualization of compute resources across

march/april 2006 | Enterprise Open Source Journal | 21march/april 2006 | Enterprise Open Source Journal | 21

The term “grid” as used
today means many different
things to different people.

the LAN/Internet
•	Ease of deployment and management
•	Object-oriented “grid thread” program-

ming model for grid application develop-
ment

•	File-based “grid job” model for grid-en-
abling legacy applications

•	Web Services interface for interoperability
with other grid middleware.

	 Figure 2 shows the Alchemi architecture,
which has three types of components:

•	The Manager
•	The Executor
•	The User Application.

	 The Manager node is a computer with
the Alchemi Manager component installed.
Its main function is to service user requests
for application distribution. The Manager
receives a user request, authenticates it, and
distributes the workload across the various
Executors that are connected to it. The Ex-
ecutor node is the one that actually per-
forms the computation. Alchemi uses role-
based security to authenticate users and
authorize execution.
	 A simple grid is created by installing Ex-
ecutors on each machine that’s to be part of
the grid and linking them to a central Man-
ager component. The Windows installer set-
up that comes with the Alchemi distribution
and minimal configuration makes it easy to
set up a grid.
 	 An Executor can be configured to be

dedicated (meaning the Manager initiates
application execution directly) or non-dedi-
cated (meaning that the execution is initiat-
ed by the Executor). Non-dedicated Execu-
tors can work through firewalls and Network
Address Translation (NAT) servers since
there’s only one-way communication be-
tween the Executor and Manager. Dedicated
Executors are more suited to an intranet en-
vironment and non-dedicated Executors are
more suited to the Internet environment.
	 Users can develop, execute and monitor
grid applications using the .NET Applica-
tion Program Interface (API) and tools that
are part of the Alchemi Software Develop-
er’s Kit (SDK). Alchemi offers a powerful
grid thread programming model that makes
it easy to develop grid applications and a
grid job model for grid-enabling legacy or
non-.NET applications.
 	 An optional component is the Cross
Platform Manager Web Service that offers
interoperability with custom non-.NET grid
middleware. Alchemi also comes with a Java
API that can be used to develop Java-based
clients that need to harness the computing
power of an Alchemi grid.
	 Alchemi is widely used for a variety of
applications. It has been used for teaching
and setting up test grids and also some seri-
ous applications in the commercial world.
Some Alchemi-based industrial applications
and projects include:

•	Large-scale document processing (Tier
Technologies, U.S.)

•	Natural resource modeling (CSIRO, Aus-
tralia)

•	Asynchronous Excel tasks using Managed
XML Linking Language (XLL) (stochastix
GmbH, Germany)

•	Detection of patterns of transcription fac-
tors in mammalian genes (The Friedrich
Miescher Institute (FMI) for Biomedical
Research, Switzerland)

•	Finding the location of a high-frequency
radio transmitter using Secure Sockets
Layer (SSL) technology (Correlation Sys-
tems Ltd., Israel).

A Peek Into the Future
	 The enterprise grid is still in its nascent
stages in terms of development and indus-
trywide adoption, but is poised for rapid
growth. However, there are issues that pre-
clude the big revolution that the grid
promises to bring to IT. Some problems to
solve include security, development and
wide adoption of standards for represent-
ing and executing applications and work-
flows, resource description, monitoring
and management, dynamic service com-
position and aggregation. There are also
issues relating to managing data, intellec-
tual property, developing new software li-
censing models and their enforcement,
representing QoS and formulating and en-
forcing SLAs that are especially important
in a commercial environment. Consider-
able research is under way in these areas
and the standards are constantly evolving.
Finally, before grid computing becomes
ubiquitous, a sustainable business model
has to be developed so all parties obtain
value from adopting grid technologies.
	 It’s widely believed that the grid of the
future will be based on SOA and software
and hardware will be available as a utility
with demand and supply regulated by the
concept of an economic market—just like it
works for any other utility such as electrici-
ty, telephone, and water.

Rajkumar Buyya, Ph.D., is director of the Grid Computing and
Distributed Systems (GRIDS) Laboratory within the Department
of Computer Science and Software Engineering at the
University of Melbourne, Australia. He has pioneered the
economic paradigm for service-oriented grid computing and
demonstrated its utility through his contribution to
conceptualization, design and development of cluster and grid
technologies, such as Gridbus, that powers many emerging
eScience and eBusiness applications.
e-Mail: raj@cs.mu.OZ.AU

Krishna Nadiminti is a research programmer for the GRIDS
laboratory, Department of Computer Science and Software
Engineering, the University of Melbourne, Australia.
e-Mail: kna@cs.mu.OZ.AU

22 | Enterprise Open Source Journal | March/april 200622 | Enterprise Open Source Journal | March/april 2006

Figure 2: A Simple Alchemi Grid

Legal Issues	 BY DAVID E. GOULD

GPL Prediction Latitude

D ue dates are tricky things. This column was due right
before the release of the first draft of the GPL3 GNU

Public License Version 3 (GPL3). However, given the
importance of the GPL to the open source community, and
the sheer number of discussions that will center around the
GPL3 in 2006, I couldn’t pass up the opportunity to talk
about it, even though by the time you read this, you will
have the advantage of having seen the actual first draft of the
GPL3. I will not have seen it, and as a transactional lawyer,
I’m not usually given to prognostication (I leave that to the
litigators), so I ask you to keep that in mind as you judge the
following predictions.
	 From my experience, the first draft of an agreement often
addresses the large issues, but it’s normal to see a myriad of
smaller ones not addressed, and in some drafts, to further
find missing definitions or concepts, placeholders, and even
internal contradictions. Even though this first draft of the
GPL3 was in the works for more than a decade, it wouldn’t
be fair to the Free Software Foundation (FSF) to assume their
first draft would be entirely free of all of those characteristics.
	 However, the GPL3 Process Definition (released
Dec. 1, 2005) did show that, in addition to spending time
on the drafting, the FSF had also given considerable thought
to the process by which the GPL3 would be extensively
commented upon, and therefore, I do anticipate that the first
draft of the GPL3 will have addressed quite a large number of
the “smaller” issues from the GPL2. Again, the FSF seemed
to strongly imply this in the GPL3 Process Definition, and I
also believe the FSF did seek to use the lengthy drafting time
to clean up as many of these issues as possible.
	 For example, I predict that GPL3 will have to deal with
the “enterprise” concept in a much clearer manner than the
Annotations of GPL Version 2 did, trading the use of the
ambiguous “organizations (including companies)” for a much
clearer definition (these definitions will appear in the main
text of the GPL3). My thoughts on that are that the enterprise
would mean the GPL3 licensee and its affiliates (further
defined as all entities controlling, controlled by or under
common control with), and the usage rights flow not just to
the entities, but to their respective employees, independent
contractors, agents, and other third parties utilizing the GPL3
licensed program on behalf of the licensee or its affiliates.
	 Hidden in the enterprise comment of mine is yet
another prediction: The GPL3 will make much clearer the
fundamental concept of free usage of the GPL3 licensed
software. I realize the GPL3 Process Definition stated, “It

goes without saying that people have the freedom to run a
program under the GPL,” but I continue to believe it will
need to be said (and in a much clearer fashion than was the
case in GPL2), so I make this a longer term 2006 prediction:
The right to use will be explicit in GPL3 (if not in the initial
draft, then as a result of the comment process).
	 One more related prediction: The concept of
“distribution” will be much better defined in the GPL3.
For example, the confusion perpetrated by the Frequently
Asked Questions of the GPL2 (in which intra-“organization”

duplication wasn’t distribution, but transfers to “other
organizations or individuals” and even “contractors for
use off-site” was distribution). While there has been some
argument from anti-OSS sources that some of these concepts
were intentionally ill-defined in the GPL2, I continue to read
the Process Definition as a serious commitment by the FSF
to reduce and not retain the level of ambiguity in GPL3.
	 My final prediction: A future column will start with a
discussion of why these predictions didn’t come to pass, but
quickly move on to discuss several of the entirely new issues
in GPL3, and what to do about those.

David E. Gould is an associate in Buchanan Ingersoll’s
Technology Transactions Group. His practice focuses on the
selection, negotiation, acquisition, and disposition of
technology systems. He also writes a Web column on associate
life issues.
e-Mail: gouldde@bipc.com

march/april 2006 | Enterprise Open Source Journal | 23

From my experience, the first

draft of an agreement often

addresses the large issues, but it’s

normal to see a myriad of smaller

ones not addressed ...

Dominion Insurance Services Inc., Al-
pine, UT, had been using a proprie-

tary Database Management System (DBMS)
for years. Then Dominion started to grow.
“The database vendor was changing the
costs on us by processor and by users. It got
to the point where we wanted to use the da-
tabase over the Web and they were going to
hit us with a minimum six-figure fee,” says
Larry Hilton, president.
	 The year was 1998 and open source da-
tabase technology hadn’t yet been widely
recognized as a serious enterprise option.
Still, the company, aided by consultants,
switched to PostgreSQL.
	 “PostgreSQL has been very stable and
we like being able to tailor it to our exact
needs,” says Hilton. In addition, you can’t
beat the cost.
	 Now the enterprise open source data-
base market is heating up. It has experienced
a surge of activity just in time to meet sud-
den demand.
	 “Organizations will double the number
of databases they run in the next five to sev-
en years,” says Noel Yuhanna, senior analyst,
Forrester Research, Cambridge, MA. That
means managers everywhere will be revisit-
ing the DBMS question. And this time they
will find several viable options.
	 Although few organizations are likely to
rip and replace their existing proprietary
databases simply because a lower cost open
source alternative is available, they may turn
to an open source DBMS as they add new
databases. Not every application needs a
full-blown proprietary enterprise DBMS
with all the expense and effort it entails. For
enterprise IT managers, open source data-
bases have become a viable option. The se-
lection options in the open source enter-
prise database segment are varied; the
vendors and open source communities are

adding increasingly sophisticated capabili-
ties that rival the big proprietary databases.
Open source databases give managers alter-
natives that will do almost any database job
with reduced costs.

Surge of DBMS Activity
	 “There are more than a dozen open
source databases today, and that number is
increasing,” reports Yuhanna. “Five key
products dominate the market: Berkeley
DB, Cloudscape/Derby, Ingres, MySQL, and
PostgreSQL.”
	 However, the latest activity promises to
shake up what has been a pretty static
market.
	 Venture capitalists, for example, backed
Enterprise DB, an open source database
specifically intended to attract customers
from proprietary database heavyweight
Oracle. Just in case the fledgling Enterprise
DB actually gains traction, Oracle re-
sponded by acquiring an open source da-
tabase of its own, Innobase, from a Finnish
company.
	 About the same time, CA decided to di-
vest itself of Ingres. CA had previously
turned Ingres, which had been one of the
early proprietary enterprise databases, into
open source. Venture buyout specialists are
keeping Ingres as an open source database
and plan to offer services on top of the soft-
ware, according to the Ingres announce-
ment. In its proprietary heyday, Ingres com-
peted directly against Oracle, Sybase’s SQL
Server, and IBM’s DB2, today’s leading pro-
prietary enterprise databases.
	 IBM offers its own open source data-
base, Cloudscape, although it’s definitely not
designed for enterprise computing. It gave
Cloudscape to the Apache community as
Derby.
	 “Cloudscape could support 20 to 30 con-

current sessions, but everything would have
to fit on one disk drive, and it isn’t multi-
threaded,” says Kevin Foster, IBM manager
for Cloudscape and DB2.
	 While it’s not enterprise-class, IBM rec-
ommends that independent software ven-
dors use Cloudscape in their products to
start and move up to DB2 when their cus-
tomers need to scale.

Open Source Database Market
	 All industry analysts and observers agree
on one thing: The open source database
market is growing. Forrester estimates the
current open source database market, which
consists of new licenses, support and servic-
es, will exceed $1 billion by 2008.
	 Open source database deployments were
up 20 percent in 2005, according to Evans
Data. By contrast, Gartner, in published re-
ports, projects the worldwide DBMS soft-
ware market, including proprietary and
open source products, to grow at a Com-
pound Annual Growth Rate (CAGR) of 6.6
percent, which would take the market to
$13.2 billion in new license revenue by 2009.
By then, open source databases, which are
growing at a faster CAGR than the market
as a whole, will likely account for more than
10 percent of the market in revenue terms,
which isn’t a trivial achievement.
	 In his report titled “Open Source Data-
bases Come of Age,” Yuhanna identifies six
factors that are driving enterprises to open
source databases:

•	Low acquisition cost
•	Strong support from the open source com-

munity
•	Reduced maintenance costs
•	More hardware and software options
•	Access to the source code
•	Avoidance of vendor dependence.

24 | Enterprise Open Source Journal | March/april 2006

Enterprise Readiness of Open Source
	 Databases

	 Open source databases aren’t without
drawbacks. For example, several popular
packaged enterprise applications are intend-
ed to run with the leading proprietary
DBMS only, not open source DBMS. Addi-
tionally, open source technical support may
not be as extensive or global as that provid-
ed by the large proprietary vendors. Finally,
certain costs, such as administrative over-
head, remain the same whether the DBMS
is proprietary or open source.

