
Adopting Open Source in the Enterprise

ApacheCon Europe 2009

Track: Business
Level: Overview

Adrian Trenaman
Distinguished Consultant

http://trenaman.blogspot.com

© 2009 Progress Software Corporation

Ade's Consultancy Map

© 2009 Progress Software Corporation

Agenda

 Open Source is a very big word...
• ... so is 'Enterprise'

•

 Let's focus on adoption of Apache-based Open Source for
Middleware and Integration.
• Focus on in ISVs, SIs, and large enterprises.

• Focus on ServiceMix, ActiveMQ, CXF, Camel
•

 Discussion:
• Why adopt open source?

• Who is driving the adoption?

• How is open source being adopted? What works? What
doesn't? The role of the OS vendor.

• What are the implications?

© 2009 Progress Software Corporation

Some context...

Source: Gartner

© 2009 Progress Software Corporation

Aside...

 “Opinion is the lowest form of fact”
• And yet, strangely, we value respected opinion greater that facts

themselves.

• The opinions and observations in this presentation are based on
years of experience in open source 'from the trenches'

– Thanks to Wolfgang Schulze, Roland Tritsch, Rich Bonneau, Rich
Newcomb, Martin Murphy, Andreas Gies, Ashwin Karpe, ... and others at
Progress.

•

 “Flattery gets you nowhere”
• You are a fabulously intelligent audience...

• ... probably in the top 10% of coders / hackers / architects /
business-people in the world!

• Remember: it is a mistake to believe everyone else will be as
 passionate / excellent / brilliant / committed as you.

© 2009 Progress Software Corporation

Aside (cont')

•

“Proof by analogy is fraud” ... and yet, analogy is very useful in
helping us discuss and flesh out ideas.

Open Source Code ≈ Mountains

Open Source Vendor ≈ Mountain Guide

commons | changing | challenging | rewarding

© 2009 Progress Software Corporation

Why are enterprises adopting open source?

© 2009 Progress Software Corporation

Motivations for adopting open source

 Price is a deciding factor.
• ... price is not the deciding factor

• Any investment [time or money] requires an investigation of risk
and ROI.

• Price (or rather, price scalability) is very important for SIs, ISVs,
and enterprises with large-scale or geography-wide deployment.

– Some closed-source vendors haven't figured this out.
•

 Agility
• Faster detection and resolution of issues cuts development time

and increases time-to-market
•

 Control
• Avoid vendor lock-in (only applies to permissive licenses)

© 2009 Progress Software Corporation

Motivations for adopting open source (cont')

 Quality.
• Sometimes the open source alternative is simply better.

• Better = wider adoption, easier to use, multi-platform, standards-
based.

© 2009 Progress Software Corporation10

Who is driving adoption?

© 2009 Progress Software Corporation11

Adoption

 Top-down
• Sabre: CTO initiative to adopt standards-based, open-source

container
– Adopted ServiceMix / ActiveMQ in their Supplier Side

Gateway project.
– 1.5m transactions per day; 14 months zero down-time.

• US Federal Aviation Authority – http://www.swim.gov

– System Wide Information Management
– Towards NGATS (Next Generation Air Transportation System)

•

 Bottom-up
• Retail-pharmacy: application manager sketched solution with

gregorgrams, and implemented using EIPs in ServiceMix

© 2009 Progress Software Corporation12

Driving adoption top-down from the CT(I)O or
program level
 Make a strategic plan around open source

• Vision. Goals. Milestones. Resources.
•

 Involve technology leaders in your organization.
• You won't succeed without their buy-in.

•

 Create a centre of competence around chosen open-source
technologies
• We'll discuss this in more detail later on.

•

 Execute the plan.
• “The plan rarely survives contact with the enemy”

• You've opened the door: make sure there's someone to walk
through it.

