UTTING TH

-GUCHOF

Joan Touzet - wohali

HO AM

CouchDB
Contributor / User (~2008)
Committer (Feb 2013)
PMC member (April 2014)

IBM Cloudant
Engineer (2012-2013)
Sr. SW Development Manager (2014-)

S0 MUCH TO DISCUSS. ..

This talk is focused on clustering in
CouchDB 2.0.

I'm sneaking in slides on Query as well.

| I'm happy to discuss any other new 2.0
| features during the Q&A portion of the talk.

1989: "Non-5QL bi-directional synchronization”

. Workspace at Hotel - Lotus Notes [_ 8] X]
] File Edt View Create Window

19
' Catalogs | | Vertical Market Data

N

Millennia Order Millennia Requisition
Tracking Contracts Approval

Global Client

Susan Alexander Tracking

Winter Catalog

Inventory Account Team Biartonm Susan's Address
Management Discussion Book

Web Mavigator

@ ILIJ > o (WU

5 10 e 19

Conference

;
Susan's Journal =

Proposals Integration Team

|
__|

kI

2005: bi-directional synchronization reborn

Apache Incubatorin Feb 2008

Top Level Project in Nov 2008

1.0 release in July 2010

License [=»
Downloads
Road Map

Documentation
Introduction
Overview
FAQ
Wik [=5

Get Involved
Mailing Lists
Issue Tracking
Source Code
Coding Standards
Committers

Apache
incubator

The CouchDB Project

Apache CouchDB is a distributed, fault-tolerant and schema-free
document-oriented database accessible via a RESTful HTTP/JSON API.
Among other features, it provides robust, incremental replication with
bi-directional conflict detection and resolution, and is queryable and
indexable using a table-oriented view engine with JavaScript acting as the
default view definition language.

HITP CLIENT |

CouchDB is written in Erlang, but can be easily accessed from any
environment that provides means to make HTTP requests. There are a
multitude of third-party client libraries that make this even easier for a
variety of programming languages and environments.

See the introduction and the technical overview for more information.
Disclaimer

Apache CouchDB is an effort undergoing incubation at The Apache
Software Foundation (ASF), sponsored by the Apache Incubator PMC.
Incubation is required of all newly accepted projects until a further review
indicates that the infrastructure, communications, and decision making
process have stabilized in a manner consistent with other successful ASF
projects. While incubation status is not necessarily a reflection of the
completeness or stability of the code, it does indicate that the project has
yet to be fully endorsed by the ASF.

News

2008-02-12: Accepted for Incubation

2010: CMS Detector, LHC, CERN

In 2010, adopted CouchDB

Est. 10 petabytes / year

Built & operated by:
3800 people
from 182 institutes
in 42 countries
...who all need the data!

But it wasn't enough...

But it wasn't enough...

Cluster .
Of

Unreliable

Commodity

Hardware

Sunburned by Emily Hildebrand

Source: Sony Online Entertainment (Used with permission)

RT
LUSTERING

11

CouchDB needed scaling.

Vertical scaling (bigger single server) has
upper bounds and is a Single Point of
Failure (SPOF).

Horizontal scaling (more servers in
parallel) creates more true capacity.

Transparent to the application: adding
more capacity should not affect the
business logic of the application.

What if...

The BigCouch Solution

A

s 2
o

Load
Balancer
(haproxy)

BigCouch
Cluster

Clients
(same as
always!)

The Bigteuen Clustered Solution

Fg(s)
Internet
& DNS 0

GLOBAL LOAD BALANCING TIER Il LAYER DATABASE CLUSTER

The Clustered Solution

Easily add more storage with more cluster nodes

Compute power (indexes, compaction, etc.) scales
linearly with number of nodes

No SPOFs: nodes can come and go
Clustering is entirely transparent to the application
Can optimize intra-cluster communication

(Caveats will be discussed.)

DATABASE CLUSTER

Clustering Parameters

Terminology comes from the 2007 Amazon Dynamo paper:
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html

E

Nodes - # of machines in the cluster f
N - # of copies/replicas of the data
Q - # of unique shards for a database

R - read quorum ?

W - write quorum i>

t of Nodes

Typically multiples of 3

Nodes =3, Nodes =6, Nodes =18, Nodes = 24...

Nodes = 1 still supported!

- of copies/replicas of the data

On write, store N copies of data
Configurable per DB at creation time
Default is 3

Rarely changed

- of copies/replicas of the data

Node Computes:

1. key = hash(doc._id)

2. get_shards(key) ==> shard

3. get_nodes(shard) ==> [N1,N3,N4]
4. Nodes.foreach: store(doc)

\What are shards?

