
© Copyright 2012

Query Parsing
 Tips & Tricks
Presented by Erik Hatcher of LucidWorks

© Copyright 2012

Description

Interpreting what the user meant and what they ideally
would like to find is tricky business. This talk will cover
useful tips and tricks to better leverage and extend
Solr's analysis and query parsing capabilities to more
richly parse and interpret user queries.

2

© Copyright 2012

Abstract

In this talk, Solr's built-in query parsers will be detailed
included when and how to use them. Solr has nested
query parsing capability, allowing for multiple query
parsers to be used to generate a single query. The
nested query parsing feature will be described and
demonstrated. In many domains, e-commerce in
particular, parsing queries often means interpreting
which entities (e.g. products, categories, vehicles) the
user likely means; this talk will conclude with
techniques to achieve richer query interpretation.

3

© Copyright 2012

Query Parsers in Solr

4

© Copyright 2012

Query Parsers in Solr

5

© Copyright 2012

lucene Query Parser, Solr style

•FieldType awareness
- range queries, numerics
- allows date math
- reverses wildcard terms, if indexing used ReverseWildcardFilter

•Magic fields
- _val_: function query injection
- _query_: nested query, to use a different query parser

•Multi-term analysis (type="multiterm")
- Analyzes prefix, wildcard, regex expressions

»to normalize diacritics, lowercase, etc
- If not explicitly defined, all MultiTermAwareComponent's from query
analyzer are used, or KeywordTokenizer for effectively no analysis

•http://wiki.apache.org/solr/SolrQuerySyntax#lucene

6

© Copyright 2012

dismax

•Simple constrained syntax
- "supports phrases" +requiredTerms -prohibitedTerms loose terms

•Spreads terms across specified query fields (qf) and entire query
string across phrase fields (pf)
- with field-specific boosting
- and explicit and implicit phrase slop
- scores each document with the maximum score for that document as produced

by any subquery; primary score associated with the highest boost, not the sum
of the field scores (as BooleanQuery would give)

•Minimum match (mm) allows query fields gradient between AND
and OR
- some number of terms must match, but not all necessarily, and can vary

depending on number of actual query terms

•Additive boost queries (bq) and boost functions (bf)
•Debug output includes parsed boost and function queries

7

© Copyright 2012

Specifying the Query Parser

•defType=parser_name
- defines main query parser

•{!parser_name local=param...}expression
- Can specify parser per query expression

•These are equivalent:
- q=FC Schalke 04&defType=dismax&mm=2&qf=name
- q={!dismax qf=name mm=2}FC Schalke 04
- q={!dismax qf=name mm=2 v='FC Schalke 04'}

8

© Copyright 2012

Local Parameter Substitution

•/document?id=13

9

© Copyright 2012

Nested Query Parsing

•Leverages the "lucene" query parser's _query_ trick
•Example:

- q=_query_:"{!dismax qf='title^2 body' v=$user_query}" AND
 query:"{!dismax qf='keywords^5 description^2' v=$topic}"

- &user_query=hoffenheim schalke
- &topic=news

•Setting the complex nested q parameter in a request
handler can make the client request lean and clean
- And even qf and other parameters can be substituted:

»{!dismax qf=$title_qf pf=$title_pf v=$title_query}
»&title_qf=title^5 subtitle^2...

•Real world example, Stanford University Libraries:
- http://searchworks.stanford.edu/advanced
- Insanely complex sets of nested dismax's and qf/pf settings

10

© Copyright 2012

edismax: Extended Dismax Query Parser

•"An advanced multi-field query parser based on the dismax
parser"
- Handles "lucene" syntax as well as dismax features

•Fields available to user may be limited (uf)
- including negations and dynamic fields, e.g. uf=* -cost -timestamp

•Shingles query into 2 and 3 term phrases
- Improves quality of results when query contains terms across multiple fields
- pf2/pf3 and ps2/ps3
- removes stop words from shingled phrase queries

•multiplicative "boost" functions
•Additional features

- Query comprised entirely of "stopwords" optionally allowed
»if indexed, but query analyzer is set to remove them

- Allow "lowercaseOperators" by default; or/OR, and/AND

11

© Copyright 2012

term Query Parser

•FieldType aware, no analysis
- converts to internal representation automatically

•"raw" query parser is similar
- though raw parser is not field type aware; no internal representation
conversion

•Best practice for filtering on single facet value
- fq={!term f=facet_field}crazy:value :)

»no query string escaping needed; but of course still need URL encoding
when appropriate

12

© Copyright 2012

prefix Query Parser

•No field type awareness
•{!prefix f=field_name}prefixValue

- Similar to Lucene query parser field_name:prefixValue*
- Solr's "lucene" query parser has multiterm analysis capability, but
the prefix query parser does not analyze

13

© Copyright 2012

boost Query Parser

•Multiplicative to wrapped query score
- Internally used by edismax "boost"

•{!boost b=recip(ms(NOW,mydatefield),3.16e-11,1,1)}foo

14

© Copyright 2012

field Query Parser

•Same as handling of field:"Some Text" clause by Solr's
"lucene" query parser

•FieldType aware
- TermQuery generated, unless field type has special handling

•TextField
- PhraseQuery: if multiple tokens in different positions
- MultiPhraseQuery: if multiple tokens share some positions
- BooleanQuery: if multiple terms all in same position
- TermQuery: if only a single token

•Other types that handle field queries specially:
- currency, spatial types (point, latlon, etc)
- {!field f=location}49.25,8.883333

15

© Copyright 2012

surround Query Parser

•Creates Lucene SpanQuery's for fine-grained proximity
matching, including use of wildcards

•Uses infix and prefix notation
- infix: AND/OR/NOT/nW/nN/()
- prefix: AND/OR/nW/nN
- Supports Lucene query parser basics

»field:value, boost^5, wild?c*rd, prefix*

- Proximity operators:
»N: ordered
»W: unordered

•No analysis of clauses
- requires user or search client to lowercase, normalize, etc

•Example:
- q={!surround}hoffenheim 4w schalke

16

© Copyright 2012

join Query Parser

•Pseudo-join
- Field values from inner result set used to map to another field to select final
result set

- No information from inner result set carries to final result set, such as scores
or field values (it's not SQL!)

