

Instant Integration into the AMQP
Cloud with Apache Qpid Messenger

Rafael Schloming
Principle Software Engineer @ Red Hat
rhs@apache.org

Overview
● Introduction
● Messaging
● AMQP
● Proton
● Demo
● Summary

Introduction
● AMQP 1.0

– OASIS Standard

– Messaging Protocol

● Proton: A toolkit for speaking AMQP
– The AMQP Protocol Engine API

– The AMQP Messenger API

● Part of the Apache Qpid project
– Qpid is the home for AMQP at Apache

Messaging
● Tightly Coupled

WarehouseStore Front

Messaging
● Tightly Coupled

WarehouseStore Front

:-(

:-(

Messaging
● Loosely Coupled

WarehouseStore Front Order Queue

Messaging
● Loosely Coupled

WarehouseStore Front Order Queue

:-(

Messaging
● Loosely Coupled

WarehousesStore Fronts Order Queue

Messaging
● Message

– addresses are rendezvous points
● flexible n – n communication topologies

– properties available for semantic routing

Properties

 to: address
color: yellow

Body

...

Messaging

ConsumersProducers Queue

● Queues

Messaging

ConsumersProducers Queue

● Queues

Messaging

SubscribersPublishers Topic

● Topics

Messaging

SubscribersPublishers Topic

● Topics

Messaging

SubscribersPublishers Topic

● Topics

Messaging

EndpointsEndpoints Infrastructure

● Heterogeneous

Proprietary Messaging

EndpointsEndpoints Proprietary Infrastructure

Proprietary Messaging
● difficult to port

– requires rewriting apps to different API

● difficult to integrate
– requires app level bridging and translation

● platforms limited to vendor provided
choices

AMQP 1.0
● Ratified as an OASIS standard in Oct 2012

– Developed over several years by an industry
working group including:

● Technology vendors
– Axway Software, Huawei Technologies, IIT Software,

INETCO Systems, Kaazing, Microsoft, Mitre Corporation,
Primeton Technologies, Progress Software, Red Hat,
SITA, Software AG, Solace Systems, VMWare, WSO2,
Zenika

● User firms
– Back of America, Credit Suisse, Deutsche Boerse,

Goldman Sachs, JPMorgan Chase

AMQP 1.0
● Concisely expresses core messaging

semantics
– flow control

– settlement

– transactions

– data binding

● Suitable as a wire protocol for a wide range
of message oriented applications

AMQP 1.0

EndpointsEndpoints AMQP Enabled
Infrastructure

● AMQP Enabled Infrastucture

AMQP 1.0

EndpointsEndpoints AMQP Enabled
Infrastructure

● Heterogeneous Infrastructure

AMQP 1.0

EndpointsEndpoints AMQP Cloud

● Standard + Secure = Open Deployments

AMQP 1.0 Implementations
● Apache Qpid

– C++ and Java brokers

● Apache ActiveMQ
– multiprotocol message broker

● Azure Service Bus
– PaaS

● Swift MQ
– JMS broker + client

● Rabbit MQ

Apache Qpid Proton
● Proton is a protocol implementation

– Previous attempts to standardize messaging
have been client/server based, i.e. RPC

– AMQP 1.0 is a protocol specification
● Network oriented: Symmetric, Decentralized
● Provides intermediated messaging semantics, but

does not restrict to hub and spoke topology
● Not just a standard way to talk to a traditional

broker

– AMQP 1.0 makes a protocol implementation
possible

Apache Qpid Proton
● Traditional MOM transformed

– Traditional MOMs conflate both
● store and forward infrastructure
● specialized application behaviors

– special queues: last value, ring queues
– message transformation

– Driven by Scalability and Standardization

● With AMQP 1.0, these features can be
– distributed, scalable, heterogeneous

Apache Qpid Proton
● Many things benefit from speaking AMQP

– A concise expression of a very general set of
messaging semantics

● Flow control
● Settlement
● Transactions
● Data binding

– Not everyone wants to implement all this down
to the wire

Apache Qpid Proton
● Goals

– Make it easy to speak AMQP
● minimal dependencies
● minimal threading assumptions
● multilingual

– C, Java, Javascript
– C Bindings in python, ruby, php, perl, ...