PUT /db7/docid92

“author” : “John Smith”,

“subject” : “I like fish”,
“posted_date” : “2013-02-28",
“tags” : [“fish”, “ocean”, “food”],
“body” : “I like to cook and eat fish.”

Which nodes get docid92?

1. key = hash(“docid92”)
2.get_shards(key) ==> shard
3.get_nodes(shard) ==> [N1,N3,N4]
4. Nodes.foreach: store(doc)

Q - # of unique shards for a database

Defaultis 8

Configurable per DB at creation time

Nodes =6
N=3
Total Shards=Q x N 0=8
Default=8x3=24 Total shards = 24
Shards per node =4

Recommend Q is a multiple of # of nodes

Q sets your degree of parallelism

Example Shard Map

Q=8,N=3,Nodes=3 ' "node1@127.0.0.1": [
means 24 shards, 8 on each node ’

"node2@127.0.0.1": [

See for yourself on a dev setup:
install jq, then:

$ curl -X PUT http://localhost:15984/db7 | e
{"ok": true}
$ curl http://localhost:15986/dbs/db7 \

| jg .by_node

Try adding ?q=4 to the PUT, or add 3 more nodes!

How do indexes work?

Built locally for each shard
View shards build in parallel, using all CPUs

Merge-sort responses at query time

“But how do | pick Q?”

General Rule:
If the cluster has just a few large DBs, use large Q.
If the cluster has many small DBs, use small Q.

of shards defines your degree of parallelism.
Consider the number of disk spindles & CPU cores in the cluster.

Each shard file should be 10GB or less.
Bigger shard files can adversely affect compaction.

Large # of writes at load will require more shards.

When all else fails, experiment with different values under load.

R - Read Quorum

When does DB say “here it is”?

=> When enough nodes say “here it is”

What is “enough™?

=> Try to read it from N Nodes

=> When “R” nodes reply and agree, respond
Default: R = 2 (maijority)

R =1 will minimise latency

R =N will maximise consistency (but not a guarantee!)

W - Write Quorum

When does DB say “written”?

= When enough nodes have written

What is “enough™?

= Try to store all replicas (N copies)

=> When “W" nodes reply, after fsync to disk
Default: W =2 (majority)

W =1 will maximise latency

W = N will maximize consistency (but not a guarantee!)

Read and Write Quorum

r can be specified at query time, w can be specified at write time

Inconsistencies are repaired at read time

Pay attention to your HTTP status codes & returned messages!
200 - OK

201 - wrote successfully, guorum met

202 - quorum on write wasn’t met || batch mode || bulk with conflicts

400 - format was invalid

403 - unauthorized

404 - resource not found

409 - document conflict, or no rev specified

412 - database already exists

Caveats

_changes feed works similarly to CouchDB 1.x, but has no global ordering

CouchDB is an AP system, not a CP system!

Clustered API listens on port 5984

by sequence key is now an opaque string, not an integer.

rereduce=true for all MapReduce views, always

‘Backdoor’ access listens on port 5986

Able to reach a single node (i.e. at the shard level)

Allows you to trigger local view updates, compactions, etc.

30

Introducing Query

New declarative query language for accessing your data

Easy for developers to learn and use when coming from a SQL world

Establishing a NoSQL Document Database standard based on MongoDB’s query language
syntax

"selector": {
"index": { "bar": {"$gt": 1000000}
"fields": ["foo0"] L
}, "fields": [" _id", " _rev", "foo", "bar"],
"name": "foo-index", "sort": [{"bar": "asc"}],
"type": "json" "limit": 10,
"skip": ©

Source: Sony Online Entertainment (Used with permission)

Query Technical Overview

Two new APl endpoints: /_indexXand /_find

Query indexes are implemented as MapReduce functions behind the scenes

Natively compiled in Erlang versus interpreted JavaScript functions

Itis a 1:1, fully-compatible mapping with MongoDB

Fields must be indexed before they can be queried

Extra functionality, such as aggregation, is not available but is a likely addition to future
versions

Full docs available today at https://docs.cloudant.com/api/cloudant-query.html

Query Comparison 4 \Ways

MongoDB

SELECT * db.people.find(
FROM people { age: { S$gt: 25, $lte: 50 } }

WHERE age > 25)
AND age <= 50;

CouchDB MapReduce view

1) Create design document:

"_id": "_design/userview",
"views": {
"byAge": {

"map": "function(doc){\n\t if (doc.type==\"user\" && doc.age) {\n\t\t emit(doc.age, null);\n\t}\n}" }

i

"language":

