
Apache Karaf in real life
ApacheCon NA 2014

Agenda

Very short history of Karaf	

Karaf basis	

A bit deeper dive into OSGi	

Modularity vs Extensibility	

DIY - Karaf based solution	

What we have learned	

New and noteworthly in Karaf 3.0

About me …

I’m Pole	

Husband	

Open source commiter & consultant	

Traveller	

.. and Construction worker :)

Very short history of
Apache Karaf

Karaf the beginning

Born as ServiceMix 4 platform kernel in 2007	

Moved to Apache Felix community in 2009	

Top level project since June 2010

Karaf versions

1.x - legacy	

2.1 - outdated	

2.2.x - Based on OSGi 4.2	

2.3.x - Based on OSGi 4.3	

3.0 - Based on OSGi 5.0

Karaf versions cont.

2.4.x - might support OSGi 5.0 frameworks and
features	

3.1 - future release for things delaying 3.0
release

Karaf basis

What you already saw in
most of presentations

Source: http://felix.apache.org/

What was told to you

Source: http://denise-theonepersonproject.blogspot.com/

That’s what you can do

Source: http://freefoto.com/

Karaf grown to be a
platform foundation

Might run multiple applications at same time	

Each app may use different technologies	

Keeps things separate	

Has support for full product life cycle	

Failover & load balancing features	

Powerful infrastructure for extensions

Bit deeper dive into	

OSGi

OSGi

Source: http://osgi.org/

In many cases

OSGi is shown as worthless technology forcing
you to have extra entries in manifest	

OSGi brings more problems than solutions	

Many libraries deny to support it because small
user base

OSGi popularity by
Maven Central

Maven central is 426k JARs, assigned to 46k
projects	

Just 10% of projects provides valid OSGi
bundles	

OSGi core jar is at 36th position in download
statistics	

24k projects has transient OSGi dependencies

Source: http://blog.osgi.org/ analysis done by Peter Kriens

OSGi lifecycle

Source: http://docs.spring.io/

Bundle	

Activator	

call

OSGi services	

are main source	

of dynamism in system

OSGi related design
patterns

Whiteboard	

Extender

Modularity 	

vs	

Extensibility

Modular software

Provides clear API and SPI contract	

Small set of dependencies	

Fine grained dependencies	

Lack of implementation specific depdenencies

Extensible software

Provides plug in capabilities	

Does not lock extension to have its own
extensions	

Extension registration should be as less verbose
as possible

You can’t build extensible
solutions without making

them modular first

(C) Lukasz Dywicki

Your solution might be
modular but not
extensible at all

(C) Lukasz Dywicki

Your software can be
modular and extensible
and still not run under

OSGi

(C) Lukasz Dywicki

Karaf based solution

Building solution on top
of Karaf

Make it OSGi friendly	

Make use of services	

Decide to use helpers like blueprint/spring/
declarative services	

Extend Karaf to support your domain	

Brand it, assemble as new product	

Ship it to customer

Making things OSGi
friendly

For maven users - use maven-bundle-plugin	

Take care about OSGification of your dependencies	

Push changes back to origin project if you can	

If fail - then wrap it	

If you do - then share results with community	

Keep naming convention strict & clear

Maven users

<build>	
 <plugins>	
 <plugin>	
 <groupId>org.apache.felix</groupId>	
 <artifactId>maven-bundle-plugin</artifactId>	
 <extensions>true</extensions>	
 </plugin>	
 </plugins>	
</build>

 <parent>	
 <groupId>org.example</groupId>	
 <artifactId>parent</artifactId>	
 <version>2.0.0-SNAPSHOT</version>	
 </parent>	
!

