
Open Development in the
Enterprise

November 11, 2011

Introduction
 What can corporate IT learn from

leading open development
communities?

 Both principles and techniques offer
value

 Challenges must be overcome to
realize value

Principles
 Transparency

 Decision-making and actions are observable
 Events of interest are published and recorded

 Meritocracy
 Influence on decisions is based on merit
 Merit is earned in public

 Community
 Common interest
 Common experience / identity
 “Community before code”

Techniques
 Open Standards

 Using open standards in systems design and
standards-based tools for development

 Collaboration Infrastructure
 Systems supporting communication and

coordination: repositories, trackers, forums, build
tools

 Meritocratic Governance
 Merit determines influence on decisions
 Community-based governance structures

Challenges
 Choosing the right opportunities

 “Open everything” does not work
 Clue
 Resistance

 to change
 to loss of control

 Rewarding merit
 Business focus

 Accountability
 Control

Principles

Principles - Transparency
 Collaboration

 Transparency invites collaboration

 Reuse
 You can only reuse what you can see

 Quality
 More eyeballs mean better quality

 Measurement
 Transparency enables measurement

Transparency  Collaboration
 Transparent processes enable people to see

connections

 Transparent decision-making encourages
contribution and improves leverage

 Transparency encourages feedback and
dialogue

 Example: infrastructure planning and
development

Transparency  Reuse
 People can reuse assets they can find and

understand. Transparency increases both the
likelihood that people will find assets and that they
will understand them.

 Transparency means you can see where
development is headed so you can plan reuse.

 Transparency can give confidence in quality,
making reuse more likely.

 Example: Transparent bug / enhancement tracking,
feature lists, release plans makes reuse of shared
components easier to plan and execute

Transparency  Quality
 "Too enough eyeballs, all bugs are shallow"
 Open discussion can lead to better decisions
 Errors may be seen early
 Transparency encourages and facilitates peer

review
 “Lurkers” sometimes see things that closed group

may miss and they learn things by observing
 Examples: Opening source and dev process for

common components; peer reviews; problem
management; operations

Transparency  Measurement
 Transparency makes process visible
 Development events can be tracked
 Active and inactive people, code, sub-communities

can be discovered
 Metrics can be less subject to debate when derived

from transparent processes
 Examples: Contributions to shared assets;

roadmap progress; source quality metrics; test
execution metrics; problem management

Principles - Meritocracy
 Technical decisions made by technical

experts
 Better informed decisions

 Role models
 Merit provides examples

 Earned authority
 “Natural” leadership

Meritocracy  Better Decisions
 Better information
 Better analysis
 Faster consensus
 Less prone to vendor / hype distortion
 Less prone to stupid groupthink
 Not the rule in corporate settings today, more

common in startups / small companies
 Examples: technology product selection;

technology standards; organization structure

Meritocracy  Role Models
 People with community-earned merit provide

examples of behaviors that the community likes
 Merit-earning people provide examples of

community contributions that have merit
 Imitating people with merit helps others develop

and usually leads to good results
 Examples: peer reviews; open certification

process; formal mentoring; committer / PMC
member concepts for shared assets

Meritocracy  Earned Authority
 When leaders earn merit and gain authority as a

consequence, their authority is perceived as earned
rather than by title or circumstance.

 People follow these leaders. People follow
leaders whose authority is based on merit that they
know about.

 People support decisions made by people with
earned authority.

 Examples: major refactoring / uplift; service
restoration; process change; talent pipeline /
promotions; strategy and standards

Principles - Community
 Loyalty

 Community breeds loyalty
 Durability

 Communities can create durable assets,
processes and culture

 Shared vision
 Vision grounded in common experience and

personal connection

Community  Loyalty
 Loyal people contribute

 Loyal people support one another

 Loyal people work out conflicts and
compromise to support the community

 Loyalty begets loyalty

 Examples: retention; service restoration;
crunch time; managing conflict

Community  Shared Vision
 Community shares experience

 Vision can be developed in the community

 Vision guides community and holds it together

 Vision helps community adapt to change

 Examples: transformation plans; refactoring;
innovation

Community  Durability
 Communities can survive individual

departures

 Community developed assets can be revived /
restarted when time is right

 Community developed assets are robust
against changing requirements

 Examples: shared code components;
architecture communities

Techniques

Techniques
 Open Standards

 Using open standards in systems design and
standards-based tools for development

 Collaboration Infrastructure
 Systems supporting communication and

coordination: repositories, trackers, forums

 Meritocratic Governance
 Merit determines influence on decisions
 Community-based governance structures

