
Lucene 4 - Next generation open source search

Simon Willnauer
Apache Lucene Core Committer & PMC Chair
simonw@apache.org / simon.willnauer@searchworkings.org

mailto:simonw@apache.org
mailto:simonw@apache.org

Who am I?

• Lucene Core Committer

•Project Management Committee Chair (PMC)

•Apache Member

•BerlinBuzzwords Co-Founder

•Addicted to OpenSource

2

http://www.searchworkings.org

•Community Portal targeting OpenSource Search

3

http://www.searchworkings.org
http://www.searchworkings.org

Agenda

• Flexible Indexing

• IndexDocValues

•DocumentsWriterPerThread (DWTP)

•Automaton Queries

•Random & Pending Improvements

4

Architecture prior to Lucene 4.0

5

IndexWriter IndexReader

Directory

FileSystem

Architecture with Flexible Indexing

6

IndexWriter IndexReader

Flex API

Directory

FileSystem

Codec

Lucene 4.0 Codec Layer

7

Codec

PostingsFormat DocValuesFormat FieldsFormat SegmentInfosFormat

TermsConsumer

TermsProducer

PostingsConsumer

PostingsProducer

DocValuesConsumer

DocValuesProducer

FieldsWriter

FieldsReader

SegmentInfosWriter

SegmentInfosReader

Inverted Index IndexDocValues Stored Fields Segment Metadata

Good news / Bad news

• 90% will never get in touch with this level of Lucene

• the remaining 10% might be researchers :)

•However - configuration options might be worth while

•Why is this cool again?

8

For Backwards Compatibility you know?

9

Available Codecs

segment

title

Lucene 4 Lucene 4

id

segment

title

Lucene 3 Lucene 3

id

Index
Writer

?

Lucene 5 Lucene 4

?

segment

title

Lucene 5 Lucene 5

id

<< merge >>

Index

Lucene 3

?

Index
Reader Index

<<
 re

ad
 >

>

PostingsFormat Per Field

10

field: uid

• usually 1 doc per uid
• likely no shared terms
• needs to be super fast in a NoSQLish environment

field: spell

• large number of tokenized unique terms
• spelling correction - no posting list traversal
• large amount of key lookups

field: body

• tokenized terms
• maybe used for spelling correction
• general document retrieval

PostingsFormat Per Field

11

field: uid

field: spell

• inlines postings into the term dictionary
• inlining is configurable
• safes additional lookup on disk

field: body

• loads terms & postings into RAM
• linear scanning vs. skipping
• in-mem FST usually very compact

Pulsing - PostingsFormat

Memory - PostingsFormat

Default - PostingsFormat

• very memory efficient
• terminates early for seekExact
• uses skipping for postings

Using the right tool for the job..

12

Switching to Memory PostingsFormat

Using the right tool for the job..

13

Speedup with Pulsing Codec

Using the right tool for the job..

14

Switching to BlockTreeTermIndex

Same extensibility is available for

15

•Stored Fields

•Segment Infos

•Norms and FieldInfos will be added soon

• IndexDocValues

IndexDocValues

16

?

What is this all about? - Inverted Index

Lucene is basically an inverted index - used to find terms QUICKLY!

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown.

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep.

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light.

term freq Posting list
and 1 6
big 2 2 3

dark 1 6
did 1 4

gown 1 2
had 1 3

house 2 2 3
in 5 <1> <2> <3> <5> <6>

keep 3 1 3 5
keeper 3 1 4 5
keeps 3 1 5 6
light 1 6

never 1 4
night 3 1 4 5
old 4 1 2 3 4

sleep 1 4
sleeps 1 6

the 6 <1> <2> <3> <4> <5> <6>
town 2 1 3
where 1 4

Table with 6 documents

TermsEnum

IndexWriter

Intersecting posting lists

Yet, once we found the right terms the game starts....

18

5 10 11 55 57 59 77 88

1 10 13 44 55 79 88 99

score

AND Query

What goes into the score? PageRank?, ClickFeedback?

Posting Lists (document IDs)

How to store scoring factors?