 <artifactId>api</artifactId>	
 <packaging>bundle</packaging>

Dependency OSGification

Quite simple if dependency uses Maven	

Best thing you can do is giving OSGi support back
to project	

Exporting wrapped packages is bad practice	

If you wrap - then make separate bundle	

Submit patch for ServiceMix bundles gain karma

Extending Karaf

Adopt default configuration to use own
authentication source (or write new)	

Group your bundles into Karaf features	

Provide new set of commands supporting your
product

Authentication sources

Following authentication mechanisms are
supported (JAAS login modules):	

JDBC	

LDAP	

OSGi configuration admin	

Property files	

Public key

Karaf features

Simple descriptor with information which bundles
from where should be installed	

Supports multiple protocols 	

File	

HTTP / FTP etc	

mvn (pax-url-mvn)	

Supports transient dependencies, version ranges
and custom resolvers

Karaf features cont.

<features name="repository-name">	
 <repository>mvn:groupId/artifactId/version/xml/features</repository>	
!

 <feature name="my-solution" version="2.0">	
 <feature version="(1.1,1.1]">dependency-feature-name</feature>	
 <bundle>mvn:groupId/artifactId/2.0</bundle>	
 <bundle>mvn:groupId/another-artifactId/2.0</bundle>	
 </feature>	
</features>	

Karaf features cont.

Install it:	

features:addurl mvn:groupId/artifactId/2.0/xml/
features	

features:install my-solution	

Add to default configuration	

etc/org.apache.karaf.features.cfg	

featuresRepositories += url	

featuresBoot += my-solution

Implementing commands
package org.apachecon.na;	
!

import org.apache.felix.gogo.commands.Command;	
import org.apache.karaf.shell.console.OsgiCommandSupport;	
!

@Command(scope="example", name="do")	
public class SimpleCommand extends OsgiCommandSupport {	
!

 @Override	
 protected Object doExecute() throws Exception {	
 System.out.println("Something ...");	
 return null;	
 }	
}	

Don’t forget about few additional things:	

blueprint descriptor	

transient dependencies	

org.apache.felix.service.command	

org.apache.felix.gogo.commands	

org.apache.karaf.shell.console

Implementing commands

Brand it
create file branding.properties in org.apache.karaf.branding package	

Package as OSGi bundle…	

… and copy to lib/ directory

.. and assemble
Use features-maven-plugin	

add-features-to-repo goal	

Most important configuration	

descriptors	

features	

repository => output directory

.. and assemble cont.
At the end use assembly maven plugin to create ZIP/TAR archive	

!

karaf-maven-plugin for Karaf 3.0 will create assembly with your features without
any additional steps

 What we have learned*

* These things might be obvious ..

Getting runtime metrics
from couple Apache

projects is hard

Common problems
Developers not familiar with OSGi..	

.NET developers using Java in first project..	

Dependency upgrades	

Feature version ranges are hard to use	

By default shutdown timeout for Java Service
Wrapper is just 30 seconds	

VM queues are danger when processing is very
slow (OOME)

Common problems cont.

Pre-defined assemlies are big	

Integration testing is slow	

Visual tools produces nice but useless artifacts	

Generated code	

Problematic testing	

Handling of KAR files	

Karaf feature URLs management

Standard OSGi problems
Usage of legacy libraries not actively maintained	

Blueprint service caching in threads - they are blind for bundle/service upgrades	

Very hard to write perfect update scenario	

Impossible to determine change impact

Good things goes last
Camel scales up very well	

ActiveMQ is good for having load balancing	

VM endpoints are damn fast	

Cassandra is damn fast too!	

Increase load by 300% just by enabling
aggregation & batch processing

Few patterns which
works pretty well

ActiveMQ queue as central entry point	

Content based routing to glue components	

Very easy to track incoming load and spikes	

Messages are published via service call	

Separate destinations for OSGi services	

Uses Service Tracker to dynamically create
camel routes	

VM endpoints everywhere, JMS where
bottlenecks can occur

 New and noteworthly
in Karaf 3.0

Q&A

Stay in touch
Twitter & skype: ldywicki	

luke@code-house.org	

https://github.com/splatch/apachecon

mailto:luke@code-house.org
https://github.com/splatch/apachecon

