
Performance optimization with
Lucene 4

Tuesday, November 6, 2012

Who am I?

• Lucene Core Committer & PMC Member

• Co-Founder ElasticSearch Inc.

• Co-Founder BerlinBuzzwords

• Twitter: @s1m0nw

• simonw@apache.org

• simon.willnauer@elasticsearch.com

Tuesday, November 6, 2012

mailto:simonw@apache.org
mailto:simonw@apache.org

Why are you here?

• You are Lucene Expert and curious what you can do
timorrow? - Check!

• You are curious how Lucene can even better that
what we already have? - Check!

• You are an IR - Researcher and need more ways to
do crazy shit? - Check!

• Every CPU cycle counts, ah one of those? - Check!

• You are curious how to gain a better user
experience? - Check!

Tuesday, November 6, 2012

What is performance?

• Better search quality? - Precision / Recall etc.?

• Faster query times?

• Less RAM usage?

• Less Disk usage?

• Higher concurrency?

• Less Garbage to collect?

• An excuse to justify to work on cool things? ;)

Tuesday, November 6, 2012

Here is the answer...

• As usual, it depends!

• Figure out what are your bottlenecks!

• Benchmark and make your results repeatable!

• 10x faster than crazy fast is still crazy fast!

• If you are in doubt:

• Reduce the variables in you benchmark!

• You can still tune just for the sake of it!

Tuesday, November 6, 2012

Flexibility, Speed & Efficiency

Lucene 4.0

Tuesday, November 6, 2012

Release Notes snapshot...

• Pluggable Codecs

• Per Document Values (DocValues)

• Concurrent Flushing

• Multiple Scoring Models - flexible ranking

• New Term Dictionary

• From UTF-16 to UTF-8

• no string objects anymore!

Tuesday, November 6, 2012

aka. DocumentsWriterPerThread (DWPT)

Concurrent Flushing

Tuesday, November 6, 2012

Writing Documents in Lucene 3.x

ddddddo ddddddo ddddddo ddddddo ddddddo

Thread
State

DocumentsWriter

IndexWriter

Thread
State

Thread
State

Thread
State

Thread
State

dodododododoc

merge segments in memory

Flush to Disk

Merge on flush

M
ul

ti-
T

hr
ea

de
d

Si
ng

le
-T

hr
ea

de
d

Directory

Tuesday, November 6, 2012

A benchmark (10M English Wikipedia)

Tuesday, November 6, 2012

Concurrent Flushing in 4.0

ddddddo ddddddo ddddddo ddddddo ddddddo

DWPT

DocumentsWriter

IndexWriter

DWPT DWPT DWPT DWPT

Flush to Disk

M
u

lt
i-

T
h

re
ad

e
d

Directory

Tuesday, November 6, 2012

The same Benchmark...

Tuesday, November 6, 2012

The improvement...	

http://people.apache.org/~mikemccand/lucenebench/indexing.html

Committed Concurrent Flushing

Reduced RAM buffer (ramBufferSizeMB) from 512MB to 320MB
Increased the # of threads from 6 to 20

Tuesday, November 6, 2012

http://people.apache.org/~mikemccand/lucenebench/indexing.html
http://people.apache.org/~mikemccand/lucenebench/indexing.html
http://people.apache.org/~mikemccand/lucenebench/indexing.html
http://people.apache.org/~mikemccand/lucenebench/indexing.html
http://people.apache.org/~mikemccand/lucenebench/indexing.html
http://people.apache.org/~mikemccand/lucenebench/indexing.html
http://people.apache.org/~mikemccand/lucenebench/indexing.html
http://people.apache.org/~mikemccand/lucenebench/indexing.html

Concurrent Flushing

• Indexing can gain a lot if hardware is concurrent

• wait free flushing and indexing

• less RAM might increase your throughput

• maximizing the IO utilization

• Concurrent Flushing can “hammer” your machine

• if ssh doesn’t respond - it’s DWPT

• More segments are created ie. more merging

• Tune carefully if you index in to search machines

• you can easily kill you IO cache - 1 indexing thread might be
enough!

• adjust # thread states and the RAM buffer

Tuesday, November 6, 2012

aka. Column Stride Fields

DocValues

Tuesday, November 6, 2012

You Know FieldCache?

Lucene can un-invert a field into FieldCache

weight

5.8

1.0

2.7

2.7

4.3

7.9

1.0

3.2

4.7

7.9

9.0

parse

convert to datatype

un
-in

ve
rt

array per field /
segment

float 32 UTF-8 bytes

term freq Posting list

1.0 1 1 6

2.7 1 2 3

3.2 1 7

4.3 1 4

4.7 1 8

5.8 1 0

7.9 1 5 9

9.0 1 10

Tuesday, November 6, 2012

The problem...

• Uninverting is heavy (CPU & IO)

• Creates potentially lots of garbage

• Required to be in JVM Memory

• NRT suffers on Re-Open

• Warming Queries take forever

• Unnecessary type conversion

• All fields are always sorted!

