

Embrace Change

Carsten Ziegeler
cziegeler@apache.org

OSGi

A Developer's Quickstart

About
• Member of the ASF

– Sling, Felix, Cocoon, Portals, Sanselan,
Excalibur, Incubator

– PMC: Felix, Portals, Cocoon, Incubator,
Excalibur (Chair)

• RnD Team at Day Software
• Article/Book Author, Technical Reviewer
• JSR 286 Spec Group (Portlet API 2.0)

2

Agenda
1 Motivation
2 And Action...
3 Why OSGi?
4 Apache Felix
5-7 Bundles, Services, Dynamics
8 Famous Final Words

3

Example Application




1 Motivation1 Motivation

4

Motivation
• Modularity is key

– Manage growing complexity
– Support dynamic extensibility

• No solution in standard Java
– OSGi: tried and trusted

• Embrace change – Embrace OSGi
– Only a few concepts – easy to get started

5

Example Application




2 And Action...2 And Action...

6

Paint Program
• Swing-based paint program
• Interface SimpleShape for drawing

– Different implementations
– Each shape has name and icon properties
– Available shapes are displayed in tool bar

• Select shape and then select location
– Shapes can be dragged, but not resized

• Support dynamic deployment of shapes

7

Shape Abstraction
• Conceptual SimpleShape interface

public interface SimpleShape
{
 /**
 * Method to draw the shape of the service.
 * @param g2 The graphics object used for
 * painting.
 * @param p The position to paint the shape.
 **/
 public void draw(Graphics2D g2, Point p);
}

8

Paint Program Mock Up

9

High-Level Architecture

Drawing
Frame

Shape
Component

Default
Shape

Simple
Shape

1 1Shape
Tracker

1 *

1

1 1

* 1

1

10

High-Level Architecture

Drawing
Frame

Shape
Component

Default
Shape

Simple
Shape

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Best practice – Try to
centralize interaction
with OSGi API so that

other components
remain POJOs...only
Shape Tracker will

interact with OSGi API.

11

High-Level Architecture

Shape
Component

Default
Shape

Simple
Shape

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Drawing
Frame

Main application
window – gets

dynamically injected
with available shapes

from the Shape
Tracker.

12

Drawing
Frame

High-Level Architecture

Shape
Component

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Default
Shape

Simple
ShapeActual shape

implementation.

13

Drawing
Frame

High-Level Architecture

Shape
Component

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Default
Shape

Simple
Shape

Injected “proxied” shape
implementation to hide
aspects of dynamism
and provide a default

implementation.

Actual shape
implementation.

14

Simple
Shape

Default
Shape

Drawing
Frame

High-Level Architecture

1 1 1 *

1

1 1

* 1

1

Shape
Tracker

Shape
Component

Component that draws the
shape in parent frame; looks
up shape via Drawing Frame

rather than having a direct
reference.

15

Example Application




 LIVE DEMO

16

Example Application




3 Why OSGi?3 Why OSGi?

17

Class Path Hell

• Can you spot some potential problems?

18

Class Path Hell

• What libs are used? Versions?
• Which jar is used? Version?
• No difference between private and public

classes

19

Java's Shortcomings
• Simplistic version handling

– “First” class from class path
– JAR files assume backwards compatibility at

best
• Implicit dependencies

– Dependencies are implicit in class path
ordering

– JAR files add improvements for extensions,
but cannot control visibility

20

Java's Shortcomings
• Split packages by default

– Class path approach searches until it finds,
which leads to shadowing or version mixing

• Limited scoping mechanisms
– No module access modifier
– Impossible to declare all private stuff as

private
• Missing module concept

– Classes are too fine grained, packages are
too simplistic, class loaders are too low level

• No deployment/lifecycle support
21

Java Dynamism Limitations
• Low-level support for dynamics

– Class loaders are complicated to use and
error prone

• Support for dynamics is still purely
manual
– Must be completely managed by the

programmer
– Leads to many ad hoc, incompatible

solutions
• Limited deployment support

22

OSGi Technology
• Adds modularity and dynamics

– Module concept
• Explicit sharing (importing and exporting)

