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Open Source

“denoting software for which the original source code is made 
freely available and may be redistributed and modified”

• You can get the source behind a program (if you want)
• You can study it, learn from it, understand it, debug it
• You can make changes to it (or pay someone else to)
• You can use your new version without having to pay
• You can share your changes and improvements
• There is a license, but it's a distribution not use one



Open Development

• Open Source is all about the software today
• Open Development is about the software tomorrow
• Quite possible to be Open Source but Closed Development

• Who decides what the priorities are?
• Where do those discussions happen, and are they shared?
• Who can influence the direction of the project?
• Who can contribute (directly or indirectly)?
• Who dictates releases, “done” etc?



Copyright Assignments

• Applies when you want to contribute a fix or enhancement
• Assignement requires you sign over your rights to your 

changes to another entity, to do with as they wish
• Most common with Commercial+CopyLeft

• Can be used “for good”, to permit relicensing in future, and 
to allow a central entity to fight infringement claims

• Can be used “for money”, to allow a company to license 
out your changes to their enterprise customers

• Typically very divisive, problems if not accepted



CLAs (License Agreements)

• At first glance, these look quite similar
• Legal agreement about a contribution
• But... Very different kettle of fish!

• Copyright Assignment requires you hand over your rights
• CLAs are about ensuring you understand the open source 

license, and are allowed to contribute under it
• “License says you can have this, and I confirm you can”
• Paper trail of contributions
• Defends against “but that's our code!”



Community Direction

• Within any project, whether open or closed, proprietary or 
shared, there's a process to decide on direction

• When will the next release be considered “done”?
• What features should be worked on? Not worked on?
• What's the vision for the project? What's out of scope?
• Who can join in? Who can contribute?
• How are new changes reviewed+accepted? And by who?
• How are conflicts and debates handled? Who has a say?
• How can this be changed over time?



Licensing

• All Open Source licenses are distribution licenses
• Use of the software is free (support + add-ons may not be!)
• To broad families of Open Source licenses

• Copyleft (eg GNU-GPL, LGPL)
• Permissive (eg Apache License, BSD, MIT)

• Strong philosophical differences divide, plenty of license 
flame-wars online debating all of these!

• Have different restrictions on building on top of them
• Influences the business models you can build on top



Many Models

• There isn't a “One True Way”
• But the ASF has a “often least worst way!”

• More on the ASF shortly
• More on pluses and minuses later

• No one model is “always right” or “always wrong”, need to 
weigh up the benefits and downsides

• There is help for weighing this all up!
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What is the ASF?

• US 501(c)3 not-for-profit foundation
• Founded in 1999 with one project (webserver)
• Today has over 150!

• Meritocratic, community driven open source
• Anyone can get involved, and not just as a coder
• Decisions taken by the community
• Work done by volunteers
• Open Development, friendly to business involvement



Driven by projects
• A number of projects

• Each project is responsible for their own code, community and direction

• Board provides oversight, but that's it

• Board has no say on what code gets written, nor what direction projects 
take, nor what projects we should start. All of that is devolved to the 
projects themselves

• Foundation has some common support (eg infra, press, trademarks), to 
help projects focus on their code and on their communities
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Alfresco
• Open Source Enterprise Content Management

• >1 million active users, >4 million downloads, plus Cloud

• Open Source, but not Open Development (mostly)

• Written mostly in Java and JavaScript

• ECM – Capture, Manage, Store, Preserve, Deliver, Search, Collaborate, 
within and between organisations

• Includes Document Management, Records Management, Asset 
Management, WCM, Workflow etc

• Alfresco is Open Source, and builds on lots of of Open Source projects, 
especially from Apache and Spring



Metadata & Transformers

• Content Transformers and Metadata Extractors are core Alfresco 
services, present from the very start

• Transformers are used for full text indexing, web previews, icons, 
web friendly versions etc

• Metadata Extraction used to synchronise the document properties 
with the repository

• Both normally used with uploaded binary files
• eg upload a Word Document, text extracted for indexing, PDF 

version generated, title + author extracted



Alfresco 3.3 - Formats

• PDF
• Word, PowerPoint, Excel
• HTML
• Open Document Formats (OpenOffice)
• RFC822 Email
• Outlook .msg Email
•

• And that's it!