Tuesday, November 6, 2012

The solution...

field: time field: id
(searchable)

field: page_rank

1288271631431 1 3.2

1288271631531 5 4.5

1288271631631 3 2.3

1288271631732 4 4.44

1288271631832 6 6.7

1288271631932 9 7.8

1288271632032 8 9.9

1288271632132 7 10.1

1288271632233 12 11.0

1288271632333 14 33.1

1288271632433 22 0.2

1288271632533 32 1.4

1288271632637 100 55.6

1288271632737 33 2.2

1288271632838 34 7.5

1288271632938 35 3.2

1288271633038 36 3.4

1288271633138 37 5.6

1288271632333 38 45.0

Once column per field and segment

O
ne

 v
al

ue
 p

er
 d

oc
um

en
t

Tuesday, November 6, 2012

DocValues

• No Uninverting

• Compact In-Memory representation

• Fast Loading (~10x faster than FC for a float field)

• Strong typed (int, long, float, double, bytes)

• Sorted if necessary

• On-Disc access via same interface

• Possible on any field

• One Value per Document & Field

Tuesday, November 6, 2012

Usecases

• Sorting

• Grouping

• Faceting

• Scoring (Norms & Document Boosting)

• Key / Value Lookups

• Persisted Filters

• Geo-Search

Tuesday, November 6, 2012

Similarity & Friends

Flexible Scoring

Tuesday, November 6, 2012

Lucene 3.x

• Vector-Space Model (TF-IDF) and that’s it

• Hard to extend

• Insufficient index statistics (avg. field length)

• Global model and not per-field

Tuesday, November 6, 2012

Lucene 4.0

• Added Per-Field Similarity

• Score-calculation is private to the similarity

• Lots of new index statistics

• total term frequency

• sum document frequency

• sum total term frequency

• doc count per field

• Norms are DocValues ie. not bound to single byte!

Tuesday, November 6, 2012

New Scoring models

• Okapi BM-25 Model

• Language Models

• Information Based Models

• Divergence from Randomness

• Yours goes here....

Tuesday, November 6, 2012

aka. Pluggable Index Formats

Codecs

Tuesday, November 6, 2012

Lucene 3.6

• One index format

• Impossible to extend without forking Lucene

• Improvements hardly possible

• Backwards Compatibility

• Tight coupled Reader and Writer

• Even experiments required massive internal Lucene
knowledge

Tuesday, November 6, 2012

Lucene 4.0

• Introduced a Codec Layer

• a common interface providing access to low-level data-
structures

• all read and write operations & format are private to the
codec

• fully customizable

• Postings, Term-Dictionary, DocValues, Norms are per
field

Tuesday, November 6, 2012

What does this buy us?

• Data-Structures tailored to a specific usecase

• Wanna read you document backwards - do it!

• Wanna keep every term in memory - do it!

• Wanna use a B-Tree instead of a FST - do it!

• Wanna use a Bloom Filter on top - do it!

• Lucene gave up control over all low level data-
structures

• Lots of different implementations shipped with
Lucene 4

Tuesday, November 6, 2012

Available codecs / formats?

• Pulsing Postings Format

• Inlines postings into the term dictionary

• Bloom Postings Format

• Uses a bloom filter to speed up term lookups

• Helps with NRT on ID fields to speed up deleting docs

• Block Postings Format

• uses state of the art block compression

• new default in Lucene 4.1

• speeds up queries if positions are present but not used

Tuesday, November 6, 2012

Available codecs / formats?

• Block Tree Term Index (default Lucene 4.0)

• reduces memory footprint 30x less

• massive lookup speed improvements

• Simple Text Postings Format

• helpful for debugging

• writes everything as plain text

• Memory Postings Format

• holds everything in memory

• 1Million Key-Value lookups / second

Tuesday, November 6, 2012

Not just postings

• Compressed Stored Fields

• Will come with Lucene 4.1

• Uses LZ4 Compression

• Everything we write is exposed via Codec

• DocValues - have your own format

• Norms (Essentially DocValues)

• Delete Documents

• Term Vectors

• Segment Level information

Tuesday, November 6, 2012

Encourage Researchers

• Good idea for postings compression?

• write a postings format!

• Lucene offers a lot now on the lowest level!

• you like bits and bytes - help us to improve!

• Try - Measure - Improve!

Tuesday, November 6, 2012

Wrapping up

Tuesday, November 6, 2012

What is left?

• ...if I had more time...

• Improved Filter execution up to 500% faster

• Automaton Queries

• Fast Regular Expression Query

• FuzzyQuery is 100x to 200x faster than in 3.x

• Term offsets in the index

• New Spellcheckers and Query Suggesters

• Many more... talk to me if you are curious!

Tuesday, November 6, 2012

The end...

Thank You!

Tuesday, November 6, 2012

Backup Slides... Finite State Tranducers

• Check out our FST Package

• Highly memory efficient and Fast Finite State Transducer

• Excellent for fast key / value lookups

• Suggesters / TermDictionaries / Analyzers use it

FST<Pair<Long, BytesRef>> fst

Output of the FST

Input is a Int 32 sequence (UTF-32) and output a
Long / Bytes pair

Tuesday, November 6, 2012

Backup Slides... Automatons

 // a term representative of the query, containing the field.
 // term text is not important and only used for toString() and such
 Term term = new Term("body", "dogs~1");

 // builds a DFA for all strings within an edit distance of 2 from "bla"
 Automaton fuzzy = new LevenshteinAutomata("dogs").toAutomaton(1);

 // concatenate this with another DFA equivalent to the "*" operator
 Automaton fuzzyPrefix = BasicOperations.concatenate(fuzzy, BasicAutomata
 .makeAnyString());

 // build a query, search with it to get results.
 AutomatonQuery query = new AutomatonQuery(term, fuzzyPrefix);

• Check out the Automaton Package

• Flexible query creation

• Combine Levenshtein Automaton other Automatons

Tuesday, November 6, 2012