Open Source Database Landscape
	 Although the five products noted previ-
ously top the open source DBMS charts, the
landscape is shifting as new players, such as
Enterprise DB, arrive and existing products
are enhanced.
	 MySQL appears securely entrenched as
the market leader. The database boasts of
major enterprise customers such as Sabre,
the airline reservation giant, and The
Weather Channel. The cost for MySQL Net-
work, the version intended for enterprises,
ranges from $500 to $5,000—still far below
the lowest costs for even Microsoft’s SQL
Server.
	 In fall 2005, MySQL introduced the
latest version with a host of enhancements,
including read-only and updatable views,
stored procedures, row-level triggers, serv-
er-side cursors, and a data dictionary
(metadata repository). It also provides a
federated DBMS engine, which allows for
the creation of one logical database from
tables residing in multiple, remote data-
bases. MySQL 5.0 runs on Linux, Win-
dows, Solaris, Mac OS X, FreeBSD, HP-
UX, IBM AIX, and other operating systems
and is available under a dual licensing
model, either open source GPL or a com-
mercial license.
	 Diabetech LP, Dallas, a company that

helps people manage their diabetes through
information collection and management,
has been relying on MySQL for four years.
After evaluating PostgreSQL, the company
opted for MySQL.
	 “MySQL’s engine was most attractive,”
says Eric Link, Diabetech CTO. “It offered a
lot of flexibility.” The company makes exten-
sive use of JasperReports, an open source
business intelligence product, in conjunc-
tion with MySQL and JBoss to deliver its
core information management and report-
ing capabilities.
	 PostgreSQL has matched and beaten
MySQL feature for feature for years. It has
included triggers and stored procedures
for years and supports high-availability
clustering, reports Josh Berkus, a core
team member of the PostgreSQL commu-
nity. It has focused on Online Transaction
Processing (OLTP) more than MySQL and
has had success targeting Oracle users for
both transaction processing and data
warehousing.
	 “Both MySQL and Postgre are a key part
of the LAMP (Linux, Apache, MySQL/Post-
gre, PHP) stack,” says a senior database en-
gineer now working at IBM. “MySQL has
gotten all the buzz, but Postgre has better
performance and fewer gotchas. I’ve used it
for both OLTP and decision support. In my
experience, Postgre scales bigger. Postgre is
architected to be big.”
	 The newest guy on the block is Enter-
prise DB. Based on PostgreSQL, Enterprise
DB is aiming squarely at the Oracle market.
	 “What we’ve added is Oracle compatibil-
ity,” says CEO Andy Astor.
	 The company has experienced tens of
thousands of downloads since its August
2005 launch and expects it to be used for
enterprise OLTP applications.
	 The company allows a free download of

the source code and charges for support,
with subscription costs running $1,000 to
$5,000 per year per CPU—not exactly cheap
but considerably less than a proprietary
DBMS.
	 Enterprise DB promises a complete en-
terprise-class DBMS with stored procedures,
locking, and concurrency control, unim-
peachable security and reliability, compati-
bility with open standards, and scalability.
	 “Either you get 100 percent reliability or
it gives you an error message,” says Astor,
“so you know if the transaction went
through.”
	 The other players in the open source da-
tabase arena are niche players such as
Cloudscape or low-profile products such as
Ingres. But as interest in open source enter-
prise databases grows, expect to see more
action even among these players.
	 Today, you can get an open source data-
base that can nearly match the big proprie-
tary databases feature for feature. They’re
also gaining the scalability and reliability
that have been hallmarks of the proprietary
DBMS.
	 Says the database engineer, “You might
not use it for an airline’s OLTP reservation
system or a large brokerage firm that han-
dles thousands of transactions a minute, but
for anything else, the open source databases
are pretty darn good.”
	 Considering you can get “pretty
darned good” for thousands of dollars less
per server per year than a proprietary
DBMS, most businesses would consider
open source databases nothing short of
outstanding.

Alan Radding is a freelance writer based in Newton, MA. He
specializes in business and technology.
Voice: 617-332-4369
e-Mail: alan@radding.net
Website: www.technologywriter.com

march/april 2006 | Enterprise Open Source Journal | 25

Enterprise Readiness of Open Source
	 Databases By Alan Radding

The Devilish Advocate	 BY ROBERT LEFKOWITZ

The Food and Drug Administration (FDA) has just updated
its dietary guidelines to increase the number of daily

servings of fruits and vegetables to five to 13 servings a day
(the exact amount varies based on activity level, age, and
other factors). Unfortunately, studies by the U.S. Department
of Health and Human Services (DoHHS) show that 42
percent of Americans eat less than two servings a day—and
the average is between three and four servings.
	 I was recently reminded of this survey when reading the
results of a survey conducted by Optaros (an enterprise open
source consultancy) on the use of Open Source Software
(OSS) in U.S. organizations. The survey reported that 87
percent of organizations were using OSS, and that 42 percent
were using open source content management systems. As the
42 percent figure appeared in both surveys, the coincidence
drew my attention.
	 The interpretation of the DoHHS survey is that the 42
percent figure is appalling—it’s a call to action to galvanize
Americans to triple their intake of fruits and vegetables.
Out of concern for our collective health, the National
Cancer Institute has been waging a decades-long campaign
called the 5-A-Day challenge to drive toward that
minimum healthy level. By comparison, what’s lacking in
the open source survey is a value judgment about whether
those 42 percent of companies are using too much, too
little, or just the right amount of OSS. Granted, different
companies have different needs (as different lifestyles have
different dietary requirements). It should certainly be
possible to establish a range for “minimum and optimal
requirements” for open source usage that would cover
most American organizations—something like “five to 13”
servings daily.
	 If open source is a good idea, how much open source do
you need to achieve those health benefits? Here’s another way
to interpret the Optaros survey: If 87 percent of American
organizations are using OSS, then the untapped market is
only the 13 percent of remaining companies. Another 15
percent market growth in open source enterprise software
and the saturated market will tail off—leaving many
disappointed investors. Perhaps the lesson of this survey is
that those 87 percent use open source as (just guessing) 1
percent of their technology mix, and a healthy diet would
require (just making something up) 33 percent of their
technology mix. That would leave plenty of room for growth.
	 The Free Software movement isn’t reluctant to propose
a target—100 percent of software should be open source. To

continue stretching my analogy, they’re “vegetarians.” The
open source community is more omnivorous—believing a
balanced diet is more appropriate. I have yet to see, however,
a proposal for a Recommended Daily Allowance. If we’re
going to make rational decisions, we’re going to need to
wrestle with quantification. There are at least three questions
confronting us:

1.	 Which things are or aren’t fruits and vegetables? With all
the hybrid business models around hybrid open source,
which projects or products have the nutritious elements
that would qualify them as healthy open source, and which
things are Gummy Bears—fruit flavored, but aren’t actu-
ally fruit?

2.	 How much is a “serving”? How does one measure the
“amount” of OSS being used?

3.	 How many servings are healthy?

	 Working backward on that last question, let’s estimate
the appropriate balance between OSS and proprietary
software. Assume the answer is on the order of 10 percent
OSS. Then it would be fair to say that OSS should rarely
command the attention of the CIO or CTO. Another way to
express that thought is that 90 percent of software should be
proprietary. To get a few minutes on the executive agenda,
the appropriate mix would need to be at least 25 percent or
maybe even closer to 40 percent OSS. That still means the
majority of software should be proprietary, but a noticeable
amount should be open source. Given the way IT budgets are
distributed, to achieve that level of impact, we would need
to find relationships between open source, development and
maintenance, infrastructure and applications, services and
outsourcing, salaries, benefits, and—also—software licensing.
I plan to look for and explore those relationships.
	 For a healthy IT organization, the appropriate level of
open source usage should be 33 percent, which is to say,
you should be using twice as much proprietary software as
OSS. In what percentage of U.S.-based companies does open
source account for about 33 percent of software? How many
use more? How many use less? That’s the
survey I’d like to see.

Robert Lefkowitz has spent more than 20 years being a
contrarian inside large IT organizations. His first open source job
dates back to the late ‘70s as the public software librarian for a
timesharing company.
e-Mail: r0ml@mac.com

What’s Your Recommended Daily Allowance
of Open Source?

26 | Enterprise Open Source Journal | March/april 2006

march/april 2006 | Enterprise Open Source Journal | 27

BY DENNY YOST

Companies of all sizes are learning about the benefits of
using open source solutions to run their businesses.

One such company is Training Funding Partners (TFP), a
California-based company helping Fortune 100 to Fortune
2000 companies locate, secure, and manage millions of
dollars in workforce training grants awarded by states for
companies to train their employees. To qualify for and
receive training reimbursement funds, these companies
are required to complete detailed applications with
little tolerance for errors. Once a company is awarded a
reimbursement contract, strict training tracking procedures
must be followed and reported to each appropriate state. This
can easily make managing training reimbursement funds an
overwhelming job.
	 TFP had successfully supported its CA-based clients
with its original, highly manual workflow process, but the
company wanted to cost-effectively scale the business beyond
California. This would enable them to deliver more services
to current clients and reach a broader range of potential
clients nationwide. To do this, TFP needed a way to correctly
process each state’s complex program rules inherent in the
company’s business services, automate the application of
these rules, ease the management of secured reimbursement
funding contracts, and free staff to spend their time in areas
that require their knowledge and expertise. The solution was
to find an Enterprise Resource Planning (ERP) system that
would meet their needs.
	 To ensure a successful outcome for such a mission-critical
project, TFP first aligned itself with Idalica, a knowledgeable
consultative software services company, to help identify and
implement a new solution. “We knew what we needed for an
outcome, we knew it wouldn’t be an off-the-shelf solution,
and we knew from previous experience that Don Lagwig
could help us,” says Mark Coleman, TFP’s CEO.
	 The search for an ERP solution began by reviewing the
offerings of well-known proprietary systems. “We reviewed
the ERP offerings from Microsoft, SAP and Oracle,” said Don
Ladwig, CEO at Idalica. “While these are all good systems,
TFP needed a solution that could easily be customized to
meet the needs of the company and be fully integrated into
TFP’s business processes. Proprietary ERP vendors have
service teams that perform this level of customization;
however, for most companies, the cost of having the vendor
provide customization is equal to or greater than the cost

of the product license. Then, there’s the cost of ongoing
maintenance. These costs can easily extend the ROI for
such a system to five years or more. TFP needed a two-year
ROI. This is what drove us to consider the open source ERP
system from Compiere.”
	 The Compiere ERP & CRM solution offered TFP three
key benefits: source code access for easy customization, a
comprehensive solution, and affordable pricing. “Compiere
had everything TFP needed in an ERP system,” Ladwig

continues. “It was created to operate as a mission-critical
system, meaning actions are built into the product to
automatically perform certain safeguards. The Compiere
source code is also available to anyone, the product license
is free, and ongoing maintenance is reasonably priced. After
doing some initial tests and reviewing TFP’s needs against
the Compiere product, we estimated TFP would have a two-
year ROI. We downloaded the product and started working.”
	 Today, the new Compiere system is delivering big
benefits to TFP. “So far we’ve been able to accomplish the
goals we wanted to achieve by replacing our old system,”
comments Coleman. “The customized Compiere system
also gives TFP a huge competitive advantage in the market,
which we didn’t set as a primary goal. We’ve successfully
scaled our business, enabling us to expand nationally
without making significant staff increases, efficiencies
throughout the company are becoming more visible every
day, and we can provide our clients with more services than
ever before. It’s especially easy to see how small to medium-
size companies can gain significant benefits from an open
source ERP system like Compiere.”

For more information, please contact Compiere at www.compiere.org/contact.html or
Idalica at dladwig@idalica.com.

Training Funding Partners Achieves Improved
Scalability and Nationwide Expansion Using
an Open Source ERP Solution

In Part I, we saw that the community is essential to the success of any Open Source
Software (OSS) project—and to the successful deployment of the software within
your enterprise. We identified the major groups that compose a community—users,
contributors and committers—and described the role they play in the community. We
discussed how you should take a good look at the community of a project instead of
deciding on technical issues alone. That’s because the community provides free sup-
port, examples, secures a project’s future, and ensures high software maturity. Com-
munity is orthogonal to all the other purchasing issues—except the legal ones—which
is why we look at evaluating the community that supports an OSS system.

Ways to Evaluate Community: Is it Quantity or Quality You Are Looking For?

