
Putting the C
back in
CouchDB

Joan Touzet - wohali

Who am I?
CouchDB

Contributor / User (~2008)
Committer (Feb 2013)
PMC member (April 2014)

IBM Cloudant
Engineer (2012-2013)
Sr. SW Development Manager (2014-)

2

So much to discuss…

This talk is focused on clustering in
CouchDB 2.0.

I’m sneaking in slides on Query as well.

I’m happy to discuss any other new 2.0
features during the Q&A portion of the talk.

3

Part 1:
Motivation

4

1989: “Non-SQL bi-directional synchronization”

5

2005: bi-directional synchronization reborn

6

Apache Incubator in Feb 2008

Top Level Project in Nov 2008

1.0 release in July 2010

2010: CMS Detector, LHC, CERN

7

In 2010, adopted CouchDB

Est. 10 petabytes / year

Built & operated by:
3800 people
from 182 institutes
in 42 countries
…who all need the data!

But it wasn’t enough…

8

But it wasn’t enough…

Cluster
Of
Unreliable
Commodity
Hardware

9
Sunburned by Emily Hildebrand

EVOLVE OR PERISH!

10

Source: Sony Online Entertainment (Used with permission)

Part 2:
Clustering

11

CouchDB needed scaling.
Vertical scaling (bigger single server) has
upper bounds and is a Single Point of
Failure (SPOF).

Horizontal scaling (more servers in
parallel) creates more true capacity.

Transparent to the application: adding
more capacity should not affect the
business logic of the application.

12

What if…

13

The BigCouch Solution

14

Load
Balancer
(haproxy)

BigCouch
Cluster

Clients
(same as
always!)

The BigCouch Clustered Solution

15

The Clustered Solution

16

Easily add more storage with more cluster nodes

Compute power (indexes, compaction, etc.) scales
linearly with number of nodes

No SPOFs: nodes can come and go

Clustering is entirely transparent to the application

Can optimize intra-cluster communication

(Caveats will be discussed.)

Clustering Parameters

17

Terminology comes from the 2007 Amazon Dynamo paper:
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html

Nodes - # of machines in the cluster
N - # of copies/replicas of the data
Q - # of unique shards for a database
R - read quorum
W - write quorum

of Nodes

18

Typically multiples of 3

Nodes = 3, Nodes = 6, Nodes = 18, Nodes = 24…

Nodes = 1 still supported!

Nodes = 6

N - # of copies/replicas of the data

19

On write, store N copies of data

Configurable per DB at creation time

Default is 3

Rarely changed

N = 3

N - # of copies/replicas of the data

20

Node Computes:

1. key = hash(doc._id)
2. get_shards(key) ==> shard
3. get_nodes(shard) ==> [N1,N3,N4]
4. Nodes.foreach: store(doc)

N = 3

What are shards?

21

PUT /db7/docid92

Which nodes get docid92?
1. key = hash(“docid92”)
2. get_shards(key) ==> shard
3. get_nodes(shard) ==> [N1,N3,N4]
4. Nodes.foreach: store(doc)

Q - # of unique shards for a database

22

Nodes = 6
N = 3
Q = 8

Total shards = 24
Shards per node = 4

Default is 8

Configurable per DB at creation time

Total Shards = Q × N
Default = 8 × 3 = 24

Recommend Q is a multiple of # of nodes

Q sets your degree of parallelism

Example Shard Map

23

Q = 8, N = 3, Nodes = 3
means 24 shards, 8 on each node

See for yourself on a dev setup:
install jq, then:

$ curl -­‐X PUT http://localhost:15984/db7

{"ok": true}

$ curl http://localhost:15986/dbs/db7 \

 | jq .by_node

Try adding ?q=4 to the PUT, or add 3 more nodes!