– Automatic management of code
dependencies

• Enforces sophisticated consistency rules for class
loading

– Life-cycle management
• Manages dynamic deployment and configuration

• Service Registry
– Publish/find/bind

23

Example Application




4 Apache Felix4 Apache Felix

24

OSGi Alliance
• Industry consortium
• OSGi Service Platform specification

– Framework specification for hosting
dynamically downloadable services

– Standard service specifications
• Several expert groups define the

specifications
– Core Platform Expert Group (CPEG)
– Mobile Expert Group (MEG)
– Vehicle Expert Group (VEG)
– Enterprise Expert Group (EEG)

25

Apache Felix
• Top-level project (March 2007)
• Healthy and diverse community
• OSGi R4 (R4.1) implementation

– Framework (frequent releases)
– Services (continued development)

• Log, Package Admin, Event Admin,
Configuration Admin, Declarative Services,
Meta Type, Deployment Admin (and more)

– Moving towards upcoming R4.2
• Tools

– Maven Plugins, Web Console, iPojo
26

Apache Felix
• Growing community

– Several code grants and contributions
– Various (Apache) projects use Felix / have

expressed interest in Felix and/or OSGi
• e.g., ServiceMix, Directory, Sling, Tuscany

• Roadmap
– Continue toward R4 and R4.1 compliance

• some parts consider pre R4.2 already

27

Example Application




5 OSGi – Part 15 OSGi – Part 1
 BundlesBundles

28

OSGi Architectural Overview

Hardware
Driver Driver Driver

Operating System
Java

OSGi

Fra
mew

or
k

Bundle

29

OSGi Framework Layering

CDC
CDC

Execution
Environment

L0 -
•OSGi Minimum Execution Environment
•CDC/Foundation
•JavaSE

MODULE
L1 - Creates the concept of modules (aka. bundles)
that use classes from each other in a controlled way
according to system and bundle constraints

LIFECYCLE
L2 - Manages the life cycle of bundle in a bundle
repository without requiring the VM be restarted

SERVICE MODEL L3 – Provides a publish/find/bind service model to
decouple bundles

30

OSGi Framework
• Component-oriented framework
• Module concept: Bundles

– Separate class loader -> graph
– Package sharing and version management
– Life-cycle management and notification

• Dynamic!
– Install, update, and uninstall at runtime

• Runs multiple applications and services in
a single VM

31

OSGi Modularity
• Explicit code boundaries and

dependencies
– Package imports and exports

• Multi-version support
– Version ranges for dependencies

• Class space is managed by OSGi
• Managed life cycle

– Dynamic install, update, uninstall

32

OSGi Modularity - Example
• Dynamic module deployment and

dependency resolution

OSGi framework

Provided package

existing
bundle

33

OSGi Modularity - Example
• Dynamic module deployment and

dependency resolution

OSGi framework

existing
bundle

install
bundle.jar

34

OSGi Modularity - Example
• Dynamic module deployment and

dependency resolution

OSGi framework

existing
bundleresolve

bundle

35

OSGi Modularity - Example
• Dynamic module deployment and

dependency resolution

OSGi framework

existing
bundle

automatic package
dependency resolution

36

Creating a Bundle
• Plain old JAR with additional metadata in

the manifest
– Bundle identifier, version, exports, imports

• Tools
– Text editor (Manifest)
– Eclipse (PDE)
– Bundle packaging tools

• BND from Peter Kriens
• Apache Felix maven-bundle-plugin based on

BND

37

Maven is Your Friend
• Apache Felix Maven Bundle Plugin
• Creates metadata based on POM

– Automatically: import packages
– Manually: export and private packages

• Analyses classes for consistency
• Allows to include dependencies
• Creates final bundle JAR file

