
From OAuth1 to OAuth2 with
Apache CXF and Hawk

Sergey Beryozkin, Talend

What is Apache CXF ?

● Production quality Java framework for
developing REST and SOAP web services

● CXF 3.0.2: JAX-RS 2.0, JAX-WS 2.2

● Major focus on the web services security:
WS-Security, OAuth1/2, JOSE, immediate
and public reaction to security issues

● Active community, healthy project
environment

What is OAuth ?

● Allows third party clients such as web
servers or mobile applications to access
server resources on behalf of their owner

● Owners authorize the access via the
redirection without sharing their secrets

● Major theme in the HTTP services world:
drives relevant innovations, popularises
the subject of web security, helps enrich
the applications

History of OAuth

● 1.0: Eran Hammer-Lahav, RFC 5849, Apr
2010, implemented by many providers

● 2.0: The working group starts its work,
Eran joins and eventually leaves

● 2.0: RFC 6749 is released in Oct 2012

● 2.0: Actively supported, many related
enhancements are being developed

● The 1.0 vs 2.0 controversy is lingering

OAuth1 Diagramm

Key OAuth1 Features

● Classic flow requires a 3-step 'dance':
getting a temp request token, getting an
authorization verifier, exchanging the
temp token and the verifier for the
access token

● Support for Proof Of Possession and the
'best effort' data and replay protection
with the clients using its secret and token
keys to create a signature

OAuth1 Pros, Cons and Praise

● Proved to be functional and popular,
opened a new chapter in the world of
secure HTTP services: Great Effort !

● PoP, data integrity and replay protection

● 3-step dance is complex, simpler flows
are not standardized

● Only SHA1 signature algorithms; keys are
sent over TLS but only in plain text

OAuth2 Code Diagramm

Brief OAuth2 Overview

● Authorization code flow is simpler than
OAuth1: a step involving a temp token
request is dropped

● Many flows, grant and token types

● Some flows require the extra care
(implicit flow), no PoP from the get go

● OAuth2 drives a lot of the innovation
(OIDC, can utilize JOSE, etc), it will stay

From OAuth1 to OAuth2

● Developers who like OAuth1 value the
PoP feature but OAuth2 does not have a
standardized PoP scheme yet... (wait for
a later slide though :-))

● Actually, Eran did author a MAC token
draft before he left the OAuth2 group...

● OAuth2 is very extensible – non standard
authentication schemes are OK, so...

What is Hawk

● Eran and others did work on the MAC
scheme and how it can be used with
OAuth2 (draft-hammer-oauth-v2-mac-
token-05, see Links)

● Hawk has its roots in that spec; it is a
new scheme, better version of OAuth1
scheme; documented not to be related to
OAuth2, no reason not to use it when
migrating to OAuth2 though :-)

What does Hawk Client do ?

● The Hawk client gets a secret (MAC) key
out-of-band

● The Hawk client creates a Hawk scheme:
“Authorization: Hawk id="...", ts="...",
nonce="...", mac="..."”

● The sequence capturing various request
properties, a body hash, is signed

● hueniverse/hawk at GitHub for more info

OAuth2 Access Token and Hawk

● “{ “access_token”:”123”,
“token_type”:”hawk”, “secret”:”678” }”

● Authorization: Hawk id=”123” mac=”...”

● OAuth2 'access_token' -> Hawk 'id'

● OAuth2 'secret' -> is distributed to the
client as part of the token response and
used to calculate a Hawk 'mac' hash

● OAuth2 PoP will work, Hawk is here now.

Apache CXF and OAuth2

● OAuth2 runtime encapsulates most of the
work a typical OAuth2 server will do.

● AuthorizationCode, ImplicitGrant and
AccessToken JAX-RS services; pluggable
grant and session handlers, validators,
token and code response post-processors

● Developers are mainly focused on getting
the data stored only

Apache CXF, OAuth2 and Hawk

● Server:

ServerAccessToken token = new
HawkAccessToken(...HmacSHA256);

● Client: calculates the hash with the help
of the Client utilitity code

(Code example...)

The Demo

The Demo Continued

OAuth2 and PoP: the latest

● Draft-bradley-oauth-pop-key-distribution-
01: symmetric and asymmetric PoP keys,
keys are JWK formatted, Hmac, RSA-SHA,
Elliptic key signatures

● PoP keys can be JWE-encrypted

● Draft-richer-oauth-signed-http-request-01
– how the signatures can be done

● More sophisticated and capable PoP

OAuth2 and PoP: alternatives

● Use 2-way TLS (client certificates) to
authenticate

● Use JWS to protect the integrity of the
actual payload

● Use JWE to protect the sensistive content

● Combine TLS, JWE and JWS if really
needed

Additional Resources

● More about CXF Security at Apache Con, 17 Nov:

Dennis Sosnoski, “CXF Security and Reliability”, 13.40

Andrei Shakirin, “Secure Services with Apache CXF”,
16.50

● CXF: http://cxf.apache.org/docs/jax-rs-oauth2.html

● Hawk: https://github.com/hueniverse/hawk

● OAuth2 PoP:
http://tools.ietf.org/html/draft-bradley-oauth-pop-key-di
stribution-01

http://cxf.apache.org/docs/jax-rs-oauth2.html
https://github.com/hueniverse/hawk
http://tools.ietf.org/html/draft-bradley-oauth-pop-key-distribution-01
http://tools.ietf.org/html/draft-bradley-oauth-pop-key-distribution-01

Questions ?

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

