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Introductions 
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Introductions 

 markt@apache.org  
– Apache Tomcat committer since December 2003 

– Apache Tomcat PMC member from the beginning 

 Tomcat 8 release manager 

 Member of the Apache Tomcat security team 

 Apache Commons PMC member 

 Member of the Apache Infrastructure team 
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Introductions 

 Staff Engineer at Pivotal 

 Primary role is to work on Apache Tomcat 

 Pivotal tc Server 
– Based on Tomcat 

– Keep tc Server updated as new Tomcat versions are released 

 3rd line support for Tomcat and tc Server 
– tomcat@gopivotal.com 

 Lead the Pivotal security team 
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Why This Presentation? 

 Lots of questions about SSL on the Tomcat mailing lists 

 It is clear from the questions many folks don’t understand 

how SSL works 

 Debugging something you don’t understand is much harder 

than debugging something you do understand 
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Cryptography Basics 
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Cryptography Basics: Symmetric Encryption 

 Use the same key to encrypt and decrypt 
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Cryptography Basics: Hash Functions 

 Generate a fingerprint (hash) for the given input 

 A small change in the input results in a large change in the 

hash 

 Very difficult to generate an input for a given hash 
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Hash 
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Cryptography Basics: Asymmetric Encryption 

 Pair of keys, A and B 
– If key A is used to encrypt, key B must be used to decrypt 

– If key B is used to encrypt, key A must be used to decrypt 

 Very difficult to determine one key from the other 

 One key is used as the “Public Key” 
– This key is made widely available to the general public 

 One key is used as the “Private Key” 
– This key must be protected 
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Cryptography Basics: Asymmetric Encryption 

 Use different keys to encrypt and decrypt 
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Cryptography Basics: Digital Signatures 

 Proves that a document was sent by a particular entity 
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Cryptography Basics: Digital Signatures 

 Validating a digital signature 
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Cryptography Basics: Digital Signatures 

 If the hashes match then: 
– The public key decrypted the digital signature 

– Therefore, the associated private key must have created the digital 

signature 

– Therefore, the recipient can be certain that the owner of the 

public/private key pair sent the document 

 Determining who is the owner of the public/private key pair 

is the next problem 
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Cryptography Basics: Certificates 

 Certificates link a public key with an identity 

 Certificates are issued by certificate authorities 
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Cryptography Basics: Certificates 

 To validate the certificate authority’s signature, you need to 

be able to link their public key to their identity 

 You do this with a certificate 

 This builds a trust chain 

 At the top of the chain is the root certificate from the root 

certificate authority 

 There are multiple root certificate authorities 
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Cryptography Basics: Root Certificates 

 Root certificates are self-signed 

 Some other mechanism is required to trust root certificates 
– Usually installed by the operating system 

– You can manually validate them by checking them against the 

published versions on the CA’s web site 
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SSL 
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SSL 

 SSL connections are initiated by a handshake 

 Handshake 
– Mandatory steps 

– Optional steps 

 This presentation considers the common case 
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SSL: Handshake Starting Point 

 Server 
– Private key 

– Certificate 
▪ Public key 

▪ Identity (domain name) 

– List of supported algorithms 

 Client 
– List of trusted (Root) Certificate Authorities 

– List of supported algorithms 

fs(x) S fc(x) CA 
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SSL: Handshake Step 1: ClientHello 

 Client generates a random number 

 Client sends message to server 
– Client’s random number 

– List of supported algorithms 

 

fs(x) S fc(x) CA 

Rc 
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SSL: Handshake Step 2: ServerHello 

 Server generates a random number 

 Server compares algorithms 
– Selects appropriate algorithms 

 Server sends message to client 
– Server’s random number 

– Selected algorithms 

 

fs(x) S fc(x) CA 

Rc 

fc(x) 

Rc RS fA(x) 
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SSL: Handshake Step 3: Certificate 

 Server sends message to client 
– Server’s certificate 

 Client validates server certificate 

fs(x) S fc(x) CA 

Rc 

fc(x) 

Rc RS fA(x) 

RS fA(x) 
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SSL: Handshake Step 6: ServerHelloDone 

