
A NEW PLATFORM FOR A NEW ERA

2 © Copyright 2014 Pivotal. All rights reserved. 2 © Copyright 2014 Pivotal. All rights reserved.

Apache Tomcat
and SSL

Mark Thomas, Staff Engineer, Pivotal

9 April 2014

3 © Copyright 2014 Pivotal. All rights reserved.

Agenda

 Introductions

 Cryptography Basics

 SSL

 Configuring Tomcat for SSL
– Java connectors (BIO, NIO)

– APR/native connector

– Reverse proxy

 Questions

4 © Copyright 2014 Pivotal. All rights reserved.

Introductions

5 © Copyright 2014 Pivotal. All rights reserved.

Introductions

 markt@apache.org
– Apache Tomcat committer since December 2003

– Apache Tomcat PMC member from the beginning

 Tomcat 8 release manager

 Member of the Apache Tomcat security team

 Apache Commons PMC member

 Member of the Apache Infrastructure team

6 © Copyright 2014 Pivotal. All rights reserved.

Introductions

 Staff Engineer at Pivotal

 Primary role is to work on Apache Tomcat

 Pivotal tc Server
– Based on Tomcat

– Keep tc Server updated as new Tomcat versions are released

 3rd line support for Tomcat and tc Server
– tomcat@gopivotal.com

 Lead the Pivotal security team

7 © Copyright 2014 Pivotal. All rights reserved.

Why This Presentation?

 Lots of questions about SSL on the Tomcat mailing lists

 It is clear from the questions many folks don’t understand

how SSL works

 Debugging something you don’t understand is much harder

than debugging something you do understand

8 © Copyright 2014 Pivotal. All rights reserved.

Cryptography Basics

9 © Copyright 2014 Pivotal. All rights reserved.

Cryptography Basics: Symmetric Encryption

 Use the same key to encrypt and decrypt

 Cipher

Text

Plain

Text

Cipher

Text

Plain

Text

10 © Copyright 2014 Pivotal. All rights reserved.

Cryptography Basics: Hash Functions

 Generate a fingerprint (hash) for the given input

 A small change in the input results in a large change in the

hash

 Very difficult to generate an input for a given hash

Plain

Text

Hash

11 © Copyright 2014 Pivotal. All rights reserved.

Cryptography Basics: Asymmetric Encryption

 Pair of keys, A and B
– If key A is used to encrypt, key B must be used to decrypt

– If key B is used to encrypt, key A must be used to decrypt

 Very difficult to determine one key from the other

 One key is used as the “Public Key”
– This key is made widely available to the general public

 One key is used as the “Private Key”
– This key must be protected

12 © Copyright 2014 Pivotal. All rights reserved.

Cryptography Basics: Asymmetric Encryption

 Use different keys to encrypt and decrypt

 Cipher

Text

Plain

Text

Cipher

Text

Plain

Text

Public Key

Private Key

13 © Copyright 2014 Pivotal. All rights reserved.

Cryptography Basics: Digital Signatures

 Proves that a document was sent by a particular entity

Plain

Text
Hash

Digitally

Signed

Private Key

14 © Copyright 2014 Pivotal. All rights reserved.

Cryptography Basics: Digital Signatures

 Validating a digital signature

Digitally

Signed
Hash

Public Key

Plain

Text
Hash

15 © Copyright 2014 Pivotal. All rights reserved.

Cryptography Basics: Digital Signatures

 If the hashes match then:
– The public key decrypted the digital signature

– Therefore, the associated private key must have created the digital

signature

– Therefore, the recipient can be certain that the owner of the

public/private key pair sent the document

 Determining who is the owner of the public/private key pair

is the next problem

16 © Copyright 2014 Pivotal. All rights reserved.

Cryptography Basics: Certificates

 Certificates link a public key with an identity

 Certificates are issued by certificate authorities

Public

Key +

ID

Hash
Digitally

Signed

CA Private Key

Public

Key +

ID

Digitally

Signed

Cert-

ificate

17 © Copyright 2014 Pivotal. All rights reserved.

Cryptography Basics: Certificates

 To validate the certificate authority’s signature, you need to

be able to link their public key to their identity

 You do this with a certificate

 This builds a trust chain

 At the top of the chain is the root certificate from the root

certificate authority

 There are multiple root certificate authorities

18 © Copyright 2014 Pivotal. All rights reserved.

Cryptography Basics: Root Certificates

 Root certificates are self-signed

 Some other mechanism is required to trust root certificates
– Usually installed by the operating system

– You can manually validate them by checking them against the

published versions on the CA’s web site

My

Cert.

CA

Cert.
CA

Cert.

Root

CA

Cert. Signed by Signed by Signed by

Self

Signed

19 © Copyright 2014 Pivotal. All rights reserved.

