
Apache Hivemall Meets PySpark  
Scalable Machine Learning with Hive, Spark, and Python

 
 

Takuya Kitazawa @takuti
Apache Hivemall PPMC

EUROPE

Machine Learning in Query Language

Q. Solve ML problem on massive data stored in data warehouse

Scalability

Q. Solve ML problem on massive data stored in data warehouse

Prac;cal experience in science and engineering

Theory / math Tool / Data model

Done by ~10 lines of queries

Machine Learning for everyone  
Open source query-based machine learning solution

- Incubating since Sept 13, 2016

- @ApacheHivemall

- GitHub: apache/incubator-hivemall

- Team: 6 PPMCs + 3 committers

- Latest release: v0.5.2 (Dec 3, 2018)

- Toward graduation:

✓ Community growth

✓ 1+ Apache releases

✓ Documentation improvements

Introduction to Apache Hivemall

How Hivemall Works with PySpark

Hivemall <3 Python

Introduction to Apache Hivemall

How Hivemall Works with PySpark

Hivemall <3 Python

‣ Data warehousing solu;on built on top of Apache Hadoop

‣ Efficiently access and analyze large-scale data via SQL-like interface, HiveQL

- create table
- select
- join
- group by
- count()
- sum()
- …

- order by
- cluster by
- …

Apache Hive

‣ OSS project under Apache SoLware Founda;on

‣ Scalable ML library implemented as Hive user-defined func;ons (UDFs)

Apache Hivemall

column 1

aaa

bbb

ccc

column 1’

xxx

yyy

zzz

column 1

aaa

bbb

ccc

column 2

scalar

column 1

aaa

bbb

ccc

column 2 column 3

xxx 111

yyy 222

UDF UDAF (aggrega^on) UDTF (tabular)

‣ l1_normalize() ‣ rmse() ‣ train_regressor()

Easy-to-use

ML in SQL

Scalable

Runs in parallel on
Hadoop ecosystem

Mul;-plaSorm

Hive, Spark, Pig

Versa;le

Efficient, generic
func^ons

Apache Hivemall

Use case #1: Enterprise Big Data analytics platform
 Hivemall makes ML more simple, handy on

Use case #2: Large-scale recommender systems  
Demo paper @ ACM RecSys 2018

Use case #3: E-learning
“New in Big Data” Machine Learning with SQL @ Udemy

Easy-to-use

ML in SQL

Scalable

Runs in parallel on
Hadoop ecosystem

Mul;-plaSorm

Hive, Spark, Pig

Versa;le

Efficient, generic
func^ons

Example: Scalable Logistic Regression written in ~10 lines of queries

Automa^cally runs in parallel on Hadoop

Easy-to-use

ML in SQL

Scalable

Runs in parallel on
Hadoop ecosystem

Mul;-plaSorm

Hive, Spark, Pig

Versa;le

Efficient, generic
func^ons

- Feature hashing

- Feature scaling (normaliza^on, z-score)

- Feature binning

- TF-IDF vectorizer

- Polynomial expansion

- Amplifier

- AUC, nDCG, log loss, precision, recall, …

- Concatena^on

- Intersec^on

- Remove

- Sort

- Average

- Sum

- …

-

Feature engineering

Evalua;on metrics

Array, vector, map

Bit, compress, character encoding

Efficient top-k query processing

From/To JSON conversion

Efficient top-k retrieval
Internally hold bounded priority queue

List top-3 items per user:

item user score

1 B 70

2 A 80

3 A 90

4 B 60

5 A 70

… … …

SELECT
 item, user, score, rank
FROM (
 SELECT
 item, user, score,
 rank() over (PARTITION BY user ORDER BY score DESC)
 as rank
 FROM
 table
) t
WHERE rank <= 2

SELECT
 each_top_k(
 2, user, score,
 user, item -- output columns
) as (rank, score, user, item)
FROM (
 SELECT * FROM table
 CLUSTER BY user
) t

Not finish in 24 hrs. for 20M users

and ~1k items in each

Finish in 2 hrs.

