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Ask Bigger Questions

A Native Client for the Hadoop Distributed Filesystem
by Colin P. McCabe
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About Me

e | work on HDFS and related storage technologies at

Cloudera.
e Committer on the HDFS and Hadoop projects.

e Previously worked on the Ceph distributed
filesystem
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The Hadoop Distributed Filesystem

HDES is the most popular
storage system for Hadoop.

Based on the concepts of
robustness, fault-tolerance,
and bringing the
computation to the data
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HDFS Provides a Shared Namespace

DFSClient DFSClient
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HDFS Java Client

FileSystem

FileContext

DistributedFileSystem

Hdfs

DFSClient
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Accessing HDFS from a non-JVM Language

e The HDFS client is implemented in Java.

e How can C and C++ (or even Python) code access
HDES?

o libhdfs
o webhdfs
o libwebhdfs
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libhdfs

e A thin JNI wrapper around the code in Hadoop’s
FileSystem.java.

JNI

FileSystem

DistributedFileSystem

DFSClient
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libhdfs

Difficult to debug because it’s INI (no gdb, signals)
Requires HDEFS jars to be deployed on every client
Long startup time (must start up a JVM.)
Misnamed: can access other FSes besides HDFS
But: still the most widely used way of interfacing
native code with HDFS.
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webhdfs

® Exposes a REST API for HDFS

e Creating HTTP requests is convenient in many languages (but
not so much in C/ C++...)

e Many optimizations not possible (short-circuit, mmap, etc.)

HTTP/1.1 200 OK
Content-Type: application/json
Transfer-Encoding: chunked
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libwebhdfs

e A Clibrary that makes webhdfs requests
e More convenient for C and C++ programs than
creating HTTP requests manually

e Doesn’t require the Hadoop jars installed on every
machine

e Not as mature as libhdfs
e Same performance disadvantages as raw webhdfs
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hdfs.h

e The Cand C++ API for libwebhdfs and libhdfs
e Backwards-compatible

/**
* Create an HDFS builder.
*
* @return The HDFS builder, or NULL on error.
*/
struct hdfsBuilder *hdfsNewBuilder(void);

/**
* Set the username to use when connecting to the HDFS cluster.
*

* @param bld The HDFS builder
* @param userName The user name. The string will be shallow-copied.
*/
void hdfsBuilderSetUserName(struct hdfsBuilder *bld, const char *userName);
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Fully Native Library

e Quick startup time (no need to start a JVM)

e Doesn’t require Hadoop jars installed everywhere

e Can support short-circuit and zero-copy
optimizations

e None of the debugging issues with JNI
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Goals

e Usability
o Create a client usable from C, C++, Objective C,
and other non-JVM languages
o Support the existing libhdfs.h API, which many
programs have been written against

o Cross-platform support: Linux, Windows, other
UNIXes...
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Goals

e Deployability
o Don’t require the Hadoop jars to be installed to
function
o Read existing HDFS configuration XMLs
o Provide a shared library that can be linked into
existing applications
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Goals

e Deployability
o ldeally, libhdfs3 can linked against existing code
which uses libhdfs or libwebhdfs and “just work”
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Goals

e Maintainability
o Create a client which the Hadoop community can
maintain in the future
o Good code quality
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Non-Goals

e Server implementations
o libhdfs3 is only a client library; it doesn’t include
implementations of the HDFS servers.
e Completely replacing other access methods
o Other access methods have different strengths
o libhdfs can access non-HDFS filesystems and make
use of new Java client features more quickly than
a native client.

cloudera




Roadmap

Motivations
Design goals
Progress
Challenges
Future work

cloudera




Progress

e HADOOP-10388 branch

o Started by myself, Abraham Elmarek, Binglin
Chan, and Wenwu Peng.

o A Cclient with implementations of all NameNode
RPCs

o Has an async Hadoop RPCv9 client
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Progress

e HDFS-6994 branch
o Based on code contributed by Zhanwei Wang and
other folks at Pivotal
o Reviews and additional code by myself, Haohui
Mai, and others
o C++ code with support for Kerberos, NameNode
HA, and the client read and write paths.
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Merger

e HDFS-6994 branch supersedes HADOOP-10388
branch

e Move over any useful code or features from
HADOOP-10388, and merge our efforts.
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Cleanup

Remove pre-RPCv9 code

Add appropriate Apache headers

Use standard Hadoop file name conventions
Fix some naming issues and calling conventions
CMake cleanup
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Integration

e Use the protobuf files from the Hadoop source
rather than a bundled set of files

® Integrate into source tree

e (Still to do) integrate with the Maven build cycle

e (Still to do) Fix configuration parsing issues
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Implementation

Implement InputStream functionality

Implement file system functionality

(in progress) Implement hdfs.h interface

(in progress) Implement OutputStream functionality
(in progress) Implement testing
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Dependency Fixes

e Remove category X library dependencies and extra
dependencies that might cause problems
e Remove non-threadsafe library dependencies
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C++11

e Many nice features

e std::thread, std::chrono, std::shared_ptr
o Widely used
o Cross platform

e But... not supported everywhere yet.

e Compatibility challenges
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C++11 Issues

Client
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C++11 Issues
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Potential Solutions to C++11 Conundrums

e Avoid C++11 features
o Use trl, or our own code

e Link statically against libstdc++ or libc++ (very
difficult)
® Use Boost
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Boost

e ... has implementations of std::thread, std::chrono,
and many other C++11 libraries

Can work with C++98

Has its own compatibility issues

A heavyweight dependency

Use as “stepping stone” to C++117
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New Client Features

e The Java HDFS client is always getting new features
o Encryption at rest support
o “Hedged” reads
o etc...

e The native client can reimplement these features,
but it will probably always lag behind when doing so
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Client Fallback

® Can the HDFS client fall back from libhdfs3 to libhdfs,
if it requires a feature that libhdfs3 doesn’t have?

e Some work on this in HDFS-7041: add a library that
can forward hdfs.h calls to any other library
implementation
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Open Issues

e Library name
o Does “libhdfs3” sound too much like version 3.0
of the unrelated libhdfs library?
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Open Issues

e Code style

o We need a uniform C++ code style across
Hadoop... so far, we don’t have that

o Exceptions vs. return codes

o Google Coding style?
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Future Work

e Windows support
o Need to wrap POSIX functions
o UCS-2 issues on Windows?
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Future Work

e C++ API
o should be shared between libhdfs, libwebhdfs,
and libhdfs3
o Must avoid exposing library internals
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Conclusion

e |libhdfs3 will soon be a viable option for native clients
to interface with HDFS

e Many advantages over existing methods

e Thanks to everyone who has helped with this
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Thanks for Listening!

http://www.cloudera.com/careers
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