Apache Tika   tika.apache.org

• Apache Project, started in 2006
• Initially grew out of Lucene, but now very widely used
• Provides detection capabilities – eg this is a Word Doc
• Parsers for a very wide range of formats
• Extracts metadata, and provides a consistent model, eg created by 

vs author
• Textual content available as Plain Text and XHTML
• Hides complexity of file formats and librarys, presents a simple and 

powerful API across all of them
• Easy to use and extend



Sharing process

• Identify upstream projects (mostly Apache Tika + POI)
• Get the latest versions of the code
• Compared Alfresco code to upstream, and identify areas where 

Alfresco did more / upstream didn't handle
• Wrote unit tests for things Alfresco did better, to avoid regressions 

after the push upstream
• Identified which bits of upstream would be improved, and what bits 

would be whole new features
• Worked with upstream projects, shared ideas for enhancements, 

checked hadn't missed things



Sharing process continued

• Produced patches, submitted to the Apache projects
• Get feedback and improvements on patches
• Gained trust of communities, granted commit rights
•

• Once most things upstream, update Tika and POI versions used in 
Alfresco, check everything worked

• Wrote Tika wrappers for Alfresco
• Converted Alfresco code to call Tika
• Used unit tests to ensure no lost functionality
• Enabled other formats via Tika



Alfresco 4.2 - Formats

• Audio – WAV, RIFF, MIDI, MP3, MP4, Ogg Vorbis, FLAC
• CAD – DWG, PRT
• EPub
• Feeds – RSS, Atom
• HTML, XHTML, XML
• Images – JPEG, GIF, PNG, TIFF, Bitmap

• Incuding EXIF data where present
• RFC-822 MBox email
• Microsoft Outlook .msg email



Alfresco 4.2 - Formats

• IWorks (Keynote, Pages, Numbers)
• Microsoft Office (Binary) – Word, PowerPoint, Excel, Visio, 

Publisher, Works
• Microsoft Office (OOXML) – Word, PowerPoint, Excel
• Open Document Format (OpenOffice)
• PDF
• RTF
• Plain Text
• Scientific Data – CDF, HDF



Alfresco 4.2 - Formats

• Archive - Zip, Tar, Tar-GZ, Tar-BZ2, Compress, Ar
• FLV Video
• MP4 Video
• Java Class Files
• CHM (Windows Help)
• Executable Libraries and Programs
• Configurable external programs
•

And probably some others I've forgotten



Alfresco 5.0 – New Formats

Thus far, Alfresco 5.0 is set to get the following new formats, on 
release, at no extra effort beyond upgrading Apache Tika:

• Archive - 7z
• Audio – Ogg Opus and Speex
• Video – Ogg Theora
• Image – Tesseract OCR support
• Source Code
• Email – Outlook PST
• Font – Adobe Font Metrics

And maybe more before 5.0 Enterpise Final is released!
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CMIS (OASIS Standard)

• CMIS – Content Management Interoperability Services
• Standard for talking to content repositories
• Provides a standard way to login, navigate, search, upload, version, 

delete, change permissions, alter properties, set relationships, 
query etc

• Supported by a wide range of content repositories
• Adobe, IBM, Microsoft, Alfresco, SAP, EMC, HP, Liferay, Nuxeo, 

OpenText, Oracle, and some others
• CMIS 1.0 released in 2010
• CMIS 1.1 released in late 2012



First Alfresco Support

• Alfresco was involved in CMIS from an early stage
• First Alfresco CMIS support was added before the CMIS 1.0 spec 

was completed, and was used to feed back on the proposed 
standard

• First support was developed internally, took quite a while, and 
turned out to have some issues

• Desire for a pure-Java server implementation, which would be more 
rhobust and easier to test + validate

• Desire for a CMIS client for a few different platforms
• Desire not to have to do it all in-house



