
Deciphering mod_ssl: Using
SSL with the Apache HTTP

Server

Joe Orton, Red Hat
jorton@redhat.com

Contents

• Introduction
• Basic setup
• Advanced configuration
• Future features
• Conclusion
• Q&A

Introduction

(Not a) History lesson

• Pre-history: Apache-SSL etc
• mod_ssl 2.8.x for httpd 1.3

– www.modssl.org, Ralf Engelschall

• mod_ssl in the httpd 2.x tree
– “mod_ssl/2.0.x” > “mod_ssl/2.8.x” !?

http://www.modssl.org/

mod_ssl Complexity

• 42 configuration directives

mod_ssl Complexity

• 42 configuration directives
• 1 expression language

mod_ssl Complexity

• 42 configuration directives
• 1 expression language
• Hooks into/from 5 modules

mod_ssl Complexity

• 42 configuration directives
• 1 expression language
• Hooks into/from 5 modules
• 14K lines of code

mod_ssl Complexity

• 42 configuration directives
• 1 expression language
• Hooks into/from 5 modules
• 14K lines of code
• 30+ exported CGI variables

SSL Server, Step Zero

• You need an SSL certificate!

SSL Server, Step Zero

• You need an SSL certificate!
• You need an SSL certificate signed

by a CA

SSL Server, Step Zero

• You need an SSL certificate!
• You need an SSL certificate signed

by a CA
• You need an SSL certificate signed

by a CA which is trusted by all the
web browsers

SSL Server, Step Zero

• You need an SSL certificate!
• You need an SSL certificate signed

by a CA
• You need an SSL certificate signed

by a CA which is trusted by all the
web browsers

• ... all the web browsers which will
use your SSL site

Basic Configuration

• Minimal configuration:
 Listen 443

 SSLSessionCache shmcb:run/sslcache(512000)

 SSLMutex default

 <VirtualHost *:443>

 SSLEngine on

 SSLCertificateFile /path/to/cert.crt

 </VirtualHost>

Session caching

• Reduces server load
• Reduces per-connection round trips

Tuning the Session Cache

• Enable mod_status

 SSLSessionCache shmcb:run/sslcache(512000)

 SSLSessionCacheTimeout 300

Certificate chains

• Increasing depth of CA certificate
chains

• Intermediate certs not known/trusted
by browsers

• MSIE knows how to fetch them
anyway – Firefox does not!

• Configure the server to send them:
 SSLCertificateChainFile /path/to/ca.crt

Exporting SSL state

• Large set of SSL variables
– Exported to the CGI environment
– Available to other modules

• Enable per-Location or Directory:
 <Directory /all/my/php/code>
 SSLOptions +StdEnvVars
 </Directory>

• Most commonly used:
 $HTTPS = "on” or “off”

Custom SSL logging

• Can use any of the SSL env vars
• Inside the VirtualHost:

CustomLog logs/ssl_request_log \

 “%t %h %{SSL_PROTOCOL}x \”%r\””

 ...

 [11/Mar/2009:09:58:13 +0000] 127.0.0.1
 TLSv1 "GET /info.php HTTP/1.1"

Browsers are broken

• SSL requires exchange of messages
to cleanly close connection

• MSIE has... issues (historically)
• Standard workaround:

BrowserMatch ".*MSIE.*" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0

Advanced configuration

Client Certificates

• Secure user authentication
• Widely disliked, deployment issues
• Hardware tokens easier
• ... but (relatively) expensive
• Government adoption increasing

– National ID schemes
– Internal ID schemes, e.g. US DoD

Basic configuration

• In <VirtualHost>:

 SSLVerifyClient require
 SSLCACertificateFile /path/to/myca.crt

• Or in <Directory> or <Location>
• ... but use with care

Fail

Fail, politely

• Don't fail the SSL handshake
• Use SSLRequire for access control

<Location /secret>
 SSLVerifyClient optional
 SSLRequire “%{SSL_VERIFY_CLIENT}” \
 eq “SUCCESS”
 ErrorDocument 403 /403.html
</Location>