}

2) Wait for view to build
3) Command line:

curl http://localhost:5984/people/_design/userview/_view/byAge?startkey=25&endkey=50

Query Comparison 4 \Ways

curl -X POST 'http://localhost:5984/users/ find' -d
|
"selector": {
"age": {
"$gt": 25,
"$lte": 50

Creating a new Query Index

POST http://localhost:5984/<database>/ index

POST /db/_index

Create an index in a specified DB by POSTing an . , .
Content-Type: application/json

appropriate JSON object to the
/<database>/_index endpoint {

"index": {
All fields included in the indexing request then "fields": ["foo"]

become searchable through the find URL E’ S ; o
i name": "foo-index",
endpoint

lltype": lljsonll
I

Retrieving Index Information

GET http://localhost:5984/<database>/ index

Returns a list of all indexes in a specified DB with a
GET request to a specific /<database>/_index

endpoint

Each index created using Query is placed in its own
design document with a unique identifier

Executing a Query

POST nhttp://localhost:5984/<database>/ find

Query against a database's index by POSTing to
the /<database>/ find endpoint

The JSON must contain a selector object, and can

contain any of these optional parameters:
fields, sort, limit, skip, r

}

"selector": {

"Person_name": "Robert De Niro",
"Movie_year": {
Il$gtll: 0
}
}
"fields": [
"Movie_name",
"Movie_year"
1,
"sort": [
"Movie_year"

]

Sorting and Filtering a Query

Sort with a basic array of fields and direction parameters.
One sort field must be in the selector. All sort fields must be indexed.

curl -X POST 'https://<accountname>.cloudant.com/movies/ find' -d
{
"selector": {
"Actor name":
"Movie year": {"S$gt": 1960}
Y
"sort": [{"Actor_name": "asc"}, {"Movie_runtime": "asc"}]

} [

Filtering returns a subset of fields. _id and _rev are not automatic.
Filtering fields do not have to be indexed.

curl -X POST 'https://<accountname>.cloudant.com/movies/ find' -d
{
"fields": [’ 1,
"selector": {
"Person_name":
"Movie year": {"$gt": 1960}
}
p

Refining a Query

Query against an index and refine the result set by applying conditions
on fields beyond the original index.

{
. . . . e “docs": [
Find all De Niro films from a specific year (1978) {
"Movie_genre": "DW",
"Movie_name": "Deer Hunter, The",
{ "Movie_rating": "R",
"selector": { "Movie_runtime"; ;83,
- w, n T "Movie_year": 1978,
"Pers_,on_namﬁ : "Robert De Niro", "Person. dob": "1943-08-17",
Movie_year": 1978 "Person_name": "Robert De Niro",
} "Person_pob": "New York, New York, USA",
} " id": "1f003ce73056238720c2e8f7da428132",
" rev'": "1-3fa59b11f43719f46c288b9bb9943d1d"
}
1
}

In this example, only Person_name is indexed. If you select on a field often, index it.

Some notes...

You decide which fields are indexed. They are not created automatically.

Selector syntax supports combination and condition operators.
{ “name”: “Paul” } < { “name”: { “%$eq”: “Paul” } }
{ “name”: “Paul”, “location”: “Boston™ }

{ “location”: { “city”: “Omaha” } } & { “location.city”: “Omaha” }

{ f(age)J: { (f$gt)): 20 } }

Query Combination Operators

‘Combination Operators’ take a single argument (either
a selector or an array of selectors) for combination

Sand
Sor
Snot
Snor
Sall

SelemMatch

Matches if all selectors in the array match

Matches if any selectors in the array match

Matches if the given selector does not match

Matches if none of the selectors (multiple) match

Matches an array value if it contains all element of argument array

Returns first element (if any) matching value of argument

‘Condition Operators’ (next slide) are specified on a per-
field basis, and apply to the value indexed for that field.

Query Condition Operators

Slt
Slte
Seq
Sne
Sgt
Sgte
Sexists
Stype
Sin
Snin
Ssize
Smod

Sregex

Less than

Less than or equal to

Equal to

Not equal to

Greater than

Greater than or equal to

Boolean (exists or it does not)

Check document field’s type

Field must exist in the provided array of values
Field must not exist in the provided array of values
Length of array field must match this value

[Divisor, Remainder]. Returns true when the field equals the
remainder after being divided by the divisor.

Matches provided regular expression

Thank you for listening!

couchdb.apache.org

github.com/apache/couchdb
@wohali

44