● multi-platform
– Linux/unix, windows, android, iOS

Apache Qpid Proton

Server Logic

AMQP
Protocol Engine

Server I/O

Client Application

AMQP Messenger
AMQP

Protocol Engine

Client I/O

● Protocol Engine

Protocol Engine
● NOT a traditional “RPC-like” pattern:

– protocol implementation does I/O
● Coupled to OS interfaces, I/O strategy, threading

model

invoke()

encode()

write()

dispatch()

decode()

read()

App App

Protocol Engine
● Engine pattern:

– application does I/O

– engine encapsulates protocol state
● pure state machine, no dependencies, no callbacks

invoke() output() write() read()

Engine

input() dispatch()

Engine

App App

Protocol Engine
● Engine interface: “top” and “bottom” half

– Top half
● traditional protocol interface in non blocking form

– establish senders and receivers, send/recv message data

– Bottom half
● transport interface, inverted

– normal transport pushes bytes to a socket
– inverted transport pulls bytes from the engine

Engine

Top Half Bottom Half

Protocol Engine
● Echo Server

Echo Engine
Bytes Out = Bytes In

Bytes In Bytes Out

Protocol Engine
● Echo Server

Echo Engine
Bytes Out = Bytes In

Bytes In Bytes Out

Query Interface

Protocol Engine
● Request/Response Server

Request/Response Engine
Bytes Out = F(Bytes In)

Bytes In Bytes Out

Query Interface

Protocol Engine
● Request/Response Server

Request/Response Engine
Bytes Out = Ctl(Bytes In)

Bytes In Bytes Out

Query/Control Interface

Protocol Engine
● Generalized Server

Generalized Engine
Bytes Out = F(Bytes In, Ctl)

Bytes In Bytes Out

Query/Control Interface

Protocol Engine
● Generalized Endpoint

Generalized Engine
Bytes Out = F(Bytes In, Ctl)

Bytes In Bytes Out

Query/Control Interface

Protocol Engine
● Generalized AMQP Engine

Transport
(Bottom Half)

Bytes Out = F(Bytes In, Ctl)
Bytes In Bytes Out

Stateful Query/Control Interface

AMQP Connection
(Top Half)

bind/unbind

Protocol Engine
● Benefit: flexibility

– Single protocol implementation can be shared
● Used in a simple client
● Easy to embed into existing servers

– Thread agnostic
● works with single threaded and multithreaded

servers of any architecture

– Easy to swig
● pure data structure
● no callbacks
● simple interface

Protocol Engine

EndpointsEndpoints AMQP Cloud

● Multiplatform + Multilingual = Protons Everywhere

+

+

+

+

+

+

+ +
+ +

+ +

Messenger

messenger = Messenger()

messenger.start()

msg = Message()
msg.address = "0.0.0.0"
msg.body = u"Hello World!"

messenger.put(msg)
messenger.send()

messenger.stop()

messenger = Messenger()
messenger.subscribe("~0.0.0.0")
messenger.start()

msg = Message()

while True:
 messenger.recv()
 while messenger.incoming:
 messenger.get(msg)
 print msg.body

messenger.stop()

Sending Receiving

Messenger
● Message oriented, not connection oriented

– (re) creates and pools the minimal number of
connections behind the scenes

● simplifies failover

– topology is invisible to application

● Simple, but not a toy
– batch oriented interface

● high performance

Messenger

messenger = Messenger()

messenger.outgoing_window = 100
messenger.start()

msg = Message()
msg.address = "0.0.0.0"
msg.body = u"Hello World!"

tracker = messenger.put(msg)
messenger.send()
print messenger.status(tracker)

messenger.stop()

messenger = Messenger()
messenger.subscribe("~0.0.0.0")
messenger.start()

msg = Message()

while True:
 messenger.recv()
 while messenger.incoming:
 messenger.get(msg)
 print msg.body
 messenger.accept()

messenger.stop()

Sending Reliably Receiving Reliably

Message
● mutable and reusable holder of content

– works with batch send
● more performance

– doesn't conflate delivery with message
● flexible: modify a received message and resend it

● data binding from AMQP to native types
● usable with Messenger or Engine

Demo

Messenger
(Python)

Order DB

Order Queue (Service Bus)

Order Queue (Active MQ)

Order Tracking
(PHP)

submit

update

Summary
● AMQP 1.0 is a new kind of messaging

– brings messaging to the masses

● Proton
– The AMQP Protocol Engine

● advanced architecture
● based on years of enterprise experience

– The AMQP Messenger API
● simple but powerful programming API

● This is the basis of next gen applications

More Information
● http://qpid.apache.org/proton
● proton@qpid.apache.org
● http://www.amqp.org

http://qpid.apache.org/proton
mailto:proton@qpid.apache.org
http://www.amqp.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

