Building Scalable Messaging
Systems with Qpid

Lessons Learned from PayPal

Background @ PayPal

Handles 60% of all web transactions
One of the largest Oracle instances
Mix of proprietary systems

Mix of 1000’s of stateless processes
Traditional JEE applications

Payments are generally asynchronous
Payments are generally messages

Basic Requirements

* Scaling
— Highly Scalable
— Partitionable
— Cloud Friendly

* Failure
— Continuously Available

— No Avoid Single Point of
Failure

— Nothing Shared

* Latency
— Near Real Time

Why
Desired an open messaging protocol

Cross platform interoperability (C++, Java,
Python)

Required very low latency
Eventual interoperability with ActiveMQ

Ability to influence the community

Where We Started

Simple Network of Brokers

Replicated
Point to Point

_.oad Balanced via L5 Switch
Round Robin, Least/Min Rule

wm s

]

I:I*I:I

What We Found

e Scale
— 20 billion 2K Messages Per Day
— Variation Message Size > Latency

e Connections

— Short lived processes strain the broker
— @5000-6500 broker begins to flail

* Routing Concerns
— Distributing connections
— Prohibited InVM messaging

Next Evolution

* Create Distinct Layers of Brokers
— Front Tier
— Mid Tier
— Core Tier
e Partition Each Layer By Function or Actor
— User Type (Consumers, Merchants, API)
— Business Function (Risk, Payments, Account Servicing)
— System Function (Events, Services, Logging)
— Cloud Friendly

e |solate Partitions within the Broker

Interfaces

 Federation Semantics Part of the Address
* Externalize Addressing

e Use “pure” AMQP or JMS wherever possible

SASL JAAS Camel ApacheCXF
i JEE

JMS

JCA

AMQP

Network

Federation

Distinct Request & Response Exchanges
Local & Remote Request Destinations

— gpid-config -a localhost:5673 add exchange direct service gateway.direct
— gpid-config -a localhost:5674 add exchange direct service impl.direct

— gpid-config -a localhost:5673 add queue user.lifecycle.request

— dgpid-config -a localhost:5674 add queue user.lifecycle.request.impl

Requests use queue routes

— gpid-route queue add localhost:5674 localhost:5673 service impl.direct
user.lifecycle.request

Responses use dynamic routes

— gpid-route -v dynamic add localhost:5674 localhost:5673 service res.direct —
durable

Responses use unique binding addresses for routing

Example

FEDERATION

Client/Publisher

* Message size is important

* Avoid default reply to
implementations

* Pull configuration versus
pre-packaging

Managing the Config

=8 =

Monitoring

 Qpid Management Framework
— Each Object In the Broker Publishes Event
— Events are Messages (Topic) that are Routable

e Describe Interest In Events

* Listeners that subscribe & dispatch
— SNMP
— Nagios
— Internal Logging

What Can Be

Agent * Events

Binding — New Objects
Bridge — Updates |
Broker Connection — Failures (Links)
Exchange * Configuration
Link — Properties
Queue — States
Subscription

System * Statistics
VHost - TXN

— Messages
— Latency

Example

QUEUE MONITORING

Performance

Raw QPID average roundtrip message times in milliseconds over 100K messages.

ii“ng'e AL 06 06 066 064 065 0.66 0.73 0.9 1.07 1.55

g

';’“;'E Node TCP over 09 09 098 108 113 125 1.49 2.14 3.35 5.72
g

Multi Node ROMA over |8 042 043 043 044 044 045 0.51 0.55 0.63 0.74

Use case comparison between MBSI architectures by Infrastructure. Times are average per message
over 1K messages

QPID/SSL (Sync) 2.66 3.33 6.11 7.17 11.73 16.07 19.71 27.86
QPID/SSL (Fire-and-

forget/Non-Ack'd) 0.51 0.56 0.54 0.74 0.8 1.44 2.05 2.59
QPID/SSL (Fire-and-

forget/Ack'd) 1.04 1.08 3.52 2.04 3.69 4.08 5.84
Throughput:

* Single Node 141K Messages Per Second @ 1K Message Size & Single Producer
* 1/0 Bound on the Producer

17

How We Can Use It

* PayPal Cloud

— Openstack integration via AMQP
— Dynamic Scaling via QMF events

* Possible Applications
— Mobile via JavaScript Proton
— Payment Devices

Opportunities

AMQP Links between Qpid & ActiveMQ
— Heterogeneous messaging fabric

Embedded Messaging Engines
— In car devices

— Point of Sale

— Phones

Replace proprietary service frameworks with Proton

Replace Qpid Libraries with Proton