19

Stored Fields

Yeah - s/ms/s/ in your query response time

FieldCache

Awesome - lets undo all the indexing work!
Problem here: this works well :(

Uninverting a Field

Lucene can un-invert a field into FieldCache

20

weight

5.8

1.0

2.7

2.7

4.3

7.9

1.0

3.2

4.7

7.9

9.0

parse

convert to datatype

un
-in

ve
rt

array per field /
segment

term freq Posting list

1.0 1 1 6

2.7 1 2 3

3.2 1 7

4.3 1 4

4.7 1 8

5.8 1 0

7.9 1 5 9

9.0 1 10

float 32 string / byte[]

FieldCache - loading

21

100k Docs 1M Docs 10M Docs

122 ms 348 ms 3161 ms

Simple Benchmark

• Indexing 100k, 1M and 10M random floats
• not analyzed no norms
• load field into FieldCache from optimized index

Remember, this is only one field! Some apps have many fields to load to
FieldCache

The more native solution - IndexDocValues

•A dense column based storage

• 1 value per document

• accepts primitives - no conversion from / to string

• short, int, long (compressed variants)

• float & double

• byte[]

• each field has a DocValues Type but can still be indexed or stored

•Entirely optional

22

Simple Layout - even on disk

23

field: time field: id (searchable) field: page_rank

1288271631431 1 3.2

1288271631531 5 4.5

1288271631631 3 2.3

1288271631732 4 4.44

1288271631832 6 6.7

1288271631932 9 7.8

1288271632032 8 9.9

1288271632132 7 10.1

1288271632233 12 11.0

1288271632333 14 33.1

1288271632433 22 0.2

1288271632533 32 1.4

1288271632637 100 55.6

1288271632737 33 2.2

1288271632838 34 7.5

1288271632938 35 3.2

1288271633038 36 3.4

1288271633138 37 5.6

1288271632333 38 45.0

1 column per field and segment

1 value per docum
ent

integer integer float 32

Arbitrary Values - The byte[] variants

• Length Variants:

• Fixed / Variable

•Store Variants:

•Straight or Referenced

24

data

10/01/2011

12/01/2011

10/04/2011

10/06/2011

10/05/2011

10/01/2011

10/07/2011

10/04/2011

10/04/2011

10/04/2011

data

10/01/2011

12/01/2011

10/04/2011

10/06/2011

10/05/2011

10/01/2011

10/07/2011

offsets

0

10

20

30

40

50

60

20

20

20

fixed / straight fixed / deref
R

an
do

m
 A

cc
es

s

R
an

do
m

 A
cc

es
s

IndexDocValues - loading

25

100k Docs 1M Docs 10M Docs

FieldCache 122 ms 348 ms 3161 ms

DocValues 7 ms 10 ms 90 ms

field: page_rank

3.2

4.5

2.3

4.44

6.7

7.8

9.9

10.1

11.0

Disk

RAM

Selective in-memory / on-disk Access

26

field:
pag
e_ra
nk

3.2

4.5

2.3

4.44

6.7

7.8

9.9

10.1

11.0

Disk

R
A
M IndexReader reader;

 IndexDocValues docValues = reader.docValues("page_rank");
 Source source = docValues.getSource();

 IndexReader reader;
 IndexDocValues docValues = reader.docValues("page_rank");
 Source source = docValues.getDirectSource();

performance hit 40 - 80% (YMMV)
goes to disk directly

loads in RAM on first access

DocumentsWriterPerThread

27

Indexing Ingest Rate over time with Lucene 3.x Indexing 7 Million 4kb
wikipedia documents

Question: WTF is
the IndexWriter

doing there?

