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Machine Learning in Query Language



Q. Solve ML problem on massive data stored in data warehouse



Scalability

Q. Solve ML problem on massive data stored in data warehouse

Prac;cal experience in science and engineering

Theory / math Tool / Data model



Done by ~10 lines of queries



Machine Learning for everyone  
Open source query-based machine learning solution

- Incubating since Sept 13, 2016 

- @ApacheHivemall 

- GitHub: apache/incubator-hivemall 

- Team: 6 PPMCs + 3 committers 

- Latest release: v0.5.2 (Dec 3, 2018) 

- Toward graduation: 

✓ Community growth 

✓ 1+ Apache releases 

✓ Documentation improvements
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‣ Data warehousing solu;on built on top of Apache Hadoop 

‣ Efficiently access and analyze large-scale data via SQL-like interface, HiveQL 

- create table 
- select 
- join 
- group by 
- count() 
- sum() 
- … 

- order by 
- cluster by 
- …

Apache Hive



‣ OSS project under Apache SoLware Founda;on                          

‣ Scalable ML library implemented as Hive user-defined func;ons (UDFs)

Apache Hivemall
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‣ l1_normalize() ‣ rmse() ‣ train_regressor()



Easy-to-use 

ML in SQL 

Scalable 

Runs in parallel on 
Hadoop ecosystem 

Mul;-plaSorm 

Hive, Spark, Pig 

Versa;le 

Efficient, generic 
func^ons 

Apache Hivemall



Use case #1: Enterprise Big Data analytics platform 
     Hivemall makes ML more simple, handy on



Use case #2: Large-scale recommender systems  
Demo paper @ ACM RecSys 2018



Use case #3: E-learning 
“New in Big Data” Machine Learning with SQL @ Udemy



Easy-to-use 

ML in SQL 

Scalable 

Runs in parallel on 
Hadoop ecosystem 

Mul;-plaSorm 

Hive, Spark, Pig 

Versa;le 

Efficient, generic 
func^ons 



Example: Scalable Logistic Regression written in ~10 lines of queries

Automa^cally runs in parallel on Hadoop
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- Feature hashing 

- Feature scaling (normaliza^on, z-score) 

- Feature binning 

- TF-IDF vectorizer 

- Polynomial expansion 

- Amplifier 

- AUC, nDCG, log loss, precision, recall, …

- Concatena^on 

- Intersec^on 

- Remove 

- Sort 

- Average 

- Sum 

- … 

-

Feature engineering

Evalua;on metrics

Array, vector, map

Bit, compress, character encoding

Efficient top-k query processing

From/To JSON conversion



Efficient top-k retrieval 
Internally hold bounded priority queue

List top-3 items per user:

item user score

1 B 70

2 A 80

3 A 90

4 B 60

5 A 70

… … …

SELECT 
  item, user, score, rank 
FROM ( 
  SELECT 
    item, user, score, 
    rank() over (PARTITION BY user ORDER BY score DESC)  
      as rank 
  FROM 
    table 
) t 
WHERE rank <= 2

SELECT 
  each_top_k( 
    2, user, score, 
    user, item -- output columns 
  ) as (rank, score, user, item) 
FROM ( 
  SELECT * FROM table 
  CLUSTER BY user 
) t 

Not finish in 24 hrs. for 20M users 

and  ~1k items in each

Finish in 2 hrs.



Recommendation with Hivemall

k-nearest-neighbor 
‣ MinHash and b-Bit MinHash (LSH) 

‣ Similari^es 

- Euclid 

- Cosine 

- Jaccard 

- Angular 

Efficient item-based collabora;ve filtering 
‣ Sparse Linear Method (SLIM) 

‣ Approximated all-pair similari^es (DIMSUM)

Matrix comple;on 
‣ Matrix Factoriza^on 

‣ Factoriza^on Machines



Natural Language Processing — English, Japanese and Chinese tokenizer, word N-grams, … 

‣ 　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　  
["Hello", "world"] 

‣   
apple 

Geospa;al func;ons

select tokenize('Hello, world!')

select singularize('apples')

SELECT 
   map_url(lat, lon, zoom) as osm_url, 
   map_url(lat, lon, zoom,'-type googlemaps') as gmap_url 
FROM ( 
  SELECT 51.51202 as lat, 0.02435 as lon, 17 as zoom 
  UNION ALL 
  SELECT 51.51202 as lat, 0.02435 as lon, 4 as zoom 
) t