•Can join from another local Solr core
- Allows for different types of entities to be indexed in separate indexes
altogether, modeled into clean schemas

- Separate cores can scale independently, especially with commit and
warming issues

•Syntax:
- {!join from=... to=... [fromIndex=core_name]}query

•For more information:
- Yonik's Lucene Revolution 2011 presentation: http://vimeo.com/25015101
- http://wiki.apache.org/solr/Join

17

© Copyright 2012

spatial Query Parsers

•Operates on geohash, latlon, and point types
•geofilt

- Exact distance filtering
- fq={!geofilt sfield=location pt=10.312,-20.556 d=3.5}

•bbox
- Alternatively use a range query:

»fq=location:[45,-94 TO 46,-93]

•Can use in conjunction with geodist() function
- Sorting:

»sort=geodist() asc
- Returning distance:

»fl=_dist_:geodist()

18

http://localhost:8983/solr/select?wt=json&indent=true&fl=name,store&q=*:*&fq=store:%5B45,-94%20TO%2046,-93%5D
http://localhost:8983/solr/select?wt=json&indent=true&fl=name,store&q=*:*&fq=store:%5B45,-94%20TO%2046,-93%5D

© Copyright 2012

frange Query Parser: function range

•Match a field term range, textual or numeric
•Example:

- fq={!frange l=0 u=2.2}sum(user_ranking,editor_ranking)

19

© Copyright 2012

PostFilter

•Query's implementing PostFilter interface consulted after
query and all other filters have narrowed documents for
consideration

•Queries supporting PostFilter
- frange, geofilt, bbox

•Enabled by setting cache=false and cost >= 100
- Example:

»fq={!frange l=5 cache=false cost=200}div(log(popularity),sqrt(geodist()))

•More info:
- Advanced filter caching

»http://searchhub.org/2012/02/10/advanced-filter-caching-in-solr/
- Custom security filtering

»http://searchhub.org/2012/02/22/custom-security-filtering-in-solr/

20

© Copyright 2012

Phonetic, Stem, and Synonym Matching

•Users tend to expect loose matching
- but with "more exact" matches ranked higher

•Various mechanisms for loosening matching:
- Phonetic sounds-like: cat/kat, similar/similer
- Stemming: search/searches/searched/searching
- Synonyms: cat/feline, dog/canine

•Distinguish ranking between exact and looser matching:
- copyField original to a new (unstored, yet indexed) field with desired
looser matching analysis

- query across original field and looser field, with higher boosting for
original field
»/select?q=Monchengladbach&defType=dismax&qf=name^5 name_phonetic

21

© Copyright 2012

Suggesting Things, Not Strings

•Model It As You Need It
- Leverage Lucene's Document/Field/Query/score & sort & highlight

•Example 1: Selling automobile parts
- Exact year/make/model is needed to pick the right parts
- Suggest a vehicle as user types

»from the main parts index: tricky, requires lots of special fields and analysis
tricks and even then you're suggesting fields from "parts"

»Another (better?) approach: model vehicles as a separate core, "search"
when suggesting, return documents, not field terms
▪maybe even separate core for makes and models

•Example 2: Bundesliga Teams
- /select?q=fr*&wt=csv&fl=name

»Eintracht Frankfurt
»Sport-Club Freiburg

22

© Copyright 2012

Development and Troubleshooting Tools

23

•Analysis
- /analysis/field

»?analysis.fieldname=name
»&analysis.fieldvalue=FC ApacheCon 2012
»&q=apachecon
»&analysis.showmatch=true

- Also /analysis/document
- admin UI analysis tool

•Query Parsing
- &debug=query

•Relevancy
- &debug=results

»shows scoring explanations

© Copyright 2012

Future of Solr Query Parsing

•XML Query Parser
- Will allow a rich query "tree"
- Parameters will fill in variables in a server-side query tree definition, or can
provide full query tree

- Useful for "advanced" query, multi-valued, input
- https://issues.apache.org/jira/browse/SOLR-839

•PayloadTermQuery
- Solr supports indexing payload data on terms using
DelimitedPayloadTokenFilter, but currently no support for querying with
payloads

- Requires custom Similarity implementation to provide score factor for
payload data

- https://issues.apache.org/jira/browse/SOLR-1485
•(ToParent|ToChild)BlockJoinQuery

- https://issues.apache.org/jira/browse/SOLR-3076

24

•Mark Miller on Query Parsers
- http://searchhub.org/dev/2009/02/22/exploring-query-parsers/

•LucidWorks
- http://www.lucidworks.com

•SearchHub
- http://searchhub.org
- Search Lucene/Solr (and more) e-mail lists, JIRA issues, wiki
pages, etc

© Copyright 2012

Additional Information

25

© Copyright 2012

Query Parsing
 Tips & Tricks
Presented by Erik Hatcher of LucidWorks