Recommendation with Hivemall

k-nearest-neighbor
‣ MinHash and b-Bit MinHash (LSH)

‣ Similari^es

- Euclid

- Cosine

- Jaccard

- Angular

Efficient item-based collabora;ve filtering
‣ Sparse Linear Method (SLIM)

‣ Approximated all-pair similari^es (DIMSUM)

Matrix comple;on
‣ Matrix Factoriza^on

‣ Factoriza^on Machines

Natural Language Processing — English, Japanese and Chinese tokenizer, word N-grams, …

‣ 　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　  
["Hello", "world"]

‣  
apple

Geospa;al func;ons

select tokenize('Hello, world!')

select singularize('apples')

SELECT
 map_url(lat, lon, zoom) as osm_url,
 map_url(lat, lon, zoom,'-type googlemaps') as gmap_url
FROM (
 SELECT 51.51202 as lat, 0.02435 as lon, 17 as zoom
 UNION ALL
 SELECT 51.51202 as lat, 0.02435 as lon, 4 as zoom
) t

Anomaly / Change-point detec;on
‣ Local outlier factor (k-NN-based technique)

‣ ChangeFinder

‣ Singular Spectrum Transforma^on

Clustering / Topic modeling
‣ Latent Dirichlet Alloca^on

‣ Probabilis^c Latent Seman^c Analysis

Sketching
‣ Approximated dis^nct count:

‣ Bloom filtering:

SELECT count(distinct user_id) FROM t SELECT approx_count_distinct(user_id) FROM t

WITH high_rated_items as (
 SELECT bloom(itemid) as items
 FROM (
 SELECT itemid
 FROM ratings
 GROUP BY itemid
 HAVING avg(rating) >= 4.0
) t
)
SELECT
 l.rating,
 count(distinct l.userid) as cnt
FROM
 ratings l
 CROSS JOIN high_rated_items r
WHERE
 bloom_contains(r.items, l.itemid)
GROUP BY
 l.rating;

Build Bloom Filter (i.e., probabilis^c set of) high-rated items

Check if item is in Bloom Filter, and see their actual ra^ngs:

Easy-to-use

ML in SQL

Scalable

Runs in parallel on
Hadoop ecosystem

Mul;-plaSorm

Hive, Spark, Pig

Versa;le

Efficient, generic
func^ons

CREATE TABLE lr_model
AS
SELECT
 feature,
 avg(weight) as weight
FROM (
 SELECT
 logress(features, label, "-total_steps ${total_steps}") as (feature, weight)
 FROM
 training
) t
GROUP BY feature;

Apache Hive

Apache Pig

a = load 'a9a.train'
 as (rowid:int, label:float, features:{(featurepair:chararray)});

b = foreach a generate flatten(
 logress(features, label, '-total_steps ${total_steps}')
) as (feature, weight);

c = group b by feature;

d = foreach c generate group, AVG(b.weight);
store d into 'a9a_model';

context = HiveContext(sc)

context.sql("
 SELECT
 feature,
 avg(weight) as weight
 FROM (
 SELECT
 train_logregr(features, label) as (feature, weight)
 FROM
 training
) t
 GROUP BY feature
 ")

Apache Spark
Query in HiveContext

Introduction to Apache Hivemall

How Hivemall Works with PySpark

Hivemall <3 Python

Installation and creating SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
 .builder \
 .master('local[*]') \
 .config('spark.jars',
 'hivemall-spark2.x-0.5.2-incubating-with-dependencies.jar') \
 .enableHiveSupport() \
 .getOrCreate()

$ wget -q http://mirror.reverse.net/pub/apache/incubator/hivemall/0.5.2-incubating/
hivemall-spark2.x-0.5.2-incubating-with-dependencies.jar

Register Hive(mall) UDF to SparkSession

spark.sql("""
CREATE TEMPORARY FUNCTION hivemall_version AS 'hivemall.HivemallVersionUDF'
""")

spark.sql("SELECT hivemall_version()").show()

+------------------+
|hivemall_version()|
+------------------+
| 0.5.2-incubating|
+------------------+

See resources/ddl/define-all.spark in Hivemall repository for list of all UDFs

https://github.com/apache/incubator-hivemall/blob/master/

Preprocessing

Training

Prediction

Evaluation

Example: Binary classification for churn prediction

import re
import pandas as pd

df = spark.createDataFrame(
 pd.read_csv('churn.txt').rename(lambda c: re.sub(r'[^a-zA-Z0-9]', '',
str(c)).lower().replace(' ', '_'), axis='columns'))

df = spark.read.option('header', True).schema(schema).csv('churn.txt')

OR

…

Preprocessing

Training

Prediction

Evaluation

df.createOrReplaceTempView('churn')

df_preprocessed = spark.sql("""
SELECT
 phone,
 array_concat(-- Concatenate features as a feature vector
 categorical_features(-- Create categorical features
 array('intl_plan', 'state', 'area_code', 'vmail_plan'),
 intl_plan, state, area_code, vmail_plan
),
 quantitative_features(-- Create quantitative features
 array(
 'night_charge', 'day_charge', 'custserv_calls',
 'intl_charge', 'eve_charge', 'vmail_message'
),
 night_charge, day_charge, custserv_calls,
 intl_charge, eve_charge, vmail_message
)
) as features,
 if(churn = 'True.', 1, 0) as label
FROM
 churn
""")

