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So what’s the plan?

๏The title page already told you, but out of order(*). Actual order:

•The Present

•The Past

•And The Future of NOSQL

๏Then lunch.
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(*) Out of order? Well, the title page did inorder traversal 
(left node, root, right node), and since most folks aren’t 
graph geeks I’m going to go with the more intuitive preorder 
traversal (root, left, right) in the actual presentation.
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Anyway...

NOSQL: The Present

3
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First off: the name
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๏WE ALL HATES IT, M’KAY?
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NOSQL is NOT...

๏ NO to SQL

๏ NEVER SQL

5
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Not Only SQL
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NOSQL is simply
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Four trends

NOSQL - Why now?
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Source: IDC 2007

Trend 1:
data set size
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Trend 1:
data set size

Source: IDC 2007
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Trend 2: Connectedness
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Trend 2: Connectedness
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Trend 2: Connectedness
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Trend 2: Connectedness
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Trend 2: Connectedness
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Trend 2: Connectedness
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Trend 3: Semi-structure
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๏ Individualization of content

• In the salary lists of the 1970s, all elements had exactly one job

• In the salary lists of the 2000s, we need 5 job columns! Or 8? 
Or 15?

๏All encompassing “entire world views”

• Store more data about each entity

๏Trend accelerated by the decentralization of content generation 
that is the hallmark of the age of participation (“web 2.0”)
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Aside: RDBMS performance
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Aside: RDBMS performance
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Aside: RDBMS performance
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Aside: RDBMS performance
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Aside: RDBMS performance
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Trend 4:  Architecture
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Trend 4:  Architecture
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DBDB DB

Trend 4:  Architecture
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Service

2000s: (moving towards) Decoupled services
with their own backend

Service Service
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Why NOSQL Now?

๏Trend 1: Size

๏Trend 2: Connectedness

๏Trend 3: Semi-structure

๏Trend 4: Architecture

25
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Four product categories

NOSQL
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Category 1: Key-Value stores
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๏Lineage:

• “Dynamo: Amazon’s Highly Available Key-Value Store” (2007)

๏Data model:

•Global key-value mapping

•Think: Globally available HashMap/Dict/etc

๏Examples:

• Project Voldemort

•Riak

• 27Thursday, November 10, 2011



Category II: ColumnFamily (BigTable) stores

28

๏Lineage:

• “Bigtable:  A Distributed Storage System for Structured 
Data” (2006)

๏Data model:

•A big table, with column families

๏Examples:

•HBase

•HyperTable

•Cassandra
28Thursday, November 10, 2011
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Category III: Document databases

29

๏Lineage:

• Lotus Notes

๏Data model:

•Collections of documents

•A document is a key-value collection

๏Examples:

•CouchDB

•MongoDB
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Document db: An example

30

๏How would we model a blogging software?

๏One stab:

•Represent each Blog as a Collection of Post documents

•Represent Comments as nested documents in the Post 
documents
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Document db: Creating a blog post

31

import com.mongodb.Mongo;
import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.BasicDBObject;
import com.mongodb.DBObject;
// ...
Mongo mongo = new Mongo( "localhost" ); // Connect to MongoDB
// ...
DB blogs = mongo.getDB( "blogs" ); // Access the blogs database
DBCollection myBlog = blogs.getCollection( "Thobe’s blog" );

DBObject blogPost = new BasicDBObject();
blogPost.put( "title", "ApacheCon 2011" );
blogPost.put( "pub_date", new Date() );
blogPost.put( "body", "Publishing a post about ApacheCon in my 

MongoDB blog!" );
blogPost.put( "tags", Arrays.asList( "conference", "names" ) );
blogPost.put( "comments", new ArrayList() );

myBlog.insert( blogPost );
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Retrieving posts
// ...
import com.mongodb.DBCursor;
// ...

public Object getAllPosts( String blogName ) {
DBCollection blog = db.getCollection( blogName );
return renderPosts( blog.find() );

}

private Object renderPosts( DBCursor cursor ) {
// order by publication date (descending)
cursor = cursor.sort( new BasicDBObject( "pub_date", -1 ) );
// ...

