
Apache Maven:
Best Practices

Brett Porter - brett@apache.org

http://www.devzuz.org/blogs/bporter

mailto:brett@apache.org
mailto:brett@apache.org
http://www.devzuz.org/blogs/bporter
http://www.devzuz.org/blogs/bporter

Maven without the PAIN

Sometimes unpleasant

It’s for your own good!

Can avoid or alleviate the problems

2

3

Apache Maven
developer since 2003

Started the Archiva
project

Co-founder of
DevZuz

Co-author of
Better Builds with Maven

Who am I?

Getting Ready for Maven
4

Why are you using Maven?

Consider this from the beginning

Right tool for the job

Ensure you reap the benefits

5

Preparing Your Environment

Planning Ahead

6

Development Environment

7

Maven is best used in the bigger picture

Plan for the infrastructure you will use

<scm>
 <connection>...
 <developerConnection>...
 <url>...
</scm>

<issueManagement>
 <url>...
 <system>...
</issueManagement>

Automated Build Servers

Maven is intended to be automated

More than continuous integration

8

Repository Management

Centralise storage of artifacts

Store the artifacts you build
Store third-party artifacts you consume

9

Repository Servers

Can start with a simple storage

Servers can help manage the artifacts

10

Using Repositories

11

<repository>
 <id>apache-snapshots</id>
 <name>Apache Snapshots Repository</name>
 <url>http://people.apache.org/repo/m2-snapshot-repository</url>
 <releases>
 <enabled>false</enabled>
 </releases>
</repository>

<repository>
 <id>java-net-m1</id>
 <name>Java.net Repository</name>
 <url>http://download.java.net/maven/1/</url>
 <layout>legacy</layout>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
</repository>

<repository>
 <id>apache-snapshots</id>
 <name>Apache Snapshots Repository</name>
 <url>http://people.apache.org/repo/m2-snapshot-repository</url>
 <releases>
 <enabled>false</enabled>
 </releases>
</repository>

<repository>
 <id>java-net-m1</id>
 <name>Java.net Repository</name>
 <url>http://download.java.net/maven/1/</url>
 <layout>legacy</layout>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
</repository>

<repository>
 <id>codehaus-snapshots</id>
 <name>Codehaus Snapshots Repository</name>
 <url>http://snapshots.repository.codehaus.org/</url>
 <releases>
 <enabled>false</enabled>
 </releases>
</repository>

<repository>
 <id>apache-releases</id>
 <name>Apache Releases Repository</name>
 <url>http://people.apache.org/repo/m2-ibiblio-rsync-
repository</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
</repository>

<repository>
 <id>codehaus-releases</id>
 <name>Codehaus Releases Repository</name>
 <url>http://repository.codehaus.org/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
</repository>

Using Repositories

12

<repository>
 <id>java-net-m2</id>
 <name>Java.net Repository</name>
 <url>http://download.java.net/maven/2/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
</repository>

X

Using Repositories

Minimise the number of repositories

Only in the POM if you redistribute

Use repository manager to centralise

13

Locking Down

14

<mirrors>
 <mirror>
 <id>archiva-snapshots-apache</id>
 <url>http://reposerver/archiva/repository/snapshots/</url>
 <mirrorOf>apache.snapshots</mirrorOf>
 </mirror>
 <mirror>
 <id>archiva-snapshots-codehaus</id>
 <url>http://reposerver/archiva/repository/snapshots/</url>
 <mirrorOf>codehaus.snapshots</mirrorOf>
 </mirror>
 ...
 <mirror>
 <id>archiva-default</id>
 <url>http://reposerver/archiva/repository/internal/</url>
 <mirrorOf>*</mirrorOf>
 </mirror>
</mirrors>

http://localhost:7777/archiva/repository/snapshots/
http://localhost:7777/archiva/repository/snapshots/
http://localhost:7777/archiva/repository/snapshots/
http://localhost:7777/archiva/repository/snapshots/
http://localhost:7777/archiva/repository/internal/
http://localhost:7777/archiva/repository/internal/

Settings and Installation

Three levels of configuration

project (pom.xml)
user (~/.m2/settings.xml)
installation (<maven>/conf/settings.xml)