Access control

• Structured “Subject” field in client cert
• Can reflect organizational structure:

 /C=US/O=Red Hat, Inc/OU=Engineering/
 /CN=Joe Orton/

• Fine-grained access control based on
subject fields:

 SSLRequire “%{SSL_CLIENT_S_DN_OU}” \
 in {“Engineering”, “Support”}

•

Per-Directory Renegotiation

• Here be dragons!
 <form action=”/secret/foo.cgi”
 method=”POST”>

 Submit your document:
 <input type=”file” name=”thedoc”>

• If /secret/ requires renegotiation
• ... i.e. SSLVerifyClient in <Directory>
• This is a hard problem

Per-Directory Renegotiation

• Client:
 <SSL handshake>

 <HTTP Request Headers + Body>

• Server:
 <SSL handshake>

 <HTTP Request Headers>

 <SSL handshake>

 <HTTP Request body>

Per-Directory Renegotiation

• mod_ssl will buffer the request body,
then renegotiate – up to 128K of data

• Unlimited buffering == DoS
• New in 2.2.12, SSLRenegBufferSize
• Better solution:

– Per-dir renegotiation is fine for GET
– So design the site to avoid per-dir

renegotiation on POST

Revocation

• Revoke certs for ex-employee,
citizens you don't like, etc

• Current solution: static CRL files

 SSLVerifyClient require

 SSLCACertificateFile /path/to/myca.crt
 SSLCARevocationFile /path/to/myca.crl

• Restart the server to reload CRLs
(graceful or not)

Future features
httpd 2.3 and beyond

SNI

• Name-based virtual hosts don't work
for SSL

• “Server Name Indication” TLS
extension fixes this
– Supported in (relatively) modern

browsers: Firefox 2, MSIE7
– Now supported in httpd trunk

OCSP

• “Online Certificate Status Protocol”
• Because CRLs suck:

– Static files. How/when to reload?
– How to update?

• Check client certificate revocation
status in real time

OCSP protocol

• OCSP server is an HTTP resource
• Send it a POST request

– Request body includes details of (client)
cert to verify

• Response gives revocation status of
given certificate
– In a signed message
– Hence, trusted if you trust the signer

OCSP in mod_ssl

• Zawinski's law, compressed version:
– “Every program attempts to expand until

it can read mail.”

OCSP in mod_ssl

• Zawinski's law, compressed version:
– “Every program attempts to expand until

it can read mail.”

• Applies for HTTP clients too:
– “Every program attempts to expand until

it contains an HTTP client.”

• mod_ssl contains an HTTP client

OCSP in mod_ssl

• Zawinski's law, compressed version:
– “Every program attempts to expand until

it can read mail.”

• Applies for HTTP clients too:
– “Every program attempts to expand until

it contains an HTTP client.”

• mod_ssl contains an HTTP client
– As does OpenSSL.

OCSP in mod_ssl

• Zawinski's law, compressed version:
– “Every program attempts to expand until

it can read mail.”

• Applies for HTTP clients too:
– “Every program attempts to expand until

it contains an HTTP client.”

• mod_ssl contains an HTTP client
– As does OpenSSL. PHP brings four.

OCSP Stapling

• Verifying every SSL server cert
against the issuing CA's OCSP
server(s):
– Good for security
– Bad for performance

• OCSP “stapling” solves this

OCSP Stapling

• SSL server obtains OCSP response
for its own cert

• Response is “stapled” to the SSL
handshake
– Uses a TLS/1.0 extension
– Includes timestamp
– Is signed by CA (or intermediate)
– Cached by server

Conclusion

• Basic configuration:
– Server certs, session cache, logging,

browser hacks, cert chains, and SSL
variables

• Advanced configuration:
– Client certs, fine-grained access control,

per-dir reneg “issues”, failing politely

• Future
– SNI, OCSP, OCSP stapling

Q & A

