Cloud storage with
Apache jclouds

Andrew Gaul

19 November 2014

http://jclouds.apache.org/
http://gaul.org/

1729

http://jclouds.apache.org/
http://gaul.org/

Overview

e What is Apache jclouds

e What is object storage

e Basic concepts

e« How to put and get objects
e Advanced topics

2/29

What is Apache jclouds

e Interface with public and
private cloud services via Java

e Provider-specific
implementations, e.g.,
Amazon S3, OpenStack Swift

e Cross-provider, portable
abstractions, e.g., BlobStore

e Supports all major providers

3/29

Why object storage

e Scale out to billions of objects
and petabytes of data

e Lower cost, higher
performance, better reliability

e Applications and tenants can
share one object store

e Many competitive public and
private cloud offerings

4/ 29

Why not object storage

e Must rewrite existing
applications against new
interfaces

 Distributed systems introduce
complexity and additional
failure modes

e Lacks features that databases
and filesystems have

5/29

What is object storage

e Distributed system of storage
nodes
e Supports narrow interface:
o Create and delete
containers
o Put, get, and delete objects
o List objects in a container
o Modify and retrieve
metadata 6/ 29

Example applications

e Store photos and videos for a
social networking site

e Archive large data sets, e.g.,
scientific measurements

7/29

Basic concepts

e APIs and Providers
e Regions

e Containers

e Objects

8/ 29

APIs and Providers (1)

e API defines how to
communicate with a cloud

e Provider specializes a given
API, e.g., regions

e Support major APIs: Atmos,
Azure, Google, S3, Swift

e Support many providers:
Glacier, HP, Rackspace

9/29

APIs and Providers (2)

amazon Emc B
openstack

’) "L;nnglt Cloud Platform O SCALITY "@

(/) Cloud Services € Cleversafe basho

Bm Windows Azure m
 SwiftStack ()

D &605 Fives cenh

DrEumUhjE(TS CIOUdiun ame Lt D_;-A T A

10729

Regions

e Most public providers offer
multiple geographic regions

e Usually associate a container
with a given region

e Some providers can replicate
between regions
automatically, others offer a
per-object cross-region copy

11729

Containers

e Containers can contain many
named objects

e Some providers have partial
directory support

e Some providers allow public-
read access containers

12729

Objects

e Objects have a name, stream
of bytes, and metadata map

e Must write entire stream of
bytes but can read ranges

e Metadata map includes
standard HTTP headers, e.g.,
Content-Type: text/plain and
arbitrary user headers, e.g., x-
amz-meta-foo: bar 13/ 29

Example put and get

try (BlobStoreContext context = ContextBuilder
.newBuilder("transient")
.credentials("identity", "credential")
.buildView(BlobStoreContext.class)) {

BlobStore blobStore = context.getBlobStore();

ByteSource payload = ByteSource.wrap(
new byte[] { 1, 2, 3, 4 });

Blob blob = blobStore.blobBuilder(blobName)
.payload(payload)
.contentLength(payload.size())
Lbuild();

blobStore.putBlob(containerName, blob);

blob = blobStore.getBlob(
containerName, blobName);
try (InputStream is =
blob.getPayload().openStream()) {
ByteStreams.copy(is, 0s);

y 14/ 29

Consistency (1)

e Some blobstores have weak
semantics and can return
stale data for some time

e putBlob(name, data1),
putBlob(name, data2),
getBlob(name) can return
datal or data2

15729

Consistency (2)

o Applications may need retry
loops or other fallback logic

e S3 (standard region) and Swift
have various forms of
eventual consistency

e Atmos, Azure, and GCS have
strong consistency, more like
a file system

16/ 29

Data integrity (1)

e Provider guarantees object
Integrity at-rest via content
hash

e Application can guarantee
object integrity on-the-wire by
providing and verifying
Content-MD5 header

e Guava has useful helpers

171729

Data integrity (2)

e Guarantee integrity during
putBlob:

ByteSource payload = ByteSource.wrap(
new byte[] { 1, 2, 3, 4 });

Blob blob = blobStore.blobBuilder(blobName)
.payload(payload)
.contentLength(payload.size())
.contentMD5 (payload.hash(Hashing.md5()))
Lbuild();

blobStore.putBlob(containerName, blob);

e This reads InputStream twice 18 / 29

Data integrity (3

e Guarantee integrity during
getBlob:

Blob blob = blobStore.getBlob(containerName, blob);
HashCode md5 = HashCode.fromBytes(blob.getMetadata()

.getContentMetadata().getContentMD5());
try (HashingInputStream his = new HashingInputStream(

blob.getPayload().openStream()),
Hashing.md5()) {
ByteStreams.copy(his, 0s);
if (md5.equals(his.hash())) {
throw new IOException();

}

19729

Large object sizes

e Some objects may not fit in
memory or in a byte[]

e Non-repeatable payloads, e.g.,
InputStream

e Repeatable payloads, e.g.,
Guava ByteSource, can retry
after network failure

20/ 29

Multi-part upload

e Some objects are too large for
a single put operation, e.g.,
AWS S3 > 5 GB, Azure > 64 MB

e jclouds abstracts these details
via:

blobStore.putBlob(containerName, blob,
new PutOptions().multipart());

21729

Many objects

e Amazon S3 supports an
arbitrary number of objects
per container
e Swift recommends max
500,000 objects per container
e Atmos recommends max
65,536 objects per directory
e Solution: shard over multiple
containers or directories 22 /29

URL signing (1)

e Most object stores allow
creating a URL which your
application can vend to
external clients

1. request URL @
@ 2. vend signed URL

3. access object

23 /29

URL signing (2)

e URL is cryptographically
signed; allows time-limited
access to a single object

e Clients interact directly with
the object store, removing
your application as the
bottleneck

24 / 29

Amazon Glacier

e Optimized for storage, not
retrieval

e Read requests can take
several hours to complete

e Least expensive public cloud

orovider, often cheaper than

orivate cloud

25/ 29

Local blobstores

e In-memory (transient)
appropriate for unit testing

e Filesystem has production
uses with limited number of
objects or quantity of data

e Remote clients require
running a HTTP server and
implementing authorization

26/ 29

jclouds-cli

e Command-line tool useful for
administrative and debugging
tasks:

jclouds blobstore container-list \
--provider aws-s3 \
--identity $IDENTITY \
--credential $CREDENTIAL
jclouds blobstore write \
--provider aws-s3 \
--identity $IDENTITY \
--credential $CREDENTIAL \
$CONTAINER NAME $O0BJECT NAME $FILE_NAME

2717129

References

e https://github.com/jclouds/jclouds-

examples
e https://github.com/andrewgaul/s3prox:
e http://gaul.org/object-store-

comparison/

28 /29

https://github.com/jclouds/jclouds-examples
https://github.com/andrewgaul/s3proxy
http://gaul.org/object-store-comparison/

Thank you!

http://jclouds.apache.org/
http://gaul.org/

29/ 29

http://jclouds.apache.org/
http://gaul.org/

