AnacheGon

Sinsheir, germam& ESth—8th November 2012

HBASE SCHEMA DESIGN

and Cluster Sizing Notes
ApacheCon Europe, November 2012

Lars George
Director EMEA Services

cloudera

w4

About Me

- Director EMEA Services @ Cloudera
- Consulting on Hadoop projects (everywhere)

- Apache Committer
- HBase and Whirr

- O'Rellly Author
- HBase — The Definitive Guide

- Now in Japanese!

O'REILLY*

¢ COﬂtaCt OReLLY
- lars@cloudera.com HAEREHELT-!
- @larsgeorge

1 i

Cloudera

Agenda

- HBase Architecture
- Schema Design
- Cluster Sizing Notes

Cloudera

cloudera

HBASE ARCHITECTURE

HBase Tables

Row Keys Column Names, aka Column Qualifiers, aka Column Keys

U

col-A col-B col-Foo col-XYZ foobar

row-1

row-10

row-18

row-2

row-5

row-6

row-7

Cloudera

HBase Tables

col-A col-B col-Foo col-XYZ foobar
row-1
row-10
row-18 A18-vl w B18-v3 w Foo18-vl w XYZ18-v2 w foobari8-v1 w
row-2 Peter - v2 Mary - v1

Bob - v1 Cells

row-5 |
row-6
row-7

Coordinates for a Cell: Row Key = Column Name = Version

|

L

Cloudera

HBase Tables

Column Family 1 Column Family 2

cf1:col-A cf1:col-B cf2:col-Foo cf2:col-XYZ cf2:foobar

row-1

Region 1 row-10

row-18 A18-vi w B18-v3 w Foo18 -vl w XYZ18-v2 w foobari8-vl w

row-2

Region 2 row-5

row-6

row-7

Physical Coordinates for a Cell: Region Directory = Column Family Directory
= Row Key = Column Family Name = Column Qualifier = Version

Cloudera

HBase Tables and Regions

- Table is made up of any number if regions

- Region is specified by its startKey and endKey
- Empty table: (Table, NULL, NULL)
- Two-region table: (Table, NULL, “com.cloudera.www”)
and (Table, “com.cloudera.www”, NULL)
- Each region may live on a different node and is
made up of several HDFS files and blocks, each
of which is replicated by Hadoop

Cloudera

Distribution

Region Servers - Physical Layout

N\ e
Rows & Region Server 1 Region Server 2 b Region Server 3
A > Keys:[T-2)
> Keys:[I-M)
=
2 -
>
T | H »| Kevs:
3 eys: [F - 1)
(@]
(@)
9 i
2 > Keys:[A-C)
A g |
Q Keys: [M - T)
Keys: [C - F)
Z

]

Cloudera

HBase Tables

- Tables are sorted by Row in lexicographical order

- Table schema only defines its column families
- Each family consists of any number of columns
- Each column consists of any number of versions
- Columns only exist when inserted, NULLs are free

- Columns within a family are sorted and stored
together

- Everything except table names are byte[]

(Table, Row, Family:Column, Timestamp) -> Value

Cloudera

HBase Architecture

- -
HBase API
N
(N RegionServers \
Master HFile Memstore
Write-Ahead Log
\- 7\ W,

—

l HDFS l l ZooKeeper l

Cloudera

HBase Architecture (cont.)

- HBase uses HDFS (or similar) as its reliable
storage layer
- Handles checksums, replication, failover

- Native Java API, Gateway for REST, Thrift, Avro

- Master manages cluster
- RegionServer manage data

- ZooKeeper is used the “neural network”

- Crucial for HBase
- Bootstraps and coordinates cluster

Cloudera

HBase Architecture (cont.)

- Based on Log-Structured Merge-Trees (LSM-Trees)
- Inserts are done in write-ahead log first

- Data is stored in memory and flushed to disk on
regular intervals or based on size

- Small flushes are merged in the background to keep
number of files small

- Reads read memory stores first and then disk based
files second

- Deletes are handled with “tombstone” markers

- Atomicity on row level no matter how many columns
- keeps locking model easy

Cloudera

MemStores

- After data is written to the WAL the RegionServer
saves KeyValues in memory store

- Flush to disk based on size, see
hbase.hregion.memstore.flush.size

- Default size is 64MB

- Uses snapshot mechanism to write flush to disk
while still serving from it and accepting new data
at the same time

- Snapshots are released when flush has
succeeded

Cloudera

Compactions

- General Concepts
Two types: Minor and Major Compactions
Asynchronous and transparent to client
Manage file bloat from MemStore flushes

- Minor Compactions
Combine last “few” flushes
Triggered by number of storage files

Major Compactions
Rewrite all storage files
Drop deleted data and those values exceeding TTL and/or number of
versions
Triggered by time threshold
Cannot be scheduled automatically starting at a specific time (bummer!)