}

32
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Category IV: Graph databases

33

๏Lineage:

• Euler and graph theory

๏Data model:

•Nodes with properties

•Typed relationships with properties

๏Examples:

• InfiniteGraph

•Neo4j
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Property Graph model

34
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Property Graph model
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Property Graph model

36

LIVES WITH
LOVES

OWNS
DRIVES

LOVES
name: “James”
age: 32
twitter: “@spam”

name: “Mary”
age: 35

brand: “Volvo”
model: “V70”

property type: “car”
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Graphs are whiteboard friendly

37
Image credits: Tobias Ivarsson

An application domain model 
outlined on a whiteboard or piece 
of paper would be translated to 
an ER-diagram, then normalized 
to fit a Relational Database.
With a Graph Database the model 
from the whiteboard is 
implemented directly.
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Graphs are whiteboard friendly

38

thobe

Wardrobe Strength

Joe project blog

Hello Joe

Neo4j performance analysis

Modularizing Jython

Image credits: Tobias Ivarsson

An application domain model 
outlined on a whiteboard or piece 
of paper would be translated to 
an ER-diagram, then normalized 
to fit a Relational Database.
With a Graph Database the model 
from the whiteboard is 
implemented directly.
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Graph db: Creating a social graph
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GraphDatabaseService graphDb = new EmbeddedGraphDatabase(
GRAPH_STORAGE_LOCATION );

Transaction tx = graphDb.beginTx();
try {

Node mrAnderson = graphDb.createNode();
mrAnderson.setProperty( "name", "Thomas Anderson" );
mrAnderson.setProperty( "age", 29 );

Node morpheus = graphDb.createNode();
morpheus.setProperty( "name", "Morpheus" );
morpheus.setProperty( "rank", "Captain" );

Relationship friendship = mrAnderson.createRelationshipTo(
morpheus, SocialGraphTypes.FRIENDSHIP );

tx.success();
} finally {

tx.finish();
}
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Graph db: How do I know this person?
Node me = ...
Node you = ...

PathFinder shortestPathFinder = GraphAlgoFactory.shortestPath(
Traversals.expanderForTypes(

SocialGraphTypes.FRIENDSHIP, Direction.BOTH ),
/* maximum depth: */ 4 );

Path shortestPath = shortestPathFinder.findSinglePath(me, you);

for ( Node friend : shortestPath.nodes() ) {
System.out.println( friend.getProperty( "name" ) );

}

40
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Four emerging NOSQL categories

๏ Key-Value stores

๏ ColumnFamiy stores

๏ Document databases

๏ Graph databases

41
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Scaling to size vs. Scaling to complexity

42

Coping with Size

Coping with Complexity

Key/Value stores

ColumnFamily stores

Document databases

Graph databases

My subjective view: > 90% of use cases

100+ billion of nodes
and relationships
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a brief excursion into the past

NOSQL
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The Future

NOSQL
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Four trends
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๏ More ACIDity

•  Mongo adding durable logging storage in 1.7

•  Tunable consistency in Apache Cassandra

•  Roger Bodamer 

‣ uptime ( CP + average developer )
>=
uptime ( AP + average developer )
http://www.slideshare.net/iammutex/q-con-sf10rogerbodamer

• Makes sense - why push the burden to the 
developer when eventually consistency is not 
needed in most scenarios?
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๏ More query languages

• In the past year, many prominent NOSQL databases have 
invested heavily in query languages

•Cassandra: CQL

•Couchbase: UnQL

•Neo4j: Cypher

•Mongo’s had it from the get go? <--- One reason for their 
popularity?

Four trends
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๏ More schemas?

•Analogously, why push the full burden of schema freedom to the 
developer?

•Over time, I believe we will see more schema-like support in 
most NOSQL stores

•At least in document databases and graph databases, who have 
the richest models

•Granted, we haven’t really seen that yet

Four trends
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๏ Polyglot persistence will drive middleware support

•The era of the One Size Fits All Database is over

• Ergo, any given system will typically work at runtime with 
multiple databases

•That’s all fine and dandy, except it’s not because it’s a pain

•This trend will demand a lot of middleware support

Four trends
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Middleware support?
๏Lemme tell you the story about Mike and his restaurant site

50
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Domain & data model
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Restaurant
@Entity
public class Restaurant {

@Id @GeneratedValue
    private Long id;
    private String name;
    private String city;
    private String state;
    private String zipCode;

UserAccount
@Entity
@Table(name = "user_account")
public class UserAccount {
    @Id @GeneratedValue
    private Long id;
    private String userName;
    private String firstName;
    private String lastName;
    @Temporal(TemporalType.TIMESTAMP)
    private Date birthDate;
    @ManyToMany(cascade = CascadeType.ALL)
    private Set<Restaurant> favorites;
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Step 1: Buildsing a web site
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MySQL

Tomcat

One box
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Step II: Whoa, ppl are actually using it?
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MySQL

Tomcat

Two boxes
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Step III: That’s a LOT of pages served...
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MySQL

Tomcat n boxesTomcat Tomcat

1 box
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Step IV: Our DB is completely overwhelmed...
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MySQL (m)

Tomcat n boxesTomcat Tomcat

MySQL (s) n boxes
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Step V: Our DBs are STILL overwhelmed

?
56
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What does the site look like now?

