Firefox
- Crash

Reporting

laura@ mozilla.com

@Ixt

Webtools @ Mozilla

e Crash reporting

e Performance measurement

e Localization

e Code search and static analysis

e Other stuff: product delivery and updates, plugins management,
infrastructure dashboards, authentication, Etherpad Lite, Air Mozilla...

Overview

e What is Socorro?
e Some numbers

Architecture

Work process and tools

e Future, questions

What is Socorro?

w
Socorro

Very Large Array at Socorro, New Mexico, USA. Photo taken by Hajor, 08.Aug.2004. Released under cc.by.sa

and/or GFDL. Source: http://en.wikipedia.org/wiki/File:USA.NM.VeryLargeArray.02.jpg

We're Sorry
Firefox had a problem and crashed. We'll try to restore
your tabs and windows when it restarts.

To help us diagnose and fix the problem, you can send us
a crash report.
™ Tell Mozilla about this crash so they can fix it

Detai

™ Include the address of the page | was on
[_] Allow Mozilla to contact me about this report

Enter your email address here

Your crash report will be submitted before you quit or
restart.

[Quit Firefox | [Restart Firefox |

[-NeXe) Crash Data for Firefox o
- Crash Data for Firefox Ll
@ @ https://crash-stats.mozilla.com/products Firefox

¢ (B~ Google

& mozilla crash reports

product: ([T

{ Current versions _: JRMIEEE] overview ____: |

Firefox Crash Data 2 cays 144

ays Date Range

Crashes per 100 Active Daily Users
s

Feb 10 Feb20 Feb2t Fev22 Feo23 Fob24

Fen2s
Crash Reports

Firefox 22.0a1 Firefox 21.0a2 Firefox 20.0b1

Firefox 19.0
Top Crashers

Top Changers

Top Plugin Crashers

poOoO
& Top Crashers for Firefox 19.0 [

Top Crashers for Firefox 19.0

) @ hups://crash-stats.mozilla.com/ topcrasher/byversion/ Firefox/19.0/7

7
-

) mozilla crash reports

product: [T X

Top Crashers for Firefox 19.0 G

Top 300 Crashing Signatures. 2013-02-19 through 2013-02-26.

Report:

Type: Al == rwn Content Days: 1 3 @D « 2 os: I Wwindows
Rank % Diff ¢ Signature ¢ Count & Win &
1 W041% 036% TsGetvave () 21873 218473
2 996% 282% EMPTY. no crashing thread identified; corupt dumg i 71585 o
3 8.89% 1.05% Interiockedincrement D 63876 63876
4 154% | 0.06% js:GCMarker:processMarkStackToplis: SlicoBudgets) [v e
s 149% 003% SwChiA M o2 o2

141% | 132% iszonaive:Sciotnayeis:anolvzolfolmest/SContox” O 1o tous

132% 015% @02 0 0465 9465
8 125% | 002% XPC WN Heper NewRssole O e oo
s 147% 045% mozalioc aborl nst” const) | NS DebugBreak P'| 16(nsACSIi [s e
10 074% | 0.16% naXPConnect GaiXPComn O ste s
" 072% 020% e free | DefautFroeEntry D 5172 5172
12 053% | 008% js:mit-JsenerShouISContex boo! e

Linux
Mac & Lin ¢
0 o
0 o
0 o
50 o
o o
1 7
[} [
) 1
0 o
68 2
0 o
) 0

c (8

‘The report covers 78.79% of all 718414 crashes during this period. Graphs below are duak-axis, having Count (Number of Crashes) on the left X axis and Percent of total of Crashes on the right X axis.

|
o) (8] (#) (D) e

Advanced Search

Google

Mac 0S X

Ver ¢ First Appearance ¢ Bugzila IDs ¢ Corrslation ¢
205 20110101 830531, Show More
73 2014107 780549, 748443, 793126, Show More
202 20110101 830531, 548197, Show More
8 20120220 803048, 780692, 817342, Show More
252 20110101 530074, 627238, 6472688, .. Show More
40 20110945 806071, Show More
s1 20110108 830531, Show More
25 20110101 830531, 602797, Show More
62 20120511 836263, 511135, ‘Show More
181 20110101 794528, 630531, 819337, ‘Show More
8 20114119 675260, 244847, ‘Show More
o7 2010820 822438, 670603, ‘Show More

Typical use cases

e What are the most common crashes for a product/version/
channel?

e What new crashes / regressions do we see emerging? What’s
the cause of an emergent crash?

e How crashy is one build compared to another?

e What correlations do we see with a particular crash?

