Hortonworks

Apache Tez

Hitesh Shah
hitesh@hortonworks.com
@hitesh1892
A

=

© Hortonworks Inc. 2011 Page 1

Agenda

Introduction
Overview

Tez Internals
Theory to Practice

Hortonworks ©Hortonworks Inc. 2011 Page2

Apache Tez at The ASF

Entered Apache Incubator in Feb 2013

Committers from various companies:
-Hortonworks

-Microsoft

-Yahoo

-LinkedIn

-NASA JPL

-Cloudera, Twitter, ...
Graduated to a TLP in July 2014.

Hortonworks © Hortonworks Ine. 204~ Page3d

Tez — Introduction

Distributed execution
framework targeted towards
data-processing applications.

Based on expressing a
computation as a dataflow
graph.

Highly customizable to meet a
broad spectrum of use cases.

Built on top of YARN - the
resource management
framework for Hadoop.

Hortonworks © Hortonworks Inc. 2011

Hadoop 1 -> Hadoop 2

Monolithic

* Resource Management
 Execution Engine

* User API

HADOOP 1.0

Pig M"“VE Others.

(data flow) (sal) ' (cascading) '

v/ U U
MapReduce

(cluster resource management
& data processing)

Hm © Hortonworks Inc. 2011

Layered

* Resource Management — YARN

* Execution Engine — Tez

* User API - Hive, Pig, Cascading, Your App!

HADOOP 2.0

————————————————

Data Flow
Pig

Batch
MapReduce

1, Online
Real Time ! Data
Stream ' Processing

Processing i HBase,
' Accumulo

1
1
. Others |
: (Cascading) 1
1

(execution engine)

(cluster resource management)

Page 5

Tez — Empowering Applications

Tez solves hard problems of running on a distributed Hadoop environment
Apps can focus on solving their domain specific problems
This design is important to be a platform for a variety of applications

» Custom application logic
App « Custom data format
« Custom data transfer technology

» Distributed parallel execution
» Negotiating resources from the Hadoop framework
« Fault tolerance and recovery
* Horizontal scalability
Tez * Resource elasticity
» Shared library of ready-to-use components
» Built-in performance optimizations
» Security

Hbrtonworks © Hortonworks Inc. 2011 FEEE

Tez — Design considerations

Look to the Future with an eye on the Past

Don’t solve problems that have already been solved. Or else you
will have to solve them again!

 Leverage discrete task based compute model for elasticity, scalability and
fault tolerance

 Leverage several man years of work in Hadoop Map-Reduce data
shuffling operations

» Leverage proven resource sharing and multi-tenancy model for Hadoop
and YARN

 Leverage built-in security mechanisms in Hadoop for privacy and isolation

Hortonworks © Hortonworks Inc. 2011 P

Tez — Problems that it addresses

Expressing the computation
* Direct and elegant representation of the data processing flow
* Interfacing with application code and new technologies

Performance

 Late Binding : Make decisions as late as possible using real data
from at runtime

 Leverage the resources of the cluster efficiently
« Just work out of the box!
« Customizable engine to let applications tailor the job to meet their
specific requirements
Operation simplicity
 Painless to operate, experiment and upgrade

Hortonworks © Hortonworks Inc. 2011 FEEIE

Tez — Expressing the computation

- Distributed data processing jobs typically look like DAGs
(Directed Acyclic Graph).

* Vertices in the graph represent data transformations
- Edges represent data movement from producers to consumers

Task-1 Task-2 Preprocessor Stage
g—

— T —

Task-1 Task-2 Partition Stage

> N

- Task-1 L Task-2 ~ Aggregate Stage

Hortonworks © Hortonworks Inc. 2011 Page 9

Tez — API

// Define DAG
DAG dag = new DAG();

/| Define Vertex

Vertex Map1 = new
Vertex(Processor.class);

// Define Edge

Edge edge = Edge(Map1, ReduceZ2,
SCATTER_GATHER, PERSISTED,
SEQUENTIAL, Output.class, Input.class);

// Connect them
dag.addVertex(Map1).addEdge(edge)...

Hm © Hortonworks Inc. 2011 Page 10

Tez — DAG API

Edge properties define the connection between producer and
consumer tasks in the DAG

* Data movement — Defines routing of data between tasks
- One-To-One : Data from the ith producer task routes to the it consumer task.
- Broadcast : Data from a producer task routes to all consumer tasks.

- Scatter-Gather : Producer tasks scatter data into shards and consumer tasks
gather the data. The it" shard from all producer tasks routes to the it" consumer

task.
* Scheduling — Defines when a consumer task is scheduled
- Sequential : Consumer task may be scheduled after a producer task completes.
- Concurrent : Consumer task must be co-scheduled with a producer task.

