

About Me

Committer, PMC Chair of Apache Stratos

Director Cloud Architecture at WSO2 Inc

12+ years industry experience

Working on cloud computing more that 6 years

2005, co-founded the thinkCube, the pioneers in
developing the next generation of Collaborative Cloud
Computing products
lakmal@apache.org
o lakmal@wso2.com
o twitter:lakwarus

© ®© 0 0 0

©

mailto:lakmal@apache.org
mailto:lakmal@apache.org
mailto:lakmal@wso2.com
mailto:lakmal@wso2.com

Agenda

© What is Apache Stratos?
© Mision
© Strategy
© Overview of the Apache Stratos Architecture
© Current features - few highlights

- Multi-factored auto scaling

- Dynamic Load Balancing

- Smart Policies

- Multi-tenancy

- Cloud bursting

- Logging, metering and monitoring
© Apache Stratos Roadmap

- Docker support

- Composite application support

Apache Stratos apache

Stratos”“

® Apache Stratos is a highly-extensible Platform-as-a-
Service (PaaS) framework that helps run Apache
Tomcat, PHP, and MySQL applications and can be
extended to support many more environments on all
major cloud infrastructures

o Stratos initially develop by WS0O2 and 2013 donated to
Apache Software Foundation

© After successfully complete the incubating process
Stratos now graduated as Top Level Project

Mision

Provide most comprehensive Platform
as a Service for Enterprise need!

Strategy

Growing up with the community

® Current Committers/PMCs (39) are from
- WSO02, CISCO, Indiana University, SUSE
- Many individuals from UK, Vietham, Sri Lanka, USA etc
- Meritocracy matter
© Conducting public Google hangouts (weekly or so)
- Educate community
- More interactive
- Code reviews
- Recorded and publish on the website
- Very helpful for newcomers
© Frequent developer previews (by weekly or so)
- Educate developer
- Provide continuous delivery
- Easy to do integration testing with what you are working on
- Getting early feedback without waiting for the release

Growing up with the community...

o Participating/conducting meetups
- Building community
- Conducted Barcamp in San Francisco, Sri Lanka
o Participating/conducting Hackathons
- Adopting best practices
- Building community
- ApacheCon NA 2014
- WSO2 Hackathon 2014
© Speaking at many conferences
- Taking your massage to the wide ordinance, other
communities
- Getting feedback
- Making new contributors
- ApacheCon NA, ApacheCon Europe, CloudOpen NA,
CloudOpen Europe, QConSF, JaxLondon, WSO2Con

Not to reinvent the wheel

© Carefully evaluate existing open source software for suitable
Integration.
© After broad discussion @dev, choose best out of all
® Current third party project integrated
- Apache Jclouds
- Openstacks
- CloudStacks
- Docker
- CoreQOS
- Kubernetes
- WSO2 Carbon/CEP
- ActiveMQ
- etcd

Collaborative development

© 0 0 0 0

Communicate with third party software community
Meetup, hangout with them
Giving feedbacks
Contribute back/ sending upstream fixes/improvements
Current work closely with
Apache Jclouds
Apache CloudStacks
CoreOS
Kubernetes
WSO2 Carbon/CEP projects

Overview of the Apache Stratos
Architecture

Apache Stratos Layered Architecture

Apache Stratos 4.0.0 Layered Architecture

Java Tomcat MySQL PHP Any Pluggable
Cartridge Cartridge Cartridge Cartridge

Cartridges

Stratos Load Other Load |[dentity Logging Metering
Balancer Balancers Service Service Service

Message Broker

Stratos
PaaS Framework

Artifact Complex
Distribution Event
Coordinator Processor

Stratos Cloud Auto CLl/
Manager Controller Scaler Web Ul

Infrastructure as a Service (OpenStack, vCloud, EC2 etc.)

laaS

Apache Stratos L1 Architecture for VM based
Cartridges

Found_ation
Service 1 Service 2 Services

User
Management

. Load Load Load
Balancer 1 Balancer 2 Balancer
Storage

Artifact
Distribution
Coordinator

Auto Scaler
(Rule Based)

Message Bus

Real Time Event Bus

Cloud

Controller jclouds

Message Bus laa$S 4 laaS, e laaS,,

(OpenStack, vCloud, CloudStack, EC2 ...)