 Server sends message to client 
– No content fs(x) S fc(x) CA 

Rc 

fc(x) 

Rc RS fA(x) 

RS fA(x) 

S 
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SSL: Handshake Step 8: Client Key Exchange 

 Client generates pre-master secret 

 Client encrypts PMS with server’s 

public key 

 Client sends message to server 
– Encrypted PMS 

fs(x) S fc(x) CA 

Rc 

fc(x) 

Rc RS fA(x) 

RS fA(x) 

S 

PMS 

enc 

PMS 
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SSL: Handshake Step 10: ChangeCipherSpec 

 Client creates master secret 
– Rc + Rs + PMS 

 Client switches to encrypted mode 
– Algorithm agreed in step 2 

– Symmetric encryption with MS 

 Client sends message to server 
– No content 

fs(x) S fc(x) CA 

Rc 

fc(x) 

Rc RS fA(x) 
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SSL: Handshake Step 11: Finished 

 Client has completed SSL 

handshake 

 Client sends message to server 
– No content 
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SSL: Handshake Step 12: ChangeCipherSpec 

 Server decrypts PMS 

 Server creates master secret 
– Rc + Rs + PMS 

– Server switches to encrypted mode 

– Algorithm agreed in step 2 

– Symmetric encryption with MS 

 Server sends message to client 
– No content 
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SSL: Handshake Step 13: Finished 

 Server has completed SSL 

handshake 

 Server sends message to client 
– No content 
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SSL: Encrypted communication 

 Algorithm agreed in step 2 

 Symmetric 

 Use Master Secret as key 
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SSL: Extensons 

 Client certificate authentication 
– Client authenticates to server with 

certificate 

 Server Name Indication 
– Client tells server which host it wants 

to connect to and server sends 

appropriate certificate (virtual hosting) 

 Renegotiation 
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SSL Config for Tomcat 
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Requirements 

 A public/private key-pair 

 A certificate 
– Public key 

– Identity (domain name e.g. www.apache.org) 

 A Certificate Authority (CA) to generate the certificate 

 The certificates for each CA in the trust chain 
– Root CA plus any intermediate CAs 
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Formats 

 Java keystore 
– Keys and certificates 

– Only used by Java 

– Generally easier insert than extract information 

– OpenSSL does not understand this format 

 PKCS #12 
– Keys and certificates 

– OpenSSL does understand this format 
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Formats 

 DER 
– Certificates 

– Binary encoding 

– OpenSSL does understand this format 

 PEM 
– Certificates 

– ASCII encoding 

– OpenSSL does understand this format 



37 © Copyright 2014 Pivotal. All rights reserved. 

Tools 

 Apache Tomcat 8.0.x 
– Latest source as at time of presentation 

– Works equally well with any 6.0.x, 7.0.x or 8.0.x release 

 OpenSSL 1.0.1f 
– OSX 

– Works on other platforms – adjust paths as necessary 
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Configuration 

 Initial set up 

 $ cd 
$ mkdir demo 

$ cd demo 

$ mkdir certs newcerts private requests 

$ echo 1000 > serial 

$ touch index.txt 

$ cp /opt/local/etc/openssl/openssl.cnf . 
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Configuration 

 Modify copy of openssl.cnf 

 $ vi openssl.cnf 
 

 

dir = . 

 

default_bits = 2048 

 

countryName_default = US 
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Configuration 

 Create your own root certificate authority 

 $ openssl req -new -x509 -days 3650 -extensions v3_ca \ 
          -keyout private/cakey.pem -out cacert.pem \ 

          -config ./openssl.cnf  
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Configuration 

 Create and sign host certificate request 

 $ openssl req -new -nodes \ 
          -out requests/localhost-req.pem \ 

          -keyout private/localhost-key.pem \ 

          -config ./openssl.cnf 

 

 

$ openssl ca -days 730 -config ./openssl.cnf \ 

          -out certs/localhost-cert.pem \ 

          -infiles requests/localhost-req.pem 
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Configuration 

 Convert the host key and certificate to PKCS #12 

 $ openssl pkcs12 -export -out private/localhost.p12 \ 
          -inkey private/localhost-key.pem \ 