	 On Nov. 16, 1532, Francisco Pizarro lead a group of 168 Spanish solders to attack
Atahuallpa, the ruler of the largest, most advanced state in the New World. Situated in
the Peruvian highland town of Cajamarca, Atahuallpa was protected by 80,000 of his
own soldiers and ruled over an empire of millions of subjects. Pizzaro was unfamiliar
with the terrain, far away from home, with no outlook of timely reinforcements. Would
he and his community of 168 soldiers have any chance to see the dawn of the next
morning with their heads still on their shoulders? Put in other words—what is the rel-
evance of quality vs. quantity?
	 The community is made up of people; the naïve way to judge its strength is to count
its size. Straightforward as it sounds, hardly any project simply publishes community

28 | Enterprise Open Source Journal | March/april 200628 | Enterprise Open Source Journal | March/april 2006

Evaluating the Life
of the Community

Community Support for
an Open Source Content
Management System:

statistics on its home page. Even if they
would, we know writing killer software
isn’t a numbers game—it requires vision,
skill, determination, and experience at the
very least. These are issues of quality, not
quantity.
	 Thus, the aspiring community evaluator
faces two problems: a) it’s hard to count the
people, and b) it’s of limited use. Neverthe-
less, we will show you how to get at the
numbers and learn a lot about the quality of
the project (and the people involved) while
doing so.
	 As there is hardly a project that openly
states its community’s size, we will take a
detour and look at the artifacts they pro-
duce: e-mail traffic, issues reported, and
code written.
	 We will start by looking at the most
prominent artifacts the user group produc-
es: support questions and answers. Then we
will gauge the group of contributors by
checking available bug reports, documenta-
tion, and localization. Finally, we will exam-
ine the source code to learn about the quan-
tity and quality of the project’s committers.

Mail and Forum Support
	 Commonly, OSS projects have at least
one mailing list for the user community and
another for the developer community. Of-
ten, there’s also a list that tracks bug reports

(issues), a list that tracks the source code
changes, and an announcement or news list.
And, instead of or in addition to lists, forum
software lets users post questions anony-
mously.
	 For an impression of what’s happening
on a specific list, browse its archives or try
to get some statistics about the activity on
the list. That’s not always straightforward, as
each project has its own structure, different
software for lists or forums, and different
statistics.
	 Before you run out and buy a stack of
books on the subject, here’s a life-saver: Sev-
eral services on the Web provide gateways
to project mailing lists, usually in the form
of a Web interface. One such example is
gmane.org. Gmane provides many advanced
features, the most valuable being that it:

•	Lets you find the lists that exist for a proj-
ect (if it monitors them)

•	Gives detailed statistics about the traffic
on the list

•	Lets you browse and search the list.

	 For instance, there are three monitored
mailing lists for the Magnolia CMS on
Gmane—an announcement list, user list
and developer list, together with the total of
messages that Gmane has tracked for the re-
spective lists (see Figure 1).

	 At this level, we don’t know when
Gmane started tracking a list and can’t re-
ally say much about the project except that
it exists and at some time generated mail
traffic.
	 If you click through to the list over-
view, you’ll get an overview of the traffic
on the list and immediately see when
tracking started and how many messages
are posted daily. Again using the Magnolia
Content Management System (CMS) user
list as an example, we see that 10 to 20
messages per day are sent to this list on av-
erage, peaking out at 60 messages on rare
and very busy days.
	 Gmane will also show statistics of how
many people are posting to the list daily
(unfortunately, this feature seems broken),
how many subjects are being discussed
daily, and how many messages are report-
edly spam (see Figure 2). The number of
unique subjects per day gives a good indi-
cation of quality. If the ratio of posted to
unique messages is high, it’s more likely
that topics are discussed in-depth, usually
signaling interesting subjects. Conversely,
if the number of unique subjects matches
the number of messages (the ratio would
be one), apparently no one is answering
the questions posted—even if hundreds of
messages are posted each day, this would
be useless for you.
	 Finally, the mail archives on Gmane can
offer an impression of what types of ques-
tions are commonly or currently being
asked. Spending about an hour with the ar-
chives of a single project should give you an
impression of the quality of the community
support and the product. You will get a feel
for the number of people involved in the
discussions, find out the key people, and
identify the most common problems.
	 Mailing lists and forums only tell a small
part of the story. If a CMS is hard to use or
install, users might join the list only to get
their immediate problem solved and then
vanish. Thus, no real community is estab-
lished. Think of a town where everybody
moves on after a year or two. In such a place,
no sense of “us” is established, no common
values are developed, and no traditions are
followed. Similarly, if a project consists of
only one or two people who answer all the
questions on a mailing list, then there’s no
existing community, no matter how much
traffic the list carries. More difficult to spot
is the case where others do answer, but only
for a short time. This typically happens

march/april 2006 | Enterprise Open Source Journal | 29

Figure 1: Three Monitored Mailing Lists for the Magnolia CMS on Gmane

march/april 2006 | Enterprise Open Source Journal | 29

Figure 2: Posting Rate on gmane.com for the Magnolia User List

when potential contributors work with a
product only for the duration of a single
project. When their professional interest
moves on, so do they.
	 A good, lively user community is the
foundation for the success of an OSS proj-
ect, since enthusiastic users will contribute
something back to the community. They
may, for example, document how they’ve
solved a specific challenge. In doing so, they
become contributors.

Bugs, Documentation, and Localization
	 Some of the most important artifacts
contributors produce are bug reports (and

fixes), documentation, and localization.
Looking at these provides a clear measure of
the activity and size of this group.
	 OSS projects will most likely not spend
their financial resources to get professional
translations, since this is a part that project
contributors can easily provide. So, the easi-
est, quickest way to gauge the contributors
is to check the number of translations that
exist for the CMS of your choice. The more
languages a CMS has been translated to, the
bigger its group of contributors. Source-
Forge lists the available languages of each
project in the project’s summary page; so
does freshmeat, a directory of software.

Some CMSes won’t be listed there and you
have to look for available translations on
their home page, but generally, that should
be straightforward.
	 If you wish to have better insight into
contributors, evaluate the data a project’s is-
sue tracker provides. Besides the obvious—
documenting open and fixed issues—the is-
sue tracker records a lot of meta information
that gives a pretty clear picture of contribu-
tor activity. An issue tracker tells the num-
ber of people using the system, number of
issues posted within a certain time, the du-
ration until issues get fixed, and the number
of people providing patches.

30 | Enterprise Open Source Journal | March/april 2006

Figure 3: Issue Tracking in Open Source

Figure 4: ViewCVS Showing the Modular Structure of the Magnolia Project

30 | Enterprise Open Source Journal | March/april 2006

	 There are three commonly used issue
trackers in the OSS community—the one
provided by SourceForge, open source Bug-
zilla, and proprietary Jira (which provides
a free license to OSS projects). Both Bugzilla
and Jira let you export a list of bugs and
make it trivial to find out how many people
have reported issues and who these people
are. SourceForge makes it a bit harder; you
can’t get a listing of, say, all open bugs, but
instead must page through them 25 issues at
a time. But even SourceForge lists the re-
porter (i.e., the person who reported the is-
sue), which is all we want to know for a start
(see Figure 3).
	 While the number of localizations and a
look at the issue tracker will provide signifi-
cant insight into the strength of the group of
contributors, examining the available docu-
mentation—while hard to measure—will
tell you how mature a project is.
	 Documentation is an essential part of
any software. Documentation between
commercial products and open source
products has significant differences.
While proprietary software is accompa-
nied by thick manuals, it often fails to
provide insight into the development
process, Application Program Interfaces
(APIs), open or solved issues, and exam-
ples from other users—issues where OSS
has its strong points. OSS generally also
implies open communication; you have
access to issues and how they’ve been
solved. You can see what’s happening in
real-time (source code repository access)
and the development of the project is
freely discussed on the mailing lists. All
this is an important part of the documen-
tation of a product. Next, the community
often participates on a wiki—a Website
that anyone can edit. This is often a good
place to find specific solutions, code ex-
amples, or how-to’s.
	 Source code is, in some sense, the ulti-
mate documentation of a product. It might
not be easily accessible for an end user, but
if documentation and behavior of a product
differ, the code is always right. In terms of
enterprise CMS needs, access to the code
and its API documentation are extremely
valuable once you start to integrate your
company’s information assets into your in-
tranet CMS, or wish to write custom mod-
ules that provide specific functionality oth-
erwise unavailable. In these cases, good API
documentation is essential, and you should
examine it to see if it provides the level of

information you need. The API is often
available for download or even online
(check the developer section of the project’s
home page).
	 Documentation needs will differ, de-
pending on what you wish to achieve with
the implementation of a CMS in your en-
terprise. Sometimes a user manual is best
written by your company’s staff after you’ve
customized the system. That said, good
documentation in the classical, proprietary
sense is something you definitely will want
to have an eye on when evaluating your
next CMS.

Code
	 Source code is often the first thing that’s
released by an OSS project—it’s an impor-
tant artifact you can use to judge the quality
and liveliness of the community.
	 While generally no direct data is avail-
able about the size or demographics of the
user group and the contributor group, OSS
projects always list their core members. For
instance, many projects are hosted on
SourceForge, where the project summary
displays the number of developers, and de-
tailed views show you who they are and on
what other projects they’re working. Check
the source code and code repository for in-
sight about the number of committers—and
with some luck, even tools to measure qual-
ity are provided.
	 Source code is usually available in a ver-
sioned source code repository—common is
either Concurrent Versioning System (CVS)
or Subversion (SVN), both OSS implemen-
tations themselves. The repositories let you
check how many people work on the code,
who has commit rights, and when the last
changes were made. If you’re lucky, the proj-
ect you evaluate has ViewCVS installed.
ViewCVS provides Web-based access to
source code repositories and lets you see, at
a glance, when the last change was made
and by whom.
	 Modern software management tools
such as Maven (OS) generate complete doc-
umentation that includes all sorts of met-
rics. It’s possible to see cyclic dependencies
or code that has changed numerous times.
Thus, it’s easy to find out the maturity and
quality of the code.
	 You might want to review how modular
the code is. Maven 2 provides the new func-
tionality to modularize the source code and
build each module separately. A modular
source code allows for far more community

participation, since a possible contributor
doesn’t need to understand the complete
source code—it’s enough to have well-de-
fined APIs and work on a single module
(see Figure 4).

Conclusion
	 We have examined several artifacts a
community produces and that can help you
gauge the liveliness of a project’s communi-
ty. Available translations, mail and forum
traffic, documentation and source code are
important output that provides deep insight
into the healthiness of a community.
	 This series showed us that the commu-
nity is composed of people who share a
common interest. Once you start using an
OSS product, you’ll share some of that inter-
est, and should think about taking a more
active role in the community. Giving is bet-
ter than taking, and investing in an OSS
project will provide your enterprise with
significant benefits because you can:

•	Directly influence the direction of the
project

•	Save significant costs compared to propri-
etary, in-house development

•	Ensure the project’s survival and increase
its viability

•	Gain visibility and become a much more
attractive employer for some of the most
talented programmers in the world.

	 If you consider how hard it is to hire a
good programmer, and how much harder it
is to keep him, you will quickly realize the
benefits of the last point alone outweigh the
cost of active participation.
	 As we’ve seen, both quantity and quality
have to be considered when you need to
judge the community of an open source
CMS. With that in mind, how do you think
Francisco Pizzaro and his 168 men fared on
Nov. 16, 1532? Not only did he survive the
day, he and his 168 men captured Atahuall-
pa within hours, extorted from him the larg-
est ransom recorded in history, and won a
decisive victory.
	 Consider this a vivid illustration of qual-
ity outweighing quantity—in this case, by a
factor of 500.

Boris Kraft is a consultant and software developer. He is the
strategic leader and community manager of Magnolia, an open
source enterprise content suite, originally developed by his
company, Obinary. He has been writing software for 25 years
and lives in Switzerland with his wife and two kids.
e-Mail: boris.kraft@obinary.com
Website: www.obinary.com

march/april 2006 | Enterprise Open Source Journal | 31march/april 2006 | Enterprise Open Source Journal | 31

Open Standards	 BY JIM ZEMLIN

By now most of you have heard of the State of Massachusetts
decision to publicly endorse the Open Document Format

(ODF) for its public records. It’s been a hot topic in IT media,
especially those concerned with open source and open
standards, and has even become an issue (albeit a small one)
in the upcoming governor’s election. You also may be aware
that I closely watch the intersection of open source and open
standards and think this combination is vitally important for
the protection of end users’ computing assets.
	 In September 2005, the State of Massachusetts published
its endorsement of ODF and its rejection of Microsoft’s
proprietary XML format used in its Office applications. It
wasn’t a rash decision; it was a product of more than two
years of investigation, including extensive discussions with
Microsoft itself. The State certainly didn’t preclude Microsoft
from competing for business; it merely said it wanted an open
standard to be supported by all future technology purchases.
	 So what was the State of Massachusetts trying to achieve
with this mandate? Let’s go to their official policy statement:

•	“Effective and efficient government service delivery requires

system integration and data sharing.
•	Technology investments must be made based on total cost

of ownership and best value to the Commonwealth.
Component-based software development based on open
standards allows for a more cost-effective, build once, use
many time’s approach.

•	Open systems and specifications are often less costly to acquire,
develop, and maintain and don’t result in vendor lock-in.”

