o

>} Polideas

Jarek Potiuk -

Apache
Airflow

Polidea

Apache Airflow

Airflow is a platform to programmatically author,
schedule and monitor workflows.

Dynamic/Elegant
Extensible
Scalable

"y

Polidea

Team @
Polidea

Polidea

.

"y

Jarek Potiuk

Principal Software Engineer @Polidea
Apache Airflow PMC member
Certified GCP Architect

ex-Googler, ex-CTO, ex-choir member

@higrys

Polidea

Team
@Polidea

75%

OF BUSINESS
THROUGH
REFERRALS

+
v

70+

TALENTS

)
..‘

M

3m

USERS OF
OUR APPS

X

4+
un

"y

100+

PROJECTS
DELIVERED

Polidea

All-time Apache Airflow team at Polidea

Jarek Potiuk Kamil Breguta Tomasz Urbaszek Karolina Rosét Tobiasz Kedzierski Michat Stowikowski

Dariusz Aniszewski Szymon Przedwojski Antoni Smolinski

Polidea

Polidea &
Apache Airflow

Polidea

4

Timeline September 2019 °©

- 6 (9) people

August 2018

2 people

Our tasks

e 100+ operators

e 18+ GCP services

e Qozie-To-Airflow

"y

Polidea

It’s a Breeze to develop [https://polidea.com]

— @& polidea.com/blog/its-a-breeze-to-develop-apache-airflow/ 2

B @ &

POIIdea: Our work Services Blog About us Careers Get in touch

s

5
SR, ¥ WS

Engineering 10min read

#open-source #cloud

Share It's a "Breeze" to Develop Apache
® Airflow

Table of contents

¢ My journey to developer productivity

¢ What do I mean by productivity

¢ The Apache Airflow project’s setup

e Optimizing the process

¢ Open-sourcing our environment

e Bringing the environment to the Airflow community
e Learning from the experts

¢ Working with the community

¢ It’s a Breeze

"y

Polidea

https://www.polidea.com/blog/its-a-breeze-to-develop-apache-airflow/

What we delivered extra

e 1 Apache Airflow committer, 1 PMC member

e Documentation improvements

° [Breeze - improved development environment]

e Py2->Py3

e Pylint compatibility
e Cl environment reimplemented

e Operator scaffolding

uy

Polidea

Integration
Test
Challenges

Polidea

Integration tests on Travis CI

© Pre-test

+ 25131.1
25131.2

25131.3

SIS S S

25131.4

© Test

251315
H 25131.6
251317

25131.8

SIS SIS]S

25131.9

e & & »

& & » &»

& Static checks (no pylint, no licence check)
= Check licence compliance for Apache
& Pylint checks

= Build documentation

= Tests postgres python 3.6

& Tests sqlite python 3.5

= Tests mysql python 3.7

= Tests postgres kubernetes python 3.6 (persistent)

= Tests postgres kubernetes python 3.6 (git)

© 6min5sec

(© 4min 14 sec
(© 1min18sec
(© 5min 55 sec

© 5min9sec

© 28 min 22 sec

(© 25min 22 sec
(© 25 min 42 sec
(© 28 min 22 sec
(© 15min 4 sec

(© 16 min 57 sec

"y

Polidea

Integration tests challenges

Multiple backends: postgres, mysql, sqglite

e Multiple python versions (2.7) - 3.5, 3.6. 3.7

e Multiple executors: Local/Sequential/Kubernetes

e Automated static code analysis

e Automated documentation building

"y

Polidea

The problems with Integration Tests

e Longtimetosetitup

e Frustrations of fresh developer experience

e High friction/learning curve for Airflow development environment

e Slow iteration speed

e Complicated Development Environment

"y

Polidea

Original Cl environment

e Scripts only designed for Cl, not local environment

e Dependencies installed every time you start the environment

e Always full database reset

e Minutes to run one test

e No guidance how to iterate over tests

"y

Polidea

Ash’s “Hacking on Airflow”

"y

Polidea

http://www.youtube.com/watch?v=UBtXaPEg9yE

Challenge
accepted

Polidea

The Goal

Focus on developer productivity

Faster development cycle

Decrease developer frustration

Improve the teamwork

Easy for ad-hoc contributors to code & test

"y

Polidea

Improvements

e AIP-10: Multi-layered and multi-stage official Airflow image

e AIP-7: Simplified Development Workflow

e AIP-26: Production-ready Airflow Docker Image and helm chart

e AIP-23: Migrate out of Travis Cl

e AIP-4: Support for System Tests for external systems

&
&

"y

Polidea

The environments

e Local virtualenv

e Own Travis Cl fork

° [Docker compose (Travis Cl equivalent)]

"y

Polidea

Previous testing experience

"y

Total time: 7 minutes

Running one test only

Failure at the end (!)