Anomaly / Change-point detec;on 
‣ Local outlier factor (k-NN-based technique) 

‣ ChangeFinder 

‣ Singular Spectrum Transforma^on

Clustering / Topic modeling 
‣ Latent Dirichlet Alloca^on 

‣ Probabilis^c Latent Seman^c Analysis



Sketching 
‣  Approximated dis^nct count: 

‣ Bloom filtering:

SELECT count(distinct user_id) FROM t SELECT approx_count_distinct(user_id) FROM t

WITH high_rated_items as (
  SELECT bloom(itemid) as items
  FROM (
    SELECT itemid
    FROM ratings
    GROUP BY itemid
    HAVING avg(rating) >= 4.0
  ) t
)
SELECT
  l.rating,
  count(distinct l.userid) as cnt
FROM
  ratings l
  CROSS JOIN high_rated_items r
WHERE
  bloom_contains(r.items, l.itemid)
GROUP BY
  l.rating;

Build Bloom Filter (i.e., probabilis^c set of) high-rated items

Check if item is in Bloom Filter, and see their actual ra^ngs:
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CREATE TABLE lr_model 
AS 
SELECT 
 feature, 
 avg(weight) as weight 
FROM ( 
  SELECT 
    logress(features, label, "-total_steps ${total_steps}") as (feature, weight) 
  FROM 
    training 
) t  
GROUP BY feature;

Apache Hive



Apache Pig

a = load 'a9a.train' 
      as (rowid:int, label:float, features:{(featurepair:chararray)}); 

b = foreach a generate flatten( 
      logress(features, label, '-total_steps ${total_steps}') 
    ) as (feature, weight); 

c = group b by feature; 

d = foreach c generate group, AVG(b.weight); 
store d into 'a9a_model';



context = HiveContext(sc) 

context.sql(" 
    SELECT 
     feature, 
     avg(weight) as weight 
    FROM ( 
      SELECT 
        train_logregr(features, label) as (feature, weight) 
      FROM 
        training 
    ) t 
    GROUP BY feature 
  ")

Apache Spark 
Query in HiveContext
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Installation and creating SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
        .builder \
        .master('local[*]') \
        .config('spark.jars',
                'hivemall-spark2.x-0.5.2-incubating-with-dependencies.jar') \
        .enableHiveSupport() \
        .getOrCreate()

$ wget -q http://mirror.reverse.net/pub/apache/incubator/hivemall/0.5.2-incubating/
hivemall-spark2.x-0.5.2-incubating-with-dependencies.jar



Register Hive(mall) UDF to SparkSession

spark.sql("""
CREATE TEMPORARY FUNCTION hivemall_version AS 'hivemall.HivemallVersionUDF'
""")

spark.sql("SELECT hivemall_version()").show()

+------------------+
|hivemall_version()|
+------------------+
|  0.5.2-incubating|
+------------------+

See resources/ddl/define-all.spark in Hivemall repository for list of all UDFs

https://github.com/apache/incubator-hivemall/blob/master/


Preprocessing 

Training 

Prediction 

Evaluation



Example: Binary classification for churn prediction

import re
import pandas as pd

df = spark.createDataFrame(
    pd.read_csv('churn.txt').rename(lambda c: re.sub(r'[^a-zA-Z0-9 ]', '', 
str(c)).lower().replace(' ', '_'), axis='columns'))

df = spark.read.option('header', True).schema(schema).csv('churn.txt')

OR

…



Preprocessing 

Training 

Prediction 

Evaluation



df.createOrReplaceTempView('churn')

df_preprocessed = spark.sql("""
SELECT
  phone,
  array_concat( -- Concatenate features as a feature vector
    categorical_features( -- Create categorical features
      array('intl_plan', 'state', 'area_code', 'vmail_plan'),
      intl_plan, state, area_code, vmail_plan
    ),
    quantitative_features( -- Create quantitative features
      array(
        'night_charge', 'day_charge', 'custserv_calls',
        'intl_charge', 'eve_charge', 'vmail_message'
      ),
      night_charge, day_charge, custserv_calls,
      intl_charge, eve_charge, vmail_message
    )
  ) as features,
  if(churn = 'True.', 1, 0) as label
FROM
  churn
""")

