
Using Apache Commons SCXML 2.0
a general purpose and standards based state machine engine

Ate Douma
ASF member and committer

R&D Platform Architect at Hippo B.V., Amsterdam
ate@apache.org / a.douma@onehippo.com

Outline

● SCXML a quick introduction

● Why SCXML?

● A brief history of Commons SCXML

● Commons SCXML 2.0

● Why Commons SCXML?

● High level architecture

● A simple stopwatch demo

● Real use-case: Hippo CMS document workflow

● Status of trunk

● Roadmap

2014-11-17 Using Apache Commons SCXML 2.0 2

SCXML

State Chart XML: State Machine Notation for Control Abstraction

● Developed by the W3C: http://www.w3.org/TR/scxml/

● First Draft: July 5, 2005. Now: Last Call Working Draft 29 May 2014

● uses XML format (duh)

● based on CCXML (Call Control XML) and Harel statecharts (UML).

● defines a generic state-machine based execution environment

● explicit support for ECMAScript and XPath, and other languages

● defines both the XML and a normative algorithm for execution

2014-11-17 Using Apache Commons SCXML 2.0 3

A typical example: a stopwatch

<?xml version="1.0" encoding="UTF-8"?>
<scxml xmlns="http://www.w3.org/2005/07/scxml"
 version="1.0" initial="reset">
 <state id="reset">
 <transition event="watch.start" target="running"/>
 </state>
 <state id="running">
 <transition event="watch.split" target="paused"/>
 <transition event="watch.stop" target="stopped"/>
 </state>
 <state id="paused">
 <transition event="watch.unsplit" target="running"/>
 <transition event="watch.stop" target="stopped"/>
 </state>
 <state id="stopped">
 <transition event="watch.reset" target="reset"/>
 </state>
</scxml>

2014-11-17 Using Apache Commons SCXML 2.0 4

A bit more complex: a microwave

 <datamodel>
 <data id="cook_time" expr="5"/>
 <data id="door_closed" expr="true"/>
 <data id="timer" expr="0"/>
 </datamodel>

 <parallel id="oven">

 <state id="engine"> <state id="door">
 <initial> <initial>
 <transition target="off"/> <transition target="closed"/>
 </initial> </initial>
 <state id="off"> <state id="closed">
 <transition event="turn.on" target="on"/> <transition event="door.open" target="open"/>
 </state> </state>
 <state id="on"> <state id="open">
 <initial> <transition event="door.close" target="closed"/>
 <transition target="idle"/> </state>
 </initial> </state>
 <transition event="turn.off" target="off"/>
 <transition cond="timer ge cook_time" target="off"/>
 <state id="idle">
 <transition cond="In('closed')" target="cooking"/>
 </state>
 <state id="cooking">
 <transition cond="In('open')" target="idle"/>
 <transition event="time">
 <assign location="timer" expr="timer + 1"/>
 </transition>
 </state>
 </state>
 </state>

 </parallel>

2014-11-17 Using Apache Commons SCXML 2.0 5

Why use SCXML?

● Everyone uses some type of state machine implicitly already

● Simple home-brew solutions often mutate into something ugly

● Realization now a 'real' solution is needed, typically comes 'too little, too late'

● Use a generalized state machine like SCXML for:

● improved validation & testing

● standardized state processing rules

● simplified usages

● easier and more controlled extendability and customizations

● hooking up non-intrusive listeners into your process

● The overhead of a 'real' generalized state machine is mostly neglectable

2014-11-17 Using Apache Commons SCXML 2.0 6

A brief history of Commons SCXML

● Started in 2005 ... first release 0.5 in 2007 … last release 0.9 in 2010 ...

● First and only open source Java implementation of the SCXML specification
(other implementations available in Python, C++, Javascript, Lua, etc.)

● Version 0.9 still used a lot, including commercially, for scientific research, etc.

● After 2010 the project stalled while the SCXML specification moved ahead...

● End of 2013 new developers (including me) joined Commons SCXML to revive it

● Specification alignment however was running badly behind

● Catching up requires radical, breaking changes, and is still ongoing

● The next release (sometime 2015) will be Commons SCXML version 2.0

2014-11-17 Using Apache Commons SCXML 2.0 7

Why Commons SCXML?

● Highly customizable and embeddable engine, clean component model

● Easy to extend and plugin your own custom actions, listeners, etc.