Re-run - 10-20 seconds for DB
Re-enter - same time (!)

No bash history

Polidea

http://www.youtube.com/watch?v=6hjqhQAj_sA

Improved
Integration
Tests

Polidea

"y

Step 1 - Multi-stage, multi-layered Docker image

e Dockerimages built from master automatically (DockerHub)

e |ocal images use cached images

e Tests and static checks run using Docker Compose/Docker environment
e Can be run on Kubernetes Cluster (Docker-In-Docker)

e Clsystem - independent

e Base to build production image

Polidea

Step 2 - local scripts to manage the environment

Entering the environment

(@]

PYTHON_VERSION=3.5 BACKEND=postgres ENV=docker ./scripts/ci/local_ci_enter_environment.sh

Static checks run in Docker

o

o O O O O

Mypy: ./scripts/ci/ci_mypy.sh

Pylint main: . /scripts/ci/ci_pylint_main.sh,
Pylint tests: ./scripts/ci/ci_pylint_test.sh
Flake8: ./scripts/ci/ci_flake8.sh

Licence check: ./scripts/ci/ci_check_licence.sh
Documentation build: . /scripts/ci/ci_docs.sh

Run static checks on individual files/packages

o

./scripts/ci/ci_pylint.sh ./airflow/stats.py

Update images

o

o

./scripts/ci/local _ci build.sh
./scripts/ci/pull_and_build.sh

"y

Polidea

Step 3 - Easy way of running tests

e works out-of-the-box

e initializes DB when needed
e environment variables set
sub-second test overhead
ipdb debugging

verbose output

Usage: run-tests [FLAGS] [TESTS_TO_RUN] -— <EXTRA_NOSETEST_ARGS>

Runs tests specified (or all tests if no tests are specified)

Flags:
—h, ——help

Shows this help message.
-i, ——with-db-init

-V,

Forces database initialization before tests

—--nocapture
Don't capture stdout when running the tests. This is useful if you are
debugging with ipdb and want to drop into console with it
by adding this line to source code:

import ipdb; ipdb.set_trace()

——verbose
Verbose output showing coloured output of tests being run and summary

of the tests - in a manner similar to the tests run in the CI environment.

"y

Polidea

Breeze

Polidea

The ideal workflow

entering the environment: ./breeze --backend sqlite --python 3.5
re-entering the environment: ./breeze

automated image management

autocomplete of options

sub-second test execution overhead

host sources mounted to Docker container

ports forwarded

hints for ad-hoc developers

"y

Polidea

Extras - nice to haves

® run-tests tests.core<TAB><TAB> autocomplete
® Dbash history across sessions
e run static checks with Breeze
® easy debugging (including debugging with IDE)

® pre-commit checks

"y

Polidea

E

AIRFLOW
BREEZE

Polidea

Breeze goodies

"y

Polidea

http://www.youtube.com/watch?v=LQzxZAjouQo

"y

Additional sources

= u INTRODUCTION TO BREEZE
- How to Easily Develop
A ’ Apache Airflow?
AIRFLOW
B R E E Z E ?(Jarek Potiuk &

Ash Berlin-Taylor

Polidea

http://www.youtube.com/watch?v=ffKFHV6f3PQ
http://www.youtube.com/watch?v=uoxum5-xABU

Breeze features

e Dockerimages management

® Pre-commit checks (almost all merged)
e Run-tests with DB initialisation

e Travis Cl integration

e Comprehensive documentation - Google Season of Docs YAY!

