

Apache Hivemall Meets PySpark Scalable Machine Learning with Hive, Spark, and Python

> Takuya Kitazawa @takuti Apache Hivemall PPMC TREASURE DATA

Machine Learning in Query Language

Q. Solve ML problem on massive data stored in data warehouse

Done by ~10 lines of queries

select feature, avg(weight) as weight from (select logress(features, label) as (feature, weight) from (select features, label from train_oversampling CLUSTER BY rand(1) -- random shuffling t1 t2 group by feature;

Machine Learning for everyone Open source query-based machine learning solution

- Incubating since Sept 13, 2016
- @ApacheHivemall
- GitHub: apache/incubator-hivemall
- Team: 6 PPMCs + 3 committers
- Latest release: v0.5.2 (Dec 3, 2018)
- Toward graduation:
 - Community growth

Hivemall

A P A C H E INCUBATOR

- ✓ Documentation improvements
- ✓ 1+ Apache releases

Introduction to Apache Hivemall

How Hivemall Works with **PySpark**

Hivemall <3 Python

Introduction to Apache Hivemall

How Hivemall Works with **PySpark**

Hivemall <3 Python

- Data warehousing solution built on top of Apache Hadoop
- Efficiently access and analyze large-scale data via SQL-like interface, HiveQL
 - create table
 - select
 - join
 - group by
 - count()
 - sum()

...

•••

- order by
- cluster by

Apache Hive

- OSS project under Apache Software Foundation
- Scalable ML library implemented as Hive user-defined functions (UDFs)

UDAF (aggregation)

normalize() rmse

Apache Hivemall

UDTF (tabular)

column 2	column 3
XXX	111
ууу	222

train regressor()

Easy-to-use

ML in SQL

Scalable

Runs in parallel on Hadoop ecosystem

Apache Hivemall

Versatile

Efficient, generic functions

Multi-platform

Hive, Spark, Pig

Use case #1: Enterprise Big Data analytics platform

Use case #2: Large-scale recommender systems Demo paper @ ACM RecSys 2018

Query-Based Simple and Scalable Recommender Systems with Apache Hivemall

Takuya Kitazawa Treasure Data, Inc. kitazawa@treasure-data.com

ABSTRACT

This study demonstrates a way to build large-scale recommender systems by just writing a series of SQL-like queries. In order to efficiently run recommendation logics on a cluster of computers, we implemented a variety of recommendation algorithms and common recommendation functions (e.g., efficient similarity computation, top-k retrieval, and evaluation measures) as Hive user-defined functions (UDFs) in Apache Hivemall. We demonstrate that how Apache Hivemall can easily be used for building a scalable recommendation system with satisfying business requirements such as scalability, latency, and stability.

CCS CONCEPTS In addition to recommendation algorithms, Apache Hivemall has a variety of functionalities including regression, classification, anom-• Information systems → Recommender systems; Query lanaly detection, TF-IDF computation, top-k data processing, and natguages; MapReduce languages; Top-k retrieval in databases; ural language processing; some of them are particularly useful for building a recommendation engine. As illustrated in Figure 1, Hivemall is built on the Hadoop ecosystem so that it can leverage the computational efficiency of Hadoop for large-scale data processing. Notice that Hivemall is flexible at the choice of each layer; it **ACM Reference Format:** can use Apache Tez, Apache Spark, or the plain old MapReduce Takuya Kitazawa and Makoto Yui. 2018. Query-Based Simple and Scalable runtime for parallel data processing.

KEYWORDS Hadoop; Hive; Spark; Factorization methods; Top-k item recommendation Recommender Systems with Anache Hivemall In Twelfth ACM Confer-

Makoto Yui Treasure Data, Inc. myui@treasure-data.com

This paper provides an alternative way for building a scalable recommender system using Apache Hivemall, a scalable machine learning and recommendation library that runs on Apache Hive and Spark [4]. We demonstrate a unique query-based recommender system which is particularly suitable for large-scale user-item interactions aggregated as tables on Apache Hive, a data warehouse environment built on the top of Apache Hadoop. Apache Hivemall enables us to easily implement various recommendation logics from well-studied techniques to up-to-date algorithms in a scalable manner just by issuing series of HiveQL queries.