SSL

20 © Copyright 2014 Pivotal. All rights reserved.

SSL

 SSL connections are initiated by a handshake

 Handshake
– Mandatory steps

– Optional steps

 This presentation considers the common case

21 © Copyright 2014 Pivotal. All rights reserved.

SSL: Handshake Starting Point

 Server
– Private key

– Certificate
▪ Public key

▪ Identity (domain name)

– List of supported algorithms

 Client
– List of trusted (Root) Certificate Authorities

– List of supported algorithms

fs(x) S fc(x) CA

22 © Copyright 2014 Pivotal. All rights reserved.

SSL: Handshake Step 1: ClientHello

 Client generates a random number

 Client sends message to server
– Client’s random number

– List of supported algorithms

fs(x) S fc(x) CA

Rc

23 © Copyright 2014 Pivotal. All rights reserved.

SSL: Handshake Step 2: ServerHello

 Server generates a random number

 Server compares algorithms
– Selects appropriate algorithms

 Server sends message to client
– Server’s random number

– Selected algorithms

fs(x) S fc(x) CA

Rc

fc(x)

Rc RS fA(x)

24 © Copyright 2014 Pivotal. All rights reserved.

SSL: Handshake Step 3: Certificate

 Server sends message to client
– Server’s certificate

 Client validates server certificate

fs(x) S fc(x) CA

Rc

fc(x)

Rc RS fA(x)

RS fA(x)

25 © Copyright 2014 Pivotal. All rights reserved.

SSL: Handshake Step 6: ServerHelloDone

 Server sends message to client
– No content fs(x) S fc(x) CA

Rc

fc(x)

Rc RS fA(x)

RS fA(x)

S

26 © Copyright 2014 Pivotal. All rights reserved.

SSL: Handshake Step 8: Client Key Exchange

 Client generates pre-master secret

 Client encrypts PMS with server’s

public key

 Client sends message to server
– Encrypted PMS

fs(x) S fc(x) CA

Rc

fc(x)

Rc RS fA(x)

RS fA(x)

S

PMS

enc

PMS

27 © Copyright 2014 Pivotal. All rights reserved.

SSL: Handshake Step 10: ChangeCipherSpec

 Client creates master secret
– Rc + Rs + PMS

 Client switches to encrypted mode
– Algorithm agreed in step 2

– Symmetric encryption with MS

 Client sends message to server
– No content

fs(x) S fc(x) CA

Rc

fc(x)

Rc RS fA(x)

RS fA(x)

S

PMS

enc

PMS

enc

PMS

MS

28 © Copyright 2014 Pivotal. All rights reserved.

SSL: Handshake Step 11: Finished

 Client has completed SSL

handshake

 Client sends message to server
– No content

fs(x) S fc(x) CA

Rc

fc(x)

Rc RS fA(x)

RS fA(x)

S

PMS

enc

PMS

enc

PMS

MS

29 © Copyright 2014 Pivotal. All rights reserved.

SSL: Handshake Step 12: ChangeCipherSpec

 Server decrypts PMS

 Server creates master secret
– Rc + Rs + PMS

– Server switches to encrypted mode

– Algorithm agreed in step 2

– Symmetric encryption with MS

 Server sends message to client
– No content

fs(x) S fc(x) CA

Rc

fc(x)

Rc RS fA(x)

RS fA(x)

S

PMS

enc

PMS

enc

PMS

PMS

MS

MS

30 © Copyright 2014 Pivotal. All rights reserved.

SSL: Handshake Step 13: Finished

 Server has completed SSL

handshake

 Server sends message to client
– No content

fs(x) S fc(x) CA

Rc

fc(x)

Rc RS fA(x)

RS fA(x)

S

PMS

enc

PMS

enc

PMS

PMS

MS

MS

31 © Copyright 2014 Pivotal. All rights reserved.

SSL: Encrypted communication

 Algorithm agreed in step 2

 Symmetric

 Use Master Secret as key

fs(x) S fc(x) CA

Rc

fc(x)

Rc RS fA(x)

RS fA(x)

S

PMS

enc

PMS

enc

PMS

PMS

MS

MS

32 © Copyright 2014 Pivotal. All rights reserved.

SSL: Extensons

 Client certificate authentication
– Client authenticates to server with

certificate

 Server Name Indication
– Client tells server which host it wants

to connect to and server sends

appropriate certificate (virtual hosting)

 Renegotiation

fs(x) S fc(x) CA

Rc

fc(x)

Rc RS fA(x)

RS fA(x)

S

PMS

enc

PMS

enc

PMS

PMS

MS

MS

33 © Copyright 2014 Pivotal. All rights reserved.

SSL Config for