
Document relations
Martijn van Groningen

@mvgroningen

Tuesday, November 6, 12

• Background

• Document relations with joining.

• Various solutions in Lucene and Elasticsearch

Overview

Tuesday, November 6, 12

• Lucene is document based.

• Lucene doesn’t store information about relations
between documents.

• Data often holds relations.

• Good free text search over relational data.

Background - Lucene model

Tuesday, November 6, 12

• Compound documents.

• May result in documents with many fields.

• Subsequent searches.

• May cause a lot of network overhead.

• Non Lucene based approach:

• Use Lucene in combination with a relational database.

Background - Common solutions

Tuesday, November 6, 12

• Product

• Name

• Description

• Product-item

• Color

• Size

• Price

Background - Example

Tuesday, November 6, 12

• Compound Product & Product-items document.

• Each product-item has its own field prefix.

Background - Example

Tuesday, November 6, 12

• Lucene offers solutions to have a 'relational' like
search.

• Joining

• Result grouping

• Elasticsearch builds on top of the joining
capabilities.

• These solutions aren't naturally supported.

Background - Other solutions

Tuesday, November 6, 12

Joining

Tuesday, November 6, 12

• Join support available since Lucene 3.4

• Not a SQL join!

• Two distinct joining types:

• Index time join

• Query time join

• Joining provides a solution to handle document
relations.

Joining

Tuesday, November 6, 12

Joining - What is out there?

• Index time:

• Lucene’s block join implementation.

• Elasticsearch’s nested filter, query and facets.

• Built on top of the Lucene’s block join support.

• Query time:

• Lucene’s query time join utility.

• Solr’s join query parser.

• Elasticsearch’s various parent-child queries and filters.

Tuesday, November 6, 12

Index time join
And nested documents.

Tuesday, November 6, 12

• Lucene block join queries:

• ToParentBlockJoinQuery

• ToChildBlockJoinQuery

• Lucene collector:

• ToParentBlockJoinCollector

• Index time join requires block indexing.

Joining - Block join query

Tuesday, November 6, 12

• Atomically adding documents.

• A block of documents.

• Each document gets sequentially assigned Lucene
document id.

• IndexWriter#addDocuments(docs);

Joining - Block indexing

Tuesday, November 6, 12

• Index doesn't record blocks.

• App is responsible for identifying block documents.

• Segment merging doesn’t re-order documents in a
segment.

• Adding a document to a block requires you to
reindex the whole block.

Joining - Block indexing

Tuesday, November 6, 12

• Parent is the last document in a block.

Joining - block join query

Tuesday, November 6, 12

Marking parent documents

Block join - ToChildBlockJoinQuery

Tuesday, November 6, 12

Add block

Add block

Block join - ToChildBlockJoinQuery

Tuesday, November 6, 12

• Parent filter marks the parent documents.

• Child query is executed in the parent space.

Block join - ToChildBlockJoinQuery

Tuesday, November 6, 12

Block join & Elasticsearch

• In Elasticsearch exposed as nested objects.

• Documents are constructed as JSON.

• JSON’s nested structure works nicely with block
indexing.

• Elasticsearch takes care of block indexing and also
keeps track of the nested documents.

Tuesday, November 6, 12

Elasticsearch’s nested support

• Support for a nested type in mappings.

• Nested query.

• Nested filter.

• Nested facets.

Tuesday, November 6, 12

Nested type

• The nested types enables Lucene’s block indexing.

curl -XPUT 'localhost:9200/products' -d '{
"mappings" : {

"product" : {
"properties" : {

"offers" : { "type" : "nested" }
}

}
}

}'

index

type

Nested offers

Tuesday, November 6, 12

Indexing nested objects

curl -XPOST 'localhost:9200/products/product' -d '{
"name" : "Polo shirt",
"description" : "Made of 100% cotton",
"offers" : [

{
"color" : "red",
"size" : "s",
"price" : 999

},
{

"color" : "red",
"size" : "m",
"price" : 1099

},
{

"color" : "blue",
"size" : "s",
"price" : 999

}
]

}'

index type

nested objects

Tuesday, November 6, 12

Nested query

curl -XPOST 'localhost:9200/products/product/_search' -d '{
"query" : {

"nested" : {
 "path" : "offers",
 "score_mode" : "total",
 "query" : {
 "bool" : {
 "must" : [
 {
 "term" : {
 "color" : "blue"
 }
 },
 {
 "term" : {
 "size" : "m"
 }
 }
]
 }
 }
}

}
}'

Color red would match
the previous document.

The nested field
path in mapping.

Sum the individual
nested matches.

