Intra-cluster Replication for
Apache Kafka



About myself

* Engineer at Linkedln since 2010
 Worked on Apache Kafka and Cassandra
* Database researcher at IBM
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What’s Kafka

* Adistributed pub/sub messaging system

* Used in many places
— LinkedIn, Twitter, Box, FourSquare ...

 What do people use it for?
— log aggregation
— real-time event processing
— monitoring
— queuing



Example Kafka Apps at Linkedln
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Kafka Deployment at LinkedIn

Live data center

Offline data center

interactive data
(human, machine)

Per day stats

 writes: 10+ billion messages (2+TB compressed data)
* reads: 50+ billion messages

-8
$



Kafka vs. Other Messaging Systems

e Scale-out from groundup

* Persistence to disks

* High throughput (10s MB/sec per server)
* Multi-subscription
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Kafka Architecture




Terminologies

* Topic = message stream
* Topic has partitions

— partitions distributed to brokers
e Partition has a log on disk

— message persisted in log
— message addressed by offset



API

* Producer

messages = new List<KeyedMessage<K,V>>();
messages.add (new KeyedMessage (“topicl”, null, “msgl”);
send (messages) ;

e Consumer

streams|[] = Consumer.createMessageStream(“topicl”, 1);

for (message: streams[0]) {
// do something with message

}



Deliver High Throughput

Simple storage

topicl:partl

logs in broker

segment-1

segment-2

topic2:partl ‘

segment-1

segment-2

e ¢ @ e e g
|_segment-n || |

Batched writes and reads
Zero-copy transfer from file to socket
Compression (batched)

msg-1
msg-2
msg-3

read()
append()
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Why Replication

* Broker can go down
— controlled: rolling restart for code/config push
— uncontrolled: isolated broker failure

* |f broker down
— some partitions unavailable
— could be permanent data loss

* Replication =2 higher availability and durability



CAP Theorem

* Pick two from
— consistency
— availability
— network partitioning



Kafka Replication: Pick CA

* Brokers within a datacenter
— i.e., network partitioning is rare

e Strong consistency

— replicas byte-wise identical
* Highly available

— typical failover time: < 10ms



Replicas and Layout

e Partition has replicas
* Replicas spread evenly among brokers

logs

logs logs

topic1-part2

topic1-part2

topic1-part2

broker 1 broker 2 broker 3 broker 4




Maintain Strongly Consistent Replicas

One of the replicas is leader
All writes go to leader
Leader propagates writes to followers in order

Leader decides when to commit message



Conventional Quorum-based Commit

e Wait for majority of replicas (e.g. Zookeeper)
* Plus: good latency
* Minus: 2f+1 replicas =2 tolerate f failures

— ideally want to tolerate 2f failures



Commit Messages in Kafka

* Leader maintains in-sync-replicas (ISR)
— initially, all replicas in ISR
— message committed if received by ISR
— follower fails = dropped from ISR
— leader commits using new ISR

* Benefit: f replicas = tolerate f-1 failures

— |latency less an issue within datacenter



Data Flow in Replication

producer
v 1 2

ack\‘\
N

broker 1 broker 2 broker 3

When producer receives ack Durability on failures

no ack no network delay some data loss
wait for leader 1 network roundtrip  a few data loss

wait for committed 2 network roundtrips no data loss



Extend to Multiple Partitions

* Leaders are evenly spread among brokers



Handling Follower Failures

* Leader maintains last committed offset
— propagated to followers
— checkpointed to disk

e When follower restarts
— truncate log to last committed
— fetch data from leader

— fully caught up = added to ISR



Handling Leader Failure

* Use an embedded controller (inspired by Helix)

— detect broker failure via Zookeeper
— on leader failure: elect new leader from ISR
— committed messages not lost

* Leader and ISR written to Zookeeper

— for controller failover
— expected to change infrequently



Example of Replica Recovery

1. ISR = {A,B,C}; Leader A commits message m1;
L(A) F (B) F(C)

last committed‘)% —)E E

2. A fails and B is new leader; ISR = {B,C}; B commits m2, but not m3
L (A L (B) F(C)

RN

3. B commits new messages m4, m5
L (A) L (B) F(C)

XEE

4. A comes back, truncates to m1 and catches up; finally ISR = {A,B,C}
F (A) L (B) F (C) F(A) L (B) F(C)

—HBE~BEE
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Setup

3 brokers
1 topic with 1 partition
Replication factor=3

Message size = 1KB



Choosing btw Latency and Durability

When producer Time to publish | Durability on
receives ack a message (ms) | failures

no ack 0.29 some data loss

wait for leader 1.05 a few data loss

wait for committed 2.05 no data loss



Producer Throughput

MB/s

varying messages per send

no ack

leader

committed

/

1 10 100 1000

messages per send

MB/s

varying # concurrent producers

no ack

leader

committed

[EEY

5 10 20

# producers




Consumer Throughput

throughput vs fetch size
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e Kafka 0.8.0 (intra-cluster replication)
— to be released in Mar

— various performance improvements in the future

e Checkout more about Kafka
— http://kafka.apache.org/

e Kafka meetup tonight