>>>

>>>



Array of quan^ta^ve features                :              

select quantitative_features(array("price", "size"), 600, 2.5)

["price:600.0", "size:2.5"]

Array of categorical features                #               

select categorical_features(array("gender", "category"), “male", "book")

[“gender#male", "category#book"]

* NULL is automa^cally omiqed

Hivemall internally does one-hot encoding (e.g., book → 1, 0, 0, …)

valueindex

valueindex

Feature vector = array of string



SELECT
  phone,
  array_concat( -- Concatenate features as a feature vector
    categorical_features( -- Create categorical features
      array('intl_plan', 'state', 'area_code', 'vmail_plan'),
      intl_plan, state, area_code, vmail_plan
    ),
    quantitative_features( -- Create quantitative features
      array(
        'night_charge', 'day_charge', 'custserv_calls',
        'intl_charge', 'eve_charge', 'vmail_message'
      ),
      night_charge, day_charge, custserv_calls,
      intl_charge, eve_charge, vmail_message
    )
  ) as features,
  if(churn = 'True.', 1, 0) as label
FROM
  churn

['intl_plan#no',
 'state#KS',
 'area_code#415',
 'vmail_plan#yes',
 'night_charge:11.01',
 'day_charge:45.07',
 'custserv_calls:1.0',
 'intl_charge:2.7',
 'eve_charge:16.78',
 'vmail_message:25.0']



df_train, df_test = df_preprocessed.randomSplit([0.8, 0.2], seed=31)

df_train.count(), df_test.count()  # => 2658, 675

>>>

>>>



Preprocessing 

Training 

Prediction 

Evaluation



df_train.createOrReplaceTempView('train')

df_model = spark.sql("""
SELECT
  feature,
  avg(weight) as weight
FROM (
  SELECT
    train_classifier(
      features,
      label,
      '-loss logloss -opt SGD -reg l1 -lambda 0.03 -eta0 0.01'
    ) as (feature, weight)
  FROM
    train
) t
GROUP BY 1
""")

>>>

>>>

Run in parallel on Spark workers

Aggregate mul^ple workers’ results



SELECT 
  train_classifier( -- train_regressor( 
    features, 
    label, 
    '-loss logloss -opt SGD -reg no -eta simple -total_steps ${total_steps}' 
  ) as (feature, weight) 
FROM 
  train

Classifica;on 
‣ HingeLoss 

‣ LogLoss (a.k.a. logis7c loss)  

‣ SquaredHingeLoss  

‣ ModifiedHuberLoss

Regression 
‣ SquaredLoss 

‣ Quan^leLoss 

‣ EpsilonInsensi^veLoss 

‣ SquaredEpsilonInsensi^veLoss  

‣ HuberLoss

Supervised learning by unified function



SELECT 
  train_classifier( -- train_regressor( 
    features, 
    label, 
    '-loss logloss -opt SGD -reg no -eta simple -total_steps ${total_steps}' 
  ) as (feature, weight) 
FROM 
  train

Op;mizer 
‣ SGD 

‣ AdaGrad 

‣ AdaDelta 

‣ ADAM

Regulariza;on 
‣ L1 

‣ L2 

‣ Elas^cNet 

‣ RDA

‣ Itera^on with learning rate control 

‣ Mini-batch training 

‣ Early stopping

Supervised learning by unified function



Model = table
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Prediction 

Evaluation



df_test.createOrReplaceTempView('test')
df_model.createOrReplaceTempView('model')

df_prediction = spark.sql("""
SELECT
  phone,
  label as expected,
  sigmoid(sum(weight * value)) as prob
FROM (
  SELECT
    phone,
    label,
    extract_feature(fv) AS feature,
    extract_weight(fv) AS value
  FROM
    test
  LATERAL VIEW explode(features) t2 AS fv
) t
LEFT OUTER JOIN model m
  ON t.feature = m.feature
GROUP BY 1, 2
""")

>>>
>>>

>>>



Preprocessing 

Training 

Prediction 

Evaluation



df_prediction.createOrReplaceTempView('prediction')

spark.sql("""
SELECT
  auc(prob, expected) AS auc,
  logloss(prob, expected) AS logloss
FROM (
  SELECT prob, expected
  FROM prediction
  ORDER BY prob DESC
""").show()