15

Creating New Projects

Keeping it Simple

16

Archetypes

Standard project layouts

Include organisational POM

Facilitates consistency

17

Writing the POM

18

Write the build like you write code

Utilise conventions

Use multiple modules

Inheritance
Multi-module inheritance
<parent>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven</artifactId>
 <version>2.1-SNAPSHOT</version>
</parent>
<artifactId>maven-core</artifactId>

Organisational POM hierarchy
<parent>
 <groupId>org.apache</groupId>
 <artifactId>apache</artifactId>
 <version>3</version>
</parent>
<groupId>org.apache.maven</groupId>
<artifactId>maven</artifactId>
<version>2.1-SNAPSHOT</version>

19

Dependencies

Specify only what you need

Specify scope

Use dependencyManagement to:
coerce Maven to use a particular version
enforce consistency within a project

20

Build Pipeline

Depends on your team

Use profiles for controlling complexity

Applies to testing as well

Key is to keep the build fast

21

22

Scripting

Maven is declarative by design

Integrate scripting if necessary

Consider writing plugins

Documenting as You Go

The D Word

23

Documentation

Document the build

Developer documentation

separate from product documentation
keep it together with reports

24

Sites and Reports

A whole other topic of best practices!

But apply the same principles

set up what you’ll actually use
set up enforcement checks, not just reports

25

Playing with Others

Portability

26

The Goal

27

When a new developer builds the project

it works first go
... and it keeps working

28

maven.test.skip
is evil

Hard Coding

Don’t hard code paths

Don’t hard code databases

Don’t hard code properties

Don’t do it in the tests either

29

Profiles

Very useful - but don’t abuse them

Document them all

Avoid depending on the environment

30

Portable Artifacts

31

<bean
 id="dataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="org.hsqldb.jdbcDriver" />
 <property name="url" value="jdbc:hsqldb:database" />
 <property name="username" value="sa" />
 <property name="password" value="" />
</bean> Xvalue="org.hsqldb.jdbcDriver"

value="jdbc:hsqldb:database"

Portable Artifacts

Artifacts in repository must be unique

Either by classifier, or being portable

Recommend externalising configuration
database
target environment
properties

32

}${
Resource Filtering

Use with great care!

Centralisation, not substitution
✓ google.analytics.code=UA-1234567-1
X database.username=admin

Useful for once-off alterations

Consider externalising configuration

33

Shared Resources

Don’t duplicate resources across projects

ZIP and put in the repository

Use the dependency plugin to retrieve

34

Ensuring Reproducible Builds

Reproducibility

35

Reproducibility

36

Important for releases

More important for source releases

Build must be isolated from change

Portability is a pre-requisite

The Enforcer

37

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-enforcer-plugin</artifactId>
 <version>1.0-alpha-4</version>
 <executions>
 <execution>
 <goals>
 <goal>enforce</goal>
 </goals>
 <configuration>
 <rules>
 <requirePluginVersions>
 <banLatest>true</banLatest>
 <banRelease>true</banRelease>
 </requirePluginVersions>
 </rules>
 </configuration>
 ...

The Enforcer

38

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-enforcer-plugin</artifactId>
 <version>1.0-alpha-4</version>
 <executions>
 <execution>
 <goals>
 <goal>enforce</goal>
 </goals>
 <configuration>
 <rules>
 <requirePluginVersions>
 <banLatest>true</banLatest>
 <banRelease>true</banRelease>
 </requirePluginVersions>
 </rules>
 </configuration>
 ...

<rules>
 <requirePluginVersions>
 <banLatest>true</banLatest>
 <banRelease>true</banRelease>
 </requirePluginVersions>
</rules>

The Enforcer

Help ensure build will be reproducible

Based on rules
force specific plugin versions
ban snapshots
global exclusions
force Maven/Java/OS version
can write your own

39

Release Early, Often and Right

Releasing

40

Releases

Set the project version to a -SNAPSHOT

Make them early and often

Use Maven tools to automate

41

Brett Porter - brett@apache.org

Better Builds with Maven, blog at
http://www.devzuz.org/

Questions?

mailto:brett@apache.org
mailto:brett@apache.org
http://www.devzuz.org
http://www.devzuz.org