	 In standards-adoption, government agencies are early
adopters. They have a fiduciary responsibility to the citizens
who support them, and standards have overwhelmingly
proven successful at reducing the cost of procuring and
maintaining technology. Interoperability and access to
information is also vitally important to public agencies.
Standards such as ODF (or the Linux Standard Base [LSB],
for that matter) ensure access to information now and in
the future, something that proprietary formats, despite their
ubiquity today, simply can’t guarantee.
	 What exactly do we mean by open standards? Basically,
an open definition requires unfettered access to the
formation and implementation of that standard. This means
the standard is developed in a public forum by a wide
variety of individuals and stakeholders. The standard must
be publicly available for implementation without restriction.
This doesn’t mean all implementations of ODF (or other
open standards) are open source; in fact, there are many

proprietary implementations of ODF today.
	 Let’s look at the competing standard to ODF, Microsoft’s
XML format. During Microsoft’s vitriolic fight against the
decision to support ODF, the company submitted its document
standard to ECMA, a standards organization based in Europe,
and pledged to go further than it ever has to make it “open.”
While all the details of ECMA’s definition of the Microsoft
standard remain to be seen, a few things have already come
to light. It was certainly not created in a public forum with a
variety of inputs; in fact, reports state it will be impossible for
anyone to improve the standard (an important point). While
some in the open source community have applauded the move
to ECMA, there have been conflicting reports that Microsoft,
as it has in the past, will impose Draconian intellectual
licensing restrictions on anyone making use of its standard.
Perhaps the pressure from Massachusetts and its resulting
press coverage will change this. If so, it will be a victory for
open standards and, hopefully, a sign of things to come from
Microsoft and other vendors.
	 One of Microsoft’s main criticisms of ODF is that it may
not have a guaranteed future; if key vendors such as Sun stop
supporting it, the State will have to re-save and re-format
its documents yet again. While this is a fair criticism, the
proponents of open standards (and open source) say you’re
far more protected by a broad coalition of vendors and
communities united around a truly open standard than by
a single company, no matter its resources. This is also why
open standards-based technology is always more secure
than those based on closed standards: A broad ecosystem is
stronger than a single entity.
	 Of course, we haven’t talked about the elephant in the
living room: If Microsoft wants to compete for business in
the State of Massachusetts, all it has to do is support the ODF
standard in its Office suite. Of course, that’s up to them—I’m
sure there are complex technical issues that go into this
decision—but most likely it’s the business and licensing issues
that trip up Microsoft. They would rather control the fate of
their own proprietary formats.
	 As more end users rise up and seize control of the
future of their data and applications, the technology
industry (especially software companies) will have to
do more than offer lip service to open
standards. They will actually have to build
businesses around them.

Jim Zemlin is executive director of the Free Standards Group.
He previously served at Covalent Technologies and Corio.
e-Mail: jzemlin@freestandards.org
Website: www.freestandards.org

The Latest Standards Battlefield

32 | Enterprise Open Source Journal | March/april 2006

NOVEMBER/DECEMBER 2005 | Enterprise Open Source Journal | 33

Reading a pass-along
copy of EOSJ ?

Why?

 Sign up for your own free
 subscription now at:

www.eosj.com
Free subscriptions are available worldwide.

www.eosj.com/index.cfm?section=mngsub

Perspectives on CAOS	 BY RAVEN ZACHARY

B eginning with this edition of Enterprise Open Source
Journal, The 451 Group, a technology analyst company,

and I will be providing a regular column on the Commercial
Adoption of Open Source (CAOS).
	 One of the issues on my mind recently is a topic many
have found painfully uninteresting: the issue of software
support. Within the context of open source, however, this is
anything but dull.
	 The freedom of choice provided by the use of Open
Source Software (OSS) brings with it a greater availability of
support options. Customers with access to source code have
support options that historically weren’t available to them
with proprietary software.
	 This public access to the source code provides an
opportunity for the creation of expertise (and sustainability)
outside the core development team, resulting in these new
support options. For some customers, the flexibility in
selecting a support model is enabling, while for others it has
been a major barrier for open source adoption.
	 The issue for customers is that support has traditionally
been included when selecting software. A single proprietary
vendor has provided the software and related support
services. In contrast, not every successful open source
project is backed by an open source vendor; in fact, few are.
Selecting a support model is now a decision that has to be
made in the software evaluation process.
	 Before JBoss or Covalent provided support for Tomcat, I
hired a member of the Tomcat development team to provide
my previous employer with the expertise it needed to support
a multi-million dollar e-commerce system. Hiring was just one
aspect of building a support model for our business, motivated
somewhat by a lack of vendor support for Tomcat at the time.
	 So, what’s the preferred support model for open source
customers? Obtain support directly from an OSS vendor?
Rely on support from the community? Build internal
expertise through training and hiring of expertise from
outside? There’s no single answer that meets the needs of all
customers. Through the increased adoption of open source,
there has been a fundamental shift of responsibility back to
the customer when it comes to support.
	 While most open source vendors have pursued a mostly
traditional support model to date, the nature of open source
has created the opportunity to provide new models of
support specifically tuned to the unique needs of the open
source customer.

Support Trends
	 Here are some trends I see developing with open source

support in the near future:
	 Greater demand for acquired talent: Core developers
for successful open source projects will be in higher demand
as the adoption of open source continues to accelerate.
Demand is growing at a rate greater than the availability
of talent. If you’re planning to hire talent, this will become
increasingly difficult.
	 The use of transition talent: If your organization is
in the process of building internal open source expertise,
the use of external open source talent (“consultants”) is
an effective way to provide temporary support during the
transfer of these skills to internal resources.
	 Self-sufficient enterprises: More and more customers are
building their own internal support organizations for OSS,
with limited or no vendor dependency. This model won’t
be the predominant one, but we’re already seeing this trend
among some large enterprise customers with the resources to
pursue this path.
	 Increased need for training: Customers see the value in
having internal open source experts on staff, even if they rely
on a vendor for support. Training companies are poised to
profit from this demand, due to the constrained availability
of acquirable talent I mentioned earlier.
	 Support aggregators: We’re already seeing this trend
with companies such as SpikeSource, OpenLogic, Covalent
and SourceLabs, but I expect to see further movement in this
area by companies that want to be the primary open source
support vendor for customers struggling with building a
mix-and-match support solution.
	 More “try before you buy”: With more options available
to customers, support providers will need to offer creative
support options, including those catering to customers in the
evaluation process. As an example, Laszlo Systems provides
this service for OpenLaszlo, an open source framework for
rich Internet applications.
	 Outright competition: There’s no practical reason why
open source vendors such as JBoss and MySQL haven’t faced
direct competition for support from third-party vendors.
Once the market is large enough, there will be activity in this
sector. The barriers to entry are low.
	 As the adoption of open source continues to increase,
expect to see new and innovative models of
support emerge.

Raven Zachary is a senior analyst and the open source practice
head for The 451 Group, a technology analyst company. At The
451 Group, he’s responsible for the Commercial Adoption of
Open Source (CAOS) Research Service.
e-Mail: raven.zachary@the451group.com
Website: www.the451group.com

New Models of Support					

34 | Enterprise Open Source Journal | March/april 2006

A n E volution
R ather T han
a R evolution

B y M athieu P oujol

O pen source is a techni-
cal advance much like
those that preceded it:

it’s changing some models, requiring players
to adapt, and it’s boosting, but not revolu-
tionizing, the market. The client/server and
PC wave have required some companies,
such as IBM, Software AG and Fujitsu, to
take a look at their businesses and make
changes.
	 Open source must be included in a ma-
turity acceleration phase in the IT market
that has emerged around phenomena that
affect three aspects of IT:

•	Telecommunications: the Internet, de-
creasing prices and democratizing access
to communication networks; the Internet
is the catalyst for other phenomena

•	Services: relocation, whether at an exter-
nal or foreign provider

•	Software: open source.

	 These three points accelerated during
the “Internet bubble,” which multiplied their

effects on the market, particularly in terms
of prices.

A Stimulating Effect on the Market
	 Open source has put into question nu-
merous IT market segments by becoming
a credible alternative to some oligopolies
and monopolies. This has had several ma-
jor effects:

•	Open source is a powerful advocate for
standardization, thanks to its openness.
Standards are critical for prices to drop
and information systems to become more
open. Standards are the nemeses of mo-
nopolistic situations.

•	Open source has offered solutions in mar-
ket segments where competition had dried
up. It’s an ideal threat to make software
suppliers’ prices fall. Moreover, these of-
ferings are jumpstarting the basic offer-
ings. There’s no longer a need to choose a
product that’s too expensive because it has
too many functionalities, whereas the
need is rather simple. There’s Open Source

Software (OSS), as well as commercial so-
lutions that are aligned with the cost of
open source.

•	Open source has redefined and cleaned up
the notions of criticality and commodities
in IT:

	
•	Faced with OSS, “traditional” software

suppliers are lowering the prices of their
products and boosting their offerings by
innovating and offering higher value-
added and more reliable solutions.

•	Customers buy only what they need and
don’t pay for superfluous functionality.
This is the “good enough” effect.

•	Open source, through its collaborative
and communal aspect, has forced soft-
ware designers out of their ivory towers
and brought them closer to market ex-
pectations by boosting specific develop-
ment. The result is innovation in infor-
mation systems.

•	OSS is a great laboratory for testing IT
concepts without having to bear a heavy
financial burden.

march/april 2006 | Enterprise Open Source Journal | 35

Open
Source

R ealities A bout

•	In the public sector (especially in France),
open source can reduce production time
for a solution, since in some cases it’s not
necessary to have public calls for tender.
This is one of the main reasons for the suc-
cess of open source in the public sector
because the procurement processes for
public markets are constraining.

	 Standardization, openness, accrued
competition, decreased prices, a race to in-
novate, and a better correlation between
needs and offerings. All IT players owe it to
themselves to recognize the benefits of OSS
for the whole industry.

New Models
	 OSS has enabled the emergence of a new
value chain and new business models. Fig-
ure 1 shows the software industry supply
chain and Figure 2 shows the open source
supply chain. The value chain for open
source is more complex, which can be a
source of difficulty if its selection process
isn’t well-structured. The contractual rela-
tionship between the end client and the dif-
ferent participants can become problematic
for those involved.

Important Role Changes
	 OSS also changes the relationship be-
tween software suppliers and IT services
companies. To make up for weak revenues
from software sales, software suppliers spe-
cialized in open source sell in volume and
offer services. This is the main way for
“commercial” software suppliers specialized
in open source to ensure their long-term
durability.
	 To make up for the lack of functionality
in products and the absence of strong main-
tenance capabilities by OSS suppliers, IT
services companies step in and move toward
the software supplier business. They even
take on contractual obligations. IT services
companies regain the added value that
they’d lost to software suppliers over time to

the software editors that have been packag-
ing the different layers of the information
system.
	 This rise in the added value of services
in the IT market has been a perpetual and
weighty trend. It’s forcing software to be-
come more complex and to move further
toward processes. Many software suppliers
are increasingly betting on services related
to their software as a main revenue model.
	 In addition, IT services companies,
armed with their industry knowledge, ap-
pear to be incorporating more and more
packaged software components in their so-
lutions. This software may be built with OSS
stacks or specific business components that
the IT services companies developed. The
arrival of Service-Oriented Architecture
(SOA), based largely on software develop-
ment oriented toward components, only re-
inforces this trend; IT services companies
build software and software components
around their internal frameworks, then in-
tegrate them in the solutions they offer their
customers. As in the past, IT services com-
panies are becoming software suppliers
again due to the influence of OSS and SOA.

Technical Neutrality
	 OSS, when well-chosen and well-used,

lets companies avoid certain technical con-
straints imposed by traditional software
companies, including vendor dependence
and restrictive, expensive licensing systems.
However, this neutrality also can be
achieved through “commercial” software in-
sofar as they respect official and market
standards.
	 Open source can lead to strong con-
straints in a company that can find itself a
prisoner of its choices, since (as for all soft-
ware needs) specific development around a
platform is risky. There’s often more specific
development on open source than on pro-
prietary software, since the needs not cov-
ered are generally greater than those for a
packaged solution; one can also run the risk
of returning to systems that are too specific,
where knowledge of the system will rest on
the IT services company or on individuals
in the company. This is risky, too, particu-
larly if there’s not an extremely good project
management framework. It’s an approach
that should be justified only for highly spe-
cific needs.
	 When it’s not justified, companies must
avoid going back to non-standard systems.
Technical neutrality is a key point when in-
vesting in IT. One of the principal dangers of
OSS is to favor approaches that are too specif-
ic; on the other hand, one of its main advan-
tages is technical independence. The solution
for all software investments, whether “open”
or not, is to follow market standards.