May (most definitely) tax overall HDFS IO performance

Tip: Disable major compactions and schedule to run manually (e.g.
cron) at off-peak times

Cloudera

Block Cache

- Acts as very large, in-memory distributed cache

- Assigned a large part of the JVM heap in the RegionServer process,
see hfile.block.cache.size

- Optimizes reads on subsequent columns and rows
- Has priority to keep “in-memory” column families in cache

1f (inMemory) {

this.priority = BlockPriority.MEMORY;
} else {

this.priority = BlockPriority.SINGLE;
}

- Cache needs to be used properly to get best read performance
Turn off block cache on operations that cause large churn
Store related data “close” to each other

- Uses LRU cache with threaded (asynchronous) evictions based on
priorities

L

Cloudera

Region Splits

- Triggered by configured maximum file size of any
store file

- This is checked directly after the compaction call to

ensure store files are actually approaching the
threshold

- Runs as asynchronous thread on RegionServer

- Splits are fast and nearly instant

- Reference files point to original region files and
represent each half of the split

- Compactions take care of splitting original files
iInto new region directories

Cloudera

Auto Sharding

Table - Logical View Regions - Physical Layout RegionServer - Serving Layer

RegionServer

R
i

ﬁ

RegionServer

o
o

H

M| m|O|O|W|>

RegionServer

SR it
i Lo

E

r|X|[l«|—|ZT|®

RegionServer

ey

/ﬁ
N

RegionServer

W[D|(O|D|(O |22 |r|XN|[«|—[ZT|@(M(mMm|O|[(O|®|>

nw|lDm(o|v|lo|Zz|=Z

Cloudera

Auto Sharding and Distribution

- Unit of scalability in HBase is the Region

- Sorted, contiguous range of rows

- Spread “randomly” across RegionServer

- Moved around for load balancing and failover

- Split automatically or manually to scale with
growing data

- Capacity is solely a factor of cluster nodes vs.
regions per node

Cloudera

Column Family vs. Column

- Use only a few column families

- Causes many files that need to stay open per region
plus class overhead per family

- Best used when logical separation between data
and meta columns

- Sorting per family can be used to convey
application logic or access pattern

Cloudera

Storage Separation

- Column Families allow for separation of data

- Used by Columnar Databases for fast analytical
queries, but on column level only

- Allows different or no compression depending on the
content type

- Segregate information based on access pattern

- Data is stored in one or more storage file, called
HFiles

Cloudera

Column Families

Region [1..99)
Column Family 1 Column Family 2
Rows A B c D |E|F|a
1 >
2
. Region [99..199)
p
L J Column Family 1 Column Family 2
98 A B C D E|F|G
99) } >
N
N\ »
a Y \4 Y \
HDFS A colfam1 colfam2 colfam1 colfam2
C
A B A B [C
\
J

T T
/hbase/table/region-1-99/colfamX /hbase/table/region-99-199/colfamX

E Compressed File G Uncompressed File

Cloudera

cloudera

SCHEMA DESIGN

Key Cardinality

Key
I
I I
KeyValue Row Column Family | Column Qualifier Timestamp Value
Skip Rows v X X X X
Skip Store Files v v X v X
Filter Compatible v v v v v

< Performance

Cloudera

Key Cardinality

- The best performance is gained from using row
keys

- Time range bound reads can skip store files
- So can Bloom Filters

- Selecting column families reduces the amount of
data to be scanned

- Pure value based filtering is a full table scan
- Filters often are too, but reduce network traffic

