
Cloud storage with
Apache jclouds

Andrew Gaul

19 November 2014

http://jclouds.apache.org/
http://gaul.org/

1 / 29

http://jclouds.apache.org/
http://gaul.org/

Overview
What is Apache jclouds
What is object storage
Basic concepts
How to put and get objects
Advanced topics

2 / 29

What is Apache jclouds
Interface with public and
private cloud services via Java
Provider-specific
implementations, e.g.,
Amazon S3, OpenStack Swift
Cross-provider, portable
abstractions, e.g., BlobStore
Supports all major providers

3 / 29

Why object storage
Scale out to billions of objects
and petabytes of data
Lower cost, higher
performance, better reliability
Applications and tenants can
share one object store
Many competitive public and
private cloud offerings

4 / 29

Why not object storage
Must rewrite existing
applications against new
interfaces
Distributed systems introduce
complexity and additional
failure modes
Lacks features that databases
and filesystems have

5 / 29

What is object storage
Distributed system of storage
nodes
Supports narrow interface:

Create and delete
containers
Put, get, and delete objects
List objects in a container
Modify and retrieve
metadata 6 / 29

Example applications
Store photos and videos for a
social networking site
Archive large data sets, e.g.,
scientific measurements

7 / 29

Basic concepts
APIs and Providers
Regions
Containers
Objects

8 / 29

APIs and Providers (1)
API defines how to
communicate with a cloud
Provider specializes a given
API, e.g., regions
Support major APIs: Atmos,
Azure, Google, S3, Swift
Support many providers:
Glacier, HP, Rackspace

9 / 29

APIs and Providers (2)

10 / 29

Regions
Most public providers offer
multiple geographic regions
Usually associate a container
with a given region
Some providers can replicate
between regions
automatically, others offer a
per-object cross-region copy

11 / 29

Containers
Containers can contain many
named objects
Some providers have partial
directory support
Some providers allow public-
read access containers

12 / 29

Objects
Objects have a name, stream
of bytes, and metadata map
Must write entire stream of
bytes but can read ranges
Metadata map includes
standard HTTP headers, e.g.,
Content-Type: text/plain and
arbitrary user headers, e.g., x-
amz-meta-foo: bar 13 / 29

Example put and get
try (BlobStoreContext context = ContextBuilder
 .newBuilder("transient")
 .credentials("identity", "credential")
 .buildView(BlobStoreContext.class)) {
 BlobStore blobStore = context.getBlobStore();
 ByteSource payload = ByteSource.wrap(
 new byte[] { 1, 2, 3, 4 });
 Blob blob = blobStore.blobBuilder(blobName)
 .payload(payload)
 .contentLength(payload.size())
 .build();
 blobStore.putBlob(containerName, blob);

 blob = blobStore.getBlob(
 containerName, blobName);
 try (InputStream is =
 blob.getPayload().openStream()) {
 ByteStreams.copy(is, os);
 }
} 14 / 29

Consistency (1)
Some blobstores have weak
semantics and can return
stale data for some time
putBlob(name, data1),
putBlob(name, data2),
getBlob(name) can return
data1 or data2

15 / 29

Consistency (2)
Applications may need retry
loops or other fallback logic
S3 (standard region) and Swift
have various forms of
eventual consistency
Atmos, Azure, and GCS have
strong consistency, more like
a file system

16 / 29

Data integrity (1)
Provider guarantees object
integrity at-rest via content
hash
Application can guarantee
object integrity on-the-wire by
providing and verifying
Content-MD5 header
Guava has useful helpers

17 / 29

Data integrity (2)
Guarantee integrity during
putBlob:

ByteSource payload = ByteSource.wrap(
 new byte[] { 1, 2, 3, 4 });
Blob blob = blobStore.blobBuilder(blobName)
 .payload(payload)
 .contentLength(payload.size())
 .contentMD5(payload.hash(Hashing.md5()))
 .build();
blobStore.putBlob(containerName, blob);

This reads InputStream twice 18 / 29

Data integrity (3)
Guarantee integrity during
getBlob:

Blob blob = blobStore.getBlob(containerName, blob);
HashCode md5 = HashCode.fromBytes(blob.getMetadata()
 .getContentMetadata().getContentMD5());
try (HashingInputStream his = new HashingInputStream(
 blob.getPayload().openStream()),
 Hashing.md5()) {
 ByteStreams.copy(his, os);
 if (md5.equals(his.hash())) {
 throw new IOException();
 }
}

19 / 29

Large object sizes
Some objects may not fit in
memory or in a byte[]
Non-repeatable payloads, e.g.,
InputStream
Repeatable payloads, e.g.,
Guava ByteSource, can retry
after network failure

20 / 29

Multi-part upload
Some objects are too large for
a single put operation, e.g.,
AWS S3 > 5 GB, Azure > 64 MB
jclouds abstracts these details
via:

 Blob blob = ...
 blobStore.putBlob(containerName, blob,
 new PutOptions().multipart());

21 / 29

Many objects
Amazon S3 supports an
arbitrary number of objects
per container
Swift recommends max
500,000 objects per container
Atmos recommends max
65,536 objects per directory
Solution: shard over multiple
containers or directories 22 / 29

URL signing (1)
Most object stores allow
creating a URL which your
application can vend to
external clients

client

jclouds1. request URL

blobstore
3. access object

2. vend signed URL

23 / 29

URL signing (2)
URL is cryptographically
signed; allows time-limited
access to a single object
Clients interact directly with
the object store, removing
your application as the
bottleneck

24 / 29

Amazon Glacier
Optimized for storage, not
retrieval
Read requests can take
several hours to complete
Least expensive public cloud
provider, often cheaper than
private cloud

25 / 29

Local blobstores
In-memory (transient)
appropriate for unit testing
Filesystem has production
uses with limited number of
objects or quantity of data
Remote clients require
running a HTTP server and
implementing authorization

26 / 29

jclouds-cli
Command-line tool useful for
administrative and debugging
tasks:

jclouds blobstore container-list \
 --provider aws-s3 \
 --identity $IDENTITY \
 --credential $CREDENTIAL
jclouds blobstore write \
 --provider aws-s3 \
 --identity $IDENTITY \
 --credential $CREDENTIAL \
 $CONTAINER_NAME $OBJECT_NAME $FILE_NAME

27 / 29

References
https://github.com/jclouds/jclouds-
examples
https://github.com/andrewgaul/s3proxy
http://gaul.org/object-store-
comparison/

28 / 29

https://github.com/jclouds/jclouds-examples
https://github.com/andrewgaul/s3proxy
http://gaul.org/object-store-comparison/

Thank you!
http://jclouds.apache.org/

http://gaul.org/

29 / 29

http://jclouds.apache.org/
http://gaul.org/