The Return of Specific Development?
	 Open source has boosted specific de-
velopment. It has provided developers with
a whole range of technologies that are
highly adjustable and adaptable to user
needs. Open source is an innovation driver

36 | Enterprise Open Source Journal | March/april 2006

Figure 1: Software Industry Supply Chain

 Figure 2: Open Source Supply Chain

END USER INTEGRATOR SOFTWARE
 SUPPLIER

FUNCTIONAL
NEEDS

OS VENDOR

END USER
IT

SERVICES
SUPPLIER

OPEN
SOURCE
SERVICE

PROVIDER
COMMUNITY

IT
RESOURCES

SERVICE-
ORIENTED

ARCHITECTURES

END USER INTEGRATOR SOFTWARE
 SUPPLIER

FUNCTIONAL
NEEDS

OS VENDOR

END USER
IT

SERVICES
SUPPLIER

OPEN
SOURCE
SERVICE

PROVIDER
COMMUNITY

IT
RESOURCES

SERVICE-
ORIENTED

ARCHITECTURES

36 | Enterprise Open Source Journal | March/april 2006

in software technology that makes some
specific development more affordable.
Moreover, “traditional” software suppliers
are licensing aging or non-marketed prod-
ucts as OSS, thus increasing the number of
components available to create specific
software from common and free software.
These open systems also rely on an ecosys-
tem of open source and proprietary soft-
ware (such as Zend Studio) of higher and
higher performance, such as Linux,
Apache, MySQL, and PHP (LAMP), all
widely used for Websites.
	 Specific development is increasingly
framed by tools (e.g., project manage-
ment, governance) and methodologies
(e.g., Six Sigma).
	 It’s possible to make increasingly inex-
pensive custom systems by relying on open
source technologies and existing develop-
ment. However, this approach must occur
within a strong framework in terms of proj-
ect management and must be limited to ei-
ther common or highly specific needs. This
shouldn’t be a step backward toward com-
pletely custom systems; the trend is toward
the packaging of IT systems.
	 It’s important to conform to standards
and to evaluate investment over the total
lifetime of the solution and its mutations
(often five or more years in big projects). It
could be better to invest in a traditional
software supplier’s solution if the products
are easier to manage and to maintain and
the costs are easier to define. This is particu-
larly true for the company’s most structured
software, such as a platform or an applica-
tion foundation such as Enterprise Applica-
tion Integration (EAI), application servers,
transactional monitors, databases, adminis-
tration platforms, etc.
	 Consider the model that emerges as a

hybrid model between the specific and soft-
ware packages, a model that’s similar to a
game of Legos, where sometimes specific
stacks are built among themselves to create
a coherent system. Some such stacks are cre-
ated from scratch. Open source acts as a
strong driver behind this evolution by sup-
plying stacks and components without the
need to pay for licenses. This trend contin-
ues to be favorable for IT services providers.
A company must evaluate whether specific
development will create more value than if
it were a software package.
	 This depends on the:

•	Company’s economic sector
•	Company’s existing IT
•	Role of IT in creating added value
•	Company’s internal IT capacities and IT

project management capabilities.

The Future Model
	 The future model is an industrialized
specific development from standardized
components. Within the industry, this mod-
el is similar to the Dell model: specific that’s
less expensive than packaged, relying in
large part on basic normalized, standardized
components.
	 Applied to software, this model allows
for specific development that’s less onerous
than a standard solution. Thus, all Enter-
prise Resource Planning (ERP) suppliers are
now looking to open their products and to
“deintegrate” them by placing them on inte-
gration platforms, the packaged suites on
which the enterprise applications are built
according to n-tier architectures. These plat-
forms carry the SOA model. An integration
platform gathers an application server, a
portal, an integration server, a development
environment, and a Business Process Out-
sourcing (BPO) tool on one platform.
	 Open source, when it’s normalized, is an
important aspect of this componentization of
IT architectures by allowing easier and legal-
ized access to either common or highly spe-
cific software resources. It’s important to
evaluate what must be specific in the creation
of value from what can be packaged. The spe-
cific is more dependent on open source.
	 This renewal of specific, structured, in-
dustrialized, agile, and flexible development
requires setting up an SOA. Open source is
still too often perceived as a response to a
specific, limited need. It’s already used to re-
solve tactical issues but companies have ev-
erything to gain if they see them as part of a

long-term policy, in a strategic approach
within their future SOAs. Open source is a
factor in reducing costs and also a tool to
create added value.
	 For a company that’s conscientious
about creating a competitive advantage us-
ing its IT systems, SOAs are essential. It’s
better to do specific development and inte-
grate commercial and OSS packages within
an architecture that’s capable of receiving
and managing them than to do specific de-
velopment on an integrated software pack-
age or specific development starting from
zero. The SOA is the clutch between a com-
pany’s functional needs and its IT resources.
	 The model in Figure 3 requires strong
project management capabilities and a high
level of technical maturity. The eternal
choice in IT between “build” (specific) in-
formation systems and “buy” (packages) in-
formation systems remains a problem. The
pendulum between software packages and
specific development appears to again be
swinging in favor of the latter, thanks to
open source and SOAs; software packages
will be increasingly seen as components that
are increasingly standardized and packaged.
To design such architectures, it’s imperative
to invest strongly on two levels:

•	Upstream consulting to establish a coher-
ent city planning process of the informa-
tion system within companies’ competitive
environments, since two-thirds of IT proj-
ect failures are related to upstream phases

•	The integration platform that will serve as
the SOA’s engine. This is the “operating
system” of Internet architectures.

	 Solid construction requires a good foun-
dation. To maximize open source invest-
ments in an IT architecture, it’s better to
evolve toward a solid SOA. Open source
must be considered within an overall city
planning process where the OSS can be in-
tegrated within heterogenous software based
upon its capacities.
	 This IT model is effective, well-adapted,
agile, highly innovative (and therefore a cre-
ator of value), and capable of differentiating
the company from its competition.

Mathieu Poujol is a consultant with Pierre Audoin Consultants
(PAC), specializing in Systems Infrastructure Software. PAC
advises IT companies on achieving domestic and international
growth objectives in Europe and the U.S. through the planning,
development, implementation, and ongoing support of
successful growth strategies.
Voice: +33 (0)1 56 56 74 17
e-Mail: m.poujol@pac-online.com
Website: www.pac-online.com

march/april 2006 | Enterprise Open Source Journal | 37

Figure 3: SOA—The Clutch Between
Functional Needs and IT Resources

END USER INTEGRATOR SOFTWARE
 SUPPLIER

FUNCTIONAL
NEEDS

OS VENDOR

END USER
IT

SERVICES
SUPPLIER

OPEN
SOURCE
SERVICE

PROVIDER
COMMUNITY

IT
RESOURCES

SERVICE-
ORIENTED

ARCHITECTURES

march/april 2006 | Enterprise Open Source Journal | 37

L
ess than a decade ago, hardware
content dominated all categories
of embedded applications; device
Original Equipment Manufactur-

ers (OEMs) were first and foremost hard-
ware manufacturers. OEMs afforded em-
bedded operating systems and the programs
hosted on them the same status and impor-
tance as capacitors and diodes that shared
board-space and Bill of Material (BOM) cost
with software-centric CPUs and Dynamic
Random Access Memory (DRAM).
	 Today, by all measures, software content
is king, eclipsing hardware in importance,
cost and most important, perceived added
value. Software, not the hardware where it
runs, lets device manufacturers differentiate
their wares and survive in fiercely competi-
tive markets.
	 Forward-looking Consumer Electronics
(CE) manufacturers understand that soft-
ware lets them build intelligent devices. For
these firms, choice of software platform is
increasingly a strategic decision, going be-
yond the bits, bytes, and specs of kernels
that once dominated platform debates. This
article describes this new software-centric
world of CE and how leading CE manufac-
turers, start-ups, and upstarts view Linux
and Open Source Software (OSS). In partic-
ular, it recounts who is using Linux and in
what types of applications, the driving forces
behind its adoption, and how internal and
external software ecosystems evolve around
Linux-based device platforms.

Adoption Trends
	 Analyst firm Venture Development
Corp. (VDC) reports that in 2005, Linux-
based OSS garnered 25 percent of new 32-
and 64-bit design wins, with 29 percent of
developers planning to use Linux in their
next project (VDC data from a May 4, 2005
Ziff Davis eSeminar).
	 This leadership position places Linux
well ahead of traditional embedded (Real-
Time [RT]) OS platforms such as Wind Riv-
er VxWorks (12 percent) and Microsoft em-
bedded platforms (Window CE, XP
embedded et al.). In the Linux embedded
design space, VDC also cites the leading de-
sign domain to be CE, at 35 percent, fol-
lowed by communications (30 percent), and
industrial control (11 percent).
	 CE is actually a poor term to describe
today’s mass market of intelligent devices.
To most readers, CE implies first in-home
entertainment appliances such as televi-

38 | Enterprise Open Source Journal | March/april 2006

Linux &
Open

Source
Software:
——————————

A Strategic
Decision for
Consumer
Electronics

Manufacturers
——————————

By Bill Weinberg

sions, video equipment, and video games.
Next to come to mind will be in-hand ap-
plications such as media players and cell
phones. However, the field is both broader
and deeper: In-car is an important CE cate-
gory with navigation systems, graphical
dashboards, and digital entertainment sys-
tems; with nearly ubiquitous broadband
connections in most major markets, in-
home has expanded to include low-cost net-
working, security, control, and Small Office,
Home Office (SOHO) applications.
	 Figure 1 summarizes the five segments
of the CE market, with Linux and OSS par-
ticipating in all the segments and applica-
tions listed.
	 In-home, in-hand, in-car and elsewhere,
Linux is attracting a who’s who of CE manu-
facturers. The lion’s share of CE design and
manufacturing occurs in Asia: Tigers in Ja-
pan, China, Korea and Taiwan have all in-
vested heavily in conversion from purely
proprietary software to a mix that includes
Linux and open source (as well as in-house
and commercial proprietary software). The
same goes for European and American
manufacturers, especially in automotive and
mobile telephony.
	 Figure 2 lists companies with announced
Linux strategies, many with Linux-based
product lines shipping since 2002.

Driving Down Cost
	 The initial, tactical attraction to Free and
Open Source Software (FOSS) is cost reduc-
tion. Immediate savings from FOSS arise

from software acquisition—free access to
source code and lower (or even zero) costs
for development kits. For high-volume CE
devices, freedom from run-time licenses or
royalties for significant parts of the platform
help OEMs improve bottom lines. And, af-
ter the current project ships, device OEMs
have more leverage in negotiating toolkit li-
censing costs (if any) for follow-on applica-
tions, further reducing development and
deployment costs.
	 FOSS isn’t a panacea. Manufacturers
who decide to roll their own Linux and
FOSS-based stacks can end up spending sig-
nificant engineering monies if they lack suf-
ficient expertise. When OEMs choose com-
mercial FOSS-based solutions, licensing
costs also can approach the levels of legacy
proprietary solutions. While FOSS deploy-
ment may be royalty-free, OEMs can still
find themselves owing per-unit fees for re-
maining proprietary components, or even
for FOSS components as part of unit-based
support contracts.
	 Ultimately, FOSS’ biggest impact on to-
tal costs comes through giving device OEMs
more choice among technologies, vendors,
and solutions.

