


About Me

Committer, PMC Chair of Apache Stratos

Director Cloud Architecture at WSO2 Inc

12+ years industry experience

Working on cloud computing more that 6 years

2005, co-founded the thinkCube, the pioneers in
developing the next generation of Collaborative Cloud
Computing products
lakmal@apache.org
o lakmal@wso2.com
o twitter:lakwarus
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Agenda

© What is Apache Stratos?
© Mision
© Strategy
© Overview of the Apache Stratos Architecture
© Current features - few highlights

- Multi-factored auto scaling

- Dynamic Load Balancing

- Smart Policies

- Multi-tenancy

- Cloud bursting

- Logging, metering and monitoring
© Apache Stratos Roadmap

- Docker support

- Composite application support



Apache Stratos apache

Stratos”“

® Apache Stratos is a highly-extensible Platform-as-a-
Service (PaaS) framework that helps run Apache
Tomcat, PHP, and MySQL applications and can be
extended to support many more environments on all
major cloud infrastructures

o Stratos initially develop by WS0O2 and 2013 donated to
Apache Software Foundation

© After successfully complete the incubating process
Stratos now graduated as Top Level Project



Mision



Provide most comprehensive Platform
as a Service for Enterprise need!



Strategy



Growing up with the community

® Current Committers/PMCs (39) are from
- WSO02, CISCO, Indiana University, SUSE
- Many individuals from UK, Vietham, Sri Lanka, USA etc
- Meritocracy matter
© Conducting public Google hangouts (weekly or so)
- Educate community
- More interactive
- Code reviews
- Recorded and publish on the website
- Very helpful for newcomers
© Frequent developer previews (by weekly or so)
- Educate developer
- Provide continuous delivery
- Easy to do integration testing with what you are working on
- Getting early feedback without waiting for the release



Growing up with the community...

o Participating/conducting meetups
- Building community
- Conducted Barcamp in San Francisco, Sri Lanka
o Participating/conducting Hackathons
- Adopting best practices
- Building community
- ApacheCon NA 2014
- WSO2 Hackathon 2014
© Speaking at many conferences
- Taking your massage to the wide ordinance, other
communities
- Getting feedback
- Making new contributors
- ApacheCon NA, ApacheCon Europe, CloudOpen NA,
CloudOpen Europe, QConSF, JaxLondon, WSO2Con



Not to reinvent the wheel

© Carefully evaluate existing open source software for suitable
Integration.
© After broad discussion @dev, choose best out of all
® Current third party project integrated
- Apache Jclouds
- Openstacks
- CloudStacks
- Docker
- CoreQOS
- Kubernetes
- WSO2 Carbon/CEP
- ActiveMQ
- etcd



Collaborative development

© 0 0 0 0

Communicate with third party software community
Meetup, hangout with them
Giving feedbacks
Contribute back/ sending upstream fixes/improvements
Current work closely with
Apache Jclouds
Apache CloudStacks
CoreOS
Kubernetes
WSO2 Carbon/CEP projects




Overview of the Apache Stratos
Architecture



Apache Stratos Layered Architecture

Apache Stratos 4.0.0 Layered Architecture
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Apache Stratos L1 Architecture for VM based
Cartridges
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Apache Stratos Cartridges
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Current Features



Multi-factored Auto Scaling

What is it?
© Scaling algorithm can use multiple factors. such as
- Load average of the instance
- Memory consumption of the instance
- In-flight request count in LB

Topology

Summerized
Health Stats

LB Stats
Real Time Event Processing
pub m— Engine
Real Time Event Receiver
laaS Layer 1

‘ Health Status
Health Publisher Health Publisher

Cloud Controller
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create/destroy
new topology instances

Auto scaler

Rules Engine




Multi-factored Auto Scaling...

© Capable of predicting future load

- Real time analysis of current load status using CEP
Integration

- Predict immediate future load based on CEP
resulting streams

- Predicting equation s=ut + % at?

