High Performance Solr

Shalin Shekhar Mangar

"'/'rr

Y W |
(\l l\‘//.”/, >
ROP




Performance constraints

* Memory
* Disk
* Network



Tuning (CPU) Queries

* Phrase query

» Boolean query (AND)

* Boolean query (OR)

* Wildcard

* Fuzzy

* Soundex

* ...roughly in order of increasing cost

* Query performance inversely proportional to
matches (doc frequency) 3



Tuning (CPU) Queries

* Reduce frequent-term queries
— Remove stopwords

— Try CommonGramskilter
— Index pruning (advanced)

* Some function queries match ALL
documents - terribly inefficient



Tuning (CPU) Queries

* Make efficient use of caches
— Watch those eviction counts

— Beware of NOW in date range queries. Use NOW/
DAY or NOW/HOUR

— No need to cache every filter
» Use fg={lcache=false}year:[2005 TO *]
» Specify cost for non-cached filters for efficiency

— fg={!geofilt sfield=location pt=22,-127 d=50
cache=false cost=50}

» Use PostFilters for very expensive filters
(cache=false, cost > 100) 5



Tuning (CPU) Queries

* Warm those caches
— Auto-warming
— Warming queries
* firstSearcher
* newSearcher
* Merged Segment Warmer



Tuning (CPU) Queries

* Stop using primitive number/date fields if you are performing
range queries

— facet.query (sometimes) or facet.range are also range
queries

* Use Trie* Fields

* When performing range queries on a string field (rare use-
case), use frange to trade off memory for speed

— It will un-invert the field

— No additional cost is paid if the field is already being used
for sorting or other function queries

— fg={!frange I=martin u=rowling}author_last_name instead of
fg=author_last_name:[martin TO rowling] 7



Tuning (CPU) Queries

* Faceting methods

— facet.method=enum - great for less unique
values

* facet.enum.cache.minDf - use filter cache
or iterate through DocsEnum

— facet.method=fc

— facet.method=fcs (per-segment)

* facet.sort=Index faster than facet.sort=count
but useless in typical cases



Tuning (CPU) Queries

* Terms query parser
* Large number of terms OR’ed together
* ACLs

* ReRankQueryParser
— Like a PostFilter but for queries!

— Run expensive queries at the very last
— Solr 4.9+ only (soon to be released)



Tuning (CPU) Queries

* Divide and conquer
— Shard’em out
— Use multiple CPUs

— Sometime multiple cores are the answer
even for small indexes and specially for
high-updates

10



Tuning Memory Usage

* Use DocValues for sorting/faceting/grouping

* There are docValueFormats: {‘default’,
‘memory’, ‘direct’} with different trade-offs.

— default - Helps avoid OOM but uses disk
and OS page cache

— memory - compressed In-memory format

— direct - no-compression, iN-mMemory
format

11



Tuning Memory Usage

* Use version as a doc-values field

* Reduce the stack size for threads -Xss
especially if you run a lot of cores

* termindexinterval - Choose how often terms
are loaded into term dictionary. Default is
128.

12



Tuning Memory Usage

Garbage Collection pauses Kill search
performance

GC pauses expire ZK sessions in SolrCloud
leading to many problems

Large heap sizes are almost never the
answer

Leave a lot of memory for the OS page cache

http.//wiki.apache.org/solr/ShawnHeisey

13


http://wiki.apache.org/solr/ShawnHeisey

Tuning Disk Usage

* Atomic updates are costlier

— LOO

— LOO

KU

KU

0 from transaction log

0 from Index (all stored fields)

— Combine

— Index

14



Tuning Disk Usage

* Experiment with merge policies

— TieredMergePolicy is great but
LogByteSizeMergePolicy can be better if
multiple indexes are sharing a single disk

* |ncrease buffer size - ramBufferSizeMB
* maxIndexing Threads

15



Tuning Disk Usage

* Always hard commit once in a while
— Best to use autoCommit and maxDocs

— Trims transaction logs
— Solution for slow startup times
» Use autoSoftCommit for new searchers

* commitWithin is a great way to commit
frequently

16



Tuning Network

* Batch writes together as much as possible

* Use CloudSolrServer in SolrCloud always

— Routes updates intelligently to correct
leader

* ConcurrentUpdateSolrServer (previously
known as StreamingUpdateSolrServer) for
indexing in non-Cloud mode

— Don’t use it for querying!

17



Tuning network

» Share HttpClient instance for all Solrj clients
or just re-use the same client object

* Disable retries on HttpClient

18



Tuning Network

* Distributed Search is optimised if you ask for
fl=1d,score only

— Avoid numShard*rows stored field
lookups

— Saves numShard network calls

— Use distrib.singlePass parameter to force
this optimisation

— Use /get for lookup by id

19



Tuning Network

» Consider setting up a caching proxy such as squid or varnish
in front of your Solr cluster

— Solr can emit the right cache headers if configured in
solrconfig.xml

— Last-Modified and ETag headers are generated based on
the properties of the index such as last searcher open time

— You can even force new ETag headers by changing the
ETag seed value

— <httpCaching never304="true”><cacheControl>max-
age=30, public</cacheControl></httpCaching>

— The above config will set responses to be cached for 30s
by your caching proxy unless the index is modifed. 20



Avoid wastage

* Don’t store what you don’t need back
— Use stored=false

* Don’t index what you don’t search
— Use indexed=false

* Don’t retrieve what you don’t need back
— Don’t use fl=" unless necessary

— Don’t use rows=10 when all you need is
numFouna

21



Reduce indexed info

* omitNorms=true - Use if you don’t need
iIndex-time boosts

* omitTermFregAndPositions=true - Use if you
don’t need term frequencies and positions

— No fuzzy query, no phrase queries

— Can do simple exists check, can do simple
AND/OR searches on terms

— No scoring difference whether the term
exists once or a thousand times 2



DocValue tricks & gotchas

DocValue field should be stored=false,
iINndexed=false

It can still be retrieved using fl=field(my_dv_field)

If you store DocValue field, it uses extra space as a
stored field also.

— In future, update-able doc value fields will be
supported by Solr but they’ll work only if
stored=false, indexed=false

DocValues save disk space also (all values, next to
each other lead to very efficient compression) 23



Distributed Deep paging

* Bulk exporting documents from Solr will
oring it to its knees

* Enter deep paging and cursorMark
parameter

— Specify cursorMark=" on the first request

— Use the returned ‘nextCursorMark’ value
as the nextCursorMark parameter

24



Req Time (seconds)

45

3.5

2.5

1.5

0.5

Test C: 2 Nodes. 2 Shards; 155355 results; 'score desc'

Classic Paging »
Cursor Paging

1

Tt

Hr

T

|
I x X £ X . - T

1

40

60
Page # (1000 docs per page)




Thank you
shalin@apache.org
twitter.com/shalinmangar


mailto:shalin@apache.org
http://twitter.com/shalinmangar