>>>

>>>

Array of quan^ta^ve features :

select quantitative_features(array("price", "size"), 600, 2.5)

["price:600.0", "size:2.5"]

Array of categorical features #

select categorical_features(array("gender", "category"), “male", "book")

[“gender#male", "category#book"]

* NULL is automa^cally omiqed

Hivemall internally does one-hot encoding (e.g., book → 1, 0, 0, …)

valueindex

valueindex

Feature vector = array of string

SELECT
 phone,
 array_concat(-- Concatenate features as a feature vector
 categorical_features(-- Create categorical features
 array('intl_plan', 'state', 'area_code', 'vmail_plan'),
 intl_plan, state, area_code, vmail_plan
),
 quantitative_features(-- Create quantitative features
 array(
 'night_charge', 'day_charge', 'custserv_calls',
 'intl_charge', 'eve_charge', 'vmail_message'
),
 night_charge, day_charge, custserv_calls,
 intl_charge, eve_charge, vmail_message
)
) as features,
 if(churn = 'True.', 1, 0) as label
FROM
 churn

['intl_plan#no',
 'state#KS',
 'area_code#415',
 'vmail_plan#yes',
 'night_charge:11.01',
 'day_charge:45.07',
 'custserv_calls:1.0',
 'intl_charge:2.7',
 'eve_charge:16.78',
 'vmail_message:25.0']

df_train, df_test = df_preprocessed.randomSplit([0.8, 0.2], seed=31)

df_train.count(), df_test.count() # => 2658, 675

>>>

>>>

Preprocessing

Training

Prediction

Evaluation

df_train.createOrReplaceTempView('train')

df_model = spark.sql("""
SELECT
 feature,
 avg(weight) as weight
FROM (
 SELECT
 train_classifier(
 features,
 label,
 '-loss logloss -opt SGD -reg l1 -lambda 0.03 -eta0 0.01'
) as (feature, weight)
 FROM
 train
) t
GROUP BY 1
""")

>>>

>>>

Run in parallel on Spark workers

Aggregate mul^ple workers’ results

SELECT
 train_classifier(-- train_regressor(
 features,
 label,
 '-loss logloss -opt SGD -reg no -eta simple -total_steps ${total_steps}'
) as (feature, weight)
FROM
 train

Classifica;on
‣ HingeLoss

‣ LogLoss (a.k.a. logis7c loss)

‣ SquaredHingeLoss

‣ ModifiedHuberLoss

Regression
‣ SquaredLoss

‣ Quan^leLoss

‣ EpsilonInsensi^veLoss

‣ SquaredEpsilonInsensi^veLoss

‣ HuberLoss

Supervised learning by unified function

SELECT
 train_classifier(-- train_regressor(
 features,
 label,
 '-loss logloss -opt SGD -reg no -eta simple -total_steps ${total_steps}'
) as (feature, weight)
FROM
 train

Op;mizer
‣ SGD

‣ AdaGrad

‣ AdaDelta

‣ ADAM

Regulariza;on
‣ L1

‣ L2

‣ Elas^cNet

‣ RDA

‣ Itera^on with learning rate control

‣ Mini-batch training

‣ Early stopping

Supervised learning by unified function

Model = table

Preprocessing

Training

Prediction

Evaluation

df_test.createOrReplaceTempView('test')
df_model.createOrReplaceTempView('model')

df_prediction = spark.sql("""
SELECT
 phone,
 label as expected,
 sigmoid(sum(weight * value)) as prob
FROM (
 SELECT
 phone,
 label,
 extract_feature(fv) AS feature,
 extract_weight(fv) AS value
 FROM
 test
 LATERAL VIEW explode(features) t2 AS fv
) t
LEFT OUTER JOIN model m
 ON t.feature = m.feature
GROUP BY 1, 2
""")

>>>
>>>

>>>

Preprocessing

Training

Prediction

Evaluation

df_prediction.createOrReplaceTempView('prediction')

spark.sql("""
SELECT
 auc(prob, expected) AS auc,
 logloss(prob, expected) AS logloss
FROM (
 SELECT prob, expected
 FROM prediction
 ORDER BY prob DESC
""").show()