38

Maven Bundle Plugin Sample
 <artifactId>org.apache.sling.engine</artifactId>
 <packaging>bundle</packaging>
 <version>2.0.3-incubator-SNAPSHOT</version>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Export-Package>
 org.apache.sling.engine;version=${pom.version}
 </Export-Package>
 <Private-Package>
 org.apache.sling.engine.impl
 </Private-Package>
 <Embed-Dependency>
 commons-fileupload
 </Embed-Dependency>
 </instructions>

39

Maven Bundle Plugin Sample
 <artifactId>org.apache.sling.engine</artifactId>
 <packaging>bundle</packaging>
 <version>2.0.3-incubator-SNAPSHOT</version>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Export-Package>
 org.apache.sling.engine;version=${pom.version}
 </Export-Package>
 <Private-Package>
 org.apache.sling.engine.impl
 </Private-Package>
 <Embed-Dependency>
 commons-fileupload
 </Embed-Dependency>
 </instructions>

40

Maven Bundle Plugin Sample
 <artifactId>org.apache.sling.engine</artifactId>
 <packaging>bundle</packaging>
 <version>2.0.3-incubator-SNAPSHOT</version>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Export-Package>
 org.apache.sling.engine;version=${pom.version}
 </Export-Package>
 <Private-Package>
 org.apache.sling.engine.impl
 </Private-Package>
 <Embed-Dependency>
 commons-fileupload
 </Embed-Dependency>
 </instructions>

41

Maven Bundle Plugin Sample
 <artifactId>org.apache.sling.engine</artifactId>
 <packaging>bundle</packaging>
 <version>2.0.3-incubator-SNAPSHOT</version>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Export-Package>
 org.apache.sling.engine;version=${pom.version}
 </Export-Package>
 <Private-Package>
 org.apache.sling.engine.impl
 </Private-Package>
 <Embed-Dependency>
 commons-fileupload
 </Embed-Dependency>
 </instructions>

42

Be Modular!
• Create clean package spaces

– public vs private
• Provide Bundles

– Add manifest information
• Think about dependencies

– Additional bundle vs include
– Optional
– Version ranges

• Benefits even without OSGi

43

Example Application




6 OSGi – Part 26 OSGi – Part 2
 ServicesServices

44

OSGi Services (1/3)
• Service-oriented architecture

– Publish/find/bind
– Possible to use modules without services

Publish Find

Interact

Service
Registry

Service
Provider

Service
Requester

Service
Description

45

OSGi Services (2/3)
• An OSGi application is...

– A collection of bundles that interact via
service interfaces

– Bundles may be independently developed
and deployed

– Bundles and their associated services may
appear or disappear at any time

• Resulting application follows a Service-
Oriented Component Model approach

46

OSGi Services (3/3)
• Dynamic service lookup

OSGi framework

Provided service

Provided package

existing
bundle

component

47

OSGi Services (3/3)
• Dynamic service lookup

OSGi framework

existing
bundle

componentinstall
bundle.jar

48

OSGi Services (3/3)
• Dynamic service lookup

OSGi framework

existing
bundle

component
activate
bundle

49

OSGi Services (3/3)
• Dynamic service lookup

OSGi framework

existing
bundle

component

automatic package
dependency resolution

50

OSGi Services (3/3)
• Dynamic service lookup

OSGi framework

existing
bundle

component

manual service
dependency resolution

51

OSGi Services Advantages
• Lightweight services

– Lookup is based on interface name
– Direct method invocation

• Good design practice
– Separates interface from implementation
– Enables reuse, substitutability, loose coupling,

and late binding

52

OSGi Services Advantages
• Dynamic

– Loose coupling and late binding
• Application's configuration is simply the set of

deployed bundles
– Deploy only the bundles that you need

53

OSGi Services Issues
• More sophisticated, but more complicated

– Requires a different way of thinking
• Things might appear/disappear at any moment

– Must manually resolve and track services
• There is help

– Service Tracker
• Still somewhat of a manual approach

– Declarative Services, Spring DM, iPOJO
• Sophisticated service-oriented component

frameworks
• Automated dependency injection and more
• More modern, POJO-oriented approaches

54

Example Application




7 OSGi – Part 37 OSGi – Part 3
 DynamicsDynamics

55

Everything is a Bundle
• How to structure bundles?

