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Common Questions

• Should I create my JMS clients from scratch?
• How do I manage connections efficiently? 
• How do I consume only certain messages?
• Why is ActiveMQ locking up or freezing?  

• Bonus: Do I need a network of brokers? 
• Bonus: Should I use a master/slave configuration? 
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Should I create JMS clients from scratch?
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Should I create JMS clients from scratch?

• Question: 
– Would you create a HTTP client from scratch? 
– Would you create a SMTP client from scratch? 

• Answer: 
– Sometimes, but mostly no 

• Solution: 
– Use Spring JMS 
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Spring JMS
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Spring JMS

• JMS Template
– Send and receive messages 

synchronously 

• Message Listener Container 
– Receive messages asynchronously 
– Message-Driven POJOs (MDPs) 
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How do I manage connections efficiently?
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How do I manage connections efficiently?

• JMS connections are expensive to constantly create and 
destroy

• Create a group that never closes, i.e., pooling 

• Solutions: 
– ActiveMQ PooledConnectionFactory
– Spring CachingConnectionFactory 
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ActiveMQ PooledConnectionFactory

• Based on Apache Commons Pool 
– Generic object pooling framework from the ASF 

• Highly configurable 
– Instantiate your own custom GenericObjectPool 

• Could be improved 
– Upon hitting pool limit, grow the pool instead of blocking 
– Throw exception when the pool is exhausted 

• Caches JMS Sessions and MessageProducers 
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Spring CachingConnectionFactory

• Based on Spring SingleConnectionFactory
– Ignores calls to Connection.close()

• Caches JMS Sessions and MessageProducers 
• By default only one session is cached 

– Increase the sessionCacheSize property! 

• Consumers are not closed until Session is closed 
– NOTE: Cache strategy uses the JMS selector as a key 
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Quick Tip: Monitor the Broker

• Q: How can I monitor the message broker while I am  
developing?  

• A: Manually via JMX 
• A: Use the web console (backed by JMX) 
• A: Use the advisory messages 

– Especially powerful 
– http://activemq.apache.org/advisory-message.html
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How do I consume only certain messages?
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How do I consume only certain messages?

• ActiveMQ is for sending and receiving events
• ActiveMQ is NOT a message store 

• Solutions: 
– Use message selectors 
– Correct application design 
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JMS Selectors 

• Allows a client to filter messages from a destination 
• Filters message headers only, not payload 
• Conditional expressions using a subset of SQL 
• Provide boolean evaluation of message headers 
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Literals
Booleans TRUE/FALSE; numbers such 
as 5, -10, +34; numbers with decimal 
or scientific notation such as 43.3E7, 
+10.5239

Identifiers A header field 

Operators AND, OR, LIKE, BETWEEN, =, <>, <, >, 
<=, =>, +, =, *, /, IS NULL, IS NOT NULL 
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JMS Selector Examples
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// Select messages with a header named symbol whose value is APPL 
String selector = "symbol = ‘APPL’";

// Create a consumer that only receives messages about Apple Computer stock 
MessageConsumer consumer = 
            session.createConsumer(someDestination, selector);

// Select messages with a header named symbol whose value is APPL 
// and with a header named price that is greater than the previous price 
String selector = "symbol = ‘APPL’ AND price > " + getPreviousPrice(); 

// Create a consumer that only receives messages about Apple Computer stock 
// that has increased in price 
MessageConsumer consumer = 
            session.createConsumer(someDestination, selector);
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JMS Selectors

• Very powerful, but like a sharp knife 
• Applied to every message on a destination 

– Can cause unnecessary overhead 
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Correct Application Design

• ActiveMQ is for sending and receiving events
• ActiveMQ is NOT a message store 

• Phase one, consume the messages 
– Lightweight processing 

• Phase two, conduct further processing 
– Heavyweight processing 

• I.e., a proper service-oriented architecture 
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Quick Tip: Clearing the DLQ

• Q: Is there a way to automatically clear messages in the DLQ?  
• A: Use the DiscardingDLQ plugin or create a custom consumer  
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<broker brokerName="myBroker” ...>
  <plugins>
    <discardingDLQBrokerPlugin dropAll="true" dropTemporaryTopics="true"
        dropTemporaryQueues="true" />
  </plugins>
</broker>

<broker brokerName="myBroker” ...>
  <plugins>
    <discardingDLQBrokerPlugin 
      dropOnly="TEST.FOO.[1-9] EXAMPLE.TOPIC"
      reportInverval="5000" />
  </plugins>
</broker>
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Why is ActiveMQ is locking up or freezing? 
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Why is ActiveMQ is locking up or freezing? 

• JVM memory 
• Broker memory 
• Prefetch limit
• Producer flow control 
• Message cursors 
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JVM Memory 

• ActiveMQ start script 
– In 5.4.x, JVM is given 256mb of memory (min and max)

• You may need to increase this! 
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Broker Memory 

• ActiveMQ controls how much memory it can use 
• Will not automatically use all the JVM memory 
• Configurable but commented out by default 
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Broker Memory Example 
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<broker brokerName="myBroker” ...>
...
  <systemUsage>
    <systemUsage>
      <memoryUsage>
        <memoryUsage limit="64 mb” />
      </memoryUsage>
      <storeUsage>
        <storeUsage limit="100 gb" />
      </storeUsage>
      <tempUsage>
        <tempUsage limit="10 gb" />
      </tempUsage>
    </systemUsage>
  </systemUsage>
...
</broker>
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Prefetch Limit 
• Prevents a consumer from being flooded with messages 
• Applied on a per client basis 

• Incorrect prefetch limit + slow consumer = 
messages  remain in a queue unconsumed 