Cloudera

Fold, Store, and Shift

cf1:c1 | cf1:.c2 | cf2:c1 | cf2:c2 cf1:c1 cf1:c2 cfl: cf2:c1 cf2:c2 cf2:
1| O O]]
r2] |:|——‘—>|:| >
= g Fold D\-
r4 O [] D : L]
5 | [] D/ E :- D\S
6 [] ; :
Store
r1:cf1:cl1:t1:<value> \x00 r1:cf1:c1:t1 : <value> r3:cf2 :c1:t3 : <value>
r2 :cfl : c2:t1 : <value> r3:cf2 :cl1:1t2 : <value>
r1:cf1:cl-<value>:t1:\x00 e et =valle= _
Shif
r1-<value>: cf1 :c1:t1:\x00 = r5:cfiicl:tli<value>| |r4:cf2:c2:t:<value>
I ré : cf1 : c2 : t2 : <value> r5:cf2 :c1:t1 : <value>
[_ ré : cf2 : c2 : t1 : <value>
= Same Storage Requirements

StoreFile "cf1/1234" StoreFile "cf2/5678"

Cloudera

Fold, Store, and Shift

- Logical layout does not match physical one

- All values are stored with the full coordinates,
including: Row Key, Column Family, Column
Qualifier, and Timestamp

- Folds columns into “row per column”
- NULLs are cost free as nothing is stored
- Versions are multiple “rows” in folded table

Cloudera

Key/Table Design

- Crucial to gain best performance

- Why do | need to know? Well, you also need to know
that RDBMS is only working well when columns are
indexed and query plan is OK

- Absence of secondary indexes forces use of row
key or column name sorting
- Transfer multiple indexes into one

- Generate large table -> Good since fits architecture
and spreads across cluster

Cloudera

DDI

- Stands for Denormalization, Duplication and
Intelligent Keys

- Needed to overcome shortcomings of
architecture

- Denormalization -> Replacement for JOINs
- Duplication -> Design for reads

- Intelligent Keys -> Implement indexing and
sorting, optimize reads

Cloudera

Pre-materialize Everything

- Achieve one read per customer request if
possible

- Otherwise keep at lowest number

- Reads between 10ms (cache miss) and 1ms
(cache hit)

- Use MapReduce to compute exacts in batch
- Store and merge updates live
- Use incrementColumnValue

Motto: “Design for Reads”

Cloudera

Tall-Narrow vs. Flat-Wide Tables

- Rows do not split
- Might end up with one row per region

- Same storage footprint

- Put more details into the row key
- Sometimes dummy column only
- Make use of partial key scans

- Tall with Scans, Wide with Gets
- Atomicity only on row level

- Example: Large graphs, stored as adjacency
matrix

Cloudera

Example: Mail Inbox

<userId> : <colfam> : <messageId> : <timestamp> : <email-message>

12345 : data : 5fc38314-e290-ae5da5£fc375d : 1307097848 : "Hi Lars, ..."
12345 : data : 725aae5f-d72e-£f90£3£070419 : 1307099848 : "Welcome, and ..."
12345 : data : cc6775b3-£f249-c6dd2bla7467 : 1307101848 : "To Whom It ..."
12345 : data : dcbee495-6d5e-6ed48124632c : 1307103848 : "Hi, how are ..."

or
12345-5£fc38314-e290-ae5da5£fc375d : data : : 1307097848 : "Hi Lars, ..."
12345-725aae5f-d72e-£90£3£070419 : data : : 1307099848 : "Welcome, and ..."
12345-cc6775b3-£249-c6dd2bla7467 : data : : 1307101848 : "To Whom It ..."
12345-dcbeed95-6d5e-6ed48124632c : data : : 1307103848 : "Hi, how are ..."

2 Same Storage Requirements

L _

Cloudera

Partial Key Scans

Key

<userId> Scan over all messages
for a given user ID

<userId>-<date> Scan over all messages
on a given date for the
given user ID

<userId>-<date>-<messageId> Scan over all parts of a
message for a given user
ID and date

<userId>-<date>-<messageId>-<attachmentId> Scan over all

attachments of a

message for a given user
ID and date

|

Cloudera

Sequential Keys

<timestamp><more key>: {CF: {CQ: {TS : Val}}}

- Hotspotting on Regions: bad!

