USING THE ANDROID TOOLCHAIN AS A STANDALONE COMPILER ====================================================== WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING SUPPORT FOR THIS FEATURE IS STILL IN BETA AND ONLY APPLIES TO arm-linux-androideabi-4.4.3 IF YOU ENCOUNTER A PROBLEM WITH THE METHODS DESCRIBED HERE, PLEASE CONTACT THE SUPPORT FORUM AT [email protected] WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING It is now possible to use the toolchain provided with the Android NDK as a standalone compiler. This can be useful if you already have your own build system, and only need to ability to invoke the cross-compiler to add support to Android for it. A typical use case if invoking the 'configure' script of an open-source library that expects a cross-compiler in the CC environment variable. This document explains how to do that: 1/ Selecting your sysroot: -------------------------- The first thing you need to know is which Android native API level you want to target. Each one of them provides a different various APIs, which are documented under doc/STABLE-APIS.html, and correspond to the sub-directories of $NDK/platforms. This allows you to define the path to your 'sysroot', a GCC term for a directory containing the system headers and libraries of your target. Usually, this will be something like: SYSROOT=$NDK/platforms/android-<level>/arch-<arch>/ Where <level> is the API level number, and <arch> is the architecture ("arm" being currently supported). For example, if you're targetting Android 2.1 (a.k.a. Froyo), you would use: SYSROOT=$NDK/platforms/android-8/arch-arm 2/ Invoking the compiler (the hard way): ---------------------------------------- Invoke the compiler using the --sysroot option to indicate where the system files for the platform you're targetting are located. For example, do: export CC="$NDK/toolchains/<name>/prebuilt/<system>/bin/<prefix>gcc --sysroot=$SYSROOT" $CC -o foo.o -c foo.c Where <name> is the toolchain's name, <system> is the host tag for your system, and <prefix> is a toolchain-specific prefix. For example, if you are on Linux using the NDK r5 toolchain, you would use: export CC="$NDK/toolchains/arm-linux-androideabi-4.4.3/prebuilt/linux-x86/bin/arm-linux-androideabi-gcc --sysroot=$SYSROOT" As you can see, this is rather verbose, but it works! 3/ Invoking the compiler (the easy way): ---------------------------------------- The NDK allows you to create a "customized" toolchain installation to make life easier. For example, consider the following command: $NDK/build/tools/make-standalone-toolchain.sh --platform=android-5 --install-dir=/tmp/my-android-toolchain This will create a directory named /tmp/my-android-toolchain containing a copy of the android-5/arch-arm sysroot, and of the toolchain binaries. You can later use it directly with something like: export PATH=/tmp/my-android-toolchain/bin:$PATH export CC=arm-linux-androideabi-gcc Note that without the --install-dir option, make-standalone-toolchain.sh will create a tarball in /tmp/ndk/<toolchain-name>.tar.bz2. This allows you to archive and redistribute the binaries easily. Use --help for more options and details. IMPORTANT: The toolchain binaries do not depend or contain host-specific paths, in other words, they can be installed in any location, or even moved if you need to. NOTE: You can still use the --sysroot option with the new toolchain, but it is now simply optional! 4/ ABI Compatibility: --------------------- The machine code generated by the toolchain should be compatible with the official Android 'armeabi' ABI (see docs/CPU-ARCH-ABIS.html) by default. It is recommended to use the -mthumb compiler flag to force the generation of 16-bit Thumb-1 instructions (the default being 32-bit ARM ones). If you want to target the 'armeabi-v7a' ABI, you will need ensure that the following two flags are being used: CFLAGS='-march=armv7-a -mfloat-abi=softfp' Note: The first flag enables Thumb-2 instructions, and the second one enables H/W FPU instructions while ensuring that floating-point parameters are passed in core registers, which is critical for ABI compatibility. Do *not* use these flags separately! If you want to use Neon instructions, you will need one more compiler flag: CFLAGS='-march=armv7-a -mfloat-abi=softfp -mfpu=neon' Note that this forces the use of VFPv3-D32, as per the ARM specification. Also, is is *required* to use the following linker flags that routes around a CPU bug in some Cortex-A8 implementations: LDFLAGS='-Wl,--fix-cortex-a8' If none of the above makes sense to you, it's probably better not to use the standalone toolchain, and stick to the NDK build system instead, which will handle all the details for you. 5/ Warnings and Limitations: -------------------------- 5.1/ Windows support: - - - - - - - - - - - The Windows binaries do *not* depend on Cygwin. The good news is that they are thus faster, the bad news is that they do not understand the Cygwin path specification like /cygdrive/c/foo/bar (instead of C:/foo/bar). The NDK build system ensures that all paths passed to the compiler from Cygwin are automatically translated, and deals with other horrors for you. If you have a custom build system, you may need to deal with the problem yourself. NOTE: There is no plan to support Cygwin / MSys at the moment, but contributions are welcome. Contact the android-ndk forum for details. 5.2/ wchar_t support: - - - - - - - - - - - As documented, the Android platform did not really support wchar_t until Android 2.3. What this means in practical terms is that: - If you target platform android-9 or higher, the size of wchar_t is 4 bytes, and most wide-char functions are available in the C library (with the exception of multi-byte encoding/decoding functions and wsprintf/wsscanf). - If you target any prior API level, the size of wchar_t will be 1 byte and none of the wide-char functions will work anyway. We recommend any developer to get rid of any dependencies on the wchar_t type and switch to better representations. The support provided in Android is only there to help you migrate existing code. 5.3/ Exceptions, RTTI and STL: - - - - - - - - - - - - - - - The toolchain binaries *do* support C++ exceptions and RTTI by default. They are enabled by default, so use -fno-exceptions and -fno-rtti if you want to disable them when building sources with them (e.g. to generate smaller machine code). NOTE: You will need to explicitely link with libsupc++ if you use these features. To do this, use -lsupc++ when linking binaries, as in: arm-linux-androideabi-g++ .... -lsupc++ The toolchain also comes with a working GNU libstdc++ implementation, which provides a working C++ Standard Template Library implementation. You will need to explicitely link against -lstdc++ to use it. Proper toolchain configuration to avoid these explicit link flags is planned for the future.