Two Rival Camps

• Alfresco, OpenText and SAP started working on an open source 
Java client and server as OpenCMIS

• Nuxeo, Adobe and friends started on Apache Chemistry
• Both had strengths and weaknesses
• Quite different development and governance approaches
• Some lack of trust between camps
• Quite a lot of misunderstandings about what Apache and the 

Apache Way was, and worry about a loss of control or direction, 
from some in OpenCMIS

• Then an idea to contribute OpenCMIS as another project



The Joining Together

• Lots of debate on mailing lists and in private
• Eventually a get-together in Munich, coupled with lots of feedback 

to the mailing list, and rattification there
• Outcome was a merged project, Apache Chemistry, which 

combined the best of both
• Lots of activity, lead quite quickly to a CMIS-1.0 compatible test 

server, server framework, client and test suite
• Took some work to implement this new server into Alfresco, but it 

proved better than the in-house one
• Initially only a handful of companies used it, rest tested



Going Forward

• Alfresco received lots of bug fixes “for free” just from upgrading the 
OpenCMIS libraries

• More companies started basing their CMIS implementations on 
Apache Chemistry, having realised that it was both high quality 
and already available

• Virtuous circle of enhancements and fixes
•

• CMIS 1.1 support added to Apache Chemistry mostly by SAP, with 
help from others

• Adding CMIS 1.1 support to Alfresco took a tiny fraction of the time 
CMIS 1.0 did, due to Chemistry support
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BPMN-2.0 Workflows

• BPMN – Business Process Modeling Notation
• Way of describing business processes (workflows), which can be 

displayed visually, but also executed
• Covers most of the key elements of a workflow
• Ideally can be created by business analysts
• Big step on from previous BPMN versions is that the format is 

executable – the same thing that the analyst creates / changes 
is what gets run

• Industry standard for doing this (previously each engine had its own 
way of doing that)



Alfresco and Workflow

• Alfresco Workflows were based on jBPM
• In 2010, jBMP was LGPL and owned by Redhat
• Alfresco were finding some problems with jBPM that were hard to 

fix, and seemed to be architectural
• jBPM core devs were interested in a re-write, Redhat less so
• Alfresco was trying to reduce the number of copyleft dependencies 

in the codebase, jBMP was a big part
• Alfresco had moved from Hibernate to iBatis, and jBMP remainging 

with Hibernate was making development + support harder



The Birth of Activiti

• Alfresco hired two of the core jBPM developers, Tom Baeyens and 
Joram Barrez, plus some others

• Charged with developing an Apache licensed, open source 
implementation of BPMN 2.0

• Alfresco was the be the “launch customer”, but being open source 
anyone can (and hopefully would) use it too

• Needed some changes to Alfresco to make the the Workflow APIs 
(already pluggable) work well with Activiti as well as jBMP

• Aim was for Activiti to be the default engine, and more powerful / 
richer than jBPM was



ASL v2, but not ASF

• License was picked as Apache License v2
• However, after lots of internal debate, decision was made not to 

submit the project to the Apache Incubator
• Alfresco wanted their next release to ship with Activiti, meant they 

had strong pressures to hit a ship date
• Initial feature set largely dominated by what was needed for 

Alfresco, other features were added but mostly after the first 
release

• Tom Baeyens is a “BPM-God”, really knows his stuff, but after 
Redhat frustrations wanted to drive it

• Initially not good Incubator fit, later why change?



BenefitsBenefits



Shared Maintenance

• By sharing upstream, your support overhead is shared
• Many companies, organisations and individuals can join in and 

contribute towards the project
• When others extend your project, you benefit for free
• More users means greater chance of community enhancements / 

new features
• More users means more bug reports, but also more bug reports 

that come with fixes (patches)!
• Lower per-organisation maintenance costs
• Often faster development



Better Bug Reports

• People familiar with Open Source often know how to report bugs 
better

• By sharing your code, more people can use it, so there's a wider pool 
of people to test and report on it

• “I have found a bug, but I can't share the details of it” is less 
common, and more chances of a duplicate which can

• More likely that another user can come along and fill in the details of 
existing bugs

• If you're open and other companies are joining in, greater chance 
someone will have dedicated testers!



