


Polidea

Apache 
Airflow



Polidea

Apache Airflow

Airflow is a platform to programmatically author, 
schedule and monitor workflows.

Dynamic/Elegant
Extensible
Scalable



Polidea

Team @ 
Polidea



Polidea

Logo or mockup

Hi!

Jarek Potiuk
Principal Software Engineer @Polidea

Apache Airflow PMC member

Certified GCP Architect

ex-Googler, ex-CTO, ex-choir member

@higrys



Polidea

70+
TALENTS

100+
PROJECTS 
DELIVERED

3m
USERS OF 
OUR APPS

75%
OF BUSINESS 

THROUGH 
REFERRALS

Team
@Polidea



Polidea

All-time Apache Airflow team at Polidea

Jarek Potiuk Kamil Breguła Tomasz Urbaszek Karolina Rosół

Dariusz Aniszewski Szymon Przedwojski Antoni Smoliński

Tobiasz Kędzierski Michał Słowikowski

PMC



Polidea

Polidea & 
Apache Airflow



Polidea

August 2018
2 people

Timeline September 2019
6 (9) people



Polidea

Our tasks

● 100+ operators

● 18+ GCP services

● Oozie-To-Airflow



Polidea

It’s a Breeze to develop  [https://polidea.com]

https://www.polidea.com/blog/its-a-breeze-to-develop-apache-airflow/


Polidea

What we delivered extra

● 1 Apache Airflow committer,  1 PMC member

● Documentation improvements

● Breeze - improved development environment

● Py2 -> Py3

● Pylint compatibility

● CI environment reimplemented

● Operator scaffolding



Polidea

Integration 
Test
Challenges



Polidea

Integration tests on Travis CI



Polidea

Integration tests challenges

● Multiple backends: postgres, mysql, sqlite

● Multiple python versions (2.7) - 3.5, 3.6. 3.7

● Multiple executors: Local/Sequential/Kubernetes

● Automated static code analysis

● Automated documentation building



Polidea

● Long time to set it up

● Frustrations of fresh developer experience

● High friction/learning curve for Airflow development environment

● Slow iteration speed

● Complicated Development Environment

The problems with Integration Tests



Polidea

● Scripts only designed for CI, not local environment

● Dependencies installed every time you start the environment

● Always full database reset

● Minutes to run one test

● No  guidance how to iterate over tests

Original CI environment



Polidea

Ash’s “Hacking on Airflow”

http://www.youtube.com/watch?v=UBtXaPEg9yE


Polidea

Challenge 
accepted



Polidea

● Focus on developer productivity

● Faster development cycle

● Decrease developer frustration

● Improve the teamwork

● Easy for ad-hoc contributors to code & test

The Goal



Polidea

● AIP-10: Multi-layered and multi-stage official Airflow image 

● AIP-7: Simplified Development Workflow

● AIP-26: Production-ready Airflow Docker Image and helm chart

● AIP-23: Migrate out of Travis CI 

● AIP-4: Support for System Tests for external systems

Improvements



Polidea

● Local virtualenv 

● Own Travis CI fork

● Docker compose (Travis CI equivalent) 

The environments



Polidea

Previous testing experience

● Total time: 7 minutes

● Running one test only

● Failure at the end (!)

● Re-run - 10-20 seconds for DB

● Re-enter - same time (!)

● No bash history

http://www.youtube.com/watch?v=6hjqhQAj_sA


Polidea

Improved 
Integration 
Tests



Polidea

● Docker images built from master automatically (DockerHub)

● Local images use cached images

● Tests and static checks run using Docker Compose/Docker environment

● Can be run on Kubernetes Cluster (Docker-In-Docker)

● CI system - independent

● Base to build production image

Step 1 - Multi-stage, multi-layered Docker image



Polidea

● Entering the environment
○ PYTHON_VERSION=3.5 BACKEND=postgres ENV=docker ./scripts/ci/local_ci_enter_environment.sh 

● Static checks run in Docker
○ Mypy: ./scripts/ci/ci_mypy.sh
○ Pylint main: ./scripts/ci/ci_pylint_main.sh, 
○ Pylint tests: ./scripts/ci/ci_pylint_test.sh
○ Flake8: ./scripts/ci/ci_flake8.sh
○ Licence check: ./scripts/ci/ci_check_licence.sh
○ Documentation build: ./scripts/ci/ci_docs.sh

● Run static checks on individual files/packages
○ ./scripts/ci/ci_pylint.sh ./airflow/stats.py

● Update images
○ ./scripts/ci/local_ci_build.sh 

○ ./scripts/ci/pull_and_build.sh 

Step 2 - local scripts to manage the environment



Polidea

Step 3 - Easy way of running tests

● works out-of-the-box

● initializes DB when needed

● environment variables set

● sub-second test overhead

● ipdb debugging

● verbose output



Polidea

Breeze



Polidea

● entering the environment: ./breeze --backend sqlite --python 3.5

● re-entering the environment: ./breeze

● automated image management 

● autocomplete of options

● sub-second test execution overhead

● host sources mounted to Docker container

● ports forwarded

● hints for ad-hoc developers

The ideal workflow



Polidea

● run-tests tests.core<TAB><TAB>  autocomplete

● bash history across sessions

● run static checks with Breeze

● easy debugging (including debugging with IDE)

● pre-commit checks

Extras - nice to haves



Polidea

Feel the Breeze



Polidea

Breeze goodies

http://www.youtube.com/watch?v=LQzxZAjouQo


Polidea

Additional sources

http://www.youtube.com/watch?v=ffKFHV6f3PQ
http://www.youtube.com/watch?v=uoxum5-xABU


Polidea

Breeze features

● Docker images management

● Pre-commit checks (almost all merged)

● Run-tests with DB initialisation

● Travis CI integration

● Comprehensive documentation - Google Season of Docs YAY!



Polidea

Breeze Documentation



Polidea

Breeze 
follow-ups



Polidea

Pre-commit checks

● easy to use

○ pre-commit install

○ pre-commit run

○ pre-commit run mypy

○ pre-commit run --all-files

● run only for changed files (fast)

● catches errors early

● make committers time efficient

● promotes good practices



Polidea

Example errors with pre-commit



Polidea

What’s next ?

● Migrating out of Travis CI

○ GitLab CI (only CI) or GitHub Actions

○ Kubernetes Cluster on Google Kubernetes Engine (Thanks Google!)

● Automation of Performance Tests

● Automation of Release Tests





http://bit.ly/35NrOie

It’s a Breeze to contribute to Airflow

http://bit.ly/35NrOie


Polidea

Thanks!

hello@polidea.com


