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Introduction

Christian Schneider

Open Source Architect at Talend

Active in several Apache projects (Karaf, Camel,
CXF, Aries)

Focusing on architecture and OSGi



« Good and bad high level structuring

e Separating concerns
* Dependencies
* OSGI benefits and perils

e Camel driven architecture?



Do your packages look
like this?



Technical package structure

Package structure of a backend built with camel
com.mycompany...

.Services
.routes
.converters
.exceptions

So your business is all about apache camel... ?



Technical package structure

Or does this look familiar?
com.mycompany....

frontend
Views
.model
.controller

.backend
.dto
.dao
.exceptions

Typical for a spring based application. Is it better?



Business oriented package structure

Communicate your business functions

com.mycompany.shop

e cart
© Ul
o .model (APl = Service iface, model classes,

exceptions)

o .model.impl (Private)

* .articles classes for a business function together — higher cohesion
 less deps between packages - |lower coupling

@ r  different packages when packaged separately

.Checkout



Separating concerns



Separating concerns

* List the concerns you want to check (Business,
Technical) or (Persistence, Business Logic)

* Each concern gets a color

* Then look at classes and color them according to
the concerns they cover

* Each class should only have one color (basically
the single responsibility principle)

* |deally the same can apply for whole packages



Beware of util packages

Util package

Contains everything that does not match other
packages

* Tends to contain classes with very low cohesion
* Indirectly coupling most of your code

* Very difficult to version

Try to avoid util packages
Instead put the classes in more specific packages

Util bundle

- In OSGi rather embed needed classes than installing
util bundles



External dependencies



Dependencies tend to spread
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* Dependency numbers tend to multiply for each
layer of libraries

* In the end maven downloads the internet ...

* We as library developers can improve that



External dependencies

* Universal dependencies

Needed in almost all bundles

* Specific Dependencies

Can be limited to layer or single bundle



Universal Dependencies

Used in almost all of the code

Examples:

* Blueprint / Spring

» APIs like for Transaction support
- Commons lang, collections

- Have as few as possible
Disallow single developer to add universal dependencies



Specific Dependencies

» Can be limited to single layer or single bundle

« Template engine / mail sending

Only in single bundle, access using service
* CXF

Only in rest service layer
« JPA/ Hibernate

Only in persistence layer

‘ « Make sure the dependency does not leak outside
» decouple using plain java API bundle
» Works especially well in OSGi



Example

separation of concerns
limiting use of
dependencies



Example template engine for

mailings

Caller

Input input = new TemplateEnginelnput();
input.getTemplateObjectMap().put(“user”, userEntity);
producerTemplate.sendBody(“direct:mailEndpoint”, input);

Route

from(“direct:userMailEndpoint”)
.bean(extractCustomerDataFromSAP)

.bean(applyTemplate)
to(“smtp://mailer@localhost:25?contentType=text/html”)

‘ What could be wrong with that?



Example template engine for

mailings. Better design

Caller

MailData input = new MailData();
input.setEMail(userEntity.getUserEmail());
input.getMap().put(“name”, userkEntity.getUserName());
mailSender.send(input);

Service

Whatever .. just make sure you do not leak the details it out

- Use service with plain java interface



Promises and perils of
OSGI



What does OSGi offer?

» Well defined and versioned dependencies on
package level

* Loose coupling based on versioned APIs

» Self contained modules providing services

Spring OSGi
Module A APl Module A
Module B APl 'Module B
Complexity C(A) * C(B) C(APIA) * C(B) + C(APIB) * C(A)

‘ lowers the complexity of a well designed application considerably



What are the perils?

* Too many small modules

- complexity of wiring and managing the
modules

* APl not minimal or simply all classes public

- Complexity not reduced

* All modules released independently and mixed at
deployment time

- Only works with well managed APIs,
even then difficult to get right

- Can make the OSGilfied version more complex than the original



Microservices with OSGi ?

Servilet Container

1.1 15

War A War B

Separate Classpaths
No conflicts
but lots of duplication

Service A Service B

Shared logic

Plain OSGi

oY)

A

S
1.1 1.5

‘ Shared classpath
Only works if managed
carefully

OSGi with
subsystems
A B
\ \
S
1.1 — 15
 AA
S2

Configurable boundaries
No conflicts
Not yet mature (2014)



Semantic versioning the OSGiI way

* Each API package versioned independently (using
packageinfo file)

* Automatically check vs base line APl using e.q.
maven bundle plugin

* Depending on change package version increased
at minor or major version

‘ Only sane way to do API versioning in OSGi



Camel Is great, so let's
do everything with it ...
really?



i) 1 Camel based design?

40000000005

@Autowire
DetermineBigCustomer determineBigCustomer;

from(REST-ENDPOINT-CHECKOUT)
to(determineBigCustomer)
.when(header(“isBigCustomer”))

to(new BigCustomerDiscount())

.end
to(“direct:checkpriceAndAvailabiltiy”)
.bean(sapConverter)
.bean(sapSender)

What type of data is transmitted ?
Would it be harder to do this logic in plain java?



Why not plain Java?

void checkout(CheckoutData checkoutData) {
Customer customer = checkoutData.getCustomer();
if (isBigCustomer(customer)) {
applyBigCustomerDiscount(checkoutData)
}
SapCheckoutData sapCheckoutData
sapConverter.convertCheckoutData(checkoutData);
sapSender.checkout(sapCheckoutData);

}

» Typesafe interfaces

* Clearly shows what data is use Camel for integration,
processed ) Java for business logic,
» As concise as the camel route look for high cohesion

e Easy to debug



What to remember



What to remember ?

» Structure your code according to business
functions not technology

» Separate business code from technical code

* Communicate using well defined APIs

» Use semantic versioning for APIs

* Make most of the classes private to the bundle

* More often use plain java instead of external
libraries

» Limit influence of external libraries to very few
bundles



Some references

e My homepage: http://www.liquid-reality.de

* How OSGi can solve some complexity problems
http://njbartlett.name/2013/02/04/no-solution-for-complexity.htmi

* Critical view on Neil's article and some discussions
http://milen.commsen.com/2013/02/about-complexity-modularity-an
d-osgi.html

* How to do semantic versioning

http://www.osgi.org/wiki/uploads/Links/SemanticVersioning.pdf


http://www.liquid-reality.de/
http://njbartlett.name/2013/02/04/no-solution-for-complexity.html
http://milen.commsen.com/2013/02/about-complexity-modularity-and-osgi.html
http://milen.commsen.com/2013/02/about-complexity-modularity-and-osgi.html
http://www.osgi.org/wiki/uploads/Links/SemanticVersioning.pdf
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