APACHE HIVEMALL 2

Use case #3: E-learning "New in Big Data" Machine Learning with SQL @ Udemy

Easy-to-use

ML in SQL

Scalable

Runs in parallel on Hadoop ecosystem

Versatile

Efficient, generic functions

Multi-platform

Hive, Spark, Pig

Example: Scalable Logistic Regression written in ~10 lines of queries

```
/**
* Train a logistic regression for the examples from Chapter 13 of Mahout in Action
*/
public final class TrainLogistic {
 private static String inputFile;
  private static String outputFile;
  private static LogisticModelParameters lmp;
  private static int passes;
  private static boolean scores;
  private static OnlineLogisticRegression model;
  private TrainLogistic() {
 }
  public static void main(String[] args) throws Exception {
   mainToOutput(args, new PrintWriter(new OutputStreamWriter(System.out, Charsets.UTF_8), true));
 }
  static void mainToOutput(String[] args, PrintWriter output) throws Exception {
   if (parseArgs(args)) {
      double logPEstimate = 0;
     int samples = 0;
      CsvRecordFactory csv = lmp.getCsvRecordFactory();
      OnlineLogisticRegression lr = lmp.createRegression();
      for (int pass = 0; pass < passes; pass++) {</pre>
       try (BufferedReader in = open(inputFile)) {
         // read variable names
         csv.firstLine(in.readLine());
         String line = in.readLine();
         while (line != null) {
           // for each new line, get target and predictors
           Vector input = new RandomAccessSparseVector(lmp.getNumFeatures());
            int targetValue = csv.processLine(line, input);
            // check performance while this is still news
            double logP = lr.logLikelihood(targetValue, input);
            if (!Double.isInfinite(logP)) {
             if (samples < 20) {
                logPEstimate = (samples * logPEstimate + logP) / (samples + 1);
             } else {
                logPEstimate = 0.95 * logPEstimate + 0.05 * logP;
             }
              samples++;
            double p = lr.classifyScalar(input);
            if (scores) {
              output.printf(Locale.ENGLISH, "%10d %2d %10.2f %2.4f %10.4f %10.4f%n",
```

```
select
                                           Hivemall
  feature,
  avg(weight) as weight
from (
  select
    logress(features, label) as (feature, weight)
  from (
    select features, label
    from train_oversampling
    CLUSTER BY rand(1) -- random shuffling
  ) t1
) t2
group by feature;
```

Automatically runs in **parallel** on Hadoop

Easy-to-use

ML in SQL

Scalable

Runs in parallel on Hadoop ecosystem

Versatile

Efficient, generic functions

Multi-platform

Hive, Spark, Pig

Feature engineering

- Feature hashing
- Feature scaling (normalization, z-score)
- Feature binning
- TF-IDF vectorizer
- Polynomial expansion
- Amplifier

Evaluation metrics

- AUC, nDCG, log loss, precision, recall, ...

Array, vector, map

- Concatenation
- Intersection
- Remove
- Sort
- Average
- Sum
- ...

From/To JSON conversion

Bit, compress, character encoding

Efficient top-k query processing

Efficient top-k retrieval Internally hold bounded priority queue

List top-3 items per user:

item	user	score
1	В	70
2	Α	80
3	Α	90
4	В	60
5	Α	70
	•••	•••

SELECT FROM (SELECT as rank FROM table) t WHERE rank <= 2

```
SELECT
  each top k(
FROM (
  CLUSTER BY user
) t
```


Finish in 2 hrs. 2, user, score, user, item -- output columns as (rank, score, user, item) SELECT * FROM table

Recommendation with Hivemall

k-nearest-neighbor

- MinHash and b-Bit MinHash (LSH)
- Similarities
 - Euclid
 - Cosine
 - Jaccard
 - Angular

Efficient item-based collaborative filtering

- Sparse Linear Method (SLIM)
- Approximated all-pair similarities (DIMSUM)

Matrix completion

- Matrix Factorization
- Factorization Machines

Natural Language Processing — English, Japanese and Chinese tokenizer, word N-grams, ...