© 2009 Progress Software Corporation13

Aside: Open Source Maturity Model (TM)

 OSMM from http://www.navicasoft.com provides a
framework to assess 'maturity' of an open source product.
• Maturity: a number based on weighted assessment of different

areas
– Functionality
– Training
– Documentation
– Support
– Integration

• Threshold of acceptance is then based on the your organization
– Innovator, or
– Pragmatist

© 2009 Progress Software Corporation14

Bottom-up adoption

 Driven at a project level by architects and senior engineers
• Drivers: code quality, standards, ease-of-access, cost, ...

•

 Sometimes skunk-works projects bubble up to the service.
• e.g. replacement for JEE stack at a major financial services

company.

• e.g. Integration backbone for another major FS company.
•

 Tends to emerge in organizations who pride themselves in
their engineering expertise.
• “Hang on a minute: we can do this better/cheaper/faster with

open-source”

© 2009 Progress Software Corporation15

Open Stealth

 Avoid big-bang, boil-the-ocean approaches
• Many will resist.

• Particularly, and ironically, your IT department, the bastion of
conservatism.

•

 Select a 'beach-head' project.
• With clear, strategic value and potential for 'poster-child' success

• Make it successful...
– ... and use it as a platform for organizational learning.

• Successful innovation attracts followers (think of Apple!)
– ... build a constituency; gather support.

•

 Plan wider roll-out.

© 2009 Progress Software Corporation16

More Projects

Adoption in the enterprise

CTO / CIO
Office

Architects/
Project

Managers

Beach-head
Project

“Open the door...”
Technology recommendations
Vendor selection
Evangelism
Centre of competence

“...Walk through it”
Business case
Requirements
Compelling event

More ProjectsRoll-out in
other projects

“... Learn what works”
Use your best people
Get outside help if
necessary
Prepare to learn

© 2009 Progress Software Corporation17

Community Involvement

© 2009 Progress Software Corporation18

Download 'n' Go!

 Can you just freeload?
•

 How engaged with the community/source must you be?
• Depends on how mature the source is. Here's one way of looking

at it: projects are either nascent, active or mature.

• Where there is innovation, there will be issues.

Enhancements/
New Features

Time
Nascent Active Mature

© 2009 Progress Software Corporation19

Model 1: No interaction with community

 Treat the project as a product
• No need to download the source, just the binaries please!

• Suited to mature open source projects; e.g. Apache Server,
PostgreSQL, Open Office, ...

• Suited to 'product' rather than 'framework' style projects.
– Product: finished article; does what is says on the tin.
– Framework: tools or building blocks with which to build

solutions.
•

Enterprise
Users

Community

© 2009 Progress Software Corporation20

Model 2: Direct interaction with community

 Hmmm: this project is great, but needs more work... we're
happy to help!
• Ideal for nascent projects, and early adopters

• Engineers can become committers, and drive adoption.

• But does it scale?
– Must all engineers have intimate knowledge of the code?
– What if I use n open source projects?
– ... ?

Enterprise
Users

Community

© 2009 Progress Software Corporation21

The dark side of the source

 Good fences make good neighbors
• Clear boundaries tend to be a good thing!

•

 Opening up the code can “increase the problem space”
• Abstractions make things easier; detail makes things more

complex.

• 7 ± 2 concepts at a time, please.
•

 Cross fertilization of code can be mind boggling.
• “I once found myself debugging jetty continuations...”

•

 Not all developers have time for (or are up to) the challenge.
• This is not a criticism; just a fact of life.

© 2009 Progress Software Corporation22

Enterprise vs. Community: culture clash?

 “I value the finished product.”
• => “I can't stand incomplete product.”

•

 “I'm focussed on my work”
• => “I do not want to help you with yours”

•

 “I want my team to be actively contributing to achieving its
goals”
• => “I do not want them 'distracted' by community work”

•

 “I should be able to use this without knowing the nuts and
bolts”
• => “You can use it best by understanding the nuts and bolts”

© 2009 Progress Software Corporation23

The successful project team

 In any project team, there are:
• Achievers (top 20%): motivated, talented, engaged

• Adequates (top 75%): need direction, effective when given a
cookie cutter.