Platform Consolidation
	 Device OEMs face a bewildering diver-
sity of processor types, system architectures,
development tools, programming languages,
and embedded operating systems. On the
hardware side, CE applications sport pro-
cessors that include versions of ARM, Drag-

onBall, M68000, MIPS, PowerPC, SuperH,
and other CPUs.
	 Device OEM product teams are also or-
ganized along hardware-centric lines. In
many CE companies, each product or line
builds on unique hardware and deploys
unique OS, middleware and applications,
eschewing the obvious economies of scale
those same companies leverage in their
manufacturing. Platform fragmentation in
companies and across the industry is further
exacerbated by acquisitions and mergers
that bring divergent hardware and software
into already diverse engineering environ-
ments. Examples include Nokia’s takeover of
Brazil-based Gradiente mobile, Cisco’s pur-
chase of Linksys, and BenQ’s acquisition of
Siemens’ handset division in 2005.
	 Starting in the late ’90s, leading CE
suppliers (such as Sony and Panasonic)
began to search for a strategic platform.
The Japanese embedded market then was
dominated by derivatives of the iTRON
embedded OS, which, while ubiquitous,
provided a limited set of services and
functionality. Taiwanese, Korean and Eu-
ropean manufactures found themselves in
similar positions with commercial Real-
Time Operating Systems (RTOSes) such as
VRTX, pSOS and VxWorks. Coincidental-
ly, in the same timeframe, enterprise IT gi-
ants, including IBM, HP, Fujitsu and oth-
ers, began looking for a platform to unify
their diverse system architectures on the
hardware side, and multiple flavors of Unix
and OSes such as CMS and OS/3xx on the
software front.
 	 In 1999 and 2000, after a decade of in-
cubation, Linux sprang onto the scene.
Through investment by the aforemen-
tioned manufacturers, by Linux-based

march/april 2006 | Enterprise Open Source Journal | 39

__
Mobile & Wireless	 	 TV & Home Entertainment	 	 Automotive Telematics &
	 	 	 	 	 In-Car Entertainment__
•	 Mobile Phones	 •	 Digital / HDTV	 •	Navigation Systems
•	 Wireless PDAs	 •	 PVR / DVR	 •	Vehicle Management
•	 Portable Media Players	 •	 Set Top Box	 •	Digital Radio
•	 Portable Game Consoles	 •	 Digital Audio Receivers	 •	Digital Media Players
•	 Intelligent Remote Controls	 •	 Musical Instruments	 •	Hand-free Mobile Phones
•	 Digital Still and Video Cameras	 •	 Karaoke	 •	Wireless Data and Media Sharing
		 •	 Game Consoles
__
Home Networking & Control	 Small Office & Imaging	__
•	 Home Gateway	 •	 Laser and Inkjet printers	 •	Routers, Firewalls, VPN
•	 Broadband Access	 •	 Fax & Scanners	 •	IP Telephony Clients
•	 Home Automation	 •	 Intelligent Copiers	 •	Audio & Video Conferencing
•	 Security & Monitoring	 •	 Multi-function Peripherals	 •	PBX & Voicemail
•	 Domestic Robotics	 •	 Network Printers

Figure 1: Categories and Types of CE Devices Deploying Linux and Open Source Software

Acer	 Garmin	 NEC	 Sharp
BenQ	 Haier	 Nokia	 Siemens
BMW	 Hewlett Packard	 PalmSource	 Sony
Canon	 Kenwood	 Philips	 Sylvania
Casio	 LG	 Pioneer	 3COM
D-Link	 Linksys	 Roomba	 Tivo
Epson	 Matsushita	 Royal	 Toshiba
Ericsson	  (Panasonic)	 Samsung	 Volvo
	 Mitsubishi	 Sanyo	 Yamaha
	 Motorola

Figure 2: CE Manufacturers With Announced Linux
Strategies and Active Linux-Based Products

platform suppliers such as Red Hat, SuSE
and MontaVista, and by silicon suppliers
such as Intel, AMD, Motorola (now Free
Scale), Texas Instruments and ARM, Linux
quickly acquired the hardware support
and capabilities to be that strategic plat-
form, in both enterprise and embedded
applications.
	 As a strategic platform for embedded
computing, Linux makes sense. It lets de-
vice OEMs manage increasingly large,
complex application loads, using the same
capabilities that make Linux such a good
enterprise OS. It helps those same compa-
nies streamline development teams and
processes, optimizing training, develop-
ment, and maintenance investments by
providing a common platform that crosses
CPU hardware and application boundar-
ies, reducing redundancy of effort while
enabling OEMs finally to enjoy the prom-
ised benefits of software reuse across prod-
uct lines. Moreover, since Linux isn’t the
Intellectual Property (IP) of a single com-
pany, no single vendor must recoup the
staggering R&D cost of writing kernel and
user applications from scratch, as many
device OEMs had to do for their legacy
embedded OSes and stacks.

Open Platform
	 While device OEMs began by focusing
on consolidating the hardware and software
hidden inside their wares, the CE market-
place was shifting its emphasis from stand-
alone devices to connected platforms for
service delivery. Today, the perceived value
of the application lies in its ability to deliver
entertainment, voice, and other connectivity
services.
	 Just as device OEMs product designs
lived inside silos of hardware and software
constraints, service delivery systems such as
cable TV, phone service and Internet access
depended on technologies and sales chan-
nels that were inextricably bound to the car-
riers and operators that provided them.
Starting five years ago, attempts at defining
common and semi-open standardized deliv-
ery platforms looked to Java as the “can
opener” to cross over carrier and operator
boundaries. For in-home entertainment,
that meant Java-based Multimedia Home
Platform (MHP) and Open Cable Applica-
tion Platform (OCAP) middleware in cable
boxes and television sets; for mobile tele-
phony, it implied Mid-P Java profiles and
also BREW Application Program Interfaces

(APIs) deployed on cell phones.
	 While these and other software plat-
forms offer common APIs and the promise
of interoperability, they also raise deploy-
ment costs, and frequently fail to deliver
on performance and finer-grained inter-
operation of applications, displays and
multi-media. An extreme example comes
from the gaming software segment—for
the mobile handset market alone, game
Independent Software Vendors (ISVs) re-
port having to re-target their products
dozens of times for variations in phone
OSes and middleware complements: One
ISV cited the need to configure their most
popular offering in more than 100 device-
specific versions.
	 Linux and other FOSS carry multi-fac-
eted promise as a platform or set of solu-
tions for open, standards-based CE ser-
vice delivery. First, unlike legacy
embedded OSes, competing platform of-
ferings from Microsoft, Symbian and oth-
ers, and also unlike Java, Linux provides a
high-performance embedded OS with
truly standard APIs and open standard
implementations of networking protocols.
By leveraging its desktop and enterprise
roots, Linux offers device OEMs a more
robust, secure OS, with support for doz-
ens of legacy CPUs and next-generation,
multi-core processors.
	 A good example of the value of Linux
openness and crossover from enterprise
deployment is routing. While stand-alone
routers don’t fall into most definitions of
CE, many consumer devices need enter-
prise-class routing and security in a small
package. For example, while the main
function of cell phones and set-top boxes
is to deliver voice and video, those same
devices also boast WiFi, Universal Serial
Bus (USB), Ethernet, IrDA (Infra Red De-
vice Association), FireWire, and other in-
terfaces with the need for seamless hand-
off and transfer of multi-protocol
datastreams and sessions.

CE Software Ecosystems
	 With a shift in perceived value-added
from hardware to software comes renewed
requirements for integration of in-house
and Commercial Off-the-Shelf (COTS) soft-
ware. The estimated annual doubling of the
number of lines of code in CE devices has
outstripped the ability of even large device
OEMs to maintain their own OS and soft-
ware stacks, let alone develop them from

scratch. Instead, CE manufacturers find
themselves straddling two developer com-
munities: a pre-platform software ecosystem
that supplies the technologies and software
components that let OEMs develop and de-
liver their products to market; and a post
platform community that creates after-mar-
ket applications and partners with service
providers to deliver those applications and
to support incremental services offerings on
the devices.
	 Today, the emphasis for embedded
Linux lies on the pre-platform side. Dozens
of traditional and newly minted software
suppliers, hundreds of open source proj-
ects, and thousands of individual open
source developers contribute to the Linux
kernel and key projects that sustain ongo-
ing innovation in CE devices. These players
come together through organizations
such as OSDL’s Mobile Linux Initiative
(MLI), and the Consumer Electronics
Linux Forum (CELF). This ecosystem ef-
fectively outsources the massive task of
creating and integrating the base of the
software stack (below and at the value line).
Device OEMs add differentiating value
above the line with industrial design, us-
ability, manufacturing capability, distribu-
tion channels, marketing and branding,
product support and partnering with ser-
vice and content providers.
	 The post-platform ecosystem for Linux
and for all device platforms is still coalesc-
ing. Indeed, post-platform marketplaces are
usually product-specific (as was the ecosys-
tem around PalmOS devices or more re-
cently around TiVo) and ephemeral, coming
and going with the fortunes of the device
families at their centers. The formation of a
Linux-based, post-platform ecosystem will
hinge on several factors: first, the willing-
ness of carriers and operators to open their
networks; and second, the ability of Linux-
based platforms to strike a balance between
broad interoperability among devices and
device types, while providing a sufficiently
robust and segment-specific capability set to
meet the needs of a given device. That is,
drawing the value line both to support rapid
device development and still leaving room
for differentiation.

Bill Weinberg brings more than 18 years of open systems,
embedded, and other IT experience to his role as open source
architecture specialist and Linux evangelist at the Open Source
Development Labs, where he participates in OSDL initiatives for
Carrier-Grade, Data Center, and Desktop Linux.
e-Mail: bweinberg@osdl.org

40 | Enterprise Open Source Journal | March/april 2006

S ome time ago, we considered the open systems scorecard,
looking into the ancestry of Linux and the Berkeley

Software Distributions (BSDs). Somewhat conspicuous by its
absence is a relative newcomer to the open source scene, but
it’s no spring chicken—it’s a powerful and mature operating
system. In this issue, we examine what might be considered
the grand old patriarch of the clan: Solaris.
	 To find out where Solaris began and where it wound up,
we need to look at the evolution of Unix. As we saw in Part
I (January/February EOSJ), Unix has had, nearly from the
beginning, two different personalities: one was academic,
personified in the BSDs, which eventually shook off AT&T
and evolved into today’s trio of BSD operating systems. But
here, we’re interested in the road not taken—not taken by
BSD, anyway. This was the code base then known as AT&T’s
commercialized version of the genuine, official, accept-no-
substitutes, certified Unix.
	 So, this is the real McCoy, the bearer of the Unix
registered trademark. This Operating System (OS) has
gone through several revisions over time (including picking
up quite a number of features pioneered by its academic
sibling BSD), evolving into the more-or-less “final” product
dubbed “System V”—SysV, or SVR4, to insiders. It was this
version AT&T eventually sold off, and it was this version that
meandered through several owners and a variety of not-very-
obvious transactions to become what it is today: the SCO
and Novell football. It’s a sad end for a great lineage. But I’m
getting ahead of the story.
	 At this point, SysV was still a viable product, the apple of
AT&T’s marketing eye. SysV was walking through the woods
one day, minding its own business, when it ran smack dab
into a cousin, a BSD, no less. But not just another BSD—it
was the BSD known as SunOS.
	 Sun was one of a handful of companies responsible for
creating the modern workstation. They concentrated on
hardware, but turned to BSD and its quite lenient license
for their OS. The BSD license was designed to encourage
companies to adopt it and take it “in-house,” and this is what
Sun did to produce the new, non-open source “SunOS.” Sun
sold this OS starting in 1982 and carried it forward into the
late ’80s.
	 So, AT&T’s own SysV Unix met Sun’s SunOS and fell in
love. Well, maybe not love exactly—but the two companies
decided to partner, and features from each OS began to
cross-pollinate the other. Later on came the bitter divorce,
leaving AT&T’s official Unix to go on to face its horrible
fate, and Sun with the OS now known as Solaris. Solaris

is the latest incarnation of SunOS—with BSD and SysV
extensions—coupled with a windowing system and GUI.
	 Solaris went on to become Sun’s powerful and reliable
workhorse, and it made a great many friends in the corporate
world. It has always run on x86 machines, but is best-known
as the OS of choice for Sparcs, both 32- and 64-bit.
	 Despite the fact that BSD and Linux can both run on
Sparcs, it must be admitted that neither can really get as

much sheer grunt from the architecture as Solaris can. Its
biggest claim to fame is its fine-grained thread-locking,
allowing it to scale gracefully and nearly linearly to 64
processors.
	 Neither Linux nor the BSDs care to push their
architecture in that direction. The more processors you can
scale to, the more spinlocks you need in the kernel, and
therefore the poorer the performance on fewer processors.
Linux and the BSDs prefer to switch to clustering to deal
with huge numbers of processors. They do scale, and they
do work—but they are just not as beautifully optimized for
large numbers of processors in a single box. If you have a lot
of processors and you prefer not to use clustering solutions
because of the overhead, well, Solaris is your best friend.
	 Just a few months ago, Sun finally did something it has
been thinking about for some time—it released Solaris as an
open source operating system under the OSI-approved Sun
Common Development and Distribution License. This, as
Yogi Berra once said, is déjá vu all over again—Solaris, which
is still “real” Unix, though the trademark no longer applies—
has returned to its open source roots. And I
say, “Welcome back!”

Larry Smith started at Digital Equipment in 1978, and has
accumulated 27 years of experience in software engineering. He
is presently a consultant at Wild Open Source, specializing in
quality issues and user interface design.
e-Mail: larry@wildopensource.com

The Open Systems Scorecard: Part II

Open Systems	 BY LARRY SMITH

march/april 2006 | Enterprise Open Source Journal | 41

Solaris, which is still “real” Unix,
though the trademark no longer
applies—has returned to its
open source roots.