- select tokenize('Hello, world!')
 - ["Hello", "world"]
- select singularize('apples')

apple

Geospatial functions

```
SELECT
  map_url(lat, lon, zoom) as osm_url,
  map url(lat, lon, zoom,'-type googlemaps') as gmap_url
FROM (
  SELECT 51.51202 as lat, 0.02435 as lon, 17 as zoom
 UNION ALL
  SELECT 51.51202 as lat, 0.02435 as lon, 4 as zoom
  t
```


Anomaly / Change-point detection

- Local outlier factor (k-NN-based technique)
- ChangeFinder
- Singular Spectrum Transformation

Clustering / Topic modeling

- Latent Dirichlet Allocation
- Probabilistic Latent Semantic Analysis

# of topics: 3			
Selected Topic: 6 Prev Topic Next Topic		filter topics by	/ terms filter
		Topic Term di	sts
4		term	lambda
		set	0.003184
		thi	0.001749
		naturally	0.001745
		fluid	0.001741
e		instance	0.001738
	3	dynamic	0.001736
		exploited	0.001736
		using	0.001735
		shape	0.001733
		со	0.001733
		motion	0.001733
		seen	0.001732
		perhap	0.001732

Sketching

Approximated distinct count:

SELECT count(distinct user_id) FROM t

Bloom filtering:

```
WITH high_rated_items as (
  SELECT bloom(itemid) as items
  FROM (
    SELECT itemid
    FROM ratings
    GROUP BY itemid
    HAVING avg(rating) >= 4.0
  ) t
SELECT
  l.rating,
  count(distinct l.userid) as cnt
FROM
  ratings 1
  CROSS JOIN high_rated_items r
WHERE
  bloom_contains(r.items, l.itemid)
GROUP BY
  l.rating;
```

SELECT approx_count_distinct(user_id) FROM t

Build Bloom Filter (i.e., probabilistic set of) high-rated items

Check if item is in Bloom Filter, and see their actual ratings:

	.# rating	# cnt
1	1.0	1296
2	2.0	2770
3	3.0	5008
4	4.0	5824
5	5.0	5925

Easy-to-use

ML in SQL

Scalable

Runs in parallel on Hadoop ecosystem

Versatile

Efficient, generic functions

Multi-platform

Hive, Spark, Pig

Apache Hive

```
CREATE TABLE lr_model
AS
SELECT
feature,
avg(weight) as weight
FROM (
   SELECT
   logress(features, label, "-total_step
FROM
    training
) t
GROUP BY feature;
```

logress(features, label, "-total_steps \${total_steps}") as (feature, weight)

Apache Pig

- a = load 'a9a.train'
 as (rowid:int, label:float, features:{(featurepair:chararray)});
- b = foreach a generate flatten(
 logress(features, label, '-total_steps \${total_steps}')
) as (feature, weight);
- c = group b by feature;
- d = foreach c generate group, AVG(b.weight);
 store d into 'a9a_model';

Apache Spark Query in HiveContext

context = HiveContext(sc) context.sql(" SELECT feature, avg(weight) as weight FROM (SELECT train logregr(features, label) as (feature, weight) FROM training) t **GROUP BY feature** ")

Introduction to Apache Hivemall

How Hivemall Works with **PySpark**

Hivemall <3 Python

Installation and creating SparkSession

\$ wget -q http://mirror.reverse.net/pub/apache/incubator/hivemall/0.5.2-incubating/ hivemall-spark2.x-0.5.2-incubating-with-dependencies.jar

from pyspark.sql import SparkSession

'hivemall-spark2.x-0.5.2-incubating-with-dependencies.jar') \

Register Hive(mall) UDF to SparkSession

spark.sql(""")

spark.sql("SELECT hivemall version()").show()

See <u>resources/ddl/define-all.spark</u> in Hivemall repository for list of all UDFs

CREATE TEMPORARY FUNCTION hivemall_version AS 'hivemall.HivemallVersionUDF'

+----+ |hivemall_version()| +____+ 0.5.2-incubating _____

Training

Prediction

Evaluation

Example: Binary classification for churn prediction

import re import pandas as pd

df = spark.createDataFrame(pd.read csv('churn.txt').rename(lambda c: re.sub(r'[^a-zA-Z0-9]', '', str(c)).lower().replace(' ', '_'), axis='columns'))

df = spark.read.option('header', True).schema(schema).csv('churn.txt')