- s=predicted load, u=first derivative of current
average load, t= time interval , a=second derivative
of current load

Why should one care?
© Maximise resource utilization
© Easy to do capacity planning
© Dynamic load based resource provisioning
© Optimizing across multiple clouds



Scalable and Dynamic Load Balancing

How Scalable it is?
© Intheory infinite
- horizontal scaling
- limited by resource (instance capacity) availability

How Dynamic it is?
© Load Balancers are spawned dynamically
- LB too is a cartridge
® In case of multi-cloud, multi-region, LB can scale per
cloud/region
© Per service cluster LB



Scalable and Dynamic Load Balancing..

What is unique about Stratos
© Cartridge based LB model
© Can bring any third-party LB
- HAProxy, nginx, AWS ELB
- As easy as plugging into LB extension API

Any Third Party LB

LB Extension
Load Balancer \
sub

Message Broker LB Stats

Cloud Controller Load Balancer
jclouds M= pub Topology
7 - Real Time Evept Processing
Real Time Event Receiver




Smart Policies

What are the smart policies?
© Auto scaling
© Deployment
Auto scaling policy
o Define thresholds values pertaining scale up/down
decision
© Auto Scaler refer this policy
© Defined by DevOps
Deployment policy
© Defined how and where to spawn cartridge instances
© Defined min and max instances in a selected service
cluster
© Defined by DevOps based on deployment patterns



Smart Policies

Why should one care?
® Can provide cloud SLA

What are the advantages?
© Make DevOps life easy
- help keep to SLA
© Make SaaS app delivery life easy
- do not have to worry about availability in application
layer



Multi-tenancy

What MT model does it support?
© Container MT
- virtual Machine, LXC, Docker
© In-container MT
- within VM/LXC/Docker tenancy
What is unique?
® Can have high tenant density
What are the advantage of this model?
© Optimizing resource utilization
- by sharing resource such as CPU, memory across
tenants
- low footprint, based on utilization/usage of the
tenants app
© No need dedicated resource allocation for tenants



Cloud Bursting

What is it?
© Expanding/provisioning application into another cloud
to handle peak load.
Why Should one care?
© Resource peak time can be off-loaded to third party
clouds/resources
What is unique about it?
® Can off-load to any cloud
- Private, Public and Hybrid
© Easyto managed with the model of LB per busting
cloud



Cloud Bursting...

What are the advantages?
© Make DevOps life easy
© Low TCO, and higher utilization existing dedicated
resources

Cloud Controller

new topology

Autoscaler
_ EC2 OpenStack
Load balancer - PHP - Load balancer - PHP -
EC2 OpenStack
Cartridge Instance 1
: PHP Cartridge Instance n
create/destroy instances PHP

Cartridge Instance 2
PHP



Logging, Metering and Monitoring

What details are?
® Instance up/down time
© Each and every instances health status
- application health, load average, memory
consumption
© Application logs
Why should one care?
© Centralize view for all logging, metering and monitoring
What are the advantages?
© DevOps life easy
- centralize log viewer
- centralize dashboard
© Easy to throttling



Apache Stratos Roadmap



Docker Support

© Why just not with only Docker?
© Apache Stratos next release is mainly into
- Docker based cartridge support
- Integration with CoreQOS
- integration with Kubernetes
- integration with flannel
- integration with discovery service
- build in docker registry




What is Docker?
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What is Core0OS?

CoreOS Host



What is Kubernetes?
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Two level of scalability

Apache Stratos
Cartridges
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Apache Stratos L1 Architecture for Docker based
Cartridges
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Grouping and composite application
support

® Json based complex application definitions
© Cartridge grouping
© Manage dependencies
- startup order
- termination order
- maintaining ratio
© Manage dependency metadata
© Group wise scaling



More Information !

© http://stratos.apache.org
http://lakmalsview.blogspot.com/2013/12/sneak-peek-
into-apache-stratos.html
nttps://cwiki.apache.org/confluence/display/STRATOS
nttps://github.com/coreos/etcd

nttps://coreos.com

nttps://wso2.com

nttps://www.docker.com/
nttps://www.youtube.com/watch?v=tskOpWf4ipw
nttps://sysadmincasts.com/episodes/31-introduction-
to-docker

©
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