
High Performance Solr
Shalin Shekhar Mangar

Performance constraints

• CPU
• Memory
• Disk
• Network

2

Tuning (CPU) Queries

• Phrase query
• Boolean query (AND)
• Boolean query (OR)
• Wildcard
• Fuzzy
• Soundex
• …roughly in order of increasing cost
• Query performance inversely proportional to

matches (doc frequency) 3

Tuning (CPU) Queries

• Reduce frequent-term queries
– Remove stopwords
– Try CommonGramsFilter
– Index pruning (advanced)

• Some function queries match ALL
documents - terribly inefficient

4

Tuning (CPU) Queries

• Make efficient use of caches
–Watch those eviction counts
– Beware of NOW in date range queries. Use NOW/

DAY or NOW/HOUR
– No need to cache every filter
• Use fq={!cache=false}year:[2005 TO *]
• Specify cost for non-cached filters for efficiency
– fq={!geofilt sfield=location pt=22,-127 d=50

cache=false cost=50}
• Use PostFilters for very expensive filters

(cache=false, cost > 100) 5

Tuning (CPU) Queries

• Warm those caches
– Auto-warming
–Warming queries
• firstSearcher
• newSearcher

• Merged Segment Warmer

6

Tuning (CPU) Queries

• Stop using primitive number/date fields if you are performing
range queries
– facet.query (sometimes) or facet.range are also range

queries
• Use Trie* Fields
• When performing range queries on a string field (rare use-

case), use frange to trade off memory for speed
– It will un-invert the field
– No additional cost is paid if the field is already being used

for sorting or other function queries
– fq={!frange l=martin u=rowling}author_last_name instead of

fq=author_last_name:[martin TO rowling] 7

Tuning (CPU) Queries

• Faceting methods
– facet.method=enum - great for less unique

values
• facet.enum.cache.minDf - use filter cache

or iterate through DocsEnum
– facet.method=fc
– facet.method=fcs (per-segment)

• facet.sort=index faster than facet.sort=count
but useless in typical cases

8

Tuning (CPU) Queries

• Terms query parser
• Large number of terms OR’ed together
• ACLs

• ReRankQueryParser
– Like a PostFilter but for queries!
– Run expensive queries at the very last
– Solr 4.9+ only (soon to be released)

9

Tuning (CPU) Queries

• Divide and conquer
– Shard’em out
– Use multiple CPUs
– Sometime multiple cores are the answer

even for small indexes and specially for
high-updates

10

Tuning Memory Usage

• Use DocValues for sorting/faceting/grouping
• There are docValueFormats: {‘default’,

‘memory’, ‘direct’} with different trade-offs.
– default - Helps avoid OOM but uses disk

and OS page cache
–memory - compressed in-memory format
– direct - no-compression, in-memory

format
11

Tuning Memory Usage

• Use _version_ as a doc-values field
• Reduce the stack size for threads -Xss

especially if you run a lot of cores
• termIndexInterval - Choose how often terms

are loaded into term dictionary. Default is
128.

12

Tuning Memory Usage

• Garbage Collection pauses kill search
performance

• GC pauses expire ZK sessions in SolrCloud
leading to many problems

• Large heap sizes are almost never the
answer

• Leave a lot of memory for the OS page cache
• http://wiki.apache.org/solr/ShawnHeisey

13

http://wiki.apache.org/solr/ShawnHeisey

Tuning Disk Usage

• Atomic updates are costlier
– Lookup from transaction log
– Lookup from Index (all stored fields)
– Combine
– Index

14

Tuning Disk Usage

• Experiment with merge policies
– TieredMergePolicy is great but

LogByteSizeMergePolicy can be better if
multiple indexes are sharing a single disk

• Increase buffer size - ramBufferSizeMB
• maxIndexingThreads

15

Tuning Disk Usage

• Always hard commit once in a while
– Best to use autoCommit and maxDocs
– Trims transaction logs
– Solution for slow startup times

• Use autoSoftCommit for new searchers
• commitWithin is a great way to commit

frequently

16

Tuning Network

• Batch writes together as much as possible
• Use CloudSolrServer in SolrCloud always
– Routes updates intelligently to correct

leader
• ConcurrentUpdateSolrServer (previously

known as StreamingUpdateSolrServer) for
indexing in non-Cloud mode
– Don’t use it for querying!

17

Tuning network

• Share HttpClient instance for all Solrj clients
or just re-use the same client object

• Disable retries on HttpClient

18

Tuning Network

• Distributed Search is optimised if you ask for
fl=id,score only
– Avoid numShard*rows stored field

lookups
– Saves numShard network calls

– Use distrib.singlePass parameter to force
this optimisation

– Use /get for lookup by id
19

Tuning Network

• Consider setting up a caching proxy such as squid or varnish
in front of your Solr cluster
– Solr can emit the right cache headers if configured in

solrconfig.xml
– Last-Modified and ETag headers are generated based on

the properties of the index such as last searcher open time
– You can even force new ETag headers by changing the

ETag seed value
– <httpCaching never304=“true”><cacheControl>max-

age=30, public</cacheControl></httpCaching>
– The above config will set responses to be cached for 30s

by your caching proxy unless the index is modifed. 20

Avoid wastage

• Don’t store what you don’t need back
– Use stored=false

• Don’t index what you don’t search
– Use indexed=false

• Don’t retrieve what you don’t need back
– Don’t use fl=* unless necessary
– Don’t use rows=10 when all you need is

numFound
21

Reduce indexed info

• omitNorms=true - Use if you don’t need
index-time boosts

• omitTermFreqAndPositions=true - Use if you
don’t need term frequencies and positions
– No fuzzy query, no phrase queries
– Can do simple exists check, can do simple

AND/OR searches on terms
– No scoring difference whether the term

exists once or a thousand times 22

DocValue tricks & gotchas

• DocValue field should be stored=false,
indexed=false

• It can still be retrieved using fl=field(my_dv_field)
• If you store DocValue field, it uses extra space as a

stored field also.
– In future, update-able doc value fields will be

supported by Solr but they’ll work only if
stored=false, indexed=false

• DocValues save disk space also (all values, next to
each other lead to very efficient compression) 23

Distributed Deep paging

• Bulk exporting documents from Solr will
bring it to its knees

• Enter deep paging and cursorMark
parameter
– Specify cursorMark=* on the first request
– Use the returned ‘nextCursorMark’ value

as the nextCursorMark parameter

24

Distributed deep paging

25

Thank you
shalin@apache.org

twitter.com/shalinmangar

mailto:shalin@apache.org
http://twitter.com/shalinmangar

