
ActiveMQ In Action
Common Problems and Solutions

Bruce Snyder
VMware, Inc.

bsnyder@vmware.com

Thursday, November 10, 11

mailto:bsnyder@vmware.com
mailto:bsnyder@vmware.com

Common Questions

• Should I create my JMS clients from scratch?
• How do I manage connections efficiently?
• How do I consume only certain messages?
• Why is ActiveMQ locking up or freezing?

• Bonus: Do I need a network of brokers?
• Bonus: Should I use a master/slave configuration?

Thursday, November 10, 11

Should I create JMS clients from scratch?

3

Thursday, November 10, 11

Should I create JMS clients from scratch?

• Question:
– Would you create a HTTP client from scratch?
– Would you create a SMTP client from scratch?

• Answer:
– Sometimes, but mostly no

• Solution:
– Use Spring JMS

4

Thursday, November 10, 11

Spring JMS

5

Thursday, November 10, 11

Spring JMS

• JMS Template
– Send and receive messages

synchronously

• Message Listener Container
– Receive messages asynchronously
– Message-Driven POJOs (MDPs)

6

Thursday, November 10, 11

Spring JMS

• JMS Template
– Send and receive messages

synchronously

• Message Listener Container
– Receive messages asynchronously
– Message-Driven POJOs (MDPs)

7

Thursday, November 10, 11

How do I manage connections efficiently?

8

Thursday, November 10, 11

How do I manage connections efficiently?

• JMS connections are expensive to constantly create and
destroy

• Create a group that never closes, i.e., pooling

• Solutions:
– ActiveMQ PooledConnectionFactory
– Spring CachingConnectionFactory

9

Thursday, November 10, 11

ActiveMQ PooledConnectionFactory

• Based on Apache Commons Pool
– Generic object pooling framework from the ASF

• Highly configurable
– Instantiate your own custom GenericObjectPool

• Could be improved
– Upon hitting pool limit, grow the pool instead of blocking
– Throw exception when the pool is exhausted

• Caches JMS Sessions and MessageProducers

10

Thursday, November 10, 11

Spring CachingConnectionFactory

• Based on Spring SingleConnectionFactory
– Ignores calls to Connection.close()

• Caches JMS Sessions and MessageProducers
• By default only one session is cached

– Increase the sessionCacheSize property!

• Consumers are not closed until Session is closed
– NOTE: Cache strategy uses the JMS selector as a key

11

Thursday, November 10, 11

Quick Tip: Monitor the Broker

• Q: How can I monitor the message broker while I am
developing?

• A: Manually via JMX
• A: Use the web console (backed by JMX)
• A: Use the advisory messages

– Especially powerful
– http://activemq.apache.org/advisory-message.html

12

Thursday, November 10, 11

http://activemq.apache.org/advisory-message.html
http://activemq.apache.org/advisory-message.html

How do I consume only certain messages?

13

Thursday, November 10, 11

How do I consume only certain messages?

• ActiveMQ is for sending and receiving events
• ActiveMQ is NOT a message store

• Solutions:
– Use message selectors
– Correct application design

14

Thursday, November 10, 11

JMS Selectors

• Allows a client to filter messages from a destination
• Filters message headers only, not payload
• Conditional expressions using a subset of SQL
• Provide boolean evaluation of message headers

15

Literals
Booleans TRUE/FALSE; numbers such
as 5, -10, +34; numbers with decimal
or scientific notation such as 43.3E7,
+10.5239

Identifiers A header field

Operators AND, OR, LIKE, BETWEEN, =, <>, <, >,
<=, =>, +, =, *, /, IS NULL, IS NOT NULL

Thursday, November 10, 11

JMS Selector Examples

16

// Select messages with a header named symbol whose value is APPL
String selector = "symbol = ‘APPL’";

// Create a consumer that only receives messages about Apple Computer stock
MessageConsumer consumer =
 session.createConsumer(someDestination, selector);

// Select messages with a header named symbol whose value is APPL
// and with a header named price that is greater than the previous price
String selector = "symbol = ‘APPL’ AND price > " + getPreviousPrice();

// Create a consumer that only receives messages about Apple Computer stock
// that has increased in price
MessageConsumer consumer =
 session.createConsumer(someDestination, selector);

Thursday, November 10, 11

JMS Selectors

• Very powerful, but like a sharp knife
• Applied to every message on a destination

