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Agenda

 Open Source is a very big word...
• ... so is 'Enterprise'

•

 Let's focus on adoption of Apache-based Open Source for 
Middleware and Integration.
• Focus on in ISVs, SIs, and large enterprises.

• Focus on ServiceMix, ActiveMQ, CXF, Camel
•

 Discussion:
• Why adopt open source?

• Who is driving the adoption? 

• How is open source being adopted? What works? What 
doesn't? The role of the OS vendor.

• What are the implications?
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Some context...

Source: Gartner
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Aside...

 “Opinion is the lowest form of fact”
• And yet, strangely, we value respected opinion greater that facts 

themselves.

• The opinions and observations in this presentation are based on 
years of experience in open source 'from the trenches'

– Thanks to Wolfgang Schulze, Roland Tritsch, Rich Bonneau, Rich 
Newcomb, Martin Murphy, Andreas Gies, Ashwin Karpe, ... and others at 
Progress.

•

 “Flattery gets you nowhere”
• You are a fabulously intelligent audience... 

• ... probably in the top 10% of coders / hackers / architects / 
business-people in the world!

• Remember: it is a mistake to believe everyone else will be as
 passionate / excellent / brilliant / committed as you.
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Aside (cont')

•

  

“Proof by analogy is fraud” ... and yet, analogy is very useful in 
helping us discuss and flesh out ideas.

Open Source Code ≈ Mountains

Open Source Vendor ≈ Mountain Guide

commons | changing | challenging | rewarding
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Why are enterprises adopting open source?
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Motivations for adopting open source

 Price is a deciding factor.
• ... price is not the deciding factor

• Any investment [time or money] requires an investigation of risk 
and ROI. 

• Price (or rather, price scalability) is very important for SIs, ISVs, 
and enterprises with large-scale or geography-wide deployment.

– Some closed-source vendors haven't figured this out.
•

 Agility
• Faster detection and resolution of issues cuts development time 

and increases time-to-market
•

 Control
• Avoid vendor lock-in (only applies to permissive licenses)
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Motivations for adopting open source (cont')

 Quality.
• Sometimes the open source alternative is simply better.

• Better = wider adoption, easier to use, multi-platform, standards-
based.
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Who is driving adoption?
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Adoption

 Top-down
• Sabre: CTO initiative to adopt standards-based, open-source 

container
– Adopted ServiceMix / ActiveMQ in their Supplier Side 

Gateway project.
– 1.5m transactions per day; 14 months zero down-time.

• US Federal Aviation Authority – http://www.swim.gov

– System Wide Information Management
– Towards NGATS (Next Generation Air Transportation System)

•

 Bottom-up
• Retail-pharmacy: application manager sketched  solution with 

gregorgrams, and implemented using EIPs in ServiceMix
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Driving adoption top-down from the CT(I)O or 
program level
 Make a strategic plan around open source

• Vision. Goals. Milestones. Resources.
•

 Involve technology leaders in your organization.
• You won't succeed without their buy-in.

•

 Create a centre of competence around chosen open-source 
technologies
• We'll discuss this in more detail later on.

•

 Execute the plan.
• “The plan rarely survives contact with the enemy”

• You've opened the door: make sure there's someone to walk 
through it.
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Aside: Open Source Maturity Model (TM) 

 OSMM from http://www.navicasoft.com provides a 
framework to assess 'maturity' of an open source product.
• Maturity: a number based on weighted assessment of different 

areas
– Functionality
– Training
– Documentation
– Support 
– Integration

• Threshold of acceptance is then based on the your organization
– Innovator, or
– Pragmatist
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Bottom-up adoption

 Driven at a project level by architects and senior engineers
• Drivers: code quality, standards, ease-of-access, cost, ...

•

 Sometimes skunk-works projects bubble up to the service.
• e.g. replacement for JEE stack at a major financial services 

company.

• e.g. Integration backbone for another major FS company.
•

 Tends to emerge in organizations who pride themselves in 
their engineering expertise.
• “Hang on a minute: we can do this better/cheaper/faster with 

open-source”
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Open Stealth

 Avoid big-bang, boil-the-ocean approaches
• Many will resist. 

• Particularly, and ironically, your IT department, the bastion of 
conservatism.

•

 Select a 'beach-head' project.
• With clear, strategic value and potential for 'poster-child' success

• Make it successful...
– ... and use it as a platform for organizational learning.

• Successful innovation attracts followers (think of Apple!)
– ... build a constituency; gather support.

