
CouchDB-based system for data management
in a Grid environment

Implementation and Experience

Hassen Riahi
IT/SDC, CERN

Outline

§  Context
§  Problematic and strategy
§  System architecture
§  Integration and deployment models
§  Experience and lessons learnt

17	
 November	
 2014	
 Hassen	
 Riahi	
 	
 2	

Who am I?

Hassen	
 Riahi	
 	
 3	

§  Experiment distributed computing support
for 7 years

§  Working in the implementation/integration of
solutions for data movement and monitoring
for experiments @CERN

17	
 November	
 2014	

CERN and Large Hadron Collider
experiments

Hassen	
 Riahi	
 	
 4	
 17	
 November	
 2014	

§  The Large Hadron Collider
(LHC) is a particle accelerator

§  It collides beams of protons
at an energy of 14 TeV

§  It has a circumference of
27km, is located 100mt
underground

§  It has four major detectors:
ALICE, ATLAS, CMS, LHCb

WLCG: Worldwide LHC Computing Grid

Hassen	
 Riahi	
 	
 5	
 17	
 November	
 2014	

CERN	
 center	
 	

Online	
 system	

Use-case: Distributed data analysis in
CMS

Hassen	
 Riahi	
 	
 6	
 17	
 November	
 2014	

§  1000 individual users
per month

§  More than 60 sites
§  20k jobs/hour
§  Typically 1 file/job

§  Files vary in size

§  200k completed jobs
per day

§  Minimal latencies
§  Chaotic environment

Outline

§  Context
§  Problematic and strategy
§  System architecture
§  Integration and deployment models
§  Experience and lessons learnt

17	
 November	
 2014	
 Hassen	
 Riahi	
 	
 7	

Problematic

§  15% to 20% of the jobs fail and about 30 to 50%
of the failures are due to the jobs not being able to
upload their output data to a remote disk storage
§  Between 5% and 10% of jobs fail in the remote copy of

outputs
§  the overall CPU loss is even higher than 5-10% since

those jobs fail at the end of the processing
§  often it results in DDoS to CMS Tier-2 storage systems

Hassen	
 Riahi	
 	
 8	
 17	
 November	
 2014	

AsyncStageOut (ASO) is implemented to reduce
the most common failure mode of analysis jobs

Asynchronous stage-out strategy

Hassen	
 Riahi	
 	
 9	
 17	
 November	
 2014	

ASO algorithm

1.  The analysis jobs copy locally the outputs to the
temp area of the local storage

2.  The transfer requests are uploaded into ASO from
a data source (Worker Nodes, Workload
Management system…)

3.  The ASO tool:
1.  Creates, schedules and manages jobs to transfer the

user files from the local storage to the target
destination

2.  Manages the publication of the transferred files into
experiment’s data catalogue

3.  Updates the status of the file
4.  The output is available to the user

Hassen	
 Riahi	
 	
 10	
 17	
 November	
 2014	

Outline

§  Context
§  Problematic and strategy
§  System architecture
§  Integration and deployment models
§  Experience and lessons learnt

17	
 November	
 2014	
 Hassen	
 Riahi	
 	
 11	

Why CouchDB?

§  Fast prototyping of new systems thanks to the
schema-less nature of CouchDB

§  Fast implementation of the Web monitoring
§  No particular deployment of the monitoring is

required since it is encapsulated into CouchDB
§  Rapidly incorporate new types of data
§  Easy communication with external tools across

the CouchDB REST interface
§  The easy replication and the integrated

caching of CouchDB should provide a highly
scalable and available system to face the new
challenges

Hassen	
 Riahi	
 	
 12	
 17	
 November	
 2014	

Implementation and technologies

Hassen	
 Riahi	
 	
 13	

§  Implemented in Python as a standalone tool with
modular approach

§  Organized as set of components loosely coupled
and communicating across a database

§  Rely only on CouchDB as input and data storage
§  Highly configurable tool: max_transfer_retry,

max_files_per_transfer, data_source, …

§  Plugin-based architecture: data placement and
bookkeeping
§  Independence of Grid/Experiment technologies

17	
 November	
 2014	

Architecture

Hassen	
 Riahi	
 	
 14	
 17	
 November	
 2014	

Transfer document

Hassen	
 Riahi	
 	
 15	
 17	
 November	
 2014	

Monitoring implementation

§  The Map/Reduce views of CouchDB are
visualized across Protovis
§ Migration to D3.js is on-going

§  The monitoring application is
encapsulated into CouchDB server as
CouchApp

Hassen	
 Riahi	
 	
 16	
 17	
 November	
 2014	

Some monitoring plots

Hassen	
 Riahi	
 	
 17	
 17	
 November	
 2014	

Outline

§  Context
§  Problematic and strategy
§  System architecture
§  Integration and deployment models
§  Experience and lessons learnt