– Can cause unnecessary overhead

17

Thursday, November 10, 11

Correct Application Design

• ActiveMQ is for sending and receiving events
• ActiveMQ is NOT a message store

• Phase one, consume the messages
– Lightweight processing

• Phase two, conduct further processing
– Heavyweight processing

• I.e., a proper service-oriented architecture

18

Thursday, November 10, 11

Quick Tip: Clearing the DLQ

• Q: Is there a way to automatically clear messages in the DLQ?
• A: Use the DiscardingDLQ plugin or create a custom consumer

19

<broker brokerName="myBroker” ...>
 <plugins>
 <discardingDLQBrokerPlugin dropAll="true" dropTemporaryTopics="true"
 dropTemporaryQueues="true" />
 </plugins>
</broker>

<broker brokerName="myBroker” ...>
 <plugins>
 <discardingDLQBrokerPlugin
 dropOnly="TEST.FOO.[1-9] EXAMPLE.TOPIC"
 reportInverval="5000" />
 </plugins>
</broker>

Thursday, November 10, 11

Why is ActiveMQ is locking up or freezing?

20

Thursday, November 10, 11

Why is ActiveMQ is locking up or freezing?

• JVM memory
• Broker memory
• Prefetch limit
• Producer flow control
• Message cursors

21

Thursday, November 10, 11

JVM Memory

• ActiveMQ start script
– In 5.4.x, JVM is given 256mb of memory (min and max)

• You may need to increase this!

22

Thursday, November 10, 11

Broker Memory

• ActiveMQ controls how much memory it can use
• Will not automatically use all the JVM memory
• Configurable but commented out by default

23

Thursday, November 10, 11

Broker Memory Example

24

<broker brokerName="myBroker” ...>
...
 <systemUsage>
 <systemUsage>
 <memoryUsage>
 <memoryUsage limit="64 mb” />
 </memoryUsage>
 <storeUsage>
 <storeUsage limit="100 gb" />
 </storeUsage>
 <tempUsage>
 <tempUsage limit="10 gb" />
 </tempUsage>
 </systemUsage>
 </systemUsage>
...
</broker>

Thursday, November 10, 11

Prefetch Limit
• Prevents a consumer from being flooded with messages
• Applied on a per client basis

• Incorrect prefetch limit + slow consumer =
messages remain in a queue unconsumed

• Results in some consumers being starved of messages

• NOTE: Be careful with connection pools

25

Thursday, November 10, 11

Prefetch Limit Example

26

...
 <bean id="connectionFactory"

class="org.apache.activemq.ActiveMQConnectionFactory"
p:brokerURL="tcp://localhost:61616"
p:prefetchPolicy-ref="prefetchPolicy"/>

 <bean id="prefetchPolicy"

class="org.apache.activemq.ActiveMQPrefetchPolicy"
p:queuePrefetch="1" />

...

Thursday, November 10, 11

Producer Flow Control

• Prevents producer from flooding broker
• If memory exceeds limit, a producer will be paused

• NOTE: This setting is enabled by default

27

Thursday, November 10, 11

Broker Memory Example

28

<broker brokerName="myBroker” ...>
...
<destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry topic=">" producerFlowControl="true"
 memoryLimit="10mb">
 <pendingSubscriberPolicy>
 <vmCursor />
 </pendingSubscriberPolicy>
 </policyEntry>
 <policyEntry queue=">" producerFlowControl="true"
 memoryLimit="10mb">
 </policyEntry>
 </policyEntries>
 </policyMap>
</destinationPolicy>
...
</broker>

Thursday, November 10, 11

Message Cursors

• Only so many messages can be held in memory
• Message cursors provide a configurable message paging

• Two types of cursors
– VM cursors

• Holds only message reference in memory
– File cursors

• Flushes both message and reference to disk

• http://activemq.apache.org/how-do-i-configure-activemq-to-
hold-100s-of-millions-of-queue-messages-.html

29

Thursday, November 10, 11

http://activemq.apache.org/how-do-i-configure-activemq-to-hold-100s-of-millions-of-queue-messages-.html
http://activemq.apache.org/how-do-i-configure-activemq-to-hold-100s-of-millions-of-queue-messages-.html
http://activemq.apache.org/how-do-i-configure-activemq-to-hold-100s-of-millions-of-queue-messages-.html
http://activemq.apache.org/how-do-i-configure-activemq-to-hold-100s-of-millions-of-queue-messages-.html