- Instead do one of the following:
- Salting
- Prefix <timestamp> with distributed value
- Binning or bucketing rows across regions

- Key field swap/promotion

- Move <more key> before the timestamp (see OpenTSDB
later)

- Randomization
- Move <timestamp> out of key

L

Cloudera

Salting

Prefix row keys to gain spread
Use well known or numbered prefixes
Use modulo to spread across servers

Enforce common data stay close to each other for
subsequent scanning or MapReduce processing

0 rowkeyl, 1 rowkeyZ2, 2 rowkey3
0 rowkey4, 1 rowkeyb5, 2 rowkeyb6

Sorted by prefix first

0 rowkeyl
0 rowkey4
1 rowkey?2
1 rowkeybS

L

Cloudera

Hashing vs. Sequential Keys

- Uses hashes for best spread

- Use for example MD5 to be able to recreate key
- Key = MD5(customeriD)

- Counter productive for range scans

- Use sequential keys for locality

- Makes use of block caches

- May tax one server overly, may be avoided by salting
or splitting regions while keeping them small

Cloudera

Key Design

Performance

Sequential Salted Promoted Random
Keys Keys Field Keys Keys

Cloudera

Key Design Summary

- Based on access pattern, either use sequential or
random keys

- Often a combination of both is needed
- Overcome architectural limitations

- Neither is necessarily bad
- Use bulk import for sequential keys and reads
- Random keys are good for random access patterns

Cloudera

Example: Facebook Insights

- > 20B Events per Day

- 1M Counter Updates per Second
- 100 Nodes Cluster
- 10K OPS per Node

- "Like” button triggers AJAX request
- Event written to log file
- 30mins current for website owner

Web =® Scribe = Ptail =» Puma =» HBase

Cloudera

HBase Counters

- Store counters per Domain and per URL

- Leverage HBase increment (atomic read-modify-
write) feature

- Each row is one specific Domain or URL
- The columns are the counters for specific metrics

- Column families are used to group counters by

time range

- Set time-to-live on CF level to auto-expire counters by
age to save space, e.g., 2 weeks on “Daily Counters”

family

Cloudera

Key Design

- Reversed Domains
- Examples: “com.cloudera.www”, “com.cloudera.blog”

- Helps keeping pages per site close, as HBase efficiently
scans blocks of sorted keys

- Domain Row Key =
MD5(Reversed Domain) + Reversed Domain

- Leading MD5 hash spreads keys randomly across all regions
for load balancing reasons

- Only hashing the domain groups per site (and per subdomain
if needed)

- URL Row Key =
MD5(Reversed Domain) + Reversed Domain + URL ID

- Unique ID per URL already available, make use of it

L

Cloudera

Insights Schema

Row Key: Domain Row Key

Columns:

Hourly Counters CF

Daily Counters CF

Lifetime Counters CF

épm | 6pm | 6pm | 7pm 1/1 /1 | 2/1
Total | Male | US 1/1 Total Male | US Total | Male |Female | US
100 | 50 | 92 | 45 1000 320 | 670 | 990 10000 | 6780 | 3220 | 9900
Row Key: URL Row Key
Columns:
Hourly Counters CF Daily Counters CF Lifetime Counters CF
é6pm | 6pm | 6pm | 7pm 1/1 /1 | 2/1
Total | Male | US 1/1 Total Male | US Total | Male |Female | US
10 5 9 4 100 20 | 70 | 99 100 8 92 100

Cloudera

Summary

- Design for Use-Case
- Read, Write, or Both?

- Avoid Hotspotting
- Consider using IDs instead of full text
- Leverage Column Family to HFile relation

- Shift details to appropriate position
- Composite Keys
- Column Qualifiers

Cloudera

Summary (cont.)

- Schema design is a combination of
- Designing the keys (row and column)
- Segregate data into column families
- Choose compression and block sizes

- Similar techniques are needed to scale most
systems

- Add indexes, partition data, consistent hashing

- Denormalization, Duplication, and Intelligent
Keys (DDI)

Cloudera

cloudera

CLUSTER SIZING

Competing Resources

- Reads and Writes compete for the same low-
level resources
- Disk (HDFS) and Network I/O
- RPC Handlers and Threads

- Otherwise the do exercise completely separate
code paths

Cloudera

Memory Sharing

- By default every region server is dividing its
memory (i.e. given maximum heap) into
- 40% for in-memory stores (write ops)
- 20% for block caching (reads ops)

- remaining space (here 40%) go towards usual Java
heap usage (objects etc.)