A whole lot of nothing.... prior to DWPT

28

ddddddo ddddddo ddddddo ddddddo ddddddo

Thread
State

DocumentsWriter

IndexWriter

Thread
State

Thread
State

Thread
State

Thread
State

dodododododoc

merge segments in memory

Flush to Disk

Merge on flush

M
ul
ti
-T

hr
ea

d
ed

S
in
g
le
-T

hr
ea

d
ed

Directory

Answer: it gives
you threads a
break and it’s

having a drink with
your slow-as-s**t

IO System

Keep you resources busy with DWPT

29

ddddddo ddddddo ddddddo ddddddo ddddddo

DWPT

DocumentsWriter

IndexWriter

DWPT DWPT DWPT DWPT

Flush to Disk

M
ul
ti
-T

hr
ea

d
ed

Directory

Title Text

30

Indexing Ingest Rate over time with Lucene 4.0 & DWPT Indexing 7 Million
4kb wikipedia documents

vs. 620 sec on 3.x

280% improvement

31

committed DWPT

adjusted some settings
(less RAM more

Concurrency)

This might safe you some machines if you have to index a lot of text! I’d be interested in how
much we can improve the CO2 footprint with better resource utilization.

Search as a DFA - Automaton Queries

32

AutomatonQuery

In
de
xR
ea
de
r

Te
rm
D
ic
tio
na
ry

BurstTrie

FST

intersect(a)

TermsEnum

RegExp: (ftp|http).*

Fuzzy: dogs~1

Fuzzy-Prefix: (dogs~1).*

Automaton Queries (Fuzzy)

33

Finite-State Queries in Lucene
Robert Muir

rmuir@apache.org

Example DFA for “dogs” Levenshtein Distance 1

\u0000-f, g ,h-n, o, p-\uffff

Accepts: “dugs”

d

o

g

Here are the 20k % everybody waits for :D

34

In Lucene 3 this is about 0.1 - 0.2 QPS

Composing your own AutomatonQuery

35

 // a term representative of the query, containing the field.
 // term text is not important and only used for toString() and such
 Term term = new Term("body", "dogs~1");

 // builds a DFA for all strings within an edit distance of 2 from "bla"
 Automaton fuzzy = new LevenshteinAutomata("dogs").toAutomaton(1);

 // concatenate this with another DFA equivalent to the "*" operator
 Automaton fuzzyPrefix = BasicOperations.concatenate(fuzzy, BasicAutomata
 .makeAnyString());

 // build a query, search with it to get results.
 AutomatonQuery query = new AutomatonQuery(term, fuzzyPrefix);

Random Improvements

•Opaque terms use UTF-8 instead of UTF-16 (Java Strings)

•Memory footprint reduction up to 80% (new DataStructures etc.)

•DeepPaging support

•Direct Spellchecking (using FuzzyAutomaton)

•Additional Scoring models

•BM25, Language Models, Divergence from Randomness

• Information Based Models

36

Pending Improvements

•Block Index Compression (PFOR-delta, Simple*, GroupVInt)

•PositionIterators for Scorers

•Offsets in PostingLists (fast highlighting)

• Flexible Proximity Scoring

•Updateable IndexDocValues

•Cut over Norms to IndexDocValues

37

Questions

38

Thank you for your attention!

Maintaining Superior Quality in Lucene

•Maintaining a Software Library used by thousands of users comes with
responsibilities

• Lucene has to provide:

•Stable APIs

•Backwards Compatibility

•Needs to prevent performance regression

• Lets see what Lucene does about this.

39

Tests getting complex in Lucene

• Lucene needs to test

• 10 different Directory Implementations

• 8 different Codec Implementation

• tons of different settings on IndexWriter

•Unicode Support throughout the entire library

• 5 different MergePolicies

•Concurrency & IO

40

Solution: Randomized Testing

•Each test is initialized with a random seed

•Most tests run with:

•A random Directory, MergePolicy, IndexWriterConfig & Codec

• # iterations and limits are selected at random

•Open file handles are tracked and test fails if they are not closed

• Tests use Random Unicode Strings (we broke several JVM already)

•On failure, test prints a random seed to reproduce the test

41

Randomized Testing - the Problem

•You still need to write the test :)

•Your test can fail at any time

•Well better than not failing at all!

• Failures in concurrent tests are still hard to reproduce even with the
same seed

42

Investing in Randomized testing

• Lucene gained the ability to rewrite large parts of its internal
implementations without much fear!

• Found 10 year old bugs in every day code

•Prevents leaking file handles (random exception testing)

•Gained confidence that if there is a bug we gonna hit it one day

43

