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Introduction
● Proton: A toolkit for speaking AMQP

– Includes:
● The AMQP Protocol Engine API
● The AMQP Messenger API

● Part of the Apache Qpid project
– Qpid is the home for AMQP at Apache



  

Proton is network based and 
decentralized



  

Proton Can Scale Transparently.



  

Proton is Highly Embeddable

Proton
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Designed For Maximum Embeddability 

● Minimal assumptions about the host environment.

● Minimal assumptions about the application threading model.

● Minimal dependencies. 



  

Proton Design Goals.

● Multi-language support.

● Pure Java and pure C stacks.

● Java Script will be added shortly.

● Common design across the language implementations.

● Common API  across the language implementations.

● Designed for easy language bindings. Using swig

– Python

– Ruby

– PHP



  

Out of the box support for common
data structures

● Strings

● Lists

● Maps 

Python App Java App

AMQP



  

Proton is based on a Standard - AMQP



  

Proton Provides You With Two Options

● The AMQP Messenger API, a simple but 
powerful interface to send and receive message 
over AMQP.

● AMQP Protocol Engine, a succinct encapsulation 
of the full  AMQP protocol machinery.



  

Protocol Engine



  

Messenger API



  

Background
● Proton is a protocol implementation

– Previous attempts to standardize messaging 
have been client/server based, i.e. RPC

– AMQP 1.0 is a protocol specification
● Network oriented: Symmetric, Decentralized
● Provides intermediated messaging semantics, but 

does not restrict to hub and spoke topology
● Not just a standard way to talk to a traditional 

broker

– AMQP 1.0 makes a protocol implementation 
possible



  

Background
● Traditional MOM transformed

– Traditional MOMs conflate both
● store and forward infrastructure
● specialized application behaviors

– special queues: last value, ring queues
– message transformation

– Driven by Scalability and Standardization

● With AMQP 1.0, these features can be
– distributed, scalable, heterogeneous



  

Background
● Many things benefit from speaking AMQP

– A concise expression of a very general set of 
messaging semantics

● Flow control
● Settlement
● Transactions
● Data binding

– Not everyone wants to implement all this down 
to the wire



  

Background
● Proton Goals

– Make it easy to speak AMQP
● minimal dependencies
● minimal threading assumptions
● multilingual

– C, Java, Javascript
– C Bindings in python, ruby, php, perl, ...

● multi-platform
– Linux/unix, windows, android, iOS



  

Messenger

messenger = Messenger()

messenger.start()

msg = Message()
msg.address = "0.0.0.0"
msg.body = u"Hello World!"

messenger.put(msg)
messenger.send()

messenger.stop()

messenger = Messenger()
messenger.subscribe("~0.0.0.0")
messenger.start()

msg = Message()

while True:
  messenger.recv(10)
  while messenger.incoming:
    messenger.get(msg)
    print msg.body

messenger.stop()

Sending Receiving



  

Protocol Engine
● NOT a traditional “RPC-like” pattern:

– protocol implementation does I/O
● Coupled to OS interfaces, I/O strategy, threading 

model

invoke()

encode()

write()

dispatch()

decode()

read()

App App



  

Protocol Engine
● Engine pattern:

– application does I/O

– engine encapsulates protocol state
● pure state machine, no dependencies, no callbacks

invoke() output() write() read()

Engine

input() dispatch()

Engine

App App



  

Protocol Engine
● Engine interface: “top” and “bottom” half

– Top half
● traditional protocol interface in non blocking form

– establish senders and receivers, send/recv message data

– Bottom half
● transport interface, inverted

– normal transport pushes bytes to a socket
– inverted transport pulls bytes from the engine

Engine

Top Half Bottom Half



  

Protocol Engine
● Benefit: flexibility

– Single protocol implementation can be shared
● Used in a simple client
● Easy to embed into existing servers

– Thread agnostic
● works with single threaded and multithreaded 

servers of any architecture

– Easy to swig
● no callbacks
● simple interface



  

Messenger

messenger = Messenger()

messenger.start()

msg = Message()
msg.address = "0.0.0.0"
msg.body = u"Hello World!"

messenger.put(msg)
messenger.send()

messenger.stop()

messenger = Messenger()
messenger.subscribe("~0.0.0.0")
messenger.start()

msg = Message()

while True:
  messenger.recv(10)
  while messenger.incoming:
    messenger.get(msg)
    print msg.body

messenger.stop()

Sending Receiving



  

Messenger
● Message oriented, not connection oriented

– (re) creates and pools the minimal number of 
connections behind the scenes

● simplifies failover

– topology is invisible to application

● Simple, but not a toy
– batch oriented interface

● high performance



  

Messenger

messenger = Messenger()

messenger.incoming = 100
messenger.start()

msg = Message()
msg.address = "0.0.0.0"
msg.body = u"Hello World!"

tracker = messenger.put(msg)
messenger.send()
print messenger.status(tracker)

messenger.stop()

messenger = Messenger()
messenger.subscribe("~0.0.0.0")
messenger.start()

msg = Message()

while True:
  messenger.recv(10)
  while messenger.incoming:
    messenger.get(msg)
    print msg.body
    messenger.accept()

messenger.stop()

Sending Reliably Receiving Reliably



  

Message
● mutable and reusable holder of content

– works with batch send
● more performance

– doesn't conflate delivery with message
● flexible: modify a received message and resend it

● data binding from AMQP to native types
● usable with Messenger or Engine



  

Summary
● AMQP 1.0 is a new kind of messaging

– brings messaging to the masses

● Proton
– The AMQP Protocol Engine

● advanced architecture
● based on years of enterprise experience

– The AMQP Messenger API
● simple but powerful programming API

● This is the basis of next gen applications



  

More Information
● http://qpid.apache.org/proton
● proton@qpid.apache.org
● http://www.amqp.org

http://qpid.apache.org/proton
mailto:proton@qpid.apache.org
http://www.amqp.org/
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