● Can be bootstrapped through code only (no XML needed)

● Bring you own (external) data to drive the state machine

● Runtime state can be serialized and persisted

● Supports custom expression/datamodel languages with an SPI to add your own

● Apache Commons JEXL & Commons JXPath, Groovy, (still incomplete) Javascript

2014-11-17 Using Apache Commons SCXML 2.0 8

High level architecture

2014-11-17 Using Apache Commons SCXML 2.0 9

A simple stopwatch demo

Demonstrating a simple stopwatch application:

● using an embedded SCXML engine in a Java Swing application

● wired with a custom SCXMLLister through a socket connection to:

● scxmlgui
A graphical editor for SCXML
finite state machines (ASL 2.0)
https://code.google.com/p/scxmlgui

2014-11-17 Using Apache Commons SCXML 2.0 10

https://code.google.com/p/scxmlgui

Real use-case: Hippo CMS document workflow

Hippo CMS is an open source Content Management System* using
Apache Commons SCXML for its document workflow:

● Used to be 'hand coded' which was rather
difficult to extend and customize

● Content and workflow state is stored in a
JCR (Apache Jackrabbit based) repository

● Workflow process configuration (SCXML)
is now also stored in the repository

● Many workflow processes can be
executing concurrently

● In production using Apache
Commons SCXML 2.0 Milestone 1

* http://www.onehippo.org Apache License 2.0

2014-11-17 Using Apache Commons SCXML 2.0 11

http://www.onehippo.org/

Real use-case: Hippo CMS document workflow

Implementation details:

● http://svn.onehippo.org/repos/hippo/hippo-cms7/repository/trunk/workflow/

(open source, Apache License 2.0)

● Uses custom SCXMLWorkflowContext and SCXMLWorkflowData objects as 'bridge'
between the JCR Repository 'external' context and the SCXML 'internal' context

● All SCXML data is injected dynamically, based on JCR Repository content

● Uses Groovy as expression language

● Custom SCXML Actions implement and execute workflow operation 'commands'

● Workflow definitions can now be customized and extended at runtime

● Online documentation:
http://www.onehippo.org/library/concepts/workflow/scxml-workflow-engine.html

2014-11-17 Using Apache Commons SCXML 2.0 12

http://svn.onehippo.org/repos/hippo/hippo-cms7/repository/trunk/workflow/
http://www.onehippo.org/library/concepts/workflow/scxml-workflow-engine.html

Real use-case: Hippo CMS document workflow

2014-11-17 Using Apache Commons SCXML 2.0 13

Status of trunk

● SCXML processing algorithm rewritten and now aligned with the specification

● Full support for SCXML core model elements and executable content.

● ~ 90%+ completion on data model and data manipulation features
 Full support planned for the upcoming 2.0-m2 test release, soon

● Still running behind on external communications support
Scheduled for the next (and last) milestone 3 test release

● Committed this week: full rewrite of the XPath language support (big impact)

● Also committed this week: SCXML IRP * tests support
currently about 35% tests pass (80/231); 2 weeks ago this was still 10%

● Online documentation hopelessly outdated – will get highest priority to fix next

* SCXML 1.0 Implementation Report Plan: http://www.w3.org/Voice/2013/scxml-irp/

2014-11-17 Using Apache Commons SCXML 2.0 14

http://www.w3.org/Voice/2013/scxml-irp/

Roadmap

http://commons.apache.org/proper/commons-scxml/roadmap.html

● Milestone 0: Cleanup (done, 2014-03-11)

● Dropped support for outdated/broken features

● Milestone 1: SCXML processing Algorithm (done, 2014-04-03)

● Complete redesign and reimplementation of SCXMLSemantics and architecture

● Milestone 2: Data Model and expression language(s) (~90% done, 2014-11-17)

● Complete the XPath support, ECMAScript pending, SCXML IRP tests validation

● Milestone 3: External communication

● Complete support for <invoke> and <send> (data handling almost done)

● Release 2.0 (tentative: 2015) fully compliant with the SCXML specification

2014-11-17 Using Apache Commons SCXML 2.0 15

http://commons.apache.org/proper/commons-scxml/roadmap.html

That's all folks

Please check out the project!
We are very open to contributions and participation

and will welcome any help.

So if you are interested: join the community!

The project: http://commons.apache.org/proper/commons-scxml

The community: http://commons.apache.org/proper/commons-scxml/mail-list.html

The specification: http://www.w3.org/TR/scxml

2014-11-17 Using Apache Commons SCXML 2.0 16

http://commons.apache.org/proper/commons-scxml
http://commons.apache.org/proper/commons-scxml/mail-list.html
http://www.w3.org/TR/scxml

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