"y

Polidea

Breeze Documentation

Table of Contents

 Airflow Breeze
* Installation

¢ Setting up autocomplete

* Using the Airflow Breeze environment
o Entering the environment
o Running tests in Airflow Breeze
o Debugging with ipdb
o Airflow directory structure in Docker

o Port forwarding

* Using your host IDE
o Configuring local virtualenv

o Running unit tests via IDE

o Debugging Airflow Breeze Tests in IDE

¢ Running commands via Airflow Breeze
o Running static code checks

o

Building the documentation

o

Running tests

o

Running commands inside Docker

o

Running Docker Compose commands

o

Convenience scripts

¢ Keeping images up-to-date
o Updating dependencies
o Pulling the images

¢ Airflow Breeze flags

Debugging Airflow Breeze Tests in IDE

When you run example DAGs, even if you run them using UnitTests from within IDE, they are run in a separate container.
This makes it a little harder to use with IDE built-in debuggers. Fortunately for IntelliJ/PyCharm it is fairly easy using
remote debugging feature (note that remote debugging is only available in paid versions of IntelliJ/PyCharm).

You can read general description about remote debugging
You can setup your remote debug session as follows:

‘00 @ Run/Debug Configurations

+ - B ¥ LJ Name: Remote debug Share Allow parallel run

» & Docker

> @ Python

v [Python Remote Debug
51Remote debug 1. Add pycharm-debug.egg from the PyCharm installation to the Python path

Launch this debug configuration to start the debug server.
Update your script:

Python tests 2. Add the following command to connect to the debug server:

Templates import pydevd
pydevd.settrace('192.168.0.234', port=40011, stdoutToServer=True, stderrToServer=True)

t name: | 192.168.0.234

Path mappings: I-breeze/workspace/polidea/airfl

Redirect output to console

Suspend after conn

v Before launch: Activate tool window

Cancel Apply

"y

Polidea

Breeze
follow-ups

Polidea

Pre-commit checks

e ecasytouse
O pre-commit install
© pre-commit run
O pre-commit run mypy
0 pre-commit run --all-files
e run only for changed files (fast)
e catches errors early
e make committers time efficient

e promotes good practices

Check if image build is needed
Check if licences are OK for Apache
No-tabs checker

Add licence for all SQL files

Add licence for all other files

Add licence for all rst files

Add licence for all JS files

Add licence for shell files

Add licence for all XML files

Add licence for yaml files

Add licence for all md files

Add TOC for md files

Check hooks apply to the repository
Check for merge conflicts

Detect Private Key

Fix End of Files

Mixed line ending

Check that executables have shebangs....
Check Xml

Check yaml files with yamllint
Check Shell scripts syntax correctness
Lint dockerfile

Run

Run

Run

Run

Passed

Passed
Passed
Passed
Passed
Passed
Passed

Polidea

Example errors with pre-commit

Lint dockerfile

Run mypy

Run pylint for main sources
Run pylint for tests

Run flake8

hookid: flake8

tests/gcp/operators/test_mlengine.py:23:1: F811 redefinition of unused 'ANY' from line 21
tests/gcp/operators/test_mlengine.py:23:1: F811 redefinition of unused 'patch' from line 21
tests/gcp/operators/test_mlengine_utils.py:23:1: F811 redefinition of unused 'ANY' from line 20

tests/gcp/operators/test_mlengine_utils.py:24:1: F811 redefinition of unused 'patch' from line 21
There were some flake8 errors. Exiting

There were some flake8 errors. Exiting

The command "./scripts/ci/ci_run_all_static_tests_except_pylint_licence.sh" exited with 1.

Polidea

"y

What'’s next ?

e Migrating out of Travis CI

o GitLab CI (only CI) or GitHub Actions

o Kubernetes Cluster on Google Kubernetes Engine (Thanks Googlel)
e Automation of Performance Tests

e Automation of Release Tests

Polidea

Workshop for first time
contributors to Apache Airflow g

AIRFLOW

It's a Breeze
to contribute
to ApaChe AirﬂOw Z contentful

Y Google Cloud

Polideas

[APACHECON

It’s a Breeze to contribute to Airflow

http://bit.ly/35NrOie

http://bit.ly/35NrOie

Thanks!

hello@polidea.com

Polidea