- Share of memory needs to be tweaked

Cloudera

Reads

- Locate and route request to appropriate region

server

- Client caches information for faster lookups =»
consider prefetching option for fast warmups

- Eliminate store files if possible using time
ranges or Bloom filter

- Try block cache, if block is missing then load
from disk

Cloudera

Block Cache

- Use exported metrics to see effectiveness of
block cache

- Check fill and eviction rate, as well as hit
ratios =» random reads are not ideal

- Tweak up or down as needed, but watch

overa

- YOU a

| heap usage

nsolutely need the block cache

- Set to 10% at least for short term benefits

Cloudera

Writes

- The cluster size is often determined by the write
performance

- Log structured merge trees like

- Store mutation in in-memory store and write-
ahead log

- Flush out aggregated, sorted maps at specified
threshold - or - when under pressure

- Discard logs with no pending edits

- Perform regular compactions of store files

Cloudera

Write Performance

- There are many factors to the overall write
performance of a cluster
- Key Distribution =» Avoid region hotspot
- Handlers =» Do not pile up too early
- Write-ahead log =» Bottleneck #1

- Compactions =» Badly tuned can cause ever
Increasing background noise

Cloudera

Write-Ahead Log

- Currently only one per region server
- Shared across all stores (i.e. column families)
- Synchronized on file append calls

- Work being done on mitigating this

- WAL Compression

- Multiple WAL’ s per region server =» Start more than
one region server per node?

Cloudera

Write-Ahead Log (cont.)

- Size set to 95% of default block size
- 64MB or 128MB, but check config!

- Keep number low to reduce recovery time
- Limit set to 32, but can be increased

- Increase size of logs - and/or - increase the
number of logs before blocking

- Compute number based on fill distribution and
flush frequencies

Cloudera

Write-Ahead Log (cont.)

- Writes are synchronized across all stores

- Alarge cell in one family can stop all writes
of another

- In this case the RPC handlers go binary, i.e.
either work or all block

- Can be bypassed on writes, but means no
real durability and no replication

- Maybe use coprocessor to restore
dependent data sets (preVWWALRestore)

Cloudera

Flushes

- Every mutation call (put, delete etc.) causes a
check for a flush

- |f threshold is met, flush file to disk and
schedule a compaction
- Try to compact newly flushed files quickly

- The compaction returns - if necessary - where
a region should be split

Cloudera

Compaction Storms

- Premature flushing because of # of logs or
memory pressure

- Files will be smaller than the configured flush size
- The background compactions are hard at work

merging small flush files into the existing,
larger store files

- Rewrite hundreds of MB over and over

Cloudera

Dependencies

- Flushes happen across all stores/column
families, even if just one triggers it

- The flush size is compared to the size of
all stores combined

- Many column families dilute the size
- Example: 55MB + 5MB + 4MB

Cloudera

Some Numbers

- Typical write performance of HDFS is

35-50MB/s
Cell Size OPS
0.5MB 70-100
|00KB 350-500
|OKB 3500-5000 ??
| KB 35000-50000 ??2?

This is way to high in practice - Contention!

Cloudera

Some More Numbers

- Under real world conditions the rate is
less, more like 15MB/s or less

- Thread contention is cause for massive slow

down
Cell Size OPS
0.5MB |0
|00KB 100
|OKB 800
| KB 6000

Cloudera

Notes

- Compute memstore sizes based on number of
regions x flush size

- Compute number of logs to keep based on fill
and flush rate

- Ultimately the capacity is driven by
- Java Heap
- Region Count and Size
- Key Distribution

Cloudera

Cheat Sheet #1

- Ensure you have enough or large enough
write-ahead logs

- Ensure you do not oversubscribe available
memstore space

- Ensure to set flush size large enough but not
too large

- Check write-ahead log usage carefully

Cloudera

Cheat Sheet #2

- Enable compression to store more data per
node

- Tweak compaction algorithm to peg
background I/O at some level

- Consider putting uneven column families in
separate tables

- Check metrics carefully for block cache,
memstore, and all queues

Cloudera

Example

- Java Xmx heap at 10GB
- Memstore share at 40% (default)
- 10GB Heap x 0.4 =4GB
- Desired flush size at 128MB
- 4GB/ 128MB = 32 regions max!
- For WAL size of 128MB x 0.95%

- 4GB/ (128MB x 0.95) = ~33 partially uncommitted logs to
keep around

- Region size at 20GB
- 20GB x 32 regions = 640GB raw storage used

L

Cloudera