New Ideas, New Features

• When other companies feel they can base their business on your 
project, then they can dedicate more resources

• When individuals feel they have a say, they're more likely to spend 
their time working on it

• More developers means more ideas for fixing problems, enhancing 
exisiting code, and adding new things

• When contributions are felt to be welomed and appreciated, more 
likely for people to share back

• Can be small changes over time, or can be large new features, all 
for (almost) free! 



Learning from the best

• The world is a very big place
• No matter how great you are, there's someone out there who's 

smarter than you are!
• And many more people who've been there before
•

• If you have more contributors, there's more chance of someone 
improving your idea or code

• By seeing how they do it better, you not only get a better project, 
but learn from it to improve yourself

• Collaborate to get the best of everyone



Diverse Users and Devs

• We are often a bit of a mono-culture
• Some worse than others.....
•

• If you draw from a very small pool, you'll have people who tend to 
think the same, and will be blinded by that

• If you have people from all around the world, from all walks of life, 
you've more chance of diverse opinions

• Best time to fix a mistake is at the start
• Even if it's just “hmm, that breaks when you're not +00:00” !



Community and Goodwill

• Sharing and being open can bring positive press
• Your organisation can gain recognition from their involvement
• Halo effect – share in the buzz from the project
• And an open project with lots of people has more buzz!
•

• If you're a known good team player, it's easier to call in favours from 
the community (eg critical bug fix)

• If you're known generally as a good team player, easier to get help or 
support in related projects (eg dependencies)



DownsidesDownsides



Lack of Control

• If it's your project, you can do with it as you want
• Very easy to make decisions, get things done
• If it's an ASF project, you need to explain your ideas, and convince 

the rest of the community of why
• If it's in-house, you can have a quick chat to decide
• If it's an ASF project, you need to write it all down, explain it, and wait 

to allow everyone to have a chance to review
• Management understand traditional projects
• Can lead to confusion and hard questions if not properly explained, 

expect some “what do you mean?”s



Release dates

• If it's your project, you have full control (and responsibility) about 
“done”, and the associated release dates

• If it's an ASF project, it's a community decision
• You can't “demand” that someone else fixes a bug
• If the community is all excited and working on a new feature, it may 

not be the right time for a stable release
• If you're on a different cycle to many other contributors, expect to 

still have to do much of the “boring bits”
• Need to get the community to share release vision



Direction / Features

• If it's your project, you decide what's in, you direct the developers, 
off they go (or fail trying....)

• If it's an ASF project, you need to explain the idea to the community, 
and get their buy-in

• You may still then have to do most of the work on it – you can't 
force the volunteers to work on something!

• Your vision for where it should go may not match others
• Your “value add” might end up getting re-done by the community, 

and you can't stop that
• Can confuse management, who expect a different dynamic about 

getting new things in



Marketing & Branding

• If it's your project, you can brand it how you want, associate your 
company with it how you want

• ASF has trademark rules which apply, you mustn't confuse your 
product with the project

• Need to co-ordinate with the rest of the community on branding, 
press releases, conferences etc

• Can be hard to get agreement on these things, can be prone to 
bike-shedding if not careful

• Potentially big loss of control



In SummaryIn Summary



Why it's Good

• More involvement
• Better bug reports, wider testing
• Other companies (including competitors) much more 

willing to join in and share resources
• Learn from others, and collaborate with them to improve
• More diverse community can mean problems get spotted 

and fixed sooner (+cheaper)
• More opportunities from wider use
• New features and fixes “for free”



But not for everyone!

• You're no longer in charge!
• Need to be willing to give up some control in order to 

welcome in the wider community
• Not instant – will be an up-front cost, you need to be in for 

the longer term to take advantage
• Need to train up your marketing team, and management
• Won't all be smooth sailing, there will be problems
• BDFLs aren't allowed
• “No jerks”, you need to work with the community
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