Intra-cluster Replication for
Apache Kafka

About myself

* Engineer at Linkedln since 2010
 Worked on Apache Kafka and Cassandra
* Database researcher at IBM

Outline

Overview of Kafka
Kafka architecture
Kafka replication design

Performance

Q/A

What’s Kafka

* Adistributed pub/sub messaging system

* Used in many places
— LinkedIn, Twitter, Box, FourSquare ...

 What do people use it for?
— log aggregation
— real-time event processing
— monitoring
— queuing

Example Kafka Apps at Linkedln

All Updates - LinkedIn Coworkers - Shares - More v

Peter Skomoroch

Ignition, Accel, Greylock Put $40M In Apache Hadoop Distribution..

echcrunch.com

cloudera

A Trending in Venture Capital & Private Equity

Peter Skomoroch

Common Crawl Foundation Announces 5 Billion Page Web Index,
Available... rea

Crawl

A) Trending in Computer Software and Online Media

Neha Desai is now connected to Eli Smaga

Ajay Choudhari is now connected to Ward Wilson [LION]

Ashwin Ram

ashwinram RT @daniel_kraft :
#health http://t.co/O0mzJw5I #in

@tgoetz at #FutureMed on the role feedback loops in

Recent - Top - [

graphs

voldemort-server/cluster-2-dps-rw-throughput

Create snapshot: (Create)

@ Duration: 2 [days 18]

O Start Time: | vvyymmoD HH:M End Time: | vyyyMMOD HH:M

Timezone: ([Us/Pacific | +) | Height: 100 px | Width: soo | px | Lower Limit: | Upper Limit: 10000 | Threshold:

Stack: @ | Consolidate: [None [3)1Overlay: 0 | (weeks [3)ILegend: ™ | Alt Scale: [| Alt Y-axis: () | Auto-refresh:| | sec

1 Hide Controls

10 k
8 k
6k
4k
2k
0

ops/sec

M elad-
O elad-
O elas-
O elad-
O elad-
O elad-
M elad-

ELA4 Cluster 2 DPS RW Throughput

M

Thu 00: 00

be333_prod
be334_prod
be335_prod
be336_prod
be337_prod
be338_prod
be339_prod

-throughput
_throughput
-throughput
-throughput
-throughput
-throughput
-throughput

Thu 12:00
avg
avg

avg:
avg:
avg:

avg
avg

1708,
1948,
796.
849.
620.
1716
1746,

Fri 00:00
cur:
cur:
cur:
cur:
cur:
cur:
cur:

306.
398.

342

359.
269.
307.
328.

Fri 12:00
50 max: 1.34k
77 max: 1.78k
.47 max: 1.49k
31 max: 1.60k
96 max: 1.17k
42 max: 1.35k
28 max: 1.41k

Kafka Deployment at LinkedIn

Live data center

Offline data center

interactive data
(human, machine)

Per day stats

 writes: 10+ billion messages (2+TB compressed data)
* reads: 50+ billion messages

-8
$

Kafka vs. Other Messaging Systems

e Scale-out from groundup

* Persistence to disks

* High throughput (10s MB/sec per server)
* Multi-subscription

Outline

Overview of Kafka
Kafka architecture
Kafka replication design

Performance

Q/A

Kafka Architecture

Terminologies

* Topic = message stream
* Topic has partitions

— partitions distributed to brokers
e Partition has a log on disk

— message persisted in log
— message addressed by offset

API

* Producer

messages = new List<KeyedMessage<K,V>>();
messages.add (new KeyedMessage (“topicl”, null, “msgl”);
send (messages) ;

e Consumer

streams|[] = Consumer.createMessageStream(“topicl”, 1);

for (message: streams[0]) {
// do something with message

}

Deliver High Throughput

Simple storage

topicl:partl

logs in broker

segment-1

segment-2

topic2:partl ‘

segment-1

segment-2

e ¢ @ e e g
|_segment-n || |

Batched writes and reads
Zero-copy transfer from file to socket
Compression (batched)

msg-1
msg-2
msg-3

read()
append()