P reviously, I’ve discussed how IT organizations are
capitalizing on open source scripting languages. These

languages offer the flexibility and productivity associated
with interpreters while fitting the new open source, Web-
based paradigm for software support and community.
Having previously looked at the KornShell and Perl, we’ll
wrap up our tour with Open Object Rexx.
	 Open Object Rexx, or ooRexx as it’s called, is an
interesting creature that’s received a lot of attention. Shortly
after its introduction in April 2005, it garnered 24,000
downloads on the SourceForge Website—enough to place it
in the top-3 percent of all downloads last spring. What’s up
with that?
	 ooRexx was developed at IBM 10 years ago as a superset
of its Rexx scripting language. Procedural Rexx—now
called “classic Rexx”—runs on any imaginable platform,
and predominates on several. The language gained an ANSI
standard in 1996. If you were to summarize Rexx in a phrase,
“easy to code yet powerful” would be it. Rexx bases its power
in clean, simple syntax. This contrasts to languages that
evolved out of the Unix tradition, such as the KornShell or
Perl.
	 ooRexx adds Object-Oriented (OO) features to classic
Rexx for OO scripting. These include classes, messaging,
single and multiple inheritances, encapsulation and data
hiding, operator overloading and polymorphism, and a large
class library.
	 IBM open-sourced ooRexx in December 2004. The Rexx
Language Association took over development and support.
The “RexxLA” has since repackaged the product for Linux,
Windows, and Unix. You can find the language and its
documentation at the new ooRexx Website at www.oorexx.org.
	 The key to ooRexx’s success is that it extends classic
Rexx into OO programming while maintaining 100 percent
compatibility with standard Rexx. Any classic Rexx script
runs, without change, under ooRexx. This yields portable
scripts and transferable staff skills.
	 Most mainframe and former OS/2 and Amiga developers
know classic Rexx. With ooRexx, they can transition to OO
scripting at their own pace, write traditional procedural
scripts, and then add a few OO features as desired,
switching completely to the OO paradigm over time. Any
programming problem that’s best addressed procedurally can
still be coded procedurally.
	 Open Object Rexx applies Rexx’s ease of use to OO

scripting. This offers all the benefits claimed for OO
programming:

•	Simplified design through modeling with objects
•	Greater code reuse
•	Rapid prototyping
•	Higher quality of proven components
•	Reduced maintenance
•	Cost-savings
•	Increased adaptability and scalability.

	 ooRexx leverages the many free Rexx tools available on
the Web. The language is extensible in that you code and
use classes and functions in external packages just like those
included in the core language. ooRexx comes complete with
several tools, including:

•	Rexx Interpreter: The free, open source Rexx interpreter
•	Rexx Tokenizer: Tokenizes a script for faster execution and

hides source code
•	RexxUtil: Extended functions for operating-system

independent programming
•	RxSock: Extras for working with TCP/IP sockets
•	RxMath: Add-ins for transcendental math
•	RxRegExp: Supports regular expressions
•	Excellent documentation: Highly readable introductory

and reference manuals.

	 On the Windows platform, ooRexx integrates with key
operating system features, including ActiveX and Object
Linking and Embedding (OLE), Windows Script Host
(WSH), Active Directory Services Interfaces (ADSI), and
Windows Management Instrumentation (WMI). WSH
support allows you to write Windows system administration
scripts with ooRexx. Microsoft posts more than 120 examples
of ooRexx sysadm scripts for free download.
	 ooRexx combines easy OO scripting with real power. Find
further information at the Rexx Info Website at
www.RexxInfo.org and at the ooRexx
Website at www.oorexx.org.

Howard Fosdick is the author of the Rexx Programmer’s
Reference, a new book that covers scripting for Windows, Linux,
mainframes, handhelds, Open Object Rexx, and the major Rexx
tools and interfaces. Find it at www.amazon.com/rexx.
e-Mail: hfosdick@compuserve.com

What’s With Object Rexx?

Open Mind	 BY HOWARD FOSDICK

42 | Enterprise Open Source Journal | March/april 2006

A Content Management System (CMS)
supports the creation, management, dis-
tribution, publishing, and discovery of

corporate information. A CMS solution
needs to empower casual users, knowledge
or content owners, power users, and so on.
Ideally, an organization should be spending
75 percent of its content-related budget on
content creation and 25 percent on content
management.
	 Open Source Software (OSS) has be-
come increasingly mainstream. Open source
CMS solutions have matured enough to be
considered alongside commercial alterna-
tives.
	 Implementing a CMS can be among the
largest IT projects an organization under-
takes, but by nature, offers a low Total Cost
of Ownership (TCO). Making a straight
comparison between any two products is
challenging and any client exploring this
space should be prepared to spend consid-
erable time in deep investigation. This arti-
cle seeks to identify considerations that can
assist in due diligence.

Overview

	 Today’s competitive landscape has accel-
erated the speed of business, forcing enter-
prises to operate in real-time and respond
instantly to changing conditions. The best
companies are responding by enabling ac-
cess to information as soon as it changes.
Today, success is increasingly defined by
how efficiently you capture, create, manage,
and deliver information. Information is at
the core of your business, and delivering the
right information, at the right time, deter-
mines the effectiveness of your communica-
tion strategy.

	 The challenge of managing an enterprise
Web presence has never been greater. Web
properties are critical assets; they’re driven
by various combinations of CMSes and por-
tal packages. Some are custom-built, others
are commercial packages, and still others
are built using open source solutions. All
the properties differ in maturity but share
the same need for relevant, timely, frequent
content changes.
	 Traditional processes of maintaining
Web properties have been inefficient, ex-
pensive, and error-prone. Smaller enterpris-
es, looking for a corporate presence, have
their Web properties developed and main-
tained by dedicated Web teams, a scenario
that has lead to a single point of failure.
Large enterprises tend to transform their
Web properties into strategic assets. In ei-
ther case, ineffective Web content manage-
ment can significantly undermine corporate
messaging, decrease sales, increase staffing
requirements, and raise costs and risks.
Without automated workflow, the Web con-
tent quality suffers because a formal approv-
al mechanism is lacking. Organizations that
lack a content management strategy or have
an inefficient one fail to respond in real-
time (see Figure 1).

Business Drivers

	 CMSes, a combination of large database,
file system and other related software mod-
ules used to store and later retrieve huge
amounts of data (see Figure 2), were created
to address the problem of managing more
and more content of a variety of types, as
fast as possible. These challenges required
automation and management. The business
drivers for having a CMS are:

march/april 2006 | Enterprise Open Source Journal | 43

Open Source
Content

Management
Systems

Deliver a
Low TCO

By Vasuki Kasturi

Figure 1: Without a CMS

CONTENT
AUTHORS

WEB
PROPERTY

WEB
MASTER

•	Diluted brand presence
•	Costly Web development staff
•	Outdated or erroneous content
•	Poorly managed or non-existent work-

flows
•	Lack of version control or backups
•	Redundancy of effort.

	 A CMS supports the creation, manage-
ment, distribution, publishing, and discov-
ery of corporate information. It covers the
complete content lifecycle, from providing
simple tools to create the content to publish-
ing and archiving. It helps manage the struc-
ture of the Web property, the appearance of
the published content, and the navigation
provided to users. Actually, CMSes are
broader than this.

Business Benefits

	 A wide range of benefits can accrue from
implementing a CMS:

•	Streamlined authoring process
•	Faster turnaround time for new pages and

changes
•	Greater consistency
•	Improved site navigation
•	Increased site flexibility
•	Support for decentralized authoring
•	Increased security
•	Reduced duplication of information
•	Greater capacity for growth
•	Reduced site maintenance costs.

	 Moreover, the greatest benefit is better
support for your goals and strategies. By hav-
ing a consistent, clear message, a CMS assists
in communicating with the public. By provid-
ing an intuitive system that enables quick
content creation, a CMS can bring more visi-
tors to the Website, improve customer satis-
faction, and enhance sales prospects.

Enterprise Software Model

	 Most organizations have invested in a
robust infrastructure. Unfortunately, shrink-
ing budgets have left IT organizations lean
and more concerned with essential services
than large, new projects. An “enterprise-
wide” CMS solution costs many thousands
of dollars in addition to infrastructure costs.
	 Commercial CMS solutions are often
marketed as shrink-wrapped, out-of-the-
box solutions, but are usually “consulting
ware”—whose installation, configuration,
customization, and maintenance need nu-
merous consultants and cost the enter-
prise thousands of dollars. Enterprise
software today has several inherent prob-
lems, including:

•	Longer sales cycle so expenses are added
to the price

•	Prohibitive costs
•	Inaccessibility to small and medium-size

businesses
•	Disconnect between license cost and man-

ufacturing cost
•	Long customization cycles
•	Inflexibility with the closed architecture.

	 Loss of license revenue has forced these
commercial vendors to increase other cost

components such as maintenance, custom-
ization, and support.

Open Source Promise

	 OSS has gained broad acceptance with the
growth of the Internet and popularity of
Apache and Linux. Organizations are opting
for clusters of “cheaper” Linux servers instead
of monolithic, expensive, proprietary boxes.
The field of CMSes has seen strong growth in
OSS solutions, perhaps in response to the
high prices of commercial CMSes.
	 Benefits of OSS CMSes include:

•	Low cost
•	Ease of customization
•	Platform independence
•	No “lock-in”
•	Better integration support
•	Community support
•	Documented systems.

	 OSS CMSes won’t replace commercial
offerings, but they offer a viable CMS alter-
native for many businesses. Solutions such
as Zope CMF and Typo3 are almost “enter-
prise-ready.” OSS solutions should be evalu-
ated side by side with commercial CMSes in
the demonstration process. OSS solutions
may prove to be the best solution for some
organizations, but whether it’s open source
or commercial, a CMS solution should be
evaluated based on business requirements.

Selecting a CMS Solution

	 Choosing the right CMS is challenging.
The CMS solution should be justified as an
ongoing expenditure. There’s no “one-size-
fits-all” solution, because no two organiza-
tions have the same requirements. Neither
does there exist an “out-of-the-box” solution:
Some customization is usually required.
	 Three steps can ease the selection process:

1.	 Specify goals

44 | Enterprise Open Source Journal | March/april 2006

System usage
• Web usage statistics
• Search engine usage
• Messages sent/posted
• Other knowledge creation measures
• Knowledge use

Number of users

Information quality
• User rankings
• Expert evaluation
• Edits required
• Usability testing
• Track-back links

User feedback

Maintenance costs
• Reduced staff
• Reduced capital
Staff efficiency
Printing costs
Distributed authoring
Process efficiency;
reduced time
Transaction costs

Figure 3: Implementation Metrics

Figure 2: Lifecycle of Content Management

GET A TEAM
TOGETHER

ASSESS
CONTENT

RESEARCH
INTERNAL

NEEDS
MIGRATE
CONTENT

DESIGN WORKFLOW DESIGN CMS
INTERFACES

DEVELOP
METADATA

DESIGN TEMPLATES
AND COMPONENTS

2.	 Identify requirements
3.	 Evaluate products.

Goals

	 Begin by determining the goals the CMS
implementation will achieve. These should
reflect long-term business strategies and di-
rections; they should be well-understood
and agreed to by all stakeholders before you
begin the requirements-gathering process.
For example, a CMS to manage a large cor-
porate Website for a retail business might
list these goals:

•	Increase Website audience
•	Reduce customer support costs
•	Reduce duplication of information
•	Increase flexibility of the site
•	Improve the customer experience.

	 An intranet project, however, would list
different goals:

•	Improve staff efficiency
•	Reduce publishing costs
•	Reduce duplication of information
•	Capture business knowledge
•	Support knowledge discovery.

	 Use metrics to make your goals tangible
and measurable.

Requirements

	 After you identify goals, you can begin
the requirements process. There’s no single
best list of requirements because every orga-
nization has unique needs. Involve all your
stakeholders in the requirements process,
particularly if you’re purchasing an enter-
prisewide CMS. Map each requirement to
one (or more) goal(s); the requirements spec-
ify the “what,” while the goals are the “why.”
Together, they form an integrated strategy.
	 For example, the goal of “reduce dupli-
cation of information” could lead to these
requirements:

•	Manage the Internet and intranet from the
same system

•	Integrate the CMS with existing systems
•	Activate functions from a single source.

	 Because the requirements list can grow
quite large, you should group the items into
categories. Classifications that cover the en-
tire CMS lifecycle could be:

•	Content creation

•	Content management
•	Publishing
•	Presentation
•	Contract and business
•	Evaluate vendor products.

	 After you identify requirements, use
them for vendor selection. Ask vendors to
provide detailed descriptions of how their
system will meet your requirements. Using
this approach helps ensure vendor account-
ability for any promises or commitments
they make regarding their CMS. Ensure that
vendor demonstrations are more than a sales
pitch. Vendors must show how their product
will meet your needs. The best way to achieve
this is to develop scenarios—descriptions of
common or important tasks that will be per-
formed using the CMS. By presenting these
in a “narrative” form, considerable scope can
be covered in a relatively brief description.
	 Assess the implementation methodolo-
gy, paying particular attention to the non-
technical aspects (such as training, change
management, usability, and information ar-
chitecture).
	 The TCO, not just the initial purchase
price, may be an important consideration.
TCO may include:

•	Amount of customization required
•	Technical skills and knowledge required

by internal staff
•	Degree of ongoing reliance on the vendor
•	Licensing models and fees
•	Third-party products required
•	IT infrastructure required.

	 Whatever evaluation processes are fol-
lowed, you must choose a single successful
vendor. To do this impartially, create a scor-
ing system. Score each of the requirements
mapped to the business goals. Determine
this before you contact the vendors, and in-
corporate the results of any demonstrations.
Using a formal scoring system helps elimi-
nate the potential for accusations of bias or
corruption (for a sample copy, please visit
www.cignex.com/site/library/datasheet).

