cloudera

Ask Bigger Questions

A Native Client for the Hadoop Distributed Filesystem
by Colin P. McCabe

.
LA AT TR 7 i
Vb s T W5 LI TAAL 2T
2L T IFLL 7 T T 7k,
Rt Tl T Tl 7
PRI A Al L

About Me

e | work on HDFS and related storage technologies at

Cloudera.
e Committer on the HDFS and Hadoop projects.

e Previously worked on the Ceph distributed
filesystem

cloudera

Roadmap

Motivations
Design goals
Progress
Challenges
Future work

cloudera

The Hadoop Distributed Filesystem

HDES is the most popular
storage system for Hadoop.

Based on the concepts of
robustness, fault-tolerance,
and bringing the
computation to the data

cloudera

HDFS Provides a Shared Namespace

DFSClient DFSClient

‘\\\\\\\\ /user/cmccabe/tpcds 1 ‘///////i
/user/cmccabe/reports

/user/awang/reports

|

DFSClient

cloudera

HDFS Java Client

FileSystem

FileContext

DistributedFileSystem

Hdfs

DFSClient

Cloudera

Accessing HDFS from a non-JVM Language

e The HDFS client is implemented in Java.

e How can C and C++ (or even Python) code access
HDES?

o libhdfs
o webhdfs
o libwebhdfs

cloudera

libhdfs

e A thin JNI wrapper around the code in Hadoop’s
FileSystem.java.

JNI

FileSystem

DistributedFileSystem

DFSClient

cloudera

libhdfs

Difficult to debug because it’s INI (no gdb, signals)
Requires HDEFS jars to be deployed on every client
Long startup time (must start up a JVM.)
Misnamed: can access other FSes besides HDFS
But: still the most widely used way of interfacing
native code with HDFS.

cloudera

webhdfs

® Exposes a REST API for HDFS

e Creating HTTP requests is convenient in many languages (but
not so much in C/ C++...)

e Many optimizations not possible (short-circuit, mmap, etc.)

HTTP/1.1 200 OK
Content-Type: application/json
Transfer-Encoding: chunked

cloudera

libwebhdfs

e A Clibrary that makes webhdfs requests
e More convenient for C and C++ programs than
creating HTTP requests manually

e Doesn’t require the Hadoop jars installed on every
machine

e Not as mature as libhdfs
e Same performance disadvantages as raw webhdfs

cloudera

hdfs.h

e The Cand C++ API for libwebhdfs and libhdfs
e Backwards-compatible

/**
* Create an HDFS builder.
*
* @return The HDFS builder, or NULL on error.
*/
struct hdfsBuilder *hdfsNewBuilder(void);

/**
* Set the username to use when connecting to the HDFS cluster.
*

* @param bld The HDFS builder
* @param userName The user name. The string will be shallow-copied.
*/
void hdfsBuilderSetUserName(struct hdfsBuilder *bld, const char *userName);

©2014 Cloudera, Inc. All rights reserved. C|0Udera

Fully Native Library

e Quick startup time (no need to start a JVM)

e Doesn’t require Hadoop jars installed everywhere

e Can support short-circuit and zero-copy
optimizations

e None of the debugging issues with JNI

cloudera

Roadmap

Motivations
Design goals
Progress
Challenges
Future work

cloudera

Goals

e Usability
o Create a client usable from C, C++, Objective C,
and other non-JVM languages
o Support the existing libhdfs.h API, which many
programs have been written against

o Cross-platform support: Linux, Windows, other
UNIXes...

cloudera

Goals

e Deployability
o Don’t require the Hadoop jars to be installed to
function
o Read existing HDFS configuration XMLs
o Provide a shared library that can be linked into
existing applications

cloudera

Goals

e Deployability
o ldeally, libhdfs3 can linked against existing code
which uses libhdfs or libwebhdfs and “just work”

cloudera

Goals

e Maintainability
o Create a client which the Hadoop community can
maintain in the future
o Good code quality

cloudera

Non-Goals

e Server implementations
o libhdfs3 is only a client library; it doesn’t include
implementations of the HDFS servers.
e Completely replacing other access methods
o Other access methods have different strengths
o libhdfs can access non-HDFS filesystems and make
use of new Java client features more quickly than
a native client.

