Reflections on the Design
of Business Applications

Christian Schneider

Introduction

Christian Schneider

Open Source Architect at Talend

Active in several Apache projects (Karaf, Camel,
CXF, Aries)

Focusing on architecture and OSGi

« Good and bad high level structuring

e Separating concerns
* Dependencies
* OSGI benefits and perils

e Camel driven architecture?

Do your packages look
like this?

Technical package structure

Package structure of a backend built with camel
com.mycompany...

.Services
.routes
.converters
.exceptions

So your business is all about apache camel... ?

Technical package structure

Or does this look familiar?
com.mycompany....

frontend
Views
.model
.controller

.backend
.dto
.dao
.exceptions

Typical for a spring based application. Is it better?

Business oriented package structure

Communicate your business functions

com.mycompany.shop

e cart
© Ul
o .model (APl = Service iface, model classes,

exceptions)

o .model.impl (Private)

* .articles classes for a business function together — higher cohesion
 less deps between packages - |lower coupling

@ r different packages when packaged separately

.Checkout

Separating concerns

Separating concerns

* List the concerns you want to check (Business,
Technical) or (Persistence, Business Logic)

* Each concern gets a color

* Then look at classes and color them according to
the concerns they cover

* Each class should only have one color (basically
the single responsibility principle)

* |deally the same can apply for whole packages

Beware of util packages

Util package

Contains everything that does not match other
packages

* Tends to contain classes with very low cohesion
* Indirectly coupling most of your code

* Very difficult to version

Try to avoid util packages
Instead put the classes in more specific packages

Util bundle

- In OSGi rather embed needed classes than installing
util bundles

External dependencies

Dependencies tend to spread

A
A Y T
B C D
» \ ‘ N
E F G

* Dependency numbers tend to multiply for each
layer of libraries

* In the end maven downloads the internet ...

* We as library developers can improve that

External dependencies

* Universal dependencies

Needed in almost all bundles

* Specific Dependencies

Can be limited to layer or single bundle

Universal Dependencies

Used in almost all of the code

Examples:

* Blueprint / Spring

» APIs like for Transaction support
- Commons lang, collections

- Have as few as possible
Disallow single developer to add universal dependencies

Specific Dependencies

» Can be limited to single layer or single bundle

« Template engine / mail sending

Only in single bundle, access using service
* CXF

Only in rest service layer
« JPA/ Hibernate

Only in persistence layer

‘ « Make sure the dependency does not leak outside
» decouple using plain java API bundle
» Works especially well in OSGi

Example

separation of concerns
limiting use of
dependencies

Example template engine for

mailings

Caller

Input input = new TemplateEnginelnput();
input.getTemplateObjectMap().put(“user”, userEntity);
producerTemplate.sendBody(“direct:mailEndpoint”, input);

Route

from(“direct:userMailEndpoint”)
.bean(extractCustomerDataFromSAP)

.bean(applyTemplate)
to(“smtp://mailer@localhost:25?contentType=text/html”)

‘ What could be wrong with that?

Example template engine for

mailings. Better design

Caller

MailData input = new MailData();
input.setEMail(userEntity.getUserEmail());
input.getMap().put(“name”, userkEntity.getUserName());
mailSender.send(input);

Service

Whatever .. just make sure you do not leak the details it out

- Use service with plain java interface

Promises and perils of
OSGI

What does OSGi offer?

» Well defined and versioned dependencies on
package level

* Loose coupling based on versioned APIs

» Self contained modules providing services

Spring OSGi
Module A APl Module A
Module B APl 'Module B
Complexity C(A) * C(B) C(APIA) * C(B) + C(APIB) * C(A)

‘ lowers the complexity of a well designed application considerably

What are the perils?

* Too many small modules

- complexity of wiring and managing the
modules

* APl not minimal or simply all classes public

- Complexity not reduced

* All modules released independently and mixed at
deployment time

- Only works with well managed APIs,
even then difficult to get right

- Can make the OSGilfied version more complex than the original

Microservices with OSGi ?

Servilet Container

1.1 15

War A War B

Separate Classpaths
No conflicts
but lots of duplication

Service A Service B

Shared logic

Plain OSGi

oY)

A

S
1.1 1.5

‘ Shared classpath
Only works if managed
carefully

OSGi with
subsystems
A B
\ \
S
1.1 — 15
 AA
S2

Configurable boundaries
No conflicts
Not yet mature (2014)

Semantic versioning the OSGiI way

* Each API package versioned independently (using
packageinfo file)

* Automatically check vs base line APl using e.q.
maven bundle plugin

* Depending on change package version increased
at minor or major version

‘ Only sane way to do API versioning in OSGi

Camel Is great, so let's
do everything with it ...
really?

i) 1 Camel based design?

40000000005

@Autowire
DetermineBigCustomer determineBigCustomer;

from(REST-ENDPOINT-CHECKOUT)
to(determineBigCustomer)
.when(header(“isBigCustomer”))

to(new BigCustomerDiscount())

.end
to(“direct:checkpriceAndAvailabiltiy”)
.bean(sapConverter)
.bean(sapSender)

What type of data is transmitted ?
Would it be harder to do this logic in plain java?

Why not plain Java?

void checkout(CheckoutData checkoutData) {
Customer customer = checkoutData.getCustomer();
if (isBigCustomer(customer)) {
applyBigCustomerDiscount(checkoutData)
}
SapCheckoutData sapCheckoutData
sapConverter.convertCheckoutData(checkoutData);
sapSender.checkout(sapCheckoutData);

}

» Typesafe interfaces

* Clearly shows what data is use Camel for integration,
processed) Java for business logic,
» As concise as the camel route look for high cohesion

e Easy to debug

What to remember

What to remember ?

» Structure your code according to business
functions not technology

» Separate business code from technical code

* Communicate using well defined APIs

» Use semantic versioning for APIs

* Make most of the classes private to the bundle

* More often use plain java instead of external
libraries

» Limit influence of external libraries to very few
bundles

Some references

e My homepage: http://www.liquid-reality.de

* How OSGi can solve some complexity problems
http://njbartlett.name/2013/02/04/no-solution-for-complexity.htmi

* Critical view on Neil's article and some discussions
http://milen.commsen.com/2013/02/about-complexity-modularity-an
d-osgi.html

* How to do semantic versioning

http://www.osgi.org/wiki/uploads/Links/SemanticVersioning.pdf

http://www.liquid-reality.de/
http://njbartlett.name/2013/02/04/no-solution-for-complexity.html
http://milen.commsen.com/2013/02/about-complexity-modularity-and-osgi.html
http://milen.commsen.com/2013/02/about-complexity-modularity-and-osgi.html
http://www.osgi.org/wiki/uploads/Links/SemanticVersioning.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