Techniques - Open Standards

 Faster ramp-up
 Standards provide common background

 Easier setup
 Easier to get started, get up to speed

 Interoperability
 Key to success in heterogeneous

environments

Techniques - Collaboration Infrastructure

 Communications
 Support asynchronous, geographically dispersed

collaboration, fewer meetings
 Repositories

 Enable transparency, discoverability
 Trackers

 Coordinate collaborative work, transparency
 Build tools

 Enable consistent, independent, repeatable
builds; support process discipline, quality
assurance, productivity,ramp-up

Techniques - Meritocratic Governance

 Decisions
 Influence on decisions determined by merit

 Structures
 Governance structures supporting merit-based

decision-making

 Examples: PMC managing roadmap / stds, shared
components; user/contributor/committer roles for common
code as well as strategy / standards content; review and
approval of changes to standards, roadmaps, shared assets;
peer voting on releases

Challenges

Choosing the Right Opportunities

Good Bad Ugly

Open development of
shared assets

Open development in
specialized areas with
small teams

Building communities
that have nothing to
do with day jobs

Meritocracy principles
integrated into
performance
management

Meritocratic decision-
making process, but
decisions not binding

Merit earned and
acknowledged, but not
rewarded

Open development
infrastructure
introduced as part of
process improvement

Open development
process introduced
with no infrastructure
support

Open development
principles mandated
with no process or
infrastructure support

Choosing the Right Opportunities
 Transparency

 Almost always a good thing, but
need to be careful to avoid
distraction / low signal/noise

 Meritocracy
 The more technical the domain, the

more valuable this is. Needs to be
inclusive and harmonized with
hierarchy.

 Community
 Like transparency – always good in

principle, but can have low / no value
if not conceived and nurtured
correctly

 Open Standards
 Always

 Collaboration Infrastructure
 Take “appropriate technology”

approach. Can be a vector for
planting the open development
meme

 Meritocratic Governance
 Apply selectively, starting in

technical domains with leaders
who already operate consistently
with the ideas. Formalize criteria.

Clue
 Community is not the same as team

 Contribution is work

 Community requires investment

 Transparency is not a threat

 Collaboration means compromise

 Driving results means driving consensus

Resistance to Change
 If it ain't broke...
 Communication can be annoying at first
 Need to learn new tools and processes
 Closed processes and decision-making are

the norm
 Administrivia can get in the way and provide a

convenient excuse to defer / delay

Resistance to Loss of Control
 Open development can be directed, but

can’t be micro-managed
 Schedules and timelines
 “Owning” decisions
 Fear of failure
 Accountability, reporting, leadership

communications

Meritocracy / Rewards Mismatch
 Reward system may not be based on

merit

 Merit needs to be rewarded to
proliferate

 Merit needs to be rewarded to be
respected

Maintaining Accountability
 Community ownership does not guarantee

owners are always available and responsive
 Not always clear who owns decisions or when

decisions have been made
 Easy to blame lack of engagement /

community support for bad decisions or work
products

 Control and support responsibilities need to be
managed explicitly

Maintaining Control
 Communities are harder to direct and focus than

individuals
 Company value needs to drive community, not vice-

versa
 Roadmap needs to be explicit and directive

(another reason it is good for this to be an open
development product)

 Timelines, feature sets, quality, packaging and
deployment objectives have to be explicit and
accepted as largely “exogenous”

Maintaining Business Focus
 Community interest must align with company

interest
 Business leaders have to be welcome and engaged

in community
 Merit is not just technical and has to be linked to

business results
 Open development projects need to deliver value –

“show value early, show value often”
 Open development should not be used as a means

to invest in projects that have weak or no business
case

Questions?