Outline

Overview of Kafka
Kafka architecture
Kafka replication design

Performance

Q/A

Why Replication

* Broker can go down
— controlled: rolling restart for code/config push
— uncontrolled: isolated broker failure

* |f broker down
— some partitions unavailable
— could be permanent data loss

* Replication =2 higher availability and durability

CAP Theorem

* Pick two from
— consistency
— availability
— network partitioning

Kafka Replication: Pick CA

* Brokers within a datacenter
— i.e., network partitioning is rare

e Strong consistency

— replicas byte-wise identical
* Highly available

— typical failover time: < 10ms

Replicas and Layout

e Partition has replicas
* Replicas spread evenly among brokers

logs

logs logs

topic1-part2

topic1-part2

topic1-part2

broker 1 broker 2 broker 3 broker 4

Maintain Strongly Consistent Replicas

One of the replicas is leader
All writes go to leader
Leader propagates writes to followers in order

Leader decides when to commit message

Conventional Quorum-based Commit

e Wait for majority of replicas (e.g. Zookeeper)
* Plus: good latency
* Minus: 2f+1 replicas =2 tolerate f failures

— ideally want to tolerate 2f failures

Commit Messages in Kafka

* Leader maintains in-sync-replicas (ISR)
— initially, all replicas in ISR
— message committed if received by ISR
— follower fails = dropped from ISR
— leader commits using new ISR

* Benefit: f replicas = tolerate f-1 failures

— |latency less an issue within datacenter

Data Flow in Replication

producer
v 1 2

ack\‘\
N

broker 1 broker 2 broker 3

When producer receives ack Durability on failures

no ack no network delay some data loss
wait for leader 1 network roundtrip a few data loss

wait for committed 2 network roundtrips no data loss

Extend to Multiple Partitions

* Leaders are evenly spread among brokers

Handling Follower Failures

* Leader maintains last committed offset
— propagated to followers
— checkpointed to disk

e When follower restarts
— truncate log to last committed
— fetch data from leader

— fully caught up = added to ISR

Handling Leader Failure

* Use an embedded controller (inspired by Helix)

— detect broker failure via Zookeeper
— on leader failure: elect new leader from ISR
— committed messages not lost

* Leader and ISR written to Zookeeper

— for controller failover
— expected to change infrequently

Example of Replica Recovery

1. ISR = {A,B,C}; Leader A commits message m1;
L(A) F (B) F(C)

last committed‘)% —)E E

2. A fails and B is new leader; ISR = {B,C}; B commits m2, but not m3
L (A L (B) F(C)

RN

3. B commits new messages m4, m5
L (A) L (B) F(C)

XEE

4. A comes back, truncates to m1 and catches up; finally ISR = {A,B,C}
F (A) L (B) F (C) F(A) L (B) F(C)

—HBE~BEE

Outline

Overview of Kafka
Kafka architecture
Kafka replication design

Performance

Q/A

Setup

3 brokers
1 topic with 1 partition
Replication factor=3

Message size = 1KB

Choosing btw Latency and Durability

When producer Time to publish | Durability on
receives ack a message (ms) | failures

no ack 0.29 some data loss

wait for leader 1.05 a few data loss

wait for committed 2.05 no data loss

Producer Throughput

MB/s

varying messages per send

no ack

leader

committed

/

1 10 100 1000

messages per send

MB/s

varying # concurrent producers

no ack

leader

committed

[EEY

5 10 20

producers

Consumer Throughput

throughput vs fetch size

100
80

60

MB/s

40

20

1KB 10KB 100KB 1MB

fetch size

Q/A

e Kafka 0.8.0 (intra-cluster replication)
— to be released in Mar

— various performance improvements in the future

e Checkout more about Kafka
— http://kafka.apache.org/

e Kafka meetup tonight