Message Cursor Example

30

<broker brokerName="myBroker” ...>
...
<destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry topic=">" producerFlowControl="true"
 memoryLimit="10mb">
 <pendingSubscriberPolicy>
 <vmCursor />
 </pendingSubscriberPolicy>
 </policyEntry>
 <policyEntry queue=">" producerFlowControl="true"
 memoryLimit="10mb">
 <pendingQueuePolicy>
 <fileQueueCursor />
 </pendingQueuePolicy>
 </policyEntry>
 </policyEntries>
 </policyMap>
</destinationPolicy>
...
</broker>

Thursday, November 10, 11

Quick Tip: Rebalancing Clients

• Q: After restarting one of my message brokers, how can I force
clients to connect to that broker?

• A: Enforce a deterministic lifetime on a connection by setting
the expiryTimeout on the pool of connections

31

<bean id="connectionFactory"
 class="org.apache.activemq.pool.PooledConnectionFactory"
 <property name="brokerURL” value="tcp://localhost:61616" />
 <property name="expiryTimeout” value="10000" />
 <property name="connectionFactory">
 <bean id="connectionFactory"
 class="org.apache.activemq.ActiveMQConnectionFactory"
 p:brokerURL="tcp://localhost:61616" />
 </property>
</bean>

Thursday, November 10, 11

Q&A

Thank You!

Thursday, November 10, 11

33

Bonus Material!

Thursday, November 10, 11

Do I need a network of brokers?

34

Thursday, November 10, 11

Do I need a network of brokers?

• What is a network of brokers?
– Clustered ActiveMQ instances

• How are they clustered?
– They pass messages between broker instances
– Send a message to one broker, consume the message from a different

broker
• Where might this be useful?

– Situations where a centralized broker is not suitable

• How does this work?
– Using store and forward

35

Thursday, November 10, 11

Store and Forward

36

Thursday, November 10, 11

Topology Example

37

Thursday, November 10, 11

Topology Example

38

Thursday, November 10, 11

Topology Example

39

Thursday, November 10, 11

Topology Example

40

Thursday, November 10, 11

Topology Example

41

Thursday, November 10, 11

Should I use a master/slave config?

42

Thursday, November 10, 11

Should I use a master/slave config?

• What is a master/slave configuration?
– It helps to provide high availability for ActiveMQ

• What does that mean?
– ActiveMQ brokers are configured for warm failover
– If one broker fails or becomes unreachable, another one takes over

• Where might this be useful?
– In situations that need highly available message brokers

• How does this work?
– Depends on the type of master/slave

43

Thursday, November 10, 11

Types of Master/Slave

• Shared nothing master/slave
• Shared storage master/slave
– Shared database
– Shared file system

44

Thursday, November 10, 11

Shared Nothing Master/Slave

• Sometimes called pure master/slave
• Uses a fully replicated data store

– Does not depend on database or file system

• Slave broker consumes all message states from the Master
broker (messages, acks, tx states)

• Slave does not start any networking or transport connectors
• Master broker will only respond to client when a message

exchange has been successfully passed to the slave broker

45

Thursday, November 10, 11

Shared Nothing Master/Slave

• If the master fails, the slave optionally has two modes of
operation:
1. Start up all it’s network and transport connectors

• All clients connected to failed Master resume on Slave

2. Close down completely
• Slave is simply used to duplicate state from Master

• Clients should use failover transport:

46

failover://(tcp://masterhost:61616, tcp://slavehost:61616)?randomize=false

Thursday, November 10, 11

Shared Database Master/Slave

• Uses tables in a relational database to store data
• No restriction on the number of brokers
• Simple configuration (JDBC URL)
• Clustered database mitigates single point of failure
• One master selected at random

• Clients should use failover transport:

47

failover://(tcp://masterhost:61616, tcp://slavehost:61616)?randomize=false

Thursday, November 10, 11

Shared File System Master/Slave

• Utilizes a directory on a shared file system to store data
• No restriction on number of brokers
• Simple configuration (point to the data dir)
• Shared file system mitigates single point of failure
• One master selected at random

• Clients should use failover transport:

48

failover://(tcp://masterhost:61616, tcp://slavehost:61616)?randomize=false

Thursday, November 10, 11

Should I use a master/slave config?

• Are you trying to provide high availability?
– Then, yes

• Which one should I use?
– It depends on your situation

49

Thursday, November 10, 11