– API vs implementation bundle
– Fine-grained vs coarse-grained
– No “One Size Fits All”

• Simple Rules
– Stable code vs changing code
– Optional parts

56

Third Party Libraries
• Use as bundles

– Project delivers already a bundle
• Apache Commons, Apache Sling etc.

– Use special bundle repositories
• Felix Commons, Spring etc.
• But check included metadata!

– Create your own wrapper
• Easy with the Felix maven bundle plugin

• Include in your bundle
– Again: easy with the Felix maven bundle

plugin

57

Everything is Dynamic
• Bundles can come and go!

– Packages
– Services

• Services can come and go!
• Be prepaired!

– Application code must handle dynamics!

58

Dynamic Services
• OSGi Declarative Services Specification

– XML Configuration
• Contained in bundle
• Manifest entry pointing to config(s)

– Publishing services
– Consuming services

• Policy (static,dynamic), cardinality (0..1, 1..1, 0..n)
– Default configuration
– Service Lifecycle management

• Various Implementations
– Apache Felix SCR

59

Dynamic Services Configuration
<scr:component enabled="true"
 name="org.apache.sling.event.impl.DistributingEventHandler">

 <implementation
 class="org.apache.sling.event.impl.DistributingEventHandler"/>

 <service servicefactory="false">
 <provide interface="org.osgi.service.event.EventHandler"/>
 </service>

 <property name="repository.path" value="/var/eventing/distribution"/>
 <property name="cleanup.period" type="Integer" value="15"/>

 <reference name="threadPool"
 interface="org.apache.sling.event.ThreadPool"
 cardinality="1..1" policy="static"
 bind="bindThreadPool" unbind="unbindThreadPool"/>

60

Dynamic Services Configuration
<scr:component enabled="true"
 name="org.apache.sling.event.impl.DistributingEventHandler">

 <implementation
 class="org.apache.sling.event.impl.DistributingEventHandler"/>

 <service servicefactory="false">
 <provide interface="org.osgi.service.event.EventHandler"/>
 </service>

 <property name="repository.path" value="/var/eventing/distribution"/>
 <property name="cleanup.period" type="Integer" value="15"/>

 <reference name="threadPool"
 interface="org.apache.sling.event.ThreadPool"
 cardinality="1..1" policy="static"
 bind="bindThreadPool" unbind="unbindThreadPool"/>

61

Dynamic Services Configuration
<scr:component enabled="true"
 name="org.apache.sling.event.impl.DistributingEventHandler">

 <implementation
 class="org.apache.sling.event.impl.DistributingEventHandler"/>

 <service servicefactory="false">
 <provide interface="org.osgi.service.event.EventHandler"/>
 </service>

 <property name="repository.path" value="/var/eventing/distribution"/>
 <property name="cleanup.period" type="Integer" value="15"/>

 <reference name="threadPool"
 interface="org.apache.sling.event.ThreadPool"
 cardinality="1..1" policy="static"
 bind="bindThreadPool" unbind="unbindThreadPool"/>

62

Dynamic Services Configuration
<scr:component enabled="true"
 name="org.apache.sling.event.impl.DistributingEventHandler">

 <implementation
 class="org.apache.sling.event.impl.DistributingEventHandler"/>

 <service servicefactory="false">
 <provide interface="org.osgi.service.event.EventHandler"/>
 </service>

 <property name="repository.path" value="/var/eventing/distribution"/>
 <property name="cleanup.period" type="Integer" value="15"/>

 <reference name="threadPool"
 interface="org.apache.sling.event.ThreadPool"
 cardinality="1..1" policy="static"
 bind="bindThreadPool" unbind="unbindThreadPool"/>

