
Apache Giraph!
start analyzing graph relationships in your bigdata in 45 minutes (or your money back)!




Who’s this guy?




Roman Shaposhnik

•  Sr. Manager at Pivotal Inc. building a team of ASF contributors

•  ASF junkie


•  VP of Apache Incubator, former VP of Apache Bigtop

•  Hadoop/Sqoop/Giraph committer

•  contributor across the Hadoop ecosystem)


•  Used to be root@Cloudera

•  Used to be a PHB at Yahoo!

•  Used to be a UNIX hacker at Sun microsystems




Giraph in action (MEAP)
















http://manning.com/martella/




What’s this all about?




Agenda

•  A brief history of Hadoop-based bigdata management

•  Extracting graph relationships from unstructured data

•  A case for iterative and explorative workloads

•  Bulk Sequential Processing to the rescue

•  Apache Giraph: a Hadoop-based BSP graph analysis framework

•  Giraph application development

•  Demos! Code! Lots of it!




On day one Doug created HDFS/MR




Google papers

•  GFS (file system)


•  distributed

•  replicated

•  non-POSIX


•  MapReduce (computational framework)

•  distributed

•  batch-oriented (long jobs; final results)

•  data-gravity aware

•  designed for “embarrassingly parallel” algorithms 




One size doesn’t fit all

•  Key-value approach


•  map is how we get the keys

•  shuffle is how we sort the keys

•  reduce is how we get to see all the values for a key


•  Pipeline approach

•  Intermediate results in a pipeline need to be flushed to HDFS

•  A very particular “API” for working with your data




It’s not about the size of your data;!
it’s about what you do with it!




Graph relationships

•  Entities in your data: tuples


•  customer data

•  product data

•  interaction data


•  Connection between entities: graphs

•  social network or my customers

•  clustering of customers vs. products




Challenges

•  Data is dynamic


•  No way of doing “schema on write”

•  Combinatorial explosion of datasets


•  Relationships grow exponentially

•  Algorithms become


•  explorative

•  iterative






Graph databases

•  Plenty available


•  Neo4J, Titan, etc.

•  Benefits


•  Tightly integrate systems with few moving parts

•  High performance on known data sets


•  Shortcomings

•  Don’t integrate with HDFS

•  Combine storage and computational layers

•  A sea of APIs







Enter Apache Giraph




Key insights

•  Keep state in memory for as long as needed

•  Leverage HDFS as a repository for unstructured data

•  Allow for maximum parallelism (shared nothing)

•  Allow for arbitrary communications

•  Leverage BSP approach




Bulk Sequential Processing


time 

     communications   

local  
processing 

barrier #1 

barrier #2 

barrier #3 



BSP applied to graphs


@rhatr 

@TheASF 

@c0sin 

Think like a vertex:

•  I know my local state

•  I know my neighbours

•  I can send messages to vertices

•  I can declare that I am done

•  I can mutate graph topology




Bulk Sequential Processing


time 

     message delivery 

individual 
vertex 
processing 
     & 
sending  
messages 

superstep #1 

all vertices are “done” 

superstep #2 



Giraph “Hello World”

public class GiraphHelloWorld extends

    BasicComputation<IntWritable, IntWritable, NullWritable, NullWritable> {



    public void compute(Vertex<IntWritable, IntWritable, NullWritable> vertex,

                                    Iterable<NullWritable> messages) {

        System.out.println(“Hello world from the: “ + vertex.getId() + “ : “);

        for (Edge<IntWritable, NullWritable> e : vertex.getEdges()) {

           System.out.println(“ “ + e.getTargetVertexId());

        }

        System.out.println(“”);

    }

}




Mighty four of Giraph API


BasicComputation<IntWritable,   // VertexID  -- vertex ref                                  

                               IntWritable,   // VertexData -- a vertex datum

                               NullWritable, // EdgeData -- an edge label datum

                               NullWritable>// MessageData -- message payload




On circles and arrows

•  You don’t even need a graph to begin with!


