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Recap: Hadoop 1.0 Map-Reduce
JobTracker

Manages cluster resources

and job scheduling
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YARN Architecture
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What the new Architecture gets us?

Scale
Compute Platform



Scale for a compute platform

* Application Size
No of sub-tasks

* Application level state
eg. Counters

 Number of Concurrent Tasks in a single
cluster



Application size scaling in
Hadoop 1.0

JTHeap x TotalTasks, Nodes,JobCounters



Application size scaling in YARN
IS by
Architecture



Why a limitation on cluster size ?
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Cluster Hadoop 1.0
Utilization
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Cluster Size
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Highly Concurrent Systems

scales much better (if done
right)

makes effective use of multi-
core hardware

managing eventual
consistency of states hard

need for a systemic framework
to manage this



A

Mutations only via events
Components only expose Read APls
Use Re-entrant locks

Components follow clear lifecycle

A

Event Model

A

Event
Dispatcher



Heartbeat NodeManager
Listener Meta
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YARN: Better utilization bigger
cluster

A

YARN
Cluster
Utilization Hadoop 1.0
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Cluster Size



State Management
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State management in JT
Very Hard to Maintain

Debugging even harder
voild updateTaskStatus(..) {

// 1If the job 1s complete and a task has just reported 1its
// state as FAILED_UNCLEAN/KILLED_UNCLEAN,

// make the task's state FAILED/KILLED without launching
cleanup attempt.

// Note that if task is already a cleanup attempt,

// we don't change the state to make sure the task gets a
killTaskAction

1f ((this.isComplete() || jobFailed || jobKilled) &
I'tip.1sCleanupAttempt(taskid)) {
1f (status.getRunState() == TaskStatus.State.FAILED_UNCLEAN)
status.setRunState(TaskStatus.State.FAILED);
else 1f (status.getRunState() ==
TaskStatus.State.KILLED_UNCLEAN)

status.setRunState(TaskStatus.State.KILLED);



Complex State Management

Light weight State Machines Library

Declarative way of specifying the state
Transitions

Invalid transitions are handled automatically
Fits nicely with the event model

Debug-abillity is drastically improved.
Lineage of object states can easily be

determined
Handy while recovering the state



Declarative State Machine

stateMachineFactory

= new StateMachineFactory<JobImpl, JobState, JobEventType,
JobEvent> (JobState.NEW)

// Transitions from INITED state
.addTransition(JobState. INITED, JobState.RUNNING,

JobEventType. JOB_START,

new StartTransition())
.addTransition(JobState. INITED, JobState.KILLED,

JobEventType. JOB_KILL,
new KillInitedJobTransition())



High Availability



MR Application Master Recovery
 Hadoop 1.0

* Application need to resubmit Job
* All completed tasks are lost

« YARN

« Application execution state check pointed in
HDFS

* Rebuilds the state by replaying the events



Resource Manager HA

 Based on Zookeeper

« Coming Soon
* YARN-128



YARN: New Possibilities

 Open MPI| - MR-2911
 Master-Worker — MR-3315
 Distributed Shell

* Graph processing — Giraph-13
« BSP - HAMA-431

« CEP
e S4 — S4-25
e Storm -

* lterative processing - Spark



YARN - a solid foundation to take
Hadoop to next level

on

Scale, High Availability, Utilization
And
Alternate Compute Paradigms
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