- Data source — Defines the lifetime/reliability of a task output

- Persisted : Output will be available after the task exits. Output may be lost later
on.
- Persisted-Reliable : Output is reliably stored and will always be available

- Ephemeral : Output is available only while the producer task is running

Hortonworks © Hortonworks Inc. 2011 Page 11

Tez — Logical DAG expansion at Runtime

Hm © Hortonworks Inc. 2011 Page 12

Tez — Runtime API

Flexible Inputs-Processor-Outputs Model
Thin API layer to wrap around arbitrary application code
Compose inputs, processor and outputs to execute arbitrary processing
Event routing based control plane architecture
Applications decide logical data format and data transfer technology
Customize for performance

Built-in implementations for Hadoop 2.0 data services — HDFS and YARN
ShuffleService. Built on the same API. Your impls are as first class as ours!

Input

initialize(TezinputContext ctxt)

Reader getReader()

handleEvents(List<Event> evts)

close()

Hortonworks © Hortonworks Inc. 2011

Processor

initialize(TezProcessorContext ctxt)

run(List<Input> inputs,
List<Output> outputs)

handleEvents(List<Event> evts)

close()

Output

initialize(TezOutputContext ctxt)

Writer getWriter()

handleEvents(List<Event> evts)

close()

Page 13

Tez — Library of Inputs and Outputs

Classical ‘Map’

Map Sorted
Processor Output

Reduce
Processor

Intermediate ‘Reduce’ for
Map-Reduce-Reduce

H“m © Hortonworks Inc. 2011

Classical ‘Reduce’

Reduce HDES

Processor Output

* What is built in?
- Hadoop InputFormat/OutputFormat

- SortedGroupedPartitioned Key-Value
Input/Output

- UnsortedGroupedPartitioned Key-
Value Input/Output

- Key-Value Input/Output

Page 14

Tez — Performance

Benefits of expressing the data processing as a DAG

* Reducing overheads and queuing effects

* Gives system the global picture for better planning

Pig/Hive - MR

Hortonworks © Hortonworks Inc. 2011

Pig/Hive - Tez

Page 15

Tez — Performance

Efficient use of resources
* Re-use resources to maximize utilization
* Pre-launch, pre-warm and cache
* Locality & resource aware scheduling

Support for application defined DAG modifications at

runtime for optimized execution
* Change task concurrency
* Change task scheduling
* Change DAG edges
* Change DAG vertices

Hortonworks © Hortonworks Inc. 2011 FEER 11

Tez — Customizable Core Engine

* Vertex Manager

 Determines task
parallelism

 Determines when
tasks in a vertex
can start.

* DAG Scheduler
Determines priority
of task

 Task Scheduler

Allocates containers
from YARN and
assigns them to tasks

Hortonworks © Hortonworks Inc. 2011

Start
vertex

\L Get container

Vertex-1 [] []<

Get Priority ‘l’

Start
vertex

Vertex Manager DAG Task
Scheduler Scheduler
Start
tasks

Vertex-2 [] []< Get Priority T

T Get container

Page 17

Tez — Automatic Reduce Parallelism

Event Model

Map tasks send data
statistics events to
the Reduce Vertex
Manager.

Vertex Manager

Pluggable application
logic that understands
the data statistics and
can formulate the
correct parallelism.
Advises vertex
controller on
parallelism

Hortonworks © Hortonworks Inc. 2011

Vertex Manager

—
—

—

lSet Parallelism

Vertex State
Machine

App Master

Data Size Statistics

<€
<€

;