{
 "node1@127.0.0.1": [
 "00000000-1fffffff",
 "20000000-3fffffff",
 "40000000-5fffffff",
 "60000000-7fffffff",
 "80000000-9fffffff",
 "a0000000-bfffffff",
 "c0000000-dfffffff",
 "e0000000-ffffffff"
],

 "node2@127.0.0.1": [
 "00000000-1fffffff",
 "20000000-3fffffff",
 "40000000-5fffffff",
 "60000000-7fffffff",
 "80000000-9fffffff",
 "a0000000-bfffffff",
 "c0000000-dfffffff",
 "e0000000-ffffffff"
],

 "node3@127.0.0.1": [
 "00000000-1fffffff",
 "20000000-3fffffff",
 "40000000-5fffffff",
 "60000000-7fffffff",
 "80000000-9fffffff",
 "a0000000-bfffffff",
 "c0000000-dfffffff",
 "e0000000-ffffffff"
]
}

How do indexes work?

24

Built locally for each shard

View shards build in parallel, using all CPUs

Merge-sort responses at query time

“But how do I pick Q?”

25

General Rule:
If the cluster has just a few large DBs, use large Q.
If the cluster has many small DBs, use small Q.

of shards defines your degree of parallelism.
Consider the number of disk spindles & CPU cores in the cluster.

Each shard file should be 10GB or less.
Bigger shard files can adversely affect compaction.

Large # of writes at load will require more shards.

When all else fails, experiment with different values under load.

R - Read Quorum

26

When does DB say “here it is”?
➾ When enough nodes say “here it is”

What is “enough”?

➾ Try to read it from N Nodes

➾ When “R” nodes reply and agree, respond

Default: R = 2 (majority)

R = 1 will minimise latency

R = N will maximise consistency (but not a guarantee!)

GET /db7/docid92

W - Write Quorum

27

PUT /db7/docid92

When does DB say “written”?
➾ When enough nodes have written

What is “enough”?

➾ Try to store all replicas (N copies)

➾ When “W” nodes reply, after fsync to disk

Default: W = 2 (majority)

W = 1 will maximise latency

W = N will maximize consistency (but not a guarantee!)

Read and Write Quorum

28

r can be specified at query time, w can be specified at write time

Inconsistencies are repaired at read time

Pay attention to your HTTP status codes & returned messages!

200 – OK

201 – wrote successfully, quorum met

202 – quorum on write wasn’t met || batch mode || bulk with conflicts

400 – format was invalid

403 – unauthorized

404 – resource not found

409 – document conflict, or no rev specified

412 – database already exists

Caveats

29

_changes feed works similarly to CouchDB 1.x, but has no global ordering

CouchDB is an AP system, not a CP system!

Clustered API listens on port 5984

by_sequence key is now an opaque string, not an integer.

rereduce=true for all MapReduce views, always

‘Backdoor’ access listens on port 5986

Able to reach a single node (i.e. at the shard level)

Allows you to trigger local view updates, compactions, etc.

Part 3:
Query

30

Introducing Query

31

New declarative query language for accessing your data

Easy for developers to learn and use when coming from a SQL world

Establishing a NoSQL Document Database standard based on MongoDB’s query language
syntax

{
 "index": {
 "fields": ["foo"]
 },
 "name": "foo-­‐index",
 "type": "json"
}

{
 "selector": {
 "bar": {"$gt": 1000000}
 },
 "fields": ["_id", "_rev", "foo", "bar"],
 "sort": [{"bar": "asc"}],
 "limit": 10,
 "skip": 0
}

EVOLVE OR PERISH!

32

Source: Sony Online Entertainment (Used with permission)

Query Technical Overview

33

Two new API endpoints: /_index and /_find

Query indexes are implemented as MapReduce functions behind the scenes

Natively compiled in Erlang versus interpreted JavaScript functions

It is NOT a 1:1, fully-compatible mapping with MongoDB

Fields must be indexed before they can be queried

Extra functionality, such as aggregation, is not available but is a likely addition to future
versions

Full docs available today at https://docs.cloudant.com/api/cloudant-query.html

Query Comparison 4 Ways

34

SQL MongoDB

CouchDB MapReduce view
1) Create design document:

SELECT *
FROM people
WHERE age > 25
AND age <= 50;

db.people.find(
 { age: { $gt: 25, $lte: 50 } }
)