Tuesday, November 6, 12

Nested facets
curl -XPOST 'localhost:9200/products/product/_search' -d '{

"facets" : {
"color" : {

"terms_stats" : {
"key_field" : "size",
"value_field" : "price"

},
"nested" : "offers"

}
}

}'

Counts 2 nested documents
for term: s

"facets":{
 "color":{
 "_type":"terms_stats",
 "missing":0,
 "terms":[
 {
 "term":"s",
 "count":2,
 "total_count":2,
 "min":999.0,
 "max":999.0,
 "total":1998.0,
 "mean":999.0
 },
 ...
]
 }
}

A facet for nested field
offers.

Tuesday, November 6, 12

Query time join
and parent & child relations.

Tuesday, November 6, 12

Query time joining

• Documents are joined during query time.

• More expensive, but more flexible.

• Two types of query time joins:

• Parent child joining.

• Field based joining.

Tuesday, November 6, 12

• Query time joining is executed in two phases.

• Field based joining:

• ‘from’ field

• ‘to’ field

• Doesn’t require block indexing.

Lucene’s query time join

Tuesday, November 6, 12

• First phase collects all the terms in the fromField
for the documents that match with the original
query.

• The second phase returns the documents that
match with the collected terms from the previous
phase in the toField.

• One public method:

• JoinUtil#createJoinQuery(...)

Query time join - JoinUtil

Tuesday, November 6, 12

Referrer the product id.

Joining - JoinUtil

Tuesday, November 6, 12

Joining - JoinUtil

Tuesday, November 6, 12

• Result will contain one products.

• Possible to do ‘join’ across indices.

Joining - JoinUtil

Join utility

Tuesday, November 6, 12

Elasticsearch’s query time join

• A parent child solution.

• Not related to Lucene’s query time join.

• Support consists out of:

• The _parent field.

• The top_children query.

• The has_parent & has_child filter & query.

• Scoped facets.

Tuesday, November 6, 12

The _parent field

• Points to the parent type.

• Mapping attribute to be define on the child type.

• Elasticsearch uses the _parent field to build an id
cache.

• Makes parent/child queries & filters fast.

curl -XPUT 'localhost:9200/products' -d '{
"mappings" : {

"offer" : {
"_parent" : {

"type" : "product"
}

}
}

}'

Tuesday, November 6, 12

curl -XPOST 'localhost:9200/products/offer?parent=1' -d '{
"color" : "blue",
"size" : "s",
"price" : 999

}'

Indexing parent & child documents

• Parent document:

• Child documents:

curl -XPOST 'localhost:9200/products/product/1' -d '{
"name" : "Polo shirt",
"description" : "Made of 100% cotton"

}'

curl -XPOST 'localhost:9200/products/offer?parent=1' -d '{
"color" : "red",
"size" : "s",
"price" : 999

}'

curl -XPOST 'localhost:9200/products/offer?parent=1' -d '{
"color" : "red",
"size" : "m",
"price" : 1099

}'

The id of the parent
document. Also used for

routing.

Tuesday, November 6, 12

The ‘top_children’ query

• Internally the child query is potentially executed
several times in order to get enough parent hits.

curl -XPOST 'localhost:9200/products/_search' -d '{
"query" : {

"top_children" : {
"type" : "offer",
"query" : {

"term" : {
"size" : "m"

}
},
"score" : "sum"

}
}

}'

Child type

Score mode

Child query

Tuesday, November 6, 12

The ‘has_child’ query

• Doesn’t map the child scores into the matching
parent doc. Works as a filter.

• The has_parent query matches child document
instead.

curl -XPOST 'localhost:9200/products/_search' -d '{
"query" : {

"has_child" : {
"type" : "offer",
"query" : {

"term" : {
"size" : "m"

}
}

}
}

}'

Child type

Child query

Tuesday, November 6, 12

Scoped facets

curl -XPOST 'localhost:9200/products/_search' -d '{
"query" : {

"has_child" : {
"type" : "offer",
"query" : {

"term" : {
"size" : "m"

}
},
"_scope" : "my_scope"

}
},
"facets" : {

"color" : {
"terms_stats" : {

"key_field" : "size",
"value_field" : "price"

},
"scope" : "my_scope"

}
}

}'

Execute facets inside
a specific scope.

Tuesday, November 6, 12

• Block join & nested object are fast and efficient,
but lack flexibility.

• Query time and parent child join are flexible at the
cost of performance and memory.

• Field based query time joining is the most flexible.

• Parent child based joining is the fastest.

• Faceting in combination with document relations
gives a nice analytical view.

Conclusion

Tuesday, November 6, 12

Any questions?

Tuesday, November 6, 12

