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Introduction
● AMQP 1.0

– OASIS Standard

– Messaging Protocol

● Proton: A toolkit for speaking AMQP
– The AMQP Protocol Engine API

– The AMQP Messenger API

● Part of the Apache Qpid project
– Qpid is the home for AMQP at Apache



  

Messaging
● Tightly Coupled

WarehouseStore Front
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Messaging
● Loosely Coupled

WarehouseStore Front Order Queue



  

Messaging
● Loosely Coupled
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Messaging
● Loosely Coupled

WarehousesStore Fronts Order Queue



  

Messaging
● Message

– addresses are rendezvous points
● flexible n – n communication topologies

– properties available for semantic routing

Properties

        to: address
color: yellow

Body

...



  

Messaging

ConsumersProducers Queue

● Queues



  

Messaging
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Messaging

SubscribersPublishers Topic

● Topics



  

Messaging

SubscribersPublishers Topic

● Topics



  

Messaging

SubscribersPublishers Topic

● Topics



  

Messaging

EndpointsEndpoints Infrastructure

● Heterogeneous



  

Proprietary Messaging

EndpointsEndpoints Proprietary Infrastructure



  

Proprietary Messaging
● difficult to port

– requires rewriting apps to different API

● difficult to integrate
– requires app level bridging and translation

● platforms limited to vendor provided 
choices



  

AMQP 1.0
● Ratified as an OASIS standard in Oct 2012

– Developed over several years by an industry 
working group including:

● Technology vendors
– Axway Software, Huawei Technologies, IIT Software, 

INETCO Systems, Kaazing, Microsoft, Mitre Corporation, 
Primeton Technologies, Progress Software, Red Hat, 
SITA, Software AG, Solace Systems, VMWare, WSO2, 
Zenika

● User firms
– Back of America, Credit Suisse, Deutsche Boerse, 

Goldman Sachs, JPMorgan Chase



  

AMQP 1.0
● Concisely expresses core messaging 

semantics
– flow control

– settlement

– transactions

– data binding

● Suitable as a wire protocol for a wide range 
of message oriented applications



  

AMQP 1.0

EndpointsEndpoints AMQP Enabled
Infrastructure

● AMQP Enabled Infrastucture 



  

AMQP 1.0

EndpointsEndpoints AMQP Enabled
Infrastructure

● Heterogeneous Infrastructure



  

AMQP 1.0

EndpointsEndpoints AMQP Cloud

● Standard + Secure = Open Deployments



  

AMQP 1.0 Implementations
● Apache Qpid

– C++ and Java brokers

● Apache ActiveMQ
– multiprotocol message broker

● Azure Service Bus
– PaaS

● Swift MQ
– JMS broker + client

● Rabbit MQ



  

Apache Qpid Proton
● Proton is a protocol implementation

– Previous attempts to standardize messaging 
have been client/server based, i.e. RPC

– AMQP 1.0 is a protocol specification
● Network oriented: Symmetric, Decentralized
● Provides intermediated messaging semantics, but 

does not restrict to hub and spoke topology
● Not just a standard way to talk to a traditional 

broker

– AMQP 1.0 makes a protocol implementation 
possible



  

Apache Qpid Proton
● Traditional MOM transformed

– Traditional MOMs conflate both
● store and forward infrastructure
● specialized application behaviors

– special queues: last value, ring queues
– message transformation

– Driven by Scalability and Standardization

● With AMQP 1.0, these features can be
– distributed, scalable, heterogeneous



  

Apache Qpid Proton
● Many things benefit from speaking AMQP

– A concise expression of a very general set of 
messaging semantics

● Flow control
● Settlement
● Transactions
● Data binding

– Not everyone wants to implement all this down 
to the wire



  

Apache Qpid Proton
● Goals

– Make it easy to speak AMQP
● minimal dependencies
● minimal threading assumptions
● multilingual

– C, Java, Javascript
– C Bindings in python, ruby, php, perl, ...