Implementation

	 When the complex process of selecting a
CMS vendor is complete, the success of the
CMS project largely depends on how it’s im-
plemented and used. Implementing a CMS
presents numerous challenges, including:

•	Variables such as usability, architecture,

and change management
•	Staff participation
•	Integrating with (or modifying) many

business processes
•	Implementing the CMS as part of a broad-

er information or knowledge strategy
•	Implementing a relatively new, immature

product within the administration of the
agency

•	Interrelating to other information systems
such as document and records manage-
ment

•	Ensuring long-term viability of the system
and supporting processes.

	 These challenges introduce risks the im-
plementation team must carefully manage.
Prepare a checklist beforehand to identify
key tasks that need to be addressed to miti-
gate the risks (visit www.cignex.com/site/li-
brary/datasheet for a sample checklist).

Measuring Value

	 If possible, specify metrics for measur-
ing the success of each of the goals. Metrics
provide a basis for calculating ROI and
tracking the health of a CMS; they also help
identify problems quickly enough for them
to be effectively addressed.
	 With metrics still an area of ongoing
research, you need to determine the best
measures to use in your project. The table
in Figure 3 lists some implementation
metrics that can be tracked. You also can
create metrics for corporate, customer ser-
vice, etc. The metric for “improved cus-
tomer experience” might be to “increase
customer satisfaction with the Website to
90 percent, as measured by customer sur-
vey.” Alternatively, “reduce support costs”
could be measured by analyzing both
Website usage and call center volumes. To
help ensure effective metrics, measure
them before the project starts to provide a
baseline for comparison.

TCO

	 CMS has developed into a distinct, en-
terprise-level discipline. But with shrinking
IT budgets, can content management con-
tinue to be justified as an ongoing expendi-
ture? How can organizations know content
management is delivering a real ROI?
	 Let’s assume CMS can be justified on the
basis of various intangibles. Organizations
looking to measure the ROI must evaluate
the cost of not having a system in place.
Some difficult questions need to be asked:

march/april 2006 | Enterprise Open Source Journal | 45

•	What are the costs associated with your
content being unavailable either through
the Website or your primary content stor-
age systems?

•	What’s the risk of having inaccurate con-
tent on your Website?

•	How much does the insurance for that risk
cost?

•	How do you recover and replace inaccu-
rate content when your Webmaster is un-
available?

	 Although it’s challenging to put a value
tag on these intangibles, these cost savings
relate directly to ROI. Depending on the
type of organization and the size and type of
the asset management and Web publishing
requirements, measurable ROI can be pre-
dicted and proved. Alternatively, organiza-
tions can start to look at the TCO of imple-
menting a CMS, both proprietary and OSS.
	 Several components determine the final
price of a CMS implementation. Figure 4
shows costs incurred over five years when us-
ing a proprietary CMS system. Most proprie-

tary systems run on expensive servers running
a proprietary OS such as Solaris or Windows
2000. License fees for proprietary systems
range from $600,000 to $2 million. Organiza-
tions seeking annual support for these prod-
ucts usually include an industry standard of
18.5 percent for a license fee and solution sup-
port costs of approximately $25,000.
	 Because of the one-size-fits-all nature of
proprietary CMS systems, customization
cycles are longer and expensive. When all
other costs are factored in, a fully opera-
tional proprietary solution normally runs
anywhere from $1.4 million to $3 million.
	 OSS systems can be an effective alterna-
tive. Because license fees don’t apply, they
offer an immediate value proposition. Usu-
ally, the cost to implement a CMS package is
the same. Because of a vast developer com-
munity, most open source CMS solutions
boast of several add-ons, directly translating
into lowered customization fees. Several
vendors exist that provide support for the
open source code and are also responsible
for training and support. Figure 5 shows
costs incurred in implementing an OSS

CMS solution.
	 OSS solutions cost half as much as pro-
prietary systems and offer similar features.
Depending on the cost-savings potential,
both solutions pay for themselves, although
in different timelines. However, a commer-
cial CMS solution “locks in” an organization
to some platform, leading to the scalability
saturation. Furthermore, there are no guar-
antees that the license fees will remain flat,
unlike OSS solutions where the licensing
component doesn’t apply.

Conclusion

	 Content management is an important
part of an enterprise Web strategy and it
will only increase in importance as more
business functions are moved to the Web.
Specialized CMS services such as work-
flow and personalization will remain im-
portant selling points. For organizations
considering a CMS solution, more and
better options than ever exist. Choosing
the best solution, though, requires in-
creased due diligence.
	 Significant developments over the past
year have encouraged organizations to
adopt OSS solutions for their CMS needs.
OSS solutions have helped organizations
stay more competitive and realize high
ROI. But for most organizations seeking
OSS solutions, the price tag is irrelevant;
the stability and the growing number of
references in favor of OSS alternatives have
influenced organizations to adopt these so-
lutions. Organizations are seeing rapid re-
duction in system downtime by moving to
a Linux server. The arguments against im-
plementing an open source CMS usually
encompass one primary concern: uncer-
tainty. Product support, documentation,
and user training are often subject to the
whims of the community developers.
	 Deciding which way to go on your CMS
implementation depends on many factors,
but ultimately, you want the best ROI and
the lowest TCO possible. The important
variables are your requirements, resources,
and the demands of your particular situa-
tion. Some of the high-priced CMS solu-
tions look fantastic, but the outcome is
what’s important. Choose what’s right for
your situation.

Vasuki Kasturi is a program manager at CIGNEX Technologies,
Inc., and heads the Data Integration and Business Intelligence
practice.
e-mail: vasuki@cignex.com
Website: www.cignex.com

	Y ear 1 	Y ear 2 	Y ear 3 	Y ear 4 	Y ear 5
Servers 	 25
OS/database 	 none
CMS software 	 none
Product support 	 10	 10	 10	 10	 10
Implementation 	 300
Customization 	 100 	 25	 25	 25	 25
Training 	 50
Application
support 	 25 	 25 	 25 	 25 	 25

TOTAL 	 $510 	 $60 	 $60 	 $60 	 $60

Figure 5: TCO for an Open Source CMS (all figures in ‘000)

46 | Enterprise Open Source Journal | March/april 2006

	Y ear 1 	Y ear 2 	Y ear 3 	Y ear 4 	Y ear 5
Servers 	 50
OS/database 	 25 	 5 	 5 	 5 	 5
CMS software 	 600–2,000
Product support 	 125–370 	 125–370 	 125–370 	 125–370 	 125–370
Implementation 	 300
Customization 	 200 	 50 	 50 	 50 	 50
Training 	 50
Application
support 	 25 	 25 	 25 	 25 	 25

TOTAL 	 $1375–3020 	 $205–450 	 $205–450 	 $205–450 	 $205–450

Figure 4: TCO for Proprietary CMS (all figures in ‘000)

Open Source Will Build New Markets
by First Breaking Them Apart

Open for Business	 BY NATHANIEL PALMER

V ertically integrated market sectors face an inescapable
utility curve, where innovation is suppressed as

competition is locked out. The generation of computers
prior to the PC (notably mainframes and mini-computers)
followed a vertically integrated, inter-dependent architecture
where all components were controlled by a single firm, and
competitive differentiation was derived from tight coupling
of the value chain. The result was a “winner-take-all”
opportunity for monopolies, locking-out new firms with the
inherent overhead required of developing an entirely new
architecture and its components. The mainframe industry
consolidated behind IBM, which ultimately would command
90 percent of the market, just as DEC dominated the mini-
computer space.
	 Contrast this, however, with industry models based on
a modular architecture, such as that of the PC. For the last
two decades, innovation and wealth creation have been
spread across the value chain of component providers such as
Microsoft and Intel, plus component assemblers such as Dell,
Compaq, and a host of others. The breadth and scope of the
PC and desktop computing market have been far greater than
any single, vertically integrated player could have managed.
Although IBM participated in the PC market’s rising tide,
it controlled a much smaller share than it enjoyed in the
mainframe business.
	 Software today reflects a market amid an inflection
point, facing the same challenges and limitations seen in
earlier vertically integrated technology sectors. Following
the precedent established by previous technology evolutions
and models, it’s the shift from vertical integration to an open
architecture (a move hastened by open source) that will save
the software industry. Consider the recent success of Apple
and its OS X platform, where open source has provided
the catalyst for a new wave of innovation and specialized
development. Traditionally one of the worst offenders of
the “not-invented-here” mentality, Apple has lagged behind
Windows/Intel in user adoption, as well as support by third-
party application developers, despite what many conceded to
be a superior platform.
	 With the release of its OS X environment, however, Apple
is amid a sea of change in the design of both its products and
business model. Apple’s “Powered by Darwin” campaign, for
example, is designed to allow developers to customize and
enhance key Apple software, while also providing a forum
for Apple engineers to collaborate directly with the open
source community. This includes the core operating system
commonly known as Darwin, which combines several core

open source components, including Mach 3.0, an operating
system services stack on the 4.4BSD (Berkeley Software
Distribution of Unix). Open source also has allowed Apple
to bring to market a number of desktop applications for the
OS X platform, with a speed unprecedented in its earlier
generations of software development. These applications have
played a significant role in the growth Apple has recently
experienced in the adoption of the Macintosh platform. They
also have no doubt helped re-shape Apple’s thinking away
from proprietary processors by supporting Intel processors,
starting in 2006.
	 The modular design of Linux provides a platform for
many value-added services to be delivered at the hardware
level (e.g., built-in services for connectivity and security) and
to be able to work with most installed Linux distributions.
Unlike proprietary platforms (notably Windows), Linux’s
modularity allows applications to run their own user
environment, without having to expose the operating system.
This phenomenon has already emerged within consumer
electronics, where manufacturers have found success
developing tightly packaged, off-the-shelf commercial
products leveraging open source components. Examples
include a Linksys 802.11g Wireless Router running a Linux
kernel, the Nokia Smartphone using a custom Web browser
based on the same open source project used to create Apple’s
Safari, and an application called OsiriX, developed by a
radiologist, that allows doctors to collaborate on scanned
images using an iPod as portable storage.
	 These initiatives have demonstrated how open source
offers a time-to-market advantage that greatly exceeds that
offered by the traditional commercial development model.
The ability to leverage components as building blocks allows
application developers to be re-cast as business innovators.
These initiatives also provide the economic potential for
leveraging open source for innovation beyond the traditional
confines of IT and packaged software. The end game for OSS
isn’t simply to displace commercial Unix with Linux, but to
unleash a vast array of new product capabilities that may
otherwise evade discovery and invention with blinders of
proprietary software.

Nathaniel Palmer is president of Transformation+Innovation—
a consulting, education, and advisory firm that guides business
strategy and transformation through the optimization of
technology, knowledge management, and process redesign.
He’s the
co-author of The X-Economy (Texere, May 2001) and has
authored more than 200 studies and published articles.
e-Mail: npalmer@os30.com
Website: www.transformationandinnovation.com

march/april 2006 | Enterprise Open Source Journal | 47

If you are looking for alternatives to pricey, complicated open systems backup products than look no
further. If you need a backup product that is simple to use, very cost effective, with a personalized
technical support model, then consider FDR/UPSTREAM’s Family of Products.

Thousands of sites have trusted INNOVATION’s backup products for decades. Take the INNOVATION
challenge and see how FDR/UPSTREAM can help you manage your UNIX and distributed
backup issues.

Innovation Data Processing offers a FREE 90-day No-obligation trial to evaluate the product in your
environment. To order the trial, request documentation or an UPSTREAM white paper, please don’t
hesitate to call us at (973) 890-7300, or email sales@fdrinnovation.com.

Visit us at: LinuxWorld 2006 • Booth #1030 • April 3-6, 2006 • Boston, MA

CORPORATE HEADQUARTERS: 275 Paterson Ave., Little Falls, NJ 07424 • (973) 890-7300 • Fax: (973) 890-7147
E-mail: support@fdrinnovation.com • sales@fdrinnovation.com • http:/ / www.innovationdp.fdr.com

EUROPEAN FRANCE GERMANY NETHERLANDS UNITED KINGDOM NORDIC COUNTRIES
OFFICES: 01-49-69-94-02 089-489-0210 036-534-1660 0208-905-1266 +31-36-534-1660

Searching for Alternatives
to Pricey, Complicated Open
Systems Backup Products

Can Be a Hassle.

LOOK NO FURTHER!

Reliable Backup/Recovery • Extensive Multi-Platform Support

Backup to Disk or Tape • Centralized Administration

Broad Based Device Support • Affordable License Fees

SAN Express LAN-Free Backup • Hot Database Agents

ALL FROM A VENDOR PROVIDING BACKUP SOFTWARE FOR OVER 33 YEARS!

The UPSTREAM Reservoir extends the power of UPSTREAM so organizations can
now utilize UPSTREAM either in mixed z/OS mainframe–open systems environments
or entirely non-mainframe environments.

06027_INupstrmsrch.qxd 2/3/06 3:06 PM Page 1

www.innovationdp.fdr.com

	Table of Contents