•

 Plan wider roll-out.
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More Projects

Adoption in the enterprise

CTO / CIO
Office

Architects/
Project 

Managers

Beach-head
Project

“Open the door...”
Technology recommendations
Vendor selection
Evangelism
Centre of competence

“...Walk through it”
Business case
Requirements
Compelling event

More ProjectsRoll-out in
other projects

“... Learn what works”
Use your best people
Get outside help if 
necessary
Prepare to learn
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Community Involvement
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Download 'n' Go! 

 Can you just freeload?
•

 How engaged with the community/source must you be? 
• Depends on how mature the source is. Here's one way of looking 

at it: projects are either nascent, active or mature.

• Where there is innovation, there will be issues.

Enhancements/ 
New Features

Time
Nascent Active Mature
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Model 1: No interaction with community

 Treat the project as a product
• No need to download the source, just the binaries please!

• Suited to mature open source projects; e.g. Apache Server, 
PostgreSQL, Open Office, ...

• Suited to 'product' rather than 'framework' style projects.
– Product: finished article; does what is says on the tin.
– Framework: tools or building blocks with which to build 

solutions.
•

Enterprise
Users

Community
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Model 2: Direct interaction with community

 Hmmm: this project is great, but needs more work... we're 
happy to help!
• Ideal for nascent projects, and early adopters 

• Engineers can become committers, and drive adoption.

• But does it scale? 
– Must all engineers have intimate knowledge of the code?
– What if I use n open source projects? 
– ... ?

Enterprise
Users

Community
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The dark side of the source

 Good fences make good neighbors
• Clear boundaries tend to be a good thing!

•

 Opening up the code can “increase the problem space”
• Abstractions make things easier; detail makes things more 

complex.

• 7 ± 2 concepts at a time, please.
•

 Cross fertilization of code can be mind boggling.
• “I once found myself debugging jetty continuations...”

•

 Not all developers have time for (or are up to) the challenge.
• This is not a criticism; just a fact of life.
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Enterprise vs. Community: culture clash? 

 “I value the finished product.”
• => “I can't stand incomplete product.”

•

 “I'm focussed on my work”
• => “I do not want to help you with yours”

•

 “I want my team to be actively contributing to achieving its 
goals”
• => “I do not want them 'distracted' by community work”

•

 “I should be able to use this without knowing the nuts and 
bolts”
• => “You can use it best by understanding the nuts and bolts”
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The successful project team

 In any project team, there are:
• Achievers (top 20%): motivated, talented, engaged

• Adequates (top 75%): need direction, effective when given a 
cookie cutter.

• Wasters (the rest): Useless. Move them on if you can. Contain 
them if you can't.

•

 When it comes to projects adopting open-source, attitude is 
the most important thing.
• Open-Source Positive. 

– Focus on solutions through the source, not problems due to 
the source.

• Hire for attitude and ability, train for skill.
– Consider training as necessary but not sufficient.
– Need training + practice + coaching.
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Scaling open-source knowledge

The problem is not the achievers.
They will always adopt the 'right attitude'.

The problem is the adequates.
Or rather, how to make/keep them effective.



© 2009 Progress Software Corporation25

The Law of Comparative Advantage

 Entities should specialize in 
areas where they have 
competitive advantage.

•

 E.g.: I am very good at DIY. 
On my weekends, should I:
• Put in a patio? or

• Provide $$$ consultancy 
services?

•

 I may have absolute 
advantage, however, LoCA 
says I should specialize.
• I win, as does the 

landscaper.
David Riccardo (source Wikipedia)
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Scaling open-source knowledge (cont')

So, how do we apply LoCA to teams where only a few 
players have absolute advantage in open source?
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In a team of, say, ten...

 In the 80-20 model, two things can happen.
• 'Hero' model: two guys do all the work, eight guys watch by in 

amazement, shock and awe.
– The eight step back and take on peripheral tasks.
– Very like the 'Mythical Man Month' surgical-team model.

 Except in that model, everyone had a assertive, positive role.

– Drawbacks: high-dependency, fatigue, fracture, prima-donnas.
•

• 'Lever' model: two guys work out the architecture, the patterns, 
the archetypes.

– Their role is to lead by example. 
– Their focus: remove blocks for the eight.
– Drawbacks: need the right kind of hero.
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LoCA in action – lever model

 We know the achievers have absolute advantage.
• But they should focus on architecture, patterns, technology 

expertise, mentoring.

• The challenge is to stop them doing everything and get them to 
act as enablers rather than doers.

•

 The adequates have comparative advantage on some 
aspects.
• Local domain knowledge. Implementation (based on patterns). 

Testing. Documentation.

• The challenge is to make sure that blocks are removed.
•
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... Model 3: Centre of competence

 Larger enterprises can use a CoC to leverage specialization.
• Create a dedicated technology/architecture group to own the 

relationship with the community.