{
 "_id": "_design/userview",
 "views": {
 "byAge": {
 "map": "function(doc){\n\t if (doc.type==\"user\" && doc.age) {\n\t\t emit(doc.age, null);\n\t}\n}" }
 },
 "language": "javascript"
}

2) Wait for view to build  
3) Command line:

curl http://localhost:5984/people/_design/userview/_view/byAge?startkey=25&endkey=50

Query Comparison 4 Ways

35

Query
curl -X POST 'http://localhost:5984/users/_find' -d
'{
 "selector": {
 "age": {
 "$gt": 25,
 "$lte": 50
 }
 }
}'

Creating a new Query Index

36

POST http://localhost:5984/<database>/_index

Create an index in a specified DB by POSTing an
appropriate JSON object to the
/<database>/_index endpoint

All fields included in the indexing request then
become searchable through the _find URL
endpoint

POST /db/_index
Content-­‐Type: application/json

{
 "index": {
 "fields": ["foo"]
 },
 "name": "foo-­‐index",
 "type": "json"
}

Retrieving Index Information

37

GET http://localhost:5984/<database>/_index

Returns a list of all indexes in a specified DB with a
GET request to a specific /<database>/_index
endpoint

Each index created using Query is placed in its own
design document with a unique identifier

Executing a Query

38

POST http://localhost:5984/<database>/_find

Query against a database's index by POSTing to
the /<database>/_find endpoint

The JSON must contain a selector object, and can
contain any of these optional parameters:
fields, sort, limit, skip, r

Sorting and Filtering a Query

39

Filtering returns a subset of fields. _id and _rev are not automatic.
Filtering fields do not have to be indexed.
curl -X POST 'https://<accountname>.cloudant.com/movies/_find' -d
'{
 "fields": ["Movie_name", "Movie_year"],
 "selector": {
 "Person_name": "Alec Guinness",
 "Movie_year": {"$gt": 1960}
 }
}'

Sort with a basic array of fields and direction parameters.
One sort field must be in the selector. All sort fields must be indexed.
curl -X POST 'https://<accountname>.cloudant.com/movies/_find' -d
'{
 "selector": {
 "Actor_name": "Robert De Niro",
 "Movie_year": {"$gt": 1960}
 },
 "sort": [{"Actor_name": "asc"}, {"Movie_runtime": "asc"}]
}'

Refining a Query

40

Query against an index and refine the result set by applying conditions
on fields beyond the original index.

Find all De Niro films from a specific year (1978)

In this example, only Person_name is indexed. If you select on a field often, index it.

Some notes…

41

You decide which fields are indexed. They are not created automatically.

Selector syntax supports combination and condition operators.

{ “name”: “Paul” } ⟺ { “name”: { “$eq”: “Paul” } }

{ “name”: “Paul”, “location”: “Boston” }

{ “location”: { “city”: “Omaha” } } ⟺ { “location.city”: “Omaha” }

{ “age”: { “$gt”: 20 } }

Query Combination Operators

42

Operator Usage

$and Matches if all selectors in the array match

$or Matches if any selectors in the array match

$not Matches if the given selector does not match

$nor Matches if none of the selectors (multiple) match

$all Matches an array value if it contains all element of argument array

$elemMatch Returns first element (if any) matching value of argument

‘Combination Operators’ take a single argument (either
a selector or an array of selectors) for combination

‘Condition Operators’ (next slide) are specified on a per-
field basis, and apply to the value indexed for that field.

Query Condition Operators

43

Operator Usage
$lt Less than
$lte Less than or equal to
$eq Equal to
$ne Not equal to
$gt Greater than
$gte Greater than or equal to
$exists Boolean (exists or it does not)
$type Check document field’s type
$in Field must exist in the provided array of values
$nin Field must not exist in the provided array of values
$size Length of array field must match this value
$mod [Divisor, Remainder]. Returns true when the field equals the

remainder after being divided by the divisor.
$regex Matches provided regular expression

Thank you for listening!

couchdb.apache.org
github.com/apache/couchdb

@wohali

44Joan Touzet - @wohali – http://www.atypical.net/