Apache Stratos Cartridges

%) B
) o L 0 o
- = - <
@ © © >
(7)) - 0 Q
(@) © ©
8 : ; g
<[- ()] -1
= '
spring Mgs& '
Struts ¢
—>Java
m — PostgreSQL
Microsoft ‘ ‘
Joomlal .n_elt ‘/"’gg‘
Cassandra
| —
Application . mongoDB
\ Y, — _ J \ y, \

Current Features

Multi-factored Auto Scaling

What is it?
© Scaling algorithm can use multiple factors. such as
- Load average of the instance
- Memory consumption of the instance
- In-flight request count in LB

Topology

Summerized
Health Stats

LB Stats
Real Time Event Processing
pub m— Engine
Real Time Event Receiver
laaS Layer 1

‘ Health Status
Health Publisher Health Publisher

Cloud Controller

-ﬁ

create/destroy
new topology instances

Auto scaler

Rules Engine

Multi-factored Auto Scaling...

© Capable of predicting future load

- Real time analysis of current load status using CEP
Integration

- Predict immediate future load based on CEP
resulting streams

- Predicting equation s=ut + % at?

- s=predicted load, u=first derivative of current
average load, t= time interval , a=second derivative
of current load

Why should one care?
© Maximise resource utilization
© Easy to do capacity planning
© Dynamic load based resource provisioning
© Optimizing across multiple clouds

Scalable and Dynamic Load Balancing

How Scalable it is?
© Intheory infinite
- horizontal scaling
- limited by resource (instance capacity) availability

How Dynamic it is?
© Load Balancers are spawned dynamically
- LB too is a cartridge
® In case of multi-cloud, multi-region, LB can scale per
cloud/region
© Per service cluster LB

Scalable and Dynamic Load Balancing..

What is unique about Stratos
© Cartridge based LB model
© Can bring any third-party LB
- HAProxy, nginx, AWS ELB
- As easy as plugging into LB extension API

Any Third Party LB

LB Extension
Load Balancer \
sub

Message Broker LB Stats

Cloud Controller Load Balancer
jclouds M= pub Topology
7 - Real Time Evept Processing
Real Time Event Receiver

Smart Policies

What are the smart policies?
© Auto scaling
© Deployment
Auto scaling policy
o Define thresholds values pertaining scale up/down
decision
© Auto Scaler refer this policy
© Defined by DevOps
Deployment policy
© Defined how and where to spawn cartridge instances
© Defined min and max instances in a selected service
cluster
© Defined by DevOps based on deployment patterns

Smart Policies

Why should one care?
® Can provide cloud SLA

What are the advantages?
© Make DevOps life easy
- help keep to SLA
© Make SaaS app delivery life easy
- do not have to worry about availability in application
layer

Multi-tenancy

What MT model does it support?
© Container MT
- virtual Machine, LXC, Docker
© In-container MT
- within VM/LXC/Docker tenancy
What is unique?
® Can have high tenant density
What are the advantage of this model?
© Optimizing resource utilization
- by sharing resource such as CPU, memory across
tenants
- low footprint, based on utilization/usage of the
tenants app
© No need dedicated resource allocation for tenants

Cloud Bursting

What is it?
© Expanding/provisioning application into another cloud
to handle peak load.
Why Should one care?
© Resource peak time can be off-loaded to third party
clouds/resources
What is unique about it?
® Can off-load to any cloud
- Private, Public and Hybrid
© Easyto managed with the model of LB per busting
cloud

Cloud Bursting...

What are the advantages?
© Make DevOps life easy
© Low TCO, and higher utilization existing dedicated
resources

Cloud Controller

new topology

Autoscaler
_ EC2 OpenStack
Load balancer - PHP - Load balancer - PHP -
EC2 OpenStack
Cartridge Instance 1
: PHP Cartridge Instance n
create/destroy instances PHP

Cartridge Instance 2
PHP

Logging, Metering and Monitoring

What details are?
® Instance up/down time
© Each and every instances health status
- application health, load average, memory
consumption
© Application logs
Why should one care?
© Centralize view for all logging, metering and monitoring
What are the advantages?
© DevOps life easy
- centralize log viewer
- centralize dashboard
© Easy to throttling

Apache Stratos Roadmap

Docker Support

© Why just not with only Docker?
© Apache Stratos next release is mainly into
- Docker based cartridge support
- Integration with CoreQOS
- integration with Kubernetes
- integration with flannel
- integration with discovery service
- build in docker registry

What is Docker?