63

Declarative Services
• Reads XML configs on bundle start
• Registers services
• Keeps track of dependencies

– Starts/stops services
• Invokes optional activation and

deactivation method
– Provides access to configuration

• Caution: A service is by default only
started if someone else uses it!
– Immediate flag forces a service start

64

Example Service
 protected ThreadPool threadPool;

 protected void activate(ComponentContext context)
 throws Exception {
 @SuppressWarnings("unchecked")
 final Dictionary<String, Object> props = context.getProperties();
 this.cleanupPeriod = (Integer)props.get("cleanup.period");
 super.activate(context);
 }

 protected void bindThreadPool(ThreadPool p) {
 this.threadPool = p;
 }

 protected void unbindThreadPool(ThreadPool p) {
 if (this.threadPool == p) {
 this.threadPool = null;
 }
 }

65

Config Admin and Metatype
• OSGi Config Admin

– Configuration Manager
– Persistence storage
– API to retrieve/update/remove configs
– Works with Declarative Services

• OSGi Metatype Service
– Description of bundle metadata
– Description of service configurations

• Various Implementations
– Apache Felix

66

Maven SCR Plugin
• Combines everything (DS, ConfigAdmin,

Metatype, Maven)
• Annotation-based (works for 1.4+)
• Annotate components

– Properties with default values
– Service providers
– Services references (policy and cardinality)

• Generates DS XML
• Generates Metatype config
• Generates Java code

67

SCR Plugin Sample
/**
 * @scr.component
 * @scr.property name="repository.path"
 value="/var/eventing/distribution" private="true"
 * @scr.service interface="EventHandler"
 */
public class DistributingEventHandler
 implements EventHandler {

 protected static final int DEFAULT_CLEANUP_PERIOD = 15;

 /** @scr.property valueRef="DEFAULT_CLEANUP_PERIOD" type="Integer" */
 protected static final String PROP_CLEANUP_PERIOD = "cleanup.period";

 /** @scr.reference */
 protected ThreadPool threadPool;

 protected void activate(ComponentContext context)
 throws Exception {
 final Dictionary<String, Object> props = context.getProperties();
 this.cleanupPeriod = (Integer)props.get(PROP_CLEANUP_PERIOD);
 }

68

Alternatives
• Manually through bundle activator
• Apache Felix iPojo
• Spring Dynamic Modules

69

Handling extensibility
• Two basic implementation strategies

– Service-based approach
– Extender model

70

Service Whiteboard Pattern
• Clients register a service interface
• Service tracker for registered services
• Simple, more robust, leverages the OSGi

service model
• Service whiteboard pattern

– It is an Inversion of Control pattern

71

Externder Model
• Bundles contain manifest entries

– Like available service classes
• Custom bundle tracker

– Keeps track of bundles
– Specifically, STARTED and STOPPED events
– Checks bundles manifest data

• Creates/removes services

72

Example Application




8 Famous8 Famous
 Final WordsFinal Words

73

Conclusion
• Modulary and dynamics are required by

todays applications
• OSGi technology addresses Java's

limitations in these areas
– Available today and growing in importance

• Development is straightforward and
provides immediate benefits

• Apache Felix is ready when you are!

74

Suggestions for Development
• Think about modularity!

– Clean package space
• Think about dynamics!
• Consider OSGi
• Check out the spec and other projects
• Minimize dependencies to OSGi

– but only if it makes sense

75

Suggestions for Using OSGi
• Think about dynamics

– Optional bundles
– Optional services
– Handle these cases

• Use your preferred logging library
– LogManager takes care

• Use available tooling
• Be part of the community!

76

Check It Out
• Read the OSGi spec

– Framework
– Config Admin, Metatype, Declarative

Services
– Deployment Admin, OBR

• Download Apache Felix
– Try tutorials and samples

• Download Apache Sling :)
• Explore the web – embrace OSGi

77

Questions?Questions?
Embrace Change

OSGi

