

Introduction to Apache Qpid Proton

Rajith Attapatu
Senior Software Engineer @ Red Hat
rajith@apache.org

Rafael Schloming
Principle Software Engineer @ Red Hat
rhs@apache.org

mailto:rajith@apache.org
mailto:rhs@apache.org

Overview
● Introduction
● Background
● Protocol Engine
● Messenger
● Summary

Introduction
● Proton: A toolkit for speaking AMQP

– Includes:
● The AMQP Protocol Engine API
● The AMQP Messenger API

● Part of the Apache Qpid project
– Qpid is the home for AMQP at Apache

Proton is network based and
decentralized

Proton Can Scale Transparently.

Proton is Highly Embeddable

Proton

Andriod

iOS

App Servers

Cloud

windows Linux

Browser

Designed For Maximum Embeddability

● Minimal assumptions about the host environment.

● Minimal assumptions about the application threading model.

● Minimal dependencies.

Proton Design Goals.

● Multi-language support.

● Pure Java and pure C stacks.

● Java Script will be added shortly.

● Common design across the language implementations.

● Common API across the language implementations.

● Designed for easy language bindings. Using swig

– Python

– Ruby

– PHP

Out of the box support for common
data structures

● Strings

● Lists

● Maps

Python App Java App

AMQP

Proton is based on a Standard - AMQP

Proton Provides You With Two Options

● The AMQP Messenger API, a simple but
powerful interface to send and receive message
over AMQP.

● AMQP Protocol Engine, a succinct encapsulation
of the full AMQP protocol machinery.

Protocol Engine

Messenger API

Background
● Proton is a protocol implementation

– Previous attempts to standardize messaging
have been client/server based, i.e. RPC

– AMQP 1.0 is a protocol specification
● Network oriented: Symmetric, Decentralized
● Provides intermediated messaging semantics, but

does not restrict to hub and spoke topology
● Not just a standard way to talk to a traditional

broker

– AMQP 1.0 makes a protocol implementation
possible

Background
● Traditional MOM transformed

– Traditional MOMs conflate both
● store and forward infrastructure
● specialized application behaviors

– special queues: last value, ring queues
– message transformation

– Driven by Scalability and Standardization

● With AMQP 1.0, these features can be
– distributed, scalable, heterogeneous

Background
● Many things benefit from speaking AMQP

– A concise expression of a very general set of
messaging semantics

● Flow control
● Settlement
● Transactions
● Data binding

– Not everyone wants to implement all this down
to the wire

Background
● Proton Goals

– Make it easy to speak AMQP
● minimal dependencies
● minimal threading assumptions
● multilingual

– C, Java, Javascript
– C Bindings in python, ruby, php, perl, ...

● multi-platform
– Linux/unix, windows, android, iOS

Messenger

messenger = Messenger()

messenger.start()

msg = Message()
msg.address = "0.0.0.0"
msg.body = u"Hello World!"

messenger.put(msg)
messenger.send()

messenger.stop()

messenger = Messenger()
messenger.subscribe("~0.0.0.0")
messenger.start()

msg = Message()

while True:
 messenger.recv(10)
 while messenger.incoming:
 messenger.get(msg)
 print msg.body

messenger.stop()

Sending Receiving

Protocol Engine
● NOT a traditional “RPC-like” pattern:

– protocol implementation does I/O
● Coupled to OS interfaces, I/O strategy, threading

model

invoke()

encode()

write()

dispatch()

decode()

read()

App App

Protocol Engine
● Engine pattern:

– application does I/O

– engine encapsulates protocol state
● pure state machine, no dependencies, no callbacks

invoke() output() write() read()

Engine

input() dispatch()

Engine

App App

Protocol Engine
● Engine interface: “top” and “bottom” half

– Top half
● traditional protocol interface in non blocking form

– establish senders and receivers, send/recv message data

– Bottom half
● transport interface, inverted

– normal transport pushes bytes to a socket
– inverted transport pulls bytes from the engine

Engine

Top Half Bottom Half

Protocol Engine
● Benefit: flexibility

– Single protocol implementation can be shared
● Used in a simple client
● Easy to embed into existing servers

– Thread agnostic
● works with single threaded and multithreaded

servers of any architecture

– Easy to swig
● no callbacks
● simple interface

Messenger

messenger = Messenger()

messenger.start()

msg = Message()
msg.address = "0.0.0.0"
msg.body = u"Hello World!"

messenger.put(msg)
messenger.send()

messenger.stop()

messenger = Messenger()
messenger.subscribe("~0.0.0.0")
messenger.start()

msg = Message()

while True:
 messenger.recv(10)
 while messenger.incoming:
 messenger.get(msg)
 print msg.body

messenger.stop()

Sending Receiving

Messenger
● Message oriented, not connection oriented

– (re) creates and pools the minimal number of
connections behind the scenes

● simplifies failover

– topology is invisible to application

● Simple, but not a toy
– batch oriented interface

● high performance

Messenger

messenger = Messenger()

messenger.incoming = 100
messenger.start()

msg = Message()
msg.address = "0.0.0.0"
msg.body = u"Hello World!"

tracker = messenger.put(msg)
messenger.send()
print messenger.status(tracker)

messenger.stop()

messenger = Messenger()
messenger.subscribe("~0.0.0.0")
messenger.start()

msg = Message()

while True:
 messenger.recv(10)
 while messenger.incoming:
 messenger.get(msg)
 print msg.body
 messenger.accept()

messenger.stop()

Sending Reliably Receiving Reliably

Message
● mutable and reusable holder of content

– works with batch send
● more performance

– doesn't conflate delivery with message
● flexible: modify a received message and resend it

● data binding from AMQP to native types
● usable with Messenger or Engine

Summary
● AMQP 1.0 is a new kind of messaging

– brings messaging to the masses

● Proton
– The AMQP Protocol Engine

● advanced architecture
● based on years of enterprise experience

– The AMQP Messenger API
● simple but powerful programming API

● This is the basis of next gen applications

More Information
● http://qpid.apache.org/proton
● proton@qpid.apache.org
● http://www.amqp.org

http://qpid.apache.org/proton
mailto:proton@qpid.apache.org
http://www.amqp.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

