Hadoop
YARN - Under the Hood

Sharad Agarwal
sharad@apache.org

About me

Gsharad_ag

Hadoop Committer & Head, Platforms @InMobi
Bangalore India - http://in.linkedin.comvin/sharadagarwal

Bangalore Hadoop Meetups
@ F=[a/o [a/o) Organizer:
Change photo] Sharad Agarwal

Bangalore, India
Founded Nov 2, 2011

Recap: Hadoop 1.0 Map-Reduce
JobTracker

Manages cluster resources

and job scheduling
o

TaskTracker — —
Per-node agent - I N {reced
Manage tasks Q\

MapReduce Status ————»

Job Submission ======p
e

YARN Architecture

MapReduce Status
Job Submission

Node Status
Resource Request

Container Container

What the new Architecture gets us?

Scale
Compute Platform

Scale for a compute platform

* Application Size
No of sub-tasks

* Application level state
eg. Counters

 Number of Concurrent Tasks in a single
cluster

Application size scaling in
Hadoop 1.0

JTHeap x TotalTasks, Nodes,JobCounters

Application size scaling in YARN
IS by
Architecture

Why a limitation on cluster size ?

A

Cluster Hadoop 1.0
Utilization

v

Cluster Size

I I I I

Heartbeat I I | |
Request | | | |
>_
| I
= '
L RLLIEELLERIIIII] i . SynchronoIJS Heartbeat
l Processin
€=rmmmmmmmmmm————— :' """""""" . JobTrackeI Global Lock
| |
i i
bl [t [~
Heartbeat I
Response | I
| I
I |

|
JT transaction rate limit:
200 heartbeats/sec

Highly Concurrent Systems

scales much better (if done
right)

makes effective use of multi-
core hardware

managing eventual
consistency of states hard

need for a systemic framework
to manage this

A

Mutations only via events
Components only expose Read APls
Use Re-entrant locks

Components follow clear lifecycle

A

Event Model

A

Event
Dispatcher

Heartbeat NodeManager
Listener Meta

I
Heartbeat I I I
Request | | |
> | I
I
D — |
I Get I
i commands
P— —

D | I
Heartbeat | |
Response I I

I I
I I I
I | I
l l |
Asynchronous

Heartbeat Handling

YARN: Better utilization bigger
cluster

A

YARN
Cluster
Utilization Hadoop 1.0

v

Cluster Size

State Management

v
b

Job

' JOB_COUNTER_UPDATE,
JOB_DIAGNOSTIC_UPDATE

JOB_INIT

JOB_MAP_TASK _RESCHEDULED,
JOB_TASK_ATTEMPT_FETCH_FAILURE,
JOB_COMPLETED,

O TASK _COMPLETED,
JOB _TASK AL
JOB_COUNTER_UPDATE,
JOB_DIAGNOSTIC _UPDATE

JOB_COMPLETED,

TERNAL_ERROR JOB_TASK_COMPLETED

JOB_COMPLETED,
JOOB_TASK _COMMLETED

JOB_KiLL,
OB _TASK_ATTEMPT_FETCH_FAILURE,
FAILED JOB_COUNTER_UPDATE,

JOB_DIAGNOSTIC_UPDATE

JOB_KILL

JOB_MAP_TASK _RESCHEDULED,
JO8_KiLL,

JOO_TASK _ATTEMPT _FETCH_FAILURE,

JOB_TASK_ATTEMPT_COMMLETED,

INTERNAL _ERIROR

JOB_KILL,

OB_TASK_ATTEMPT_FETCH_FAILURE,
JOB_COUNTER_UPDATE,

JOB_DIAGNOSTIC_UPDATE

JOB_TASK_COMPLETED INTERNAL_ERRC

SUCCEEDED

JOB_KILL,
JOB_TASK_ATTEMPT_FETCH_FAILURE,
JOB_COUNTER_UPDATE,
JOB_DIAGNOSTIC_UPDATE

INTERNAL_EFRROR

INTERNAL_ERROR NTERNAL _ERROR

INTERNAL_ERROR

(LEMPT FETCH_FAILURE.

- S <0 NTERNAL _ERROR,
ERROR JOB_TASK_ATTEMPT_COMPLETED,
JOB_TASK_COMPLETED,

JOB_COUNTER_UPDATE,
JOB_INIT,
JOB_DIAGNOSTIC_UPDATE

State management in JT
Very Hard to Maintain

Debugging even harder
voild updateTaskStatus(..) {

// 1If the job 1s complete and a task has just reported 1its
// state as FAILED_UNCLEAN/KILLED_UNCLEAN,

// make the task's state FAILED/KILLED without launching
cleanup attempt.

// Note that if task is already a cleanup attempt,

// we don't change the state to make sure the task gets a
killTaskAction

1f ((this.isComplete() || jobFailed || jobKilled) &
I'tip.1sCleanupAttempt(taskid)) {
1f (status.getRunState() == TaskStatus.State.FAILED_UNCLEAN)
status.setRunState(TaskStatus.State.FAILED);
else 1f (status.getRunState() ==
TaskStatus.State.KILLED_UNCLEAN)

status.setRunState(TaskStatus.State.KILLED);

Complex State Management

Light weight State Machines Library

Declarative way of specifying the state
Transitions

Invalid transitions are handled automatically
Fits nicely with the event model

Debug-abillity is drastically improved.
Lineage of object states can easily be

determined
Handy while recovering the state

Declarative State Machine

stateMachineFactory

= new StateMachineFactory<JobImpl, JobState, JobEventType,
JobEvent> (JobState.NEW)

// Transitions from INITED state
.addTransition(JobState. INITED, JobState.RUNNING,

JobEventType. JOB_START,

new StartTransition())
.addTransition(JobState. INITED, JobState.KILLED,

JobEventType. JOB_KILL,
new KillInitedJobTransition())

High Availability

MR Application Master Recovery
 Hadoop 1.0

* Application need to resubmit Job
* All completed tasks are lost

« YARN

« Application execution state check pointed in
HDFS

* Rebuilds the state by replaying the events

Resource Manager HA

 Based on Zookeeper

« Coming Soon
* YARN-128

YARN: New Possibilities

 Open MPI| - MR-2911
 Master-Worker — MR-3315
 Distributed Shell

* Graph processing — Giraph-13
« BSP - HAMA-431

« CEP
e S4 — S4-25
e Storm -

* lterative processing - Spark

YARN - a solid foundation to take
Hadoop to next level

on

Scale, High Availability, Utilization
And
Alternate Compute Paradigms

Thank You

@twitter: sharad_ag