• Let rest of organization become 'users', focussed on the core 
business.

– Projects can pull-in skills and resources from the CoC.

Enterprise
Users

Community

Enterprise Center of 
Competence
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Role of an open source centre of competence

 Provide regular stable releases of project(s)
• Potentially with in-house fixes

• Track issues and merge fixes to community
•

 Maintain a 'forge'
• For internal releases and internal projects / plugins

• SCM, Issue-management, Wiki, Forums, IRC, Maven ...
•

 Support developers
• Training, documentation, how-to, use-cases, patterns ...

•

 Enforce licensing compliance
•

 Evangelize open source technology & 
philosophy Enterprise

Users Community

Enterprise Center 
of Competence
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Enterprises will support themselves unless the cost 
associated with that support exceeds the cost of 

outsourcing it. 
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Out-sourcing the centre of competence

 Vendors can play a part as an out-sourced centre of 
competence.
• “We can resolve your issues faster and cheaper than you can”

• Stay agile, reduce cost.
•

 Prefer 'part-sourced' rather than 'out-sourced'
• Stay in control.

Enterprise
Users

Community

Vendor
Centre of

Competence
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Getting it wrong.

 Remember the project phases?
• Nascent, active, mature

•

 The worst mistake is to misjudge an open-source project.
• “Hmmm. I'll use a commodity open source framework...

• ... with adequate developers ...

• ... and I'll save massive amount of money!”
•

 If the project is active, there will be issues
• .. which will require a team of committed, engaged, quality 

developers.

• ... and, perhaps, a culture change.
– Pro-active, code-hunting, engaging.
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Aside: Progress OSCoC

 Team of consultants dedicated to Open Source
• Contributors, committers

•

 Goals:
• Make users successful

• Drive adoption (writing, blogging, contributing, forums, 
initiatives, ...)

• “Scale out” skills throughout the larger PS organization 



© 2009 Progress Software Corporation35

Back to the hills!

Is a trusted guide going to get you there quicker, safer and easier?
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Advice: enterprises should simplify rules around 
licensing
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Understand Open Source Licensing

 Some licenses such as GPL can be restrictive.
• GPL: if you use this GPL software in your solution, and then 

redistribute, then your software must also be GPL.

• Dual-licensers tend to use GPL: any competitor who attempts to 
improve on the code must release these improvements to the 
community for free!

•

•

 LGPL (Library/Lesser GPL): you can link LGPL software with 
your own commercial non-LGPL software, so long as it is not 
considered a “derivative work”.
• Definition of “derivative work” is ambiguous and untested.

•

 Apache License: simply provide an acknowledgement, 
disclaimer and copyright notice. Very Friendly!
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Keep it simple, keep it safe.

 Example policy for a software vendor using open-source 
internally
• Legal department vets all licenses used in products to ensure 

compliance with license T&C’s

Apache (v1.1, v2.0), BSD, MIT, 
X, OpenSSL, OpenSSLeay

CPL v1.0, EPL, LGPL, MPL

GPL





?
No: unless certain conditions 

are met
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What can we do to increase adoption?
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From a community perspective...

 Make heroes out of technical writers.
• Why are they less important than engineering committers?

• Their input can drive adoption.

• They can impact on the perception of risk
– Use cases, patterns, ...

•

 Reduce source-code 'barrier to entry'.
• Surely there must be a way to mark 'trails' in the code?

• Automatically discover well-trod execution / browse paths.
•

 Make it easy for adopters to submit success stories 
• Templates? Gentle nudges on the forums?
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From a user's perspective

 Contribute to the source!
• Raise issues, even when you find workarounds. 

• “Poor usability is a bug” - raise issues when something annoys 
you.

• Submit demonstrations
•

 If your project has been successful, tell the world!
• And if it's not, don't grumble in silence. Tell the world! 
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Thing's we're doing beyond the Source

 Progress Knowledge Services
• Major documentation drive, impacting Apache & FUSE materials.

– Reference Material
– User Guides
– Deployment Guides

•

 Progress Professional Services
• Phase 0 initiative: the first two hours after download.

– Getting Started Screen-casts
– Webinars

• Usability on common use-cases.

• Technology white-papers

• Masterclass Webinars
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Summary

 Adoption is driven from many areas: top-down and bottom up
• Nothing builds success like success

• Thing big, start small.
•

 OS project maturity plays a big part in how you adopt
• Design your team to facilitate specialization

•

 Vendors play a part in reducing costs through specialization
• Knowing the territory is key – the “mountain guide”

•

 Vendors play a part in 'rounding out' the project.
• Documentation, ease-of-use, education, etc.
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