          -in certs/localhost-cert.pem \ 

          -certfile cacert.pem  
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Configuration 

 Configure Tomcat for SSL using the PKCS #12 file 

 <Connector port="8443" 
    protocol="org.apache.coyote.http11.Http11NioProtocol" 

    SSLEnabled="true" scheme="https" secure="true" 

    clientAuth="false" sslProtocol="TLS" 

    keystoreType="pkcs12" 

    keystoreFile="${catalina.base}/conf/localhost.p12" 

    keyPass="changeit" 

    /> 
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Configuration 

 Similarly using BIO 

 <Connector port="8443" 
    protocol="org.apache.coyote.http11.Http11Protocol" 

    maxThreads="150“ 

    SSLEnabled="true" scheme="https" secure="true" 

    clientAuth="false" sslProtocol="TLS" 

    keystoreType="pkcs12" 

    keystoreFile="${catalina.base}/conf/localhost.p12" 

    keyPass="changeit" 

    /> 
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Configuration 

 Configuration for APR/native is significantly different 

 
<Connector port="8443" 

    protocol="org.apache.coyote.http11.Http11AprProtocol" 

    maxThreads="150" 

    SSLEnabled="true" scheme="https" secure="true" 

    clientAuth="false" sslProtocol="TLS" 

    SSLCertificateFile="${catalina.base}/conf/localhost-cert.pem" 

    SSLCertificateKeyFile="${catalina.base}/conf/localhost-key.pem" 

    SSLCertificateChainFile="${catalina.base}/conf/cacert.pem" 

    /> 
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Configuration 

 There are other options 

 Convert *.pem files to Java KeyStore 
– Historically painful 

– Better now but still requires you to create the *.p12 file 

– Since Tomcat can use the *.p12 file why bother with a keystore? 

 Easy to move between separate *.pem files and a single 

.p12 file 
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SSL & Reverse Proxies 
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What Is A Reverse Proxy? 

H/W Load 

Balancer 

httpd 

instances Tomcat 

instances 
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Design Considerations 

 How will Tomcat differentiate between clients using http and 

https? 

 Does the proxy <-> Tomcat traffic need to be encrypted? 
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Why Does Tomcat Need SSL Information? 

 To enforce transport guarantees specified in web.xml 

 To determine if session was created over a secure 

connection 
– In which case session cookie needs to be marked as secure 

 To correctly construct links, redirects etc. with http or https 

 To obtain the identity of the authenticated user 
– When user client certificate authentication 
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Protocol Choices 

 AJP 
– Proxy implementations includes client <-> proxy SSL information 

automatically 

– Does not support encryption 

 HTTP 
– Proxy implementations do not include client <-> proxy SSL 

information automatically 

– Supports encryption (proxy using https) 
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Recommended Protocol 

 If you do not need to encrypt proxy <-> Tomcat traffic 
– AJP 

 If you do need to encrypt proxy <-> Tomcat traffic 
– HTTPS 

 

 But if you use HTTPS, how do you get the SSL information? 
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SSLValve 

 In httpd: 

 

 

 

 In Tomcat: 

 

<IfModule ssl_module> 

  RequestHeader set SSL_CLIENT_CERT "%{SSL_CLIENT_CERT}s" 

  RequestHeader set SSL_CIPHER "%{SSL_CIPHER}s" 

  RequestHeader set SSL_SESSION_ID "%{SSL_SESSION_ID}s" 

  RequestHeader set SSL_CIPHER_USEKEYSIZE "%{SSL_CIPHER_USEKEYSIZE}s" 

</IfModule> 

<Host … > 

  <Valve className="org.apache.catalina.valves.SSLValve" 

… 

</Host> 
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An Alternative Solution 

 Create two HTTP connectors in Tomcat 

 Configure the first with 
– SSLEnabled="false" scheme="http" secure="false" proxyPort="80" 

 Configure the second with 
– SSLEnabled="false" scheme="https" secure="true“ proxyPort="443" 

 Proxy HTTP traffic to the first connector over HTTP 

 Proxy HTTPS traffic to the second connector over HTTP 
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Questions 
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