57
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Step V: Our DBs are STILL overwhelmed
๏Turns out the problem is due to joins

๏A while back Mike introduced a new feature

•Recommend restaurants based on the user’s friends (and friends 
of friends)

•Whoa, recommendations aren’t just simple get and put!

•They’re killing us with joins

๏What about sharding?

๏What about SSDs?
58
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Polyglot persistence (Not Only SQL)
๏How did we get into this situation?

๏Well, data sets are increasingly less uniform

•Parts of Mike’s data fits well in an RDBMS

•But parts of it is graph-shaped

‣It fits much better in a graph database!

‣And I’m sure that there is or will be very key-value-esque 
parts of the dataset

๏Simple, just store some of it in a graph db and some of it in MySQL!
But what does the code look like? 59
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We were here

60

Restaurant
@Entity
public class Restaurant {

@Id @GeneratedValue
    private Long id;
    private String name;
    private String city;
    private String state;
    private String zipCode;

UserAccount
@Entity
@Table(name = "user_account")
public class UserAccount {
    @Id @GeneratedValue
    private Long id;
    private String userName;
    private String firstName;
    private String lastName;
    @Temporal(TemporalType.TIMESTAMP)
    private Date birthDate;
    @ManyToMany(cascade = CascadeType.ALL)
    private Set<Restaurant> favorites;
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Then we added recommendations

61

Recommendation

@RelationshipEntity
public class Recommendation {
  @StartNode
  private UserAccount user;
  @EndNode
  private Restaurant restaurant;
  private int stars;
  private String comment;

Restaurant
@Entity
@NodeEntity(partial = true)
public class Restaurant {
  @Id @GeneratedValue
  private Long id;
  private String name;
  private String city;
  private String state;
  private String zipCode;

UserAccount
@Entity
@Table(name = "user_account")
@NodeEntity(partial = true)
public class UserAccount {
  @Id @GeneratedValue
  private Long id;
  private String userName;
  private String firstName;
  private String lastName;
  @Temporal(TemporalType.TIMESTAMP)
  private Date birthDate;
  @ManyToMany(cascade = CascadeType.ALL)
  private Set<Restaurant> favorites;

   @GraphProperty
  String nickname;
   @RelatedTo(type = "friends", 
       elementClass = UserAccount.class)
  Set<UserAccount> friends;
  @RelatedToVia(type = "recommends",
       elementClass = Recommendation.class)
  Iterable<Recommendation> recommendations;
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Then we added recommendations

62

Recommendation

@RelationshipEntity
public class Recommendation {
  @StartNode
  private UserAccount user;
  @EndNode
  private Restaurant restaurant;
  private int stars;
  private String comment;

Restaurant
@Entity
@NodeEntity(partial = true)
public class Restaurant {
  @Id @GeneratedValue
  private Long id;
  private String name;
  private String city;
  private String state;
  private String zipCode;

UserAccount
@Entity
@Table(name = "user_account")
@NodeEntity(partial = true)
public class UserAccount {
  @Id @GeneratedValue
  private Long id;
  private String userName;
  private String firstName;
  private String lastName;
  @Temporal(TemporalType.TIMESTAMP)
  private Date birthDate;
  @ManyToMany(cascade = CascadeType.ALL)
  private Set<Restaurant> favorites;

   @GraphProperty
  String nickname;
   @RelatedTo(type = "friends", 
       elementClass = UserAccount.class)
  Set<UserAccount> friends;
  @RelatedToVia(type = "recommends",
       elementClass = Recommendation.class)
  Iterable<Recommendation> recommendations;
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And we’re back to talking about Middleware
๏This example was from the Spring Data project

• Specifically Spring Data Neo4j

•Available at: http://www.springsource.org/spring-data/neo4j

• Spring Data Neo4j 2.0 will be released RSN, RC out NOW

๏But this really should be available in any middleware stack

•Ask Redhat / JBoss

•Ask David & the brogrammers

•Ask Sun / Oracle

•Ask Microsoft 63
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Four NOSQL trends

๏ More ACIDity

๏ More query languages

๏ More schemas

๏ More middleware support

64
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Conclusion
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Ait, what’s your point?
๏There’s an explosion of ‘nosql’ databases out there

• Some are immature and experimental

• Some are coming out of years of battle-hardened production

๏NOSQL is about finding the right tool for the job

• Sometimes that’s an RDBMS

•But increasingly commonly a NOSQL db is the perfect fit

๏We will have heterogenous data backends in the future

•Now the rest of the stack needs to step up and help developers 
cope with that 66
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Not Only SQL
is here
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Key takeaway

67Thursday, November 10, 2011



Not Only SQL
is here to stay

68

Key takeaway
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Not Only SQL
is FUN - dl & play 

around now!
69

Key takeaway
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Image credits: Lost! Sorry... :(

Questions?
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http://neotechnology.com
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