UQU SearchWorkings

Lucene 4 - Next generation open source search

Simon Willnauer
Apache Lucene Core Committer & PMC Chair

simonw@apache.org / simon.willnauer@searchworkings.org

mailto:simonw@apache.org
mailto:simonw@apache.org

Who am [|?

e | ucene Core Committer

¢ Project Management Committee Chair (PMC)
e Apache Member

¢ BerlinBuzzwords Co-Founder

¢ Addicted to OpenSource

http://www.searchworkings.org W

e Community Portal targeting OpenSource Search

W SearchWorkings

PROJECTS RESOURCES FORUM BLOG

Welcome, we can see you are a newbie - let us show you around...

ologies and topics.

SearchWorkings.orq is a\% looking for
a resource where they can discover, nd discuss the latest ,
: » Sign up!

Featured Topics

Free Online Training Featured Blog Entry
APACHE

Integrating Solr with JEE applications £’ The ManifoldCF authorization model LUCENE A

So you have downloaded Getting documents out of a repository and into Solr EUROCON EECEEui sy
Solr, configured it, is only half of the problem, because it is a rare
indexed your data and are repository that does not attempt to restrict access to
now ready to integrate it individual documents based on a user’s...
with the rest of your View in Context »
enterprise Java

application. For most situations, this process will

begin with...

It's time for Apache Lucene EUROCON in Barcelona.
A conference aimed at the European Apache Lucene
/ Solr open source search community. Two key
contributors from SearchWorkings.org have been
asked to participate and will be speakers at the
event.

http://www.searchworkings.org
http://www.searchworkings.org

Agenda

¢ Flexible Indexing

¢ IndexDocValues

e DocumentsWriterPerThread (DWTP)
e Automaton Queries

¢ Random & Pending Improvements

Architecture prior to Lucene 4.0

IndexWriter IndexRBeader

4)

Directory

~_
Y
4)

FileSystem

-~ @ —,,,e

Architecture with Flexible Indexing

Index\Writer A A IndexReader

Flex API

Codec
Directory

. J

| FileSystem |

Inverted Index IndexDocValues Stored Fields Segment Metadata

Codec

' PostingsFormat ' ' DocValuesFormat ' ' FieldsFormat ' ' SegmentinfosFormat '

TermsConsumer DocValuesConsumer FieldsWriter SegmentinfosWriter

DocValuesProducer FieldsReader SegmentinfosReader

PostingsConsumer

PostingsProducer

Good news / Bad news

¢ 90% will never get in touch with this level of Lucene

¢ the remaining 10% might be researchers :)

e However - configuration options might be worth while Avscha 1’//,

Solr ~
8 elasticsearch. -

¢ \Why is this cool again”?

For Backwards Compatibility you know?

4 (Available Codecs

Index /\ /\

Lucene 5 Lucene 4

segment A
Lucene 3

Lucene4 Lucene 4

Index Index
Reader || Writer

<< read >>

segment

<< merge >>
>
: : segment
id title
Lucene 3 Lucene 3
id title

Lucene 5 Lucene 5

PostingsFormat Per Field

e usually 1 doc per uid
* likely no shared terms
* needs to be super fast in a NoSQLish environment

field: uid

* large number of tokenized unique terms
* spelling correction - no posting list traversal
 large amount of key lookups

 tokenized terms
* maybe used for spelling correction
* general document retrieval

field: body

PostingsFormat Per Field W

* inlines postings into the term dictionary
* inlining is configurable
 safes additional lookup on disk

field: uid Pulsing - PostingsFormat

* loads terms & postings into RAM
* [inear scanning vs. skipping
* in-mem FST usually very compact

Memory - PostingsFormat

e very memory efficient
e terminates early for seekExact
* uses skipping for postings

field: body Default - PostingsFormat

Using the right tool for the job..

Primary Key Lookup

J K

- L
H’/\,ij

Jul 11 Aug Oct 11
Date 11

Switching to Memory PostingsFormat

Using the right tool for the job..

Speedup with Pulsing Codec

Speedup (%)

10 20 50 100 200 500 1K 2K 5K 10K 20K 50K 100K 200K 500K 1M

Number of random term lookups

Using the right tool for the job..

FuzzyQuery (edit distance 2)

QO
&
P
Q
-
v
3
o

/

7 Sep 11 Oct 11
11

Switching to BlockTreeTermindex

Same extensibllity is available for

e Stored Fields
e Segment Infos
e Norms and FieldInfos will be added soon

® IndexDocValues

IndexDocValues

The old night keeper keeps the keep in the town

Posting list

In the big old house in the big old gown.