>>>

>>>

Preprocessing

Training — More options

Prediction

Evaluation

Classifica;on
‣ Generic classifier

‣ Perceptron

‣ Passive Aggressive (PA, PA1, PA2)

‣ Confidence Weighted (CW)

‣ Adap^ve Regulariza^on of Weight Vectors (AROW)

‣ Sov Confidence Weighted (SCW)

‣ (Field-Aware) Factoriza;on Machines

‣ RandomForest

Regression
‣ Generic regressor

‣ PA Regression

‣ AROW Regression

‣ (Field-Aware) Factoriza;on Machines

‣ RandomForest

Classification and regression with variety of algorithms

Factorization Machines

S. Rendle. Factoriza;on Machines with libFM. ACM Transac^ons on Intelligent Systems and Technology, 3(3), May 2012.

SELECT
 train_fm(
 features,
 label,
 '-classification -factor 30 -eta 0.001'
) as (feature, Wi, Vij)
FROM
 train

Factorization Machines

RandomForest
Training

SELECT
 train_randomforest_classifier(
 feature_hashing(features),
 label,
 '-trees 50 -seed 71' -- hyperparameters
) as (model_id, model_weight, model, var_importance, oob_errors, oob_tests)
FROM
 train

Simplify name of quan^ta^ve feature and categorical feature #

select feature_hashing(array("price:600", "category#book"))

["14142887:600", "10413006"]

index valueindex

RandomForest
Model table

RandomForest
Export decision trees for visualization

SELECT
 tree_export(model, "-type javascript", ...) as js,
 tree_export(model, "-type graphvis", ...) as dot
FROM
 rf_model

RandomForest
Prediction

SELECT
 phone,
 rf_ensemble(predicted.value, predicted.posteriori, model_weight) as predicted
FROM (
 SELECT
 t.phone,
 m.model_weight,
 tree_predict(m.model_id, m.model, feature_hashing(t.features), true) as predicted
 FROM
 test t
 CROSS JOIN
 rf_model m
) t1
GROUP BY phone

Introduction to Apache Hivemall

How Hivemall Works with PySpark

Hivemall <3 Python

Keep Scalable, Make More Programmable

Preprocessing

Training

Prediction

Evaluation

from pyspark.ml.feature import MinMaxScaler
from pyspark.ml import Pipeline
from pyspark.ml.feature import VectorAssembler

assembler = VectorAssembler(
 inputCols=['account_length'],
 outputCol="account_length_vect"
)
scaler = MinMaxScaler(
 inputCol="account_length_vect",
 outputCol="account_length_scaled"
)

pipeline = Pipeline(stages=[assembler, scaler])
pipeline.fit(df) \
 .transform(df) \
 .select([
 'account_length', 'account_length_vect',
 'account_length_scaled'
]).show()

Preprocessing

Training

Prediction

Evaluation

q = """
SELECT
 feature,
 avg(weight) as weight
FROM (
 SELECT
 train_classifier(
 features,
 label,
 '-loss logloss -opt SGD -reg l1 -lambda {0} -eta0 {1}'
) as (feature, weight)
 FROM
 train
) t
GROUP BY 1
"""

hyperparams = [
 (0.01, 0.01),
 (0.03, 0.01),
 (0.03, 0.03),
 (0.1, 0.03)
 # ...
]

for reg_lambda, eta0 in hyperparams:
 sql.spark(q.format(reg_lambda, eta0))

Preprocessing

Training

Prediction

Evaluation

from pyspark.mllib.evaluation import BinaryClassificationMetrics

metrics = BinaryClassificationMetrics(
 df_prediction.select(
 df_prediction.prob,
 df_prediction.expected.cast('float')
).rdd.map(tuple)
)

metrics.areaUnderPR, metrics.areaUnderROC
=> (0.25783248058994873, 0.6360049076499648)

Preprocessing

Training

Prediction

Evaluation

import pyspark.sql.functions as F
df_model_top10 = df_model \
 .orderBy(F.abs(df_model.weight).desc()) \
 .limit(10) \
 .toPandas()

import matplotlib.pyplot as plt
...

Problem

What you want to “predict”

Hypothesis & Proposal

Build machine learning model

Historical data

Cleanse dataEvaluate

From EDA to production, Python adds flexibility to Hivemall

Deploy to produc;on

Apache Hivemall Meets PySpark  
Scalable Machine Learning with Hive, Spark, and Python

 
 

github.com/apache/incubator-hivemall

bit.ly/2o8BQJW

Takuya Kitazawa: takuti@apache.org / @takuti

EUROPE