• Wasters (the rest): Useless. Move them on if you can. Contain
them if you can't.

•

 When it comes to projects adopting open-source, attitude is
the most important thing.
• Open-Source Positive.

– Focus on solutions through the source, not problems due to
the source.

• Hire for attitude and ability, train for skill.
– Consider training as necessary but not sufficient.
– Need training + practice + coaching.

© 2009 Progress Software Corporation24

Scaling open-source knowledge

The problem is not the achievers.
They will always adopt the 'right attitude'.

The problem is the adequates.
Or rather, how to make/keep them effective.

© 2009 Progress Software Corporation25

The Law of Comparative Advantage

 Entities should specialize in
areas where they have
competitive advantage.

•

 E.g.: I am very good at DIY.
On my weekends, should I:
• Put in a patio? or

• Provide $$$ consultancy
services?

•

 I may have absolute
advantage, however, LoCA
says I should specialize.
• I win, as does the

landscaper.
David Riccardo (source Wikipedia)

© 2009 Progress Software Corporation26

Scaling open-source knowledge (cont')

So, how do we apply LoCA to teams where only a few
players have absolute advantage in open source?

© 2009 Progress Software Corporation27

In a team of, say, ten...

 In the 80-20 model, two things can happen.
• 'Hero' model: two guys do all the work, eight guys watch by in

amazement, shock and awe.
– The eight step back and take on peripheral tasks.
– Very like the 'Mythical Man Month' surgical-team model.

 Except in that model, everyone had a assertive, positive role.

– Drawbacks: high-dependency, fatigue, fracture, prima-donnas.
•

• 'Lever' model: two guys work out the architecture, the patterns,
the archetypes.

– Their role is to lead by example.
– Their focus: remove blocks for the eight.
– Drawbacks: need the right kind of hero.

© 2009 Progress Software Corporation28

LoCA in action – lever model

 We know the achievers have absolute advantage.
• But they should focus on architecture, patterns, technology

expertise, mentoring.

• The challenge is to stop them doing everything and get them to
act as enablers rather than doers.

•

 The adequates have comparative advantage on some
aspects.
• Local domain knowledge. Implementation (based on patterns).

Testing. Documentation.

• The challenge is to make sure that blocks are removed.
•

© 2009 Progress Software Corporation29

... Model 3: Centre of competence

 Larger enterprises can use a CoC to leverage specialization.
• Create a dedicated technology/architecture group to own the

relationship with the community.

• Let rest of organization become 'users', focussed on the core
business.

– Projects can pull-in skills and resources from the CoC.

Enterprise
Users

Community

Enterprise Center of
Competence

© 2009 Progress Software Corporation30

Role of an open source centre of competence

 Provide regular stable releases of project(s)
• Potentially with in-house fixes

• Track issues and merge fixes to community
•

 Maintain a 'forge'
• For internal releases and internal projects / plugins

• SCM, Issue-management, Wiki, Forums, IRC, Maven ...
•

 Support developers
• Training, documentation, how-to, use-cases, patterns ...

•

 Enforce licensing compliance
•

 Evangelize open source technology &
philosophy Enterprise

Users Community

Enterprise Center
of Competence

© 2009 Progress Software Corporation31

Enterprises will support themselves unless the cost
associated with that support exceeds the cost of

outsourcing it.

© 2009 Progress Software Corporation32

Out-sourcing the centre of competence

 Vendors can play a part as an out-sourced centre of
competence.
• “We can resolve your issues faster and cheaper than you can”

• Stay agile, reduce cost.
•

 Prefer 'part-sourced' rather than 'out-sourced'
• Stay in control.

Enterprise
Users

Community

Vendor
Centre of

Competence

© 2009 Progress Software Corporation33

Getting it wrong.