Ab phone		Ab	state	#	area_code	.#	day_mins	#	day_calls	#	account_length	.#	intl_charge	.#	eve_charge	#	night_calls	Ab	ch	nurn
399-5763		IA		415		211	.3	87		45		3.59)	14.0)8	72		Fals	se.	
340-9449		VT		408		219	.4	112		100		3.24	1	19.1	.8	95		Fals	se.	
363-1123	•••	NY		415		190	.4	91		94		3.67	7	7.82	2	108		Fals	se.	
361-2170		LA		415		147	.7	94		128		1.86	5	24.0)8	124		Fals	se.	
406-6304		SC		408		229	.9	130		181		3.83	3	12.2	27	110		Fals	se.	

OR

Training

Prediction

Evaluation

df.createOrReplaceTempView('churn') ->>>

```
df preprocessed = spark.sql("""
>>>
      SELECT
        phone,
            intl plan, state, area code, vmail plan
           )
            array(
             ) ,
            intl charge, eve charge, vmail message
        ) as features,
        if(churn = 'True.', 1, 0) as label
      FROM
        churn -
      11 11 11
```

array concat(-- Concatenate features as a feature vector categorical features (-- Create categorical features array('intl plan', 'state', 'area code', 'vmail plan'),

quantitative features (-- Create quantitative features

'night_charge', 'day_charge', 'custserv calls', 'intl charge', 'eve charge', 'vmail message'

night charge, day charge, custserv calls,

Feature vector = array of string

Hivemall internally does one-hot encoding (e.g., book \rightarrow 1, 0, 0, ...)


```
SELECT
  phone,
  array concat( -- Concatenate features as a feature vector
    categorical features ( -- Create categorical features
      array('intl_plan', 'state', 'area_code', 'vmail_plan'),
      intl plan, state, area code, vmail plan
    ),
    quantitative features( -- Create quantitative features
      array(
        'night_charge', 'day_charge', 'custserv_calls',
        'intl charge', 'eve charge', 'vmail message'
      night_charge, day_charge, custserv_calls,
      intl charge, eve_charge, vmail_message
  ) as features,
  if(churn = 'True.', 1, 0) as label
FROM
  churn
```

['intl plan#no', 'state#KS', 'area code#415', 'vmail plan#yes', 'night charge:11.01', 'day charge:45.07', 'custserv calls:1.0', 'intl charge:2.7', 'eve charge:16.78', 'vmail message:25.0']

>>> df_train, df_test = df_preprocessed.randomSplit([0.8, 0.2], seed=31) >>> df_train.count(), df_test.count() # => 2658, 675

Training

Prediction

Evaluation

>>> df_train.createOrReplaceTempView('train')

```
>>> df_model = spark.sql("""
    SELECT
      feature,
      avg(weight) as weight
    FROM (
      SELECT
        train classifier(
          features,
          label,
         ) as (feature, weight)
      FROM
        train
     ) t
    GROUP BY 1
```

Aggregate multiple workers' results

Run in parallel on Spark workers

'-loss logloss -opt SGD -reg l1 -lambda 0.03 -eta0 0.01'

Supervised learning by unified function

Classification

- HingeLoss
- LogLoss (a.k.a. logistic loss)
- SquaredHingeLoss
- ModifiedHuberLoss

Regression

- SquaredLoss
- QuantileLoss
- EpsilonInsensitiveLoss
- SquaredEpsilonInsensitiveLoss
- HuberLoss

'-loss logloss -opt SGD -reg no -eta simple -total steps \${total steps}'

Supervised learning by unified function

Optimizer

- ► SGD
- AdaGrad
- AdaDelta
- ADAM

Regularization

- ▶ L1
- ► L2
- ElasticNet
- RDA

'-loss logloss -opt SGD -reg no -eta simple -total steps \${total steps}'