What else can we do?

e Does one build have more (null signature) crashes than other
builds?

e Analyze differences between Flash versions x and y crashes
e Detect duplicate crashes

e Detect explosive crashes

e Find “frankeninstalls”

e Analyze exploitable crashes

e Ad hoc reporting for tracking down chemspill bugs

Scale

A different type of scaling:

o Typical webapp: scale to millions of users without
degradation of response time

e Socorro: less than a hundred users, terabytes of data

Basic law of scale still applies:

The bigger you get, the more spectacularly you fail

Firehose engineering

At peak we receive up to 3000 crashes per minute

3 million per day

Median crash size 150k, max size 20MB (reject bigger)
¢ Android/FirefoxOS crashes a bit bigger (200k/250Kk)

~800GB stored in PostgreSQL - metadata + generated reports

~110TB stored in HDFS (3x replication, ~40TB of HBase data)
- raw reports + processed reports

Implementation scale

e > 120 physical boxes (not cloud)
e -~10 developers + DBAs + sysadmin team + QA + Hadoop ops

e Deploy weekly+ but will move to CD within next month or so

Architecture

=&
=S

-

| Monitor l r
iddlewal \
hoopsnal

—E—

—_—

“Socorro has a lot of moving parts”

“| prefer to think of them as dancing parts”

Lifetime of a crash

Collection

collector

filesystem

crashmover

Collection

Breakpad submits raw crash via POST (metadata json +
minidump)

Collected to disk by collector (web.py WSGI app)

Moved to HBase by crashmover

Noticed in queue by monitor and assigned for processing

Processing

N monitor
HBase

ostgreS processor

!

minidumpstackwalk

!

Symbol store

ElasticSearch

Processing

e Noticed in queue by monitor and assigned for processing

e Processor spins off minidumpstackwalk (MDSW)

e MDSW re-unites raw crash with symbols to generate a stack
e Processor generates a signature and pulls out other data

e Processor writes processed crash back to HBase and
metadata to PostgreSQL and ElasticSearch

Reporting

crons

Other data sources

HBase

PostgreSQL

ElasticSearch

middleware

webapp

memcache

Back end processing

Large number of cron jobs, e.g.:

Copy clean data into fact tables

Update ADU from Vertica

Calculate aggregates: Top crashers by signature, crashes/100ADU/build
Process incoming builds from ftp server

Match known crashes to bugzilla bugs

Duplicate detection

Generate extracts (CSV) for further analysis (in CouchDB, f.e.)

Middleware

e All data access to through REST API

e Enable other apps against the data platform (and allow the
core team to rewrite webapp more easily)

e Experiments with giving each component its own API for
status and health checks

Webapp

e Hardest part is sometimes how to visualize the data
e Example: reporting in build time as well as clock time

e Just rewritten in Python/Django; running in parallel with
older PHP app

Pluggable architecture

e Goal is to have components be pluggable and easy to switch
out

e Back end components have a simple fetch-transform-save
architecture

e Storage systems pluggable, e.g. for low volume installation
use filesystem instead of HBase

e Middleware isolates data storage from the webapp

Implementation details

e Python 2.6

e PHP5.3

e PostgreSQL 9.2

e memcache for the webapp

e Thrift for HBase access

e HBase (CDH3, 4 sometime soon)

e Some bits of C++, Java, perl, Pig

@

Managing complexity:
work process and tools

Development process

e Fork

Hard to install (you can use a VM)

Pull request with bugfix/feature

e Code review

e Lands on master

Development process -2

e Jenkins polls github master, picks up changes

e Jenkins runs tests, builds a “package”

e Build automatically picked up and pushed to dev

e Wanted changes merged to release branch

e Jenkins builds release branch, pushes to stage

e QA runs acceptance on stage (Selenium/Jenkins + manual)

e Push same build to production

Deployment =

e Run a single script with the build as
parameter

e Pushes it out to all machines and restarts
where needed

e About to automate this further

As an aside:

Build all the machinery for continuous
deployment even if you don’t want to deploy
continuously

Configuration management

e Some releases involve a configuration change
e These are controlled and managed through Puppet

e Again, a single line to change config the same way every
time

e Config controlled the same way on dev and stage; tested the
same way; deployed the same way

Virtualization

e Front end devs don’t want to install HBase

e Use Vagrant to set up a virtual machine

e Use Jenkins to build a new Vagrant VM with each code build
e Use Puppet to configure the VM the same way as production

e Hard part is keeping Vagrant instances up to date and finding the right packages
(Ubuntu vs RHEL in prod) - failing right now

e Second hard part is having a useful amount of data for development - fakedata
instance for testing

New and Upcoming

e crontabber: manage cron dependencies and auto-recover on
failure

e More use of statsd/graphite for perf measurement and
monitoring

e chief for deployment via IRCbot

e Try servers: stage different branches in parallel

finally:

New and upcoming

e More reports and visualizations: gc crashes, crash trends (done), Flash version reporting,
better signature summaries (done), better correlation reports

e ElasticSearch: better search including faceting (shipping in 2 weeks)

e Dragnet: using crash data to populate a database of DLLs (staged)

e More analytics: exploitability, etc

e More ways to query data: API, reporting replica of PostgreSQL, Pig (done), ES
e Better (real) queueing (massive bikeshedding effort)

e Grand Unified Configuration System (done, shipping piecewise)

e crontabber (cronjob co-ordination and management. done)

e SaaS

Everything is open (source)

Site: https://crash-stats.mozilla.com

Fork: https://github.com/mozilla/socorro

Read/file/fix bugs: https://bugzilla.mozilla.org/

Docs: http://www.readthedocs.org/docs/socorro

Mailing list: https://lists.mozilla.org/listinfo/tools-socorro

Join us in IRC: irc.mozilla.org #breakpad

Questions?

e Ask me, now or later

e laura@mozilla.com

