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Performance constraints

* Memory
* Disk
* Network



Tuning (CPU) Queries

* Phrase query

» Boolean query (AND)

* Boolean query (OR)

* Wildcard

* Fuzzy

* Soundex

* ...roughly in order of increasing cost

* Query performance inversely proportional to
matches (doc frequency) 3



Tuning (CPU) Queries

* Reduce frequent-term queries
— Remove stopwords

— Try CommonGramskilter
— Index pruning (advanced)

* Some function queries match ALL
documents - terribly inefficient



Tuning (CPU) Queries

* Make efficient use of caches
— Watch those eviction counts

— Beware of NOW in date range queries. Use NOW/
DAY or NOW/HOUR

— No need to cache every filter
» Use fg={lcache=false}year:[2005 TO *]
» Specify cost for non-cached filters for efficiency

— fg={!geofilt sfield=location pt=22,-127 d=50
cache=false cost=50}

» Use PostFilters for very expensive filters
(cache=false, cost > 100) 5



Tuning (CPU) Queries

* Warm those caches
— Auto-warming
— Warming queries
* firstSearcher
* newSearcher
* Merged Segment Warmer



Tuning (CPU) Queries

* Stop using primitive number/date fields if you are performing
range queries

— facet.query (sometimes) or facet.range are also range
queries

* Use Trie* Fields

* When performing range queries on a string field (rare use-
case), use frange to trade off memory for speed

— It will un-invert the field

— No additional cost is paid if the field is already being used
for sorting or other function queries

— fg={!frange I=martin u=rowling}author_last_name instead of
fg=author_last_name:[martin TO rowling] 7



Tuning (CPU) Queries

* Faceting methods

— facet.method=enum - great for less unique
values

* facet.enum.cache.minDf - use filter cache
or iterate through DocsEnum

— facet.method=fc

— facet.method=fcs (per-segment)

* facet.sort=Index faster than facet.sort=count
but useless in typical cases



Tuning (CPU) Queries

* Terms query parser
* Large number of terms OR’ed together
* ACLs

* ReRankQueryParser
— Like a PostFilter but for queries!

— Run expensive queries at the very last
— Solr 4.9+ only (soon to be released)



Tuning (CPU) Queries

* Divide and conquer
— Shard’em out
— Use multiple CPUs

— Sometime multiple cores are the answer
even for small indexes and specially for
high-updates
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Tuning Memory Usage

* Use DocValues for sorting/faceting/grouping

* There are docValueFormats: {‘default’,
‘memory’, ‘direct’} with different trade-offs.

— default - Helps avoid OOM but uses disk
and OS page cache

— memory - compressed In-memory format

— direct - no-compression, iN-mMemory
format
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Tuning Memory Usage

* Use version as a doc-values field

* Reduce the stack size for threads -Xss
especially if you run a lot of cores

* termindexinterval - Choose how often terms
are loaded into term dictionary. Default is
128.
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Tuning Memory Usage

Garbage Collection pauses Kill search
performance

GC pauses expire ZK sessions in SolrCloud
leading to many problems

Large heap sizes are almost never the
answer

Leave a lot of memory for the OS page cache

http.//wiki.apache.org/solr/ShawnHeisey
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http://wiki.apache.org/solr/ShawnHeisey

Tuning Disk Usage

* Atomic updates are costlier

— LOO

— LOO

KU

KU

0 from transaction log

0 from Index (all stored fields)

— Combine

— Index
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Tuning Disk Usage

* Experiment with merge policies

— TieredMergePolicy is great but
LogByteSizeMergePolicy can be better if
multiple indexes are sharing a single disk

* |ncrease buffer size - ramBufferSizeMB
* maxIndexing Threads
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Tuning Disk Usage

* Always hard commit once in a while
— Best to use autoCommit and maxDocs

— Trims transaction logs
— Solution for slow startup times
» Use autoSoftCommit for new searchers

* commitWithin is a great way to commit
frequently
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Tuning Network

* Batch writes together as much as possible

* Use CloudSolrServer in SolrCloud always

— Routes updates intelligently to correct
leader

* ConcurrentUpdateSolrServer (previously
known as StreamingUpdateSolrServer) for
indexing in non-Cloud mode

— Don’t use it for querying!
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Tuning network

» Share HttpClient instance for all Solrj clients
or just re-use the same client object

* Disable retries on HttpClient
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Tuning Network

* Distributed Search is optimised if you ask for
fl=1d,score only

— Avoid numShard*rows stored field
lookups

— Saves numShard network calls

— Use distrib.singlePass parameter to force
this optimisation

— Use /get for lookup by id
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Tuning Network

» Consider setting up a caching proxy such as squid or varnish
in front of your Solr cluster

— Solr can emit the right cache headers if configured in
solrconfig.xml

— Last-Modified and ETag headers are generated based on
the properties of the index such as last searcher open time

— You can even force new ETag headers by changing the
ETag seed value

— <httpCaching never304="true”><cacheControl>max-
age=30, public</cacheControl></httpCaching>

— The above config will set responses to be cached for 30s
by your caching proxy unless the index is modifed. 20



Avoid wastage

* Don’t store what you don’t need back
— Use stored=false

* Don’t index what you don’t search
— Use indexed=false

* Don’t retrieve what you don’t need back
— Don’t use fl=" unless necessary

— Don’t use rows=10 when all you need is
numFouna
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Reduce indexed info

* omitNorms=true - Use if you don’t need
iIndex-time boosts

* omitTermFregAndPositions=true - Use if you
don’t need term frequencies and positions

— No fuzzy query, no phrase queries

— Can do simple exists check, can do simple
AND/OR searches on terms

— No scoring difference whether the term
exists once or a thousand times 2



DocValue tricks & gotchas

DocValue field should be stored=false,
iINndexed=false

It can still be retrieved using fl=field(my_dv_field)

If you store DocValue field, it uses extra space as a
stored field also.

— In future, update-able doc value fields will be
supported by Solr but they’ll work only if
stored=false, indexed=false

DocValues save disk space also (all values, next to
each other lead to very efficient compression) 23



Distributed Deep paging

* Bulk exporting documents from Solr will
oring it to its knees

* Enter deep paging and cursorMark
parameter

— Specify cursorMark=" on the first request

— Use the returned ‘nextCursorMark’ value
as the nextCursorMark parameter
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Thank you
shalin@apache.org
twitter.com/shalinmangar
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