17	
 November	
 2014	
 Hassen	
 Riahi	
 	
 18	

Integration

Hassen	
 Riahi	
 	
 19	
 17	
 November	
 2014	

Authentication/Validation

Hassen	
 Riahi	
 	
 20	

§  The authentication with CouchDB is performed using the X509
Proxy Certificate
§  Using custom authentication handler

§  Document update validation:

17	
 November	
 2014	

Deployment models

Hassen	
 Riahi	
 	
 21	
 17	
 November	
 2014	

Outline

§  Context
§  Motivations and strategy
§  System architecture
§  Integration and deployment models
§  Experience and lessons learnt

17	
 November	
 2014	
 Hassen	
 Riahi	
 	
 22	

Commissioning tests
§  Application and CouchDB were deployed in 1 VM with 8 VCPU, 15 GB

of RAM and 200 GB of disk storage

§  Scale up to 1.5 the production load (20 k files/h - 200 k completed
files/day)
§  300k files/day inject ~ 100k files each 8 hours

Hassen	
 Riahi	
 	
 23	
 17	
 November	
 2014	

Commissioning experience

§  ASO can manage load peak of more than 20k
files/h without critical error or crashes

§  Nearly 60 GB of disk storage were consumed
by the CouchDB
§  More than 90 % has been used for views caching

§  The average CPU idle time was almost stable
at 90%

§  The RAM was always almost fully consumed
during the processing time
§  Most probably the delays seen would be reduced

by increasing the RAM for accessing the cached
views

Hassen	
 Riahi	
 	
 24	
 17	
 November	
 2014	

Production results

Hassen	
 Riahi	
 	
 25	

Ø  ASO is in production since June 2014

§  More than 800 TB transferred during the last 3 months
§  Peak of 750k files per week

17	
 November	
 2014	

Production environment

Hassen	
 Riahi	
 	
 26	

17	
 November	
 2014	

§  Hardware
§  2 physical nodes (migration to VMs is ongoing)
§  CouchDB: 8 Cores and 24 GB RAM
§  ASO application: 24 Cores and 32 GB RAM

§  ASO Database

Size	
 Opera*on	

§  Average	
 database	
 size:	
 20	
 GB	

§  3	
 Design	
 docs:	
 33	
 views	

§  Average	
 number	
 of	
 docs:	
 800k	

§  Upgrade:	
 1	
 Ome/month	

§  CompacOon:	
 2	
 Omes/day	

	

Problem 1: Database upgrade

Hassen	
 Riahi	
 	
 27	

§  During this first phase of production
we need to upgrade the database once
per month to include new features

§  CouchDB spends more than 24 hours
for views index generation ASO is off
during this operation

§  CMS users cannot perform physics analysis
for more than 1 day

17	
 November	
 2014	

Solution

Hassen	
 Riahi	
 	
 28	

1)  Start a fresh CouchDB instance at each
upgrade while keeping the old one
running
§  Requires development to support load

balancing over separated couch instances
§  Increases CouchDB operation efforts

2) Upload the new design document in a
replicated database, trigger the view
index generation offline and switch once
it is completed

17	
 November	
 2014	

Problem 2: Compaction

08	
 January	
 2014	
 Hassen	
 Riahi	
 	
 29	

Often I/O wait time is close to 10 % in 8 cores frequent I/O bottlenecks

Map function improvement

Hassen	
 Riahi	
 	
 30	
 17	
 November	
 2014	

Reduce function improvement

Hassen	
 Riahi	
 	
 31	
 17	
 November	
 2014	

Results

Hassen	
 Riahi	
 	
 32	

Time	
 for	

Index	

generaOon	

Total	
 number	

of	
 views	

Views	
 size	

IniOally	
 28	
 hours	
 33	
 30	
 GB	

AVer	
 views	

clean	
 up	

17	
 hours	
 25	
 17	
 GB	

AVer	
 views	

code	

improvement	

25	
 minutes	
 30	
 15	
 GB	

17	
 November	
 2014	

Conclusions

§  Fast system and Web monitoring prototyping
§  The system has shown satisfactory performances
§  Database operation issues are understood

§  They are mainly addressed by views code improvement

§  Promising technology for other applications (data
analytics, data mining…)

§  Looking forward to your feedbacks and
suggestions!

Hassen	
 Riahi	
 	
 33	
 17	
 November	
 2014	

References

Hassen	
 Riahi	
 	
 34	
 17	
 November	
 2014	

§  CERN: http://home.web.cern.ch/
§  CMS: http://cms.web.cern.ch/
§  ASO: https://github.com/dmwm/AsyncStageout

§  Protovis: http://mbostock.github.io/protovis
§  D3js: http://d3js.org/

Hassen	
 Riahi	
 	
 35	

Thank you for your
attention!

hassen.riahi@cern.ch

17	
 November	
 2014	