● multi-platform
– Linux/unix, windows, android, iOS



  

Apache Qpid Proton

Server Logic

AMQP
Protocol Engine

Server I/O

Client Application

AMQP Messenger
AMQP

Protocol Engine

Client I/O

● Protocol Engine



  

Protocol Engine
● NOT a traditional “RPC-like” pattern:

– protocol implementation does I/O
● Coupled to OS interfaces, I/O strategy, threading 

model

invoke()

encode()

write()

dispatch()

decode()

read()

App App



  

Protocol Engine
● Engine pattern:

– application does I/O

– engine encapsulates protocol state
● pure state machine, no dependencies, no callbacks

invoke() output() write() read()

Engine

input() dispatch()

Engine

App App



  

Protocol Engine
● Engine interface: “top” and “bottom” half

– Top half
● traditional protocol interface in non blocking form

– establish senders and receivers, send/recv message data

– Bottom half
● transport interface, inverted

– normal transport pushes bytes to a socket
– inverted transport pulls bytes from the engine

Engine

Top Half Bottom Half



  

Protocol Engine
● Echo Server

Echo Engine
Bytes Out = Bytes In

Bytes In Bytes Out



  

Protocol Engine
● Echo Server

Echo Engine
Bytes Out = Bytes In

Bytes In Bytes Out

Query Interface



  

Protocol Engine
● Request/Response Server

Request/Response Engine
Bytes Out = F(Bytes In)

Bytes In Bytes Out

Query Interface



  

Protocol Engine
● Request/Response Server

Request/Response Engine
Bytes Out = Ctl(Bytes In)

Bytes In Bytes Out

Query/Control Interface



  

Protocol Engine
● Generalized Server

Generalized Engine
Bytes Out = F(Bytes In, Ctl)

Bytes In Bytes Out

Query/Control Interface



  

Protocol Engine
● Generalized Endpoint

Generalized Engine
Bytes Out = F(Bytes In, Ctl)

Bytes In Bytes Out

Query/Control Interface



  

Protocol Engine
● Generalized AMQP Engine

Transport
(Bottom Half)

Bytes Out = F(Bytes In, Ctl)
Bytes In Bytes Out

Stateful Query/Control Interface

AMQP Connection
(Top Half)

bind/unbind



  

Protocol Engine
● Benefit: flexibility

– Single protocol implementation can be shared
● Used in a simple client
● Easy to embed into existing servers

– Thread agnostic
● works with single threaded and multithreaded 

servers of any architecture

– Easy to swig
● pure data structure
● no callbacks
● simple interface



  

Protocol Engine

EndpointsEndpoints AMQP Cloud

● Multiplatform + Multilingual = Protons Everywhere

+

+

+

+

+

+

+ +
+ +
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Messenger

messenger = Messenger()

messenger.start()

msg = Message()
msg.address = "0.0.0.0"
msg.body = u"Hello World!"

messenger.put(msg)
messenger.send()

messenger.stop()

messenger = Messenger()
messenger.subscribe("~0.0.0.0")
messenger.start()

msg = Message()

while True:
  messenger.recv()
  while messenger.incoming:
    messenger.get(msg)
    print msg.body

messenger.stop()

Sending Receiving



  

Messenger
● Message oriented, not connection oriented

– (re) creates and pools the minimal number of 
connections behind the scenes

● simplifies failover

– topology is invisible to application

● Simple, but not a toy
– batch oriented interface

● high performance



  

Messenger

messenger = Messenger()

messenger.outgoing_window = 100
messenger.start()

msg = Message()
msg.address = "0.0.0.0"
msg.body = u"Hello World!"

tracker = messenger.put(msg)
messenger.send()
print messenger.status(tracker)

messenger.stop()

messenger = Messenger()
messenger.subscribe("~0.0.0.0")
messenger.start()

msg = Message()

while True:
  messenger.recv()
  while messenger.incoming:
    messenger.get(msg)
    print msg.body
    messenger.accept()

messenger.stop()

Sending Reliably Receiving Reliably



  

Message
● mutable and reusable holder of content

– works with batch send
● more performance

– doesn't conflate delivery with message
● flexible: modify a received message and resend it

● data binding from AMQP to native types
● usable with Messenger or Engine



  

Demo

Messenger
(Python)

Order DB

Order Queue (Service Bus)

Order Queue (Active MQ)

Order Tracking
(PHP)

submit

update



  

Summary
● AMQP 1.0 is a new kind of messaging

– brings messaging to the masses

● Proton
– The AMQP Protocol Engine

● advanced architecture
● based on years of enterprise experience

– The AMQP Messenger API
● simple but powerful programming API

● This is the basis of next gen applications



  

More Information
● http://qpid.apache.org/proton
● proton@qpid.apache.org
● http://www.amqp.org

http://qpid.apache.org/proton
mailto:proton@qpid.apache.org
http://www.amqp.org/
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