From OAuthl to OAuth2 with
Apache CXF and Hawk

Sergey Beryozkin, Talend




What is Apache CXF ?

Production quality Java framework for
developing REST and SOAP web services

CXF 3.0.2: JAX-RS 2.0, JAX-WS 2.2

Major focus on the web services security:
WS-Security, OAuthl/2, JOSE, immediate
and public reaction to security issues

Active community, healthy project
environment



What is OAuth ?

Allows third party clients such as web
servers or mobile applications to access
server resources on behalf of their owner

Owners authorize the access via the
redirection without sharing their secrets

Major theme in the HTTP services world:
drives relevant innovations, popularises
the subject of web security, helps enrich
the applications



History of OAuth

1.0: Eran Hammer-Lahav, RFC 5849, Apr
2010, implemented by many providers

2.0: The working group starts its work,
Eran joins and eventually leaves

2.0: RFC 6749 is released in Oct 2012

2.0: Actively supported, many related
enhancements are being developed

The 1.0 vs 2.0 controversy is lingering



OAuthl Diagramm

Consumer

Service Provider

6.1.1. Consumer Obtains a Request Token >

6.1 Obtaining an Unauthorized Request Tukenbl

6.1.2. Service Provider Issues an Unauthorized Reguest Token

e

6.2 Obtaining User Autl’rorizationbl

5.2.1. Consumer Directs the User to the Service Provider .
Redirect to Service Provider
6.2.2. Service Provider Auﬂ'hen’ldcates the User and Obtains Consent >l
Aumenﬂcébe and Consent

T
6.2.3. Service Provider Directs the User Back to the Consumer >l
Redirect to Consumer N

=

6.3 Obtaining an Access Tokenb|

6.3.1. Consumer Reguests an Access Token
6.3.2. Service Provider Grants an Access Token

Service Provider

User

www.websequencediagrams.com



Key OAuthl Features

Classic flow requires a 3-step 'dance’:
getting a temp request token, getting an
authorization verifier, exchanging the
temp token and the verifier for the
access token

Support for Proof Of Possession and the
'best effort' data and replay protection
with the clients using its secret and token
keys to create a signature



OAuthl Pros, Cons and Praise

Proved to be functional and popular,
opened a new chapter in the world of
secure HTTP services: Great Effort !

PoP, data integrity and replay protection

3-step dance is complex, simpler flows
are not standardized

Only SHA1 signature algorithms; keys are
sent over TLS but only in plain text



TN

400000000 0}

OAuth2 Code Diagramm

User

OAuth2 Authorization Code Flow

Authorization Access Token

Service Service
Request The Service
Redirect to Authorization
< Service |
Authenticate
ca | -
< Client Authorization View
Authorize >
< Redirect to Client with the Code
Deliver the Code
.
New Token With the Code Grant >
|
< REU..II’II'I the Token
Access Protected Resources >
> Provide The Service

Authorization Access Token

Service Service

www.websequencediagrams.com



Brief OAuth2 Overview

Authorization code flow is simpler than
OAuthl: a step involving a temp token
request is dropped

Many flows, grant and token types

Some flows require the extra care
(implicit flow), no PoP from the get go

OAuth2 drives a lot of the innovation
(OIDC, can utilize JOSE, etc), it will stay



From OAuthl to OAuth2

Developers who like OAuthl value the
PoP feature but OAuth2 does not have a
standardized PoP scheme yet... (wait for
a later slide though :-))

Actually, Eran did author a MAC token
draft before he left the OAuth2 group...

OAuth?2 is very extensible - non standard
authentication schemes are OK, so...



What is Hawk

Eran and others did work on the MAC
scheme and how it can be used with
OAuth2 (draft-hammer-oauth-v2-mac-

token-05, see Links)

Hawk has its roots in that spec; it is a
new scheme, better version of OAuthl
scheme; documented not to be related to
OAuth2, no reason not to use it when
migrating to OAuth2 though :-)



What does Hawk Client do ?

The Hawk client gets a secret (MAC) key
out-of-band

The Hawk client creates a Hawk scheme:
“Authorization: Hawk id="...", ts="...",
nonce="..." mac="...""

The sequence capturing various request
properties, a body hash, is sighed

hueniverse/hawk at GitHub for more info



OAuth2 Access Token and Hawk

“{ "access token”:"123",
“token type”:"hawk”, “secret”:"678" }”

Authorization: Hawk id="123" mac="...

OAut

OAut
client

”n

N2 'access_token' -> Hawk 'id'

N2 'secret' -> is distributed to the
as part of the token response and

used to calculate a Hawk 'mac' hash

OAuth2 PoP will work, Hawk is here now.



Apache CXF and OAuth?2

OAuth2 runtime encapsulates most of the
work a typical OAuth2 server will do.

AuthorizationCode, ImplicitGrant and
AccessToken JAX-RS services; pluggable
grant and session handlers, validators,
token and code response post-processors

Developers are mainly focused on getting
the data stored only



Apache CXF, OAuth2 and Hawk

*Server:

ServerAccessToken token = new
HawkAccessToken(...HmacSHA256):

*Client: calculates the hash with the help
of the Client utilitity code

(Code example...)



The Demo

Social.com Service

Barry Social.com

Reqister .
. Login Page
Login .

Calendar and Partner Links

www.websequencediagrams.com



The Demo Continued

Restaurant Reservations

Confirm Reservation

Reserve Social Restaurant

Request a Table >
< Reguest Calendar Access
Grant Access >
Read Calendar >
Book a Table >
Update Calendar._

»

Reserve m Restaurant

www websequencediagrams.com



OAuth2 and PoP: the latest

Draft-bradley-oauth-pop-key-distribution-
01: symmetric and asymmetric PoP keys,
keys are JWK formatted, Hmac, RSA-SHA,
Elliptic key signatures

PoP keys can be JWE-encrypted

Draft-richer-oauth-signed-http-request-01
- how the signhatures can be done

More sophisticated and capable PoP



OAuth2 and PoP: alternatives

*Use 2-way TLS (client certificates) to
authenticate

*Use JWS to protect the integrity of the
actual payload

*Use JWE to protect the sensistive content

*Combine TLS, JWE and JWS if really
needed



Additional Resources

*» More about CXF Security at Apache Con, 17 Nov:
Dennis Sosnoski, “CXF Security and Reliability”, 13.40

Andrei Shakirin, “Secure Services with Apache CXF”,
16.50

o CXF: http://cxf.apache.org/docs/jax-rs-oauth2.html

e Hawk: https://github.com/hueniverse/hawk

* OAuth2 PoP:
http://tools.ietf.org/html/draft-bradley-oauth-pop-key-di
stribution-01


http://cxf.apache.org/docs/jax-rs-oauth2.html
https://github.com/hueniverse/hawk
http://tools.ietf.org/html/draft-bradley-oauth-pop-key-distribution-01
http://tools.ietf.org/html/draft-bradley-oauth-pop-key-distribution-01

Questions ?



Thank You



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