cloudera

Roadmap

Motivations
Design goals
Progress
Challenges
Future work

cloudera

Progress

e HADOOP-10388 branch

o Started by myself, Abraham Elmarek, Binglin
Chan, and Wenwu Peng.

o A Cclient with implementations of all NameNode
RPCs

o Has an async Hadoop RPCv9 client

cloudera

Progress

e HDFS-6994 branch
o Based on code contributed by Zhanwei Wang and
other folks at Pivotal
o Reviews and additional code by myself, Haohui
Mai, and others
o C++ code with support for Kerberos, NameNode
HA, and the client read and write paths.

cloudera

Merger

e HDFS-6994 branch supersedes HADOOP-10388
branch

e Move over any useful code or features from
HADOOP-10388, and merge our efforts.

cloudera

Cleanup

Remove pre-RPCv9 code

Add appropriate Apache headers

Use standard Hadoop file name conventions
Fix some naming issues and calling conventions
CMake cleanup

cloudera

Integration

e Use the protobuf files from the Hadoop source
rather than a bundled set of files

® Integrate into source tree

e (Still to do) integrate with the Maven build cycle

e (Still to do) Fix configuration parsing issues

cloudera

Implementation

Implement InputStream functionality

Implement file system functionality

(in progress) Implement hdfs.h interface

(in progress) Implement OutputStream functionality
(in progress) Implement testing

cloudera

Dependency Fixes

e Remove category X library dependencies and extra
dependencies that might cause problems
e Remove non-threadsafe library dependencies

cloudera

Roadmap

Motivations
Design goals
Progress
Challenges
Future work

cloudera

C++11

e Many nice features

e std::thread, std::chrono, std::shared_ptr
o Widely used
o Cross platform

e But... not supported everywhere yet.

e Compatibility challenges

cloudera

C++11 Issues

Client

P>

libhdfs3.s0

\/

libstdc++

cloudera

C++11 Issues

Client

|

libhdfs3.s0

old libstdc++

|

new libstdc++

cloudera

Potential Solutions to C++11 Conundrums

e Avoid C++11 features
o Use trl, or our own code

e Link statically against libstdc++ or libc++ (very
difficult)
® Use Boost

cloudera

Boost

e ... has implementations of std::thread, std::chrono,
and many other C++11 libraries

Can work with C++98

Has its own compatibility issues

A heavyweight dependency

Use as “stepping stone” to C++117

cloudera

New Client Features

e The Java HDFS client is always getting new features
o Encryption at rest support
o “Hedged” reads
o etc...

e The native client can reimplement these features,
but it will probably always lag behind when doing so

cloudera

Client Fallback

® Can the HDFS client fall back from libhdfs3 to libhdfs,
if it requires a feature that libhdfs3 doesn’t have?

e Some work on this in HDFS-7041: add a library that
can forward hdfs.h calls to any other library
implementation

cloudera

Open Issues

e Library name
o Does “libhdfs3” sound too much like version 3.0
of the unrelated libhdfs library?

cloudera

Open Issues

e Code style

o We need a uniform C++ code style across
Hadoop... so far, we don’t have that

o Exceptions vs. return codes

o Google Coding style?

cloudera

Roadmap

Motivations
Design goals
Progress
Challenges
Future work

cloudera

Future Work

e Windows support
o Need to wrap POSIX functions
o UCS-2 issues on Windows?

cloudera

Future Work

e C++ API
o should be shared between libhdfs, libwebhdfs,
and libhdfs3
o Must avoid exposing library internals

cloudera

Conclusion

e |libhdfs3 will soon be a viable option for native clients
to interface with HDFS

e Many advantages over existing methods

e Thanks to everyone who has helped with this

cloudera

Thanks for Listening!

http://www.cloudera.com/careers

cloudera

http://www.cloudera.com/careers
http://www.cloudera.com/careers