•  Well, ok you need at least one node

•  Dynamic extraction of relationships


•  EdgeInputFormat

•  VetexInputFormat


•  Full integration with Hadoop ecosystem

•  HBase/Accumulo, Gora, Hive/HCatalog 




Anatomy of Giraph run


3 1 2	



1 	


2 1 3  	



1	


2 1 3	


3 1 2	



   HDFS          mappers               reducers              HDFS	



@rhatr 

@TheASF 

@c0sin 

InputForm
at 

O
utputForm

at 

1 

2 

3 



Anatomy of Giraph run

                      mappers or YARN containers	



@rhatr 

@TheASF 

@c0sin 

InputForm
at 

O
utputForm

at 

1 

2 

3 



A vertex view


MessageData1 

VertexID 

    
 
 VertexData 
 

MessageData2 



Turning Twitter into Facebook


@rhatr 

@TheASF 

@c0sin 

 rhatr 

 TheASF 

 c0sin 



Ping thy neighbours

public void compute(Vertex<Text, DoubleWritable, DoubleWritable> vertex, Iterable<Text> ms ){ 

        if (getSuperstep() == 0) {

           sendMessageToAllEdges(vertex, vertex.getId());

        } else {

            for (Text m : ms) {

               if (vertex.getEdgeValue(m) == null) {

                 vertex.addEdge(EdgeFactory.create(m, SYNTHETIC_EDGE));

               }

           }

        }

        vertex.voteToHalt();

 }






Demo time!




But I don’t have a cluster!

•  Hadoop in pseudo-distributed mode


•  All Hadoop services on the same host (different JVMs)

•  Hadoop-as-a-Service


•  Amazon’s EMR, etc.

•  Hadoop in local mode




Prerequisites 

•  Apache Hadoop 1.2.1

•  Apache Giraph 1.1.0-SNAPSHOT

•  Apache Maven 3.x

•  JDK 7+




Setting things up

$ curl hadoop.tar.gz | tar xzvf –

$ git clone  git://git.apache.org/giraph.git ; cd giraph

$ mvn –Phadoop_1 package

$ tar xzvf *dist*/*.tar.gz!
!
$ export HADOOP_HOME=/Users/shapor/dist/hadoop-1.2.1

$ export GIRAPH_HOME=/Users/shapor/dist/

$ export HADOOP_CONF_DIR=$GIRAPH_HOME/conf

$ PATH=$HADOOP_HOME/bin:$GIRAPH_HOME/bin:$PATH




Setting project up (maven)

 <dependencies>

    <dependency>

      <groupId>org.apache.giraph</groupId>                           

      <artifactId>giraph-core</artifactId>

      <version>1.1.0-SNAPSHOT</version>

    </dependency>



    <dependency>

      <groupId>org.apache.hadoop</groupId>                             

      <artifactId>hadoop-core</artifactId>

      <version>1.2.1</version>

    </dependency>

  </dependencies>




Running it

$ mvn package

$ giraph target/*.jar giraph.GiraphHelloWorld \

   -vip src/main/resources/1 \

   -vif org.apache.giraph.io.formats.IntIntNullTextInputFormat  \

   -w 1 \

   -ca giraph.SplitMasterWorker=false,giraph.logLevel=error




Testing it

public void testNumberOfVertices() throws Exception {

    GiraphConfiguration conf = new GiraphConfiguration();

    conf.setComputationClass(GiraphHelloWorld.class);

    conf.setVertexInputFormatClass(TextDoubleDoubleAdjacencyListVertexInputFormat.class);

    …

    Iterable<String> results =

          InternalVertexRunner.run(conf, graphSeed);

    …

 }




Simplified view

                      mappers or YARN containers	



@rhatr 

@TheASF 

@c0sin 

InputForm
at 

O
utputForm

at 

1 

2 

3 



Master and master compute


@rhatr 

@TheASF 

@c0sin 

1 

2 

3 

Active 
Master 
 
compute() 

Standby 
Master 

  
 Zookeeper 



Master compute

•  Runs before slave compute()

•  Has a global view

•  A place for aggregator manipulation




Aggregators

•  “Shared variables”

•  Each vertex can push values to an aggregator

•  Master compute has full control


@rhatr 

@TheASF 

@c0sin 

1 

2 

3 

Active 
Master 
 
 min:    
 sum:  

1 
1 

2 
2 

3 
1 



Questions?