 Remember the project phases?
• Nascent, active, mature

•

 The worst mistake is to misjudge an open-source project.
• “Hmmm. I'll use a commodity open source framework...

• ... with adequate developers ...

• ... and I'll save massive amount of money!”
•

 If the project is active, there will be issues
• .. which will require a team of committed, engaged, quality

developers.

• ... and, perhaps, a culture change.
– Pro-active, code-hunting, engaging.

© 2009 Progress Software Corporation34

Aside: Progress OSCoC

 Team of consultants dedicated to Open Source
• Contributors, committers

•

 Goals:
• Make users successful

• Drive adoption (writing, blogging, contributing, forums,
initiatives, ...)

• “Scale out” skills throughout the larger PS organization

© 2009 Progress Software Corporation35

Back to the hills!

Is a trusted guide going to get you there quicker, safer and easier?

© 2009 Progress Software Corporation36

Advice: enterprises should simplify rules around
licensing

© 2009 Progress Software Corporation37

Understand Open Source Licensing

 Some licenses such as GPL can be restrictive.
• GPL: if you use this GPL software in your solution, and then

redistribute, then your software must also be GPL.

• Dual-licensers tend to use GPL: any competitor who attempts to
improve on the code must release these improvements to the
community for free!

•

•

 LGPL (Library/Lesser GPL): you can link LGPL software with
your own commercial non-LGPL software, so long as it is not
considered a “derivative work”.
• Definition of “derivative work” is ambiguous and untested.

•

 Apache License: simply provide an acknowledgement,
disclaimer and copyright notice. Very Friendly!

© 2009 Progress Software Corporation38

Keep it simple, keep it safe.

 Example policy for a software vendor using open-source
internally
• Legal department vets all licenses used in products to ensure

compliance with license T&C’s

Apache (v1.1, v2.0), BSD, MIT,
X, OpenSSL, OpenSSLeay

CPL v1.0, EPL, LGPL, MPL

GPL

?
No: unless certain conditions

are met

© 2009 Progress Software Corporation39

What can we do to increase adoption?

© 2009 Progress Software Corporation40

From a community perspective...

 Make heroes out of technical writers.
• Why are they less important than engineering committers?

• Their input can drive adoption.

• They can impact on the perception of risk
– Use cases, patterns, ...

•

 Reduce source-code 'barrier to entry'.
• Surely there must be a way to mark 'trails' in the code?

• Automatically discover well-trod execution / browse paths.
•

 Make it easy for adopters to submit success stories
• Templates? Gentle nudges on the forums?

© 2009 Progress Software Corporation41

From a user's perspective

 Contribute to the source!
• Raise issues, even when you find workarounds.

• “Poor usability is a bug” - raise issues when something annoys
you.

• Submit demonstrations
•

 If your project has been successful, tell the world!
• And if it's not, don't grumble in silence. Tell the world!

© 2009 Progress Software Corporation42

Thing's we're doing beyond the Source

 Progress Knowledge Services
• Major documentation drive, impacting Apache & FUSE materials.

– Reference Material
– User Guides
– Deployment Guides

•

 Progress Professional Services
• Phase 0 initiative: the first two hours after download.

– Getting Started Screen-casts
– Webinars

• Usability on common use-cases.

• Technology white-papers

• Masterclass Webinars

© 2009 Progress Software Corporation43

Summary

 Adoption is driven from many areas: top-down and bottom up
• Nothing builds success like success

• Thing big, start small.
•

 OS project maturity plays a big part in how you adopt
• Design your team to facilitate specialization

•

 Vendors play a part in reducing costs through specialization
• Knowing the territory is key – the “mountain guide”

•

 Vendors play a part in 'rounding out' the project.
• Documentation, ease-of-use, education, etc.

	Introduction to FUSE Open Source SOA
	Slide 2
	Introduction to FUSE
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