—Re-Route o

Map Vertex

Reduce Vertex

Cancel Task

Page 18

Theory to Practice

Hortonworks © Hortonworks Inc. 2011

Tez — DAG definition at scale

Hive : TPC-

DS Query 64 Logical DAG

] oo pr——

e s Vot et o s vm s
wmLaRL wimaRL Bl W s o sl gy o o) o o) 1 g Wf ’IlVIMIﬂm o poasARrate ‘MVIMIJM o poasAPradeg o poasAPraden i hdiaiiaral i A, Ll
e iy (b i o T o T) i e o g i | e e
Nep Qs o] | (Vo TP Mg MegePese Voo glicPreessr]) | ep 2o s | (Nep TP oy lgTeFos] oy BlgTeFoss] Mo e] WWMM Nep g Vg gl @ VepSgieProns] Vep QgieProms] oy ST Voo s s
I T 1 I T
| sROn\ oI e OR msemetion sRdlOn\ ED OB e OR Istéurmnnione [i e peohmndet [t
alaPrae el | mmCasfreten WS\"M’M DW\IM W‘W’"’ﬂm opeSuinngind \ apErwidlin worhddroeding | wCsifmtn MMMIIX:’VA MW‘.I‘M]LII\ \IQKW‘M'W vy i okt 1 n Vs 0/ e
i i P Py et e P e | i e i,
ot N] e et SR\ SRR | S ek (i ek e | cameri | |
Vo] (Ve Yo et
T — e oo
" st it Peviacl i
e | i preir s b
= et s St
Yy i o] - - - e e
aiend) i) LIl it vl mrFeoeedOnl F R
- st T \ i, e/ s ey [t
b ey i\ ‘et | . :
e i N et
oo e S—
-~
LS
oo e]
Too 2014022143383 170663 99 4548 atc_TTSBkTI61a7 2
. .
Hive : TPC-DS Query 88 Logical DAG
.
o, [, e,
o] o] o o][] e %-/© G R e e R e o
|ncumim |wpostwm |wnoumiw |wmetwm |woumw |wpen o e |weomis e |seosies | e T e e e T
e e, [mams (e | mn (mome memm peme (e e e, e, o, (e,
I @@w I I oI Ca I mww-q mwm-\ CaIC) i
iy sty iy e e) Ry iy sy i i
e/ ey /| ey i ey

Zome o) e\ o

S\ S\ S ==

100t 2014022145363 7 leBBAGAHO07a493510203.1

Page 20

© Hortonworks Inc. 2011

Hort

Tez — Data at scale

Average Query Times
(lower is better)

300.0

250.0

Hive TPC-DS

°° l l l Scale 10TB
: LLLLLLons

querylS query34 query73 query89 query3 query27 query7 query4d3d query98 query52 query55 query42 query68

o

¥ Average Map/Reduce Runtime W Average Tez Runtime

Hm © Hortonworks Inc. 2011 Page 21

Tez — Pig performance gains

5000
4500
4000
% 3500
& 3000
£ 2500
£ 2000
= 1500 - “MR
1000 - Tez
: B B B
0 . . — .)
Replicated Join + Join + 3 way Split +
Join (2.8x) Groupby Groupby + Join +
(1.5x) Orderby Groupby +
(1.5x) Orderby
(2.6x)

Hortonworks

Real-world Examples

PPPPPP

Hortonworks © Hortonworks Inc. 2011

Tez — Broadcast Edge

SELECT ss.ss_item_sk, ss.ss_quantity, avg_price, inv.inv_quantity_on_hand

FROM (select avg(ss_sold_price) as avg_price, ss_item_sk, ss_quantity_sk from store_sales H iv e .
group by ss_item_sk) ss *
JOIN inventory inv

ON (inv.inv_item_sk = ss.ss_item_sk); B ro a d Ca St J O i n

Hive - MR Hive — Tez

Store Sales scan.

Store Sales scan. Group by and

Group by and aggregation
aggregation. reduce size of this
input.
Broadcast
edge

Inventory scan

Inventory and Store and Join

Sales (aggr.) output
scan and shuffle join.

Hortonworks © Hortonworks Inc. 2011

Tez — Multiple Outputs

f = LOAD ‘foo’ AS (x, v, z); . .

1=GROUP fBYy; Pig : Split & Group-b
§2=GROUPfBYZ; g p p y
j=JOIN g1 BY group,

g2 BY group;
Pig - MR Pig — Tez
Load foo Load foo
Split multiplexl de-multiplex Multiple outputs
Group by y Group by z

” Group by y Group by z

Load g1 and Load g2 Reduce follows
+ reduce

Join Join

Hm © Hortonworks Inc. 2011 Page 25

Tez — One to One Edge

| = LOAD ‘left’ AS (x, y);

- LOAD “1ight’ AS (x 41 Pig : Skewed Join

j=JOIN | BY x, r BY x
USING ‘skewed’;

Pig - MR Pig — Tez

Load &
Sample L S
Aggregate Aggregate
Pass through input Broadcast
Stage sample map via1-1 edge/\ sample map

on distributed cache
Partition L Partition R

Partition L and Partition R \/

v

Join

Join

Hm © Hortonworks Inc. 2011 Page 26

Tez — Current Status

Adoption

* Apache Hive 0.13+

* Apache Pig 0.14+

« Cascading 3.0

* Apache Flink (Incubating) — Initial prototype
Releases:

*0.5.2 recently released
* 0.6.0 coming soon

Hortonworks © Hortonworks Inc. 2011 FElI

Tez — Summary

Tez website: http://tez.apache.org

Questions: Drop a mail to
users@tez.apache.org

Try running your Hive/Pig/MR jobs in Tez
mode

» set hive.execution.engine=tez

* bin/pig —x tez

* mapred —Dmapreduce.framework.name=yarn-tez

Hortonworks © Hortonworks Inc. 2011 g 2

Questions?

gggggg