—_—

6

The house in the town had the big old keep

23

Where the old night keeper never did sleep.

6

The night keeper keeps the keep in the night

4

2

And keeps in the dark and sleeps in the light.

3

IndexVWWriter

23

<1> <2> <3> <6>

135

145

156

6

4

4

6

<1> <2> <3> <4>

13

AN = 222 WWwWw o 222 2N

4

Intersecting posting lists

Yet, once we found the right terms the game starts....

Posting Lists (document IDs)

5

10

55

57

59

77

10

13

44

55

79

88

|

A

A

AND Query

What goes into the score? PageRank?, ClickFeedback?

How to store scoring factors?

» Yeah - s/ms/s/ in your query response time

Stored Fields

» Awesome - lets undo all the indexing work!

Problem here: this works well :(

FieldCache

-

Uninverting a Field

Lucene can un-invert a field into FieldCache

5.8

1.0

2.7

2.7

4.3

7.9

1.0

3.2

4.7

7.9

9.0

f

float 32

un-invert

Posting list

1.0

16

parse j<—

convert to datatype

array per field /

segment

(o7

3.2

4.3

4.7

5.8

7.9

9.0

T

string / byte|]

FieldCache - loading

.

Simple Benchmark

* Indexing 100k, 1M and 10M random floats
* not analyzed no norms
* |oad field into FieldCache from optimized index

100k Docs| 1M Docs | 10M Docs

122 ms 348 ms 3161 ms

Remember, this is only one field! Some apps have many fields to load to
FieldCache

The more native solution - IndexDocValues %

¢ A dense column based storage
¢ 1 value per document
e accepts primitives - no conversion from / to string
¢ short, int, long (compressed variants)
e float & double
* byte]]
¢ each field has a DocValues Type but can still be indexed or stored

e Entirely optional

Simple Layout - even on disk

e

1 column per field and segment

field: time field: id (searchable) | field: page_rank

1288271631431 1 3.2

1288271631531 4.5

1288271631631 2.3

1288271631732 4.44

1288271631832 6.7

1288271631932 7.8

1288271632032 9.9

1288271632132 10.1

1288271632233 12 11.0
1288271632333 14 33.1
1288271632433 22 0.2

s
<
Q)
-
@
e,
@
S
Q
O
O
-
3
@
5
=

1288271632533 32 1.4

1288271632637 55.6

1288271632737 33 2.2

1288271632838 34 7.5
1288271632938 35 3.2
1288271633038 36 3.4
1288271633138 37 5.6
1288271632333 38 45.0

integer integer float 32

Arbitrary Values - The byte[] variants

¢ | ength Variants:
® Fixed / Variable
e Store Variants:

e Straight or Referenced

Random Access

fixed / straight

A

data

10/01/2011

12/01/2011

10/04/2011

10/06/2011

10/05/2011

10/01/2011

10/07/2011

10/04/2011

10/04/2011

10/04/2011

Random Access

fixed / deref

offsets

data

0

10/01/2011

10

12/01/2011

20

10/04/2011

30

10/06/2011

40

10/05/2011

50

10/01/2011

60

20

10/07/2011

20

20

IndexDocValues - loading

-

field: page_rank

3.2

4.5

2.3

6.7

7.8

e

\

—

Disk

100k Docs

10M Docs

FieldCache

122 ms

3161 ms

DocValues

7 ms

90 ms

Selective in-memory / on-disk Access

3.2
IndexReader reader; 45

IndexDocValues docValues = reader.docValues('"page_rank™); 2.3
Source source = docValues.getSource();

6.7
loads in RAM on first access 78
9.9
10.1

11.0
- J

IndexReader reader;
IndexDocValues docValues = reader.docValues("page_rank™);
Source source = docValues.getDirectSource();

goes to disk directly > DlSk
performance hit 40 - 80% (YMMYV)

DocumentsWriterPerThread

Trunk No. Threads: 10 RaM Buffer: 1024.0 MB
Directory: NIOFSDirectory numDocs: 10000000
Indexing: 620 sec
merges: 174 sec
commit: 24 sec.