• Results in some consumers being starved of messages 

• NOTE: Be careful with connection pools 
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Prefetch Limit Example 
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...
  <bean id="connectionFactory" 

class="org.apache.activemq.ActiveMQConnectionFactory" 
p:brokerURL="tcp://localhost:61616" 
p:prefetchPolicy-ref="prefetchPolicy"/>

  
  <bean id="prefetchPolicy" 

class="org.apache.activemq.ActiveMQPrefetchPolicy" 
p:queuePrefetch="1" />

...
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Producer Flow Control 

• Prevents producer from flooding broker 
• If memory exceeds limit, a producer will be paused 

• NOTE: This setting is enabled by default 

27

Thursday, November 10, 11



Broker Memory Example 
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<broker brokerName="myBroker” ...>
...
<destinationPolicy>
  <policyMap>
    <policyEntries>
      <policyEntry topic=">" producerFlowControl="true"
        memoryLimit="10mb">
        <pendingSubscriberPolicy>
          <vmCursor />
        </pendingSubscriberPolicy>
      </policyEntry>
      <policyEntry queue=">" producerFlowControl="true"
        memoryLimit="10mb">
      </policyEntry>
    </policyEntries>
  </policyMap>
</destinationPolicy>
...
</broker>
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Message Cursors 

• Only so many messages can be held in memory 
• Message cursors provide a configurable message paging 

• Two types of cursors 
– VM cursors 

• Holds only message reference in memory 
– File cursors 

• Flushes both message and reference to disk 

• http://activemq.apache.org/how-do-i-configure-activemq-to-
hold-100s-of-millions-of-queue-messages-.html
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Message Cursor Example 
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<broker brokerName="myBroker” ...>
...
<destinationPolicy>
  <policyMap>
    <policyEntries>
      <policyEntry topic=">" producerFlowControl="true"
        memoryLimit="10mb">
        <pendingSubscriberPolicy>
          <vmCursor />
        </pendingSubscriberPolicy>
      </policyEntry>
      <policyEntry queue=">" producerFlowControl="true"
        memoryLimit="10mb">
       <pendingQueuePolicy>
          <fileQueueCursor />
        </pendingQueuePolicy>
      </policyEntry>
    </policyEntries>
  </policyMap>
</destinationPolicy>
...
</broker>
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Quick Tip: Rebalancing Clients

• Q: After restarting one of my message brokers, how can I force 
clients to connect to that broker? 

• A: Enforce a deterministic lifetime on a connection by setting 
the expiryTimeout on the pool of connections 

31

<bean id="connectionFactory" 
  class="org.apache.activemq.pool.PooledConnectionFactory"
  <property name="brokerURL” value="tcp://localhost:61616" />
  <property name="expiryTimeout” value="10000" />
  <property name="connectionFactory">
    <bean id="connectionFactory" 
      class="org.apache.activemq.ActiveMQConnectionFactory"
      p:brokerURL="tcp://localhost:61616" />
  </property>
</bean>
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Q&A

Thank You!
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Bonus Material! 
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Do I need a network of brokers? 
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Do I need a network of brokers? 

• What is a network of brokers? 
– Clustered ActiveMQ instances 

• How are they clustered? 
– They pass messages between broker instances 
– Send a message to one broker, consume the message from a different 

broker 
• Where might this be useful? 

– Situations where a centralized broker is not suitable

• How does this work? 
– Using store and forward 
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Store and Forward
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Topology Example
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Topology Example
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Topology Example
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Topology Example
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Topology Example
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Should I use a master/slave config? 

42

Thursday, November 10, 11



Should I use a master/slave config? 

• What is a master/slave configuration? 
– It helps to provide high availability for ActiveMQ 

• What does that mean? 
– ActiveMQ brokers are configured for warm failover
– If one broker fails or becomes unreachable, another one takes over 

• Where might this be useful? 
– In situations that need highly available message brokers 

• How does this work? 
– Depends on the type of master/slave 
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Types of Master/Slave 

• Shared nothing master/slave 
• Shared storage master/slave 
– Shared database 
– Shared file system 

44

Thursday, November 10, 11



Shared Nothing Master/Slave 

• Sometimes called pure master/slave 
• Uses a fully replicated data store 

– Does not depend on database or file system 

• Slave broker consumes all message states from the Master 
broker (messages, acks, tx states) 

• Slave does not start any networking or transport connectors 
• Master broker will only respond to client when a message 

exchange has been successfully passed to the slave broker
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Shared Nothing Master/Slave 

• If the master fails, the slave optionally has two modes of 
operation: 
1. Start up all it’s network and transport connectors 

• All clients connected to failed Master resume on Slave 

2. Close down completely 
• Slave is simply used to duplicate state from Master

• Clients should use failover transport: 
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failover://(tcp://masterhost:61616, tcp://slavehost:61616)?randomize=false
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Shared Database Master/Slave

• Uses tables in a relational database to store data 
• No restriction on the number of brokers
• Simple configuration (JDBC URL)
• Clustered database mitigates single point of failure
• One master selected at random 

• Clients should use failover transport: 
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failover://(tcp://masterhost:61616, tcp://slavehost:61616)?randomize=false
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Shared File System Master/Slave

• Utilizes a directory on a shared file system to store data
• No restriction on number of brokers
• Simple configuration (point to the data dir)
• Shared file system mitigates single point of failure
• One master selected at random 

• Clients should use failover transport: 
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failover://(tcp://masterhost:61616, tcp://slavehost:61616)?randomize=false
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Should I use a master/slave config? 

• Are you trying to provide high availability? 
– Then, yes

• Which one should I use? 
– It depends on your situation 
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