Reaistey
containevs eqi5tey

nOmespaces

“QroR> E===9)
Chyoots

A
Dockev Client

+

- k. Dockev \
& \lbcontainer €= bl

x¥b BGVAWOLQ

What is Core0OS?

CoreOS Host

What is Kubernetes?

kubecfg (user commands)

Y

authorization

APIs

authentication

v

scheduling
actuator

—>

REST
(pods, services,

kubelet
)

rep. controllers)

7 X

NS

AN

info service

i

Scheduler

replication controller

Schedule

Master components

Colocated, or spread across machines,

as dictated by cluster size.

Distributed
Watchable
Storage

(implemented via etcd)

Firewall

Minion
docker x
/7 kubelet cAdvisor
Pod Pod Pod
container container container
Minion
docker
\) kubelet cAdvisor
‘>
¥
Pod Pod Pod
container container container

Two level of scalability

Apache Stratos
Cartridges

Pod/ Pod/ Pod/ Pod/ Pod/ Pod/
Docker Docker Docker Docker Docker Docker

| Pod/ Pod/ Pod/ Pod/ Pod/ Pod/
Docker Docker Docker Docker Docker Docker

Kubernetes Master/Scheduler

1

[

Pod/ Pod/ Pod/ Pod/ Pod/ Pod/
Docker Docker Docker Docker Docker Docker
Pod/ Pod/ Pod/ Pod/ Pod/ Pod/
Docker Docker Docker Docker Docker Docker

Kubernetes Master/Scheduler

Kubernetes Kubernetes Kubernetes Kubernetes

Kubernetes Kubernetes Kubernetes Kubernetes Master Minion Minion Minion

Master Minion Minion Minion

CoreOS CoreOS CoreOS CoreOS
Host Host Host Host

Apache Stratos CloudController

Bare Metal Machines (Hardware)

Apache Stratos L1 Architecture for Docker based
Cartridges

Foundation
Services

Service 1 Service 2
User
Management
Load Load Load
Balancer 1 Balancer 5 Balancer

Artifact
Distribution
Coordinator

Storage

Auto Scaler
(Rule Based)

Real Time Event Bus

Message Bus

Cloud

Controller kubernetes API

Message Bus Kubernetes Cluster 1 Kubernetes Cluster 2 ------------ Kubernetes Cluster n

Grouping and composite application
support

® Json based complex application definitions
© Cartridge grouping
© Manage dependencies
- startup order
- termination order
- maintaining ratio
© Manage dependency metadata
© Group wise scaling

More Information !

© http://stratos.apache.org
http://lakmalsview.blogspot.com/2013/12/sneak-peek-
into-apache-stratos.html
nttps://cwiki.apache.org/confluence/display/STRATOS
nttps://github.com/coreos/etcd

nttps://coreos.com

nttps://wso2.com

nttps://www.docker.com/
nttps://www.youtube.com/watch?v=tskOpWf4ipw
nttps://sysadmincasts.com/episodes/31-introduction-
to-docker

©

© © 0 0 0 0 ©0

http://stratos.apache.org
http://stratos.apache.org
http://lakmalsview.blogspot.com/2013/12/sneak-peek-into-apache-stratos.html
http://lakmalsview.blogspot.com/2013/12/sneak-peek-into-apache-stratos.html
http://lakmalsview.blogspot.com/2013/12/sneak-peek-into-apache-stratos.html
https://cwiki.apache.org/confluence/display/STRATOS/Home
https://cwiki.apache.org/confluence/display/STRATOS/Home
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://coreos.com
https://coreos.com
https://wso2.com
https://wso2.com
https://www.youtube.com/watch?v=tsk0pWf4ipw
https://www.youtube.com/watch?v=tsk0pWf4ipw
https://sysadmincasts.com/episodes/31-introduction-to-docker
https://sysadmincasts.com/episodes/31-introduction-to-docker
https://sysadmincasts.com/episodes/31-introduction-to-docker