" ingest rate -

- Question: WTF is
W W ‘ the IndexWriter

doing there?
/

g

documents per second

60 80 100 120 140 160 180
seconds

Indexing Ingest Rate over time with Lucene 3.x Indexing 7 Million 4kb
wikipedia documents

A whole lot of nothing.... prior to DWPT

)

IndexWriter

DocumentsWriter

Thread Thread Thread Thread Thread
State State State State State

merge segments in memory

<

Flush to Disk]
(Directory

Multi-Threaded

Answer: it gives
you threads a
break and it's

having a drink with
your slow-as-s**t
1O System

Merge on flush

(Single-Threaded)(

Keep you resources busy with DWPT

IndexWriter

DocumentsWriter

[DWP'I] DWPT || DWPT || DWPT || DWPT

Multi-Threaded

[lj[lj[lj[lj
wwond 1111

Directory

Title Text U§

DocumentsWriterPerThread No. Threads: 10 RAM Buffer: 1024.0MB
Directory: NIOFSDirectory numDocs: 10000000
indexing: 260 sec < vs. 620 sec on 3.x
merges: 92 sec.
commit: 23 sec.

ingest rate -

:
5
:
:
g
§

60 80 100 120 140 160 180 200
seconds

Indexing Ingest Rate over time with Lucene 4.0 & DWPT Indexing 7 Million
4kb wikipedia documents

280% improvement

~4 KB Wikipedia English docs
G H

1] ()

M

adjusted some settings
(less RAM more
Concurrency)

Plain text GB/hour

Jun 11 Jul 11
Date
committed DWPT

This might safe you some machines if you have to index a lot of text! I'd be interested in how
much we can improve the CO2 footprint with better resource utilization.

Search as a DFA - Automaton Queries

.

intersect(a)

\ >

< TermsEnum

AutomatonQuery

RegExp: (ftp|http).*
Fuzzy: dogs~1

Fuzzy-Prefix: (dogs~1).”

J

IndexReader

[

~
J

[TermDictionary

BurstTrie

Automaton Queries (Fuzzy)

Example DFA for "dogs” Levenshtein Distance 1

.
Accepts: “dugs”

\u0000-f, g ,h-n, o, p-\uffff

Here are the 20k % everybody waits for :D UQU

FuzzyQuery (edit distance 2)

O
&
@
2
-
v
3
o

Jun 11 Jul 11 Aug Sep 11 Oct 11 Nov 11
Date 11

In Lucene 3 this is about 0.1 - 0.2 QPS

Composing your own AutomatonQuery

.

// a term representative of the query, containing the field.

// term text is not important and only used for toString() and such
Term term = new Term("body", "dogs~1");

// builds a DFA for all strings within an edit distance of 2 from "bla"
Automaton fuzzy = new LevenshteinAutomata("dogs").toAutomaton(l);

// concatenate this with another DFA equivalent to the "*" operator
Automaton fuzzyPrefix = BasicOperations.concatenate(fuzzy, BasicAutomata

.makeAnyString());

// build a query, search with i1t to get results.
AutomatonQuery query = new AutomatonQuery(term, fuzzyPrefix);

Random Improvements %

e Opaque terms use UTF-8 instead of UTF-16 (Java Strings)
e Memory footprint reduction up to 80% (new DataStructures etc.)
e DeepPaging support
e Direct Spellchecking (using FuzzyAutomaton)
¢ Additional Scoring models
e BM25, Language Models, Divergence from Randomness

¢ Information Based Models

Pending Improvements

¢ Block Index Compression (PFOR-delta, Simple*, GroupVInt)
¢ Positionlterators for Scorers

e Offsets in PostingLists (fast highlighting)

¢ Flexible Proximity Scoring
e Updateable IndexDocValues

e Cut over Norms to IndexDocValues

Questions

Thank you for your attention!

Maintaining Superior Quality in Lucene %

¢ Maintaining a Software Library used by thousands of users comes with
responsibilities

¢ _ucene has to provide:
e Stable APls
e Backwards Compatibility
e Needs to prevent performance regression

o | ets see what Lucene does about this.

Tests getting complex in Lucene

e | ucene needs to test
¢ 10 different Directory Implementations
¢ 8 different Codec Implementation
e tons of different settings on IndexWriter
e Unicode Support throughout the entire library
¢ 5 different MergePolicies

e Concurrency & 1O

Solution: Randomized Testing

e Each test is initialized with a random seed
e Most tests run with:
e A random Directory, MergePolicy, IndexWriterConfig & Codec
e # iterations and limits are selected at random
¢ Open file handles are tracked and test fails if they are not closed
¢ Tests use Random Unicode Strings (we broke several JVM already)

e On failure, test prints a random seed to reproduce the test

Randomized Testing - the Problem

¢ You still need to write the test :)
e Your test can fail at any time

¢ \Well better than not failing at all!

¢ Failures in concurrent tests are still hard to reproduce even with the
same seed

Investing in Randomized testing

¢ |_ucene gained the ability to rewrite large parts of its internal
implementations without much fear!

e Found 10 year old bugs in every day code
¢ Prevents leaking file handles (random exception testing)

e Gained confidence that if there is a bug we gonna hit it one day