>>>

>>>



Preprocessing 

Training — More options 

Prediction 

Evaluation



Classifica;on 
‣ Generic classifier 

‣ Perceptron 

‣ Passive Aggressive (PA, PA1, PA2) 

‣ Confidence Weighted (CW) 

‣ Adap^ve Regulariza^on of Weight Vectors (AROW) 

‣ Sov Confidence Weighted (SCW) 

‣ (Field-Aware) Factoriza;on Machines 

‣ RandomForest

Regression 
‣ Generic regressor 

‣ PA Regression 

‣ AROW Regression 

‣ (Field-Aware) Factoriza;on Machines 

‣ RandomForest

Classification and regression with variety of algorithms



Factorization Machines

S. Rendle. Factoriza;on Machines with libFM. ACM Transac^ons on Intelligent Systems and Technology, 3(3), May 2012. 

SELECT
  train_fm(
    features,
    label,
    '-classification -factor 30 -eta 0.001'
  ) as (feature, Wi, Vij)
FROM
  train



Factorization Machines



RandomForest 
Training

SELECT
  train_randomforest_classifier(
    feature_hashing(features),
    label,
    '-trees 50 -seed 71' -- hyperparameters
  ) as (model_id, model_weight, model, var_importance, oob_errors, oob_tests)
FROM
  train

Simplify name of quan^ta^ve feature                and categorical feature               #

select feature_hashing(array("price:600", "category#book"))

["14142887:600", "10413006"]

index valueindex



RandomForest 
Model table



RandomForest 
Export decision trees for visualization

SELECT 
  tree_export(model, "-type javascript", ...) as js, 
  tree_export(model, "-type graphvis", ...) as dot 
FROM 
  rf_model



RandomForest 
Prediction

SELECT
  phone,
  rf_ensemble(predicted.value, predicted.posteriori, model_weight) as predicted
FROM (
  SELECT
    t.phone,
    m.model_weight,
    tree_predict(m.model_id, m.model, feature_hashing(t.features), true) as predicted
  FROM
    test t
  CROSS JOIN
    rf_model m
) t1
GROUP BY phone



Introduction to Apache Hivemall 

How Hivemall Works with PySpark 

Hivemall <3 Python



Keep Scalable, Make More Programmable



Preprocessing 

Training 

Prediction 

Evaluation

from pyspark.ml.feature import MinMaxScaler
from pyspark.ml import Pipeline
from pyspark.ml.feature import VectorAssembler

assembler = VectorAssembler(
    inputCols=['account_length'],
    outputCol="account_length_vect"
)
scaler = MinMaxScaler(
    inputCol="account_length_vect",
    outputCol="account_length_scaled"
)

pipeline = Pipeline(stages=[assembler, scaler])
pipeline.fit(df) \
        .transform(df) \
        .select([
          'account_length', 'account_length_vect',
          'account_length_scaled'
        ]).show()



Preprocessing 

Training 

Prediction 

Evaluation

q = """
SELECT
  feature,
  avg(weight) as weight
FROM (
  SELECT
    train_classifier(
      features,
      label,
      '-loss logloss -opt SGD -reg l1 -lambda {0} -eta0 {1}'
    ) as (feature, weight)
  FROM
    train
) t
GROUP BY 1
"""

hyperparams = [
    (0.01, 0.01),
    (0.03, 0.01),
    (0.03, 0.03),
    ( 0.1, 0.03)
    # ...
]

for reg_lambda, eta0 in hyperparams:
  sql.spark(q.format(reg_lambda, eta0))



Preprocessing 

Training 

Prediction 

Evaluation

from pyspark.mllib.evaluation import BinaryClassificationMetrics

metrics = BinaryClassificationMetrics(
    df_prediction.select(
        df_prediction.prob,
        df_prediction.expected.cast('float')
    ).rdd.map(tuple)
)

metrics.areaUnderPR, metrics.areaUnderROC
# => (0.25783248058994873, 0.6360049076499648)



Preprocessing 

Training 

Prediction 

Evaluation

import pyspark.sql.functions as F
df_model_top10 = df_model \
                    .orderBy(F.abs(df_model.weight).desc()) \
                    .limit(10) \
                    .toPandas()

import matplotlib.pyplot as plt
# ...



Problem 

What you want to “predict”

Hypothesis & Proposal

Build machine learning model

Historical data

Cleanse dataEvaluate

From EDA to production, Python adds flexibility to Hivemall

Deploy to produc;on
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