- Iteration with learning rate control
- Mini-batch training
- Early stopping

Model = table

	feature	weight
0	state#TX	0.088104
1	state#MN	0.024230
2	state#LA	-0.024339
3	area_code#408	-0.006044
4	night_charge	-0.194483
5	state#ND	-0.066669
6	state#VT	-0.063177
7	state#MA	0.000016
8	state#OH	0.031865
9	state#MD	0.038399

$\hat{y}^{\mathrm{LR}}(\mathbf{x}) := w_0 + \mathbf{w}^{\mathrm{T}}\mathbf{x}$

Training

Prediction

Evaluation

- >>> df_test.createOrReplaceTempView('test')
- >>> df_model.createOrReplaceTempView('model')

```
>>> df_prediction = spark.sql("""
     SELECT
       phone,
       label as expected,
       sigmoid(sum(weight * value)) as p
    FROM (
       SELECT
         phone,
         label,
         extract feature(fv) AS feature,
         extract weight(fv) AS value
       FROM
         test
       LATERAL VIEW explode(features) t2 AS fv
     ) t
    LEFT OUTER JOIN model m
      ON t.feature = m.feature
    GROUP BY 1, 2
```

)	r	O	b

	phone	expected	prob
0	375-3003	0	0.043165
1	344-4022	0	0.032754
2	356-2992	0	0.000035
3	420-3028	0	0.009459
4	354-9062	0	0.128704
5	360-6024	0	0.000029
6	376-4705	1	0.019202
7	373-1448	1	0.007880
8	349-2157	0	0.009182
9	337-9569	0	0.052731

Training

Prediction

Evaluation

>>> df_prediction.createOrReplaceTempView('prediction')

```
>>> spark.sql("""
     SELECT
       auc(prob, expected) AS auc,
       logloss(prob, expected) AS logloss
     FROM (
       SELECT prob, expected
       FROM prediction
       ORDER BY prob DESC
     """).show()
```


Training — More options

Prediction

Evaluation

Classification and regression with variety of algorithms

Classification

- Generic classifier
- Perceptron
- Passive Aggressive (PA, PA1, PA2)
- Confidence Weighted (CW)
- Adaptive Regularization of Weight Vectors (AROW)
- Soft Confidence Weighted (SCW)
- (Field-Aware) Factorization Machines
- RandomForest

Regression

- Generic regressor
- PA Regression
- AROW Regression
- (Field-Aware) Factorization Machines
- RandomForest

global bias linear

```
SELECT
  train_fm(
    features,
    label,
  ) as (feature, Wi, Vij)
FROM
  train
```

S. Rendle. Factorization Machines with libFM. ACM Transactions on Intelligent Systems and Technology, 3(3), May 2012.

Factorization Machines

Factorization Machines

 $\hat{y}^{\mathrm{FM}}($ (\mathbf{x})

	feature	Wi	
0	0	-0.122241	
1	state#SC	0.002093	[-0.0
2	area_code#408	-0.029035	[-0.0
3	vmail_message	-0.100170	[-0.0
4	state#WV	-0.031847	[0.18
5	state#NC	0.002695	[-0.0
6	state#KY	0.005622	[-0.0
7	intl_charge	-0.042708	[0.000
8	state#CO	0.022583	[-0.1
9	state#VA	-0.020664	[0.2

Vij

None

- 0649222806096077, 0.08943693339824677, 0.1...
- 19552724435925484, -0.03247314691543579, ...
- 19371509552001953, 0.01219850592315197, -...
- 8128858506679535, 0.08544187247753143, -0....
- 03858436271548271, 0.0519322007894516, 0.1...
- 05067330598831177, 0.05898619070649147, -0...
- 14178249693941325, 0.0028802729211747646...
- 13534343242645264, -0.1448756605386734, -0...
- 548579275608063, -0.028995800763368607, 0....

RandomForest Training

) as (model_id, model_weight, model, var_importance, oob_errors, oob_tests)

RandomForest Model table

	model_id	model_weight	model	var_importance
0	d51b7642- 79f7-4750- 8e38- fb3e865d1eef	0.837838	l? XPI/%dsLd{LdDfaZTPM:)_@^i12w <ba)_j40icew3jye< td=""><td>{15900165: 1.8062073885289325}</td></ba)_j40icew3jye<>	{15900165: 1.8062073885289325}
1	b13adae2- 6f38-442a- 8b89- 5324932acc13	0.816498	I?{Pt:IYsLd{3Ze;DYt:3%}g`]F:N}gYMLrRqViFPHuX	{15900165: 2.7499708167499106}
2	8a318077- cc66-479a- 9505- a4f9b9ec9084	0.851724	l?{PI/%dsLd{2Yw+ <lzsf`agxnupzzou^7yi[pws[y~yzd< td=""><td>{15900165: 2.4154606004599684}</td></lzsf`agxnupzzou^7yi[pws[y~yzd<>	{15900165: 2.4154606004599684}
3	97b68bc3- dd08-4d16- 9600- 238df97c34c7	0.807692	I?{P)`IYwL\$lyz6!AGW.%p~UV=-B)WoH=;0c8uOOj+ {BiM	{15900165: 3.886217162213024}
4	b21b9d2a- ee23-48e0- 9728- f4497be4d688	0.824503	I?hROIIYsL\$I+Z>ZwzRhE`> <l`+- vZ>D]1UblfV48c=Cl4</l`+- 	{15900165: 3.422917848419591}

RandomForest Export decision trees for visualization

RandomForest Prediction

```
SELECT
 phone,
FROM (
  SELECT
   t.phone,
   m.model_weight,
  FROM
   test t
  CROSS JOIN
    rf_model m
) t1
GROUP BY phone
```

rf_ensemble(predicted.value, predicted.posteriori, model_weight) as predicted

tree_predict(m.model_id, m.model, feature_hashing(t.features), true) as predicted

Introduction to Apache Hivemall

How Hivemall Works with PySpark

Hivemall <3 Python

Keep Scalable, Make More Programmable

Training

Prediction

Evaluation

scaler = MinMaxScaler(pipeline.fit(df) \

```
from pyspark.ml.feature import MinMaxScaler
from pyspark.ml import Pipeline
from pyspark.ml.feature import VectorAssembler
```

```
assembler = VectorAssembler(
    inputCols=['account length'],
    outputCol="account_length_vect"
    inputCol="account_length_vect",
    outputCol="account length scaled"
```

```
pipeline = Pipeline(stages=[assembler, scaler])
        .transform(df) \
        .select([
          'account_length', 'account_length_vect',
          'account_length_scaled'
        ]).show()
```

_		<u> </u>	L
	account_length	account_length_vect	account_length_s
	128	[128.0]	[0.524793388429
	107	[107.0]	[0.438016528925
	137	[137.0]	[0.561983471074]
	84	[84.0]	[0.342975206611
	75	[75.0]	[0.305785123966

Training

Prediction

Evaluation

q = """ SELECT feature, FROM (SELECT label, FROM train) t GROUP BY 1 11 11 11

hyperparams = [

```
(0.1, 0.03)
# ...
```

```
avg(weight) as weight
```

```
train_classifier(
  features,
  '-loss logloss -opt SGD -reg l1 -lambda {0} -eta0 {1}'
) as (feature, weight)
```

```
(0.01, 0.01),
(0.03, 0.01),
(0.03, 0.03),
```

```
for reg_lambda, eta0 in hyperparams:
  sql.spark(q.format(reg_lambda, eta0))
```


Training

Prediction

Evaluation

from pyspark.mllib.evaluation import BinaryClassificationMetrics

```
metrics = BinaryClassificationMetrics(
    df prediction.select(
        df prediction.prob,
        df_prediction.expected.cast('float')
    ).rdd.map(tuple)
```

metrics.areaUnderPR, metrics.areaUnderROC # => (0.25783248058994873, 0.6360049076499648)

Training

Prediction

Evaluation

...

intl_plan#yes intl_plan#no custserv_calls state#WV vmail_message night_charge state#NJ state#WI eve_charge state#AZ

```
df_model_top10 = df_model \
                        .limit(10) \setminus
                        .toPandas()
```


From EDA to production, Python adds flexibility to Hivemall

Apache Hivemall Meets PySpark Scalable Machine Learning with Hive, Spark, and Python

> github.com/apache/incubator-hivemall bit.ly/208BQJW

Takuya Kitazawa: takuti@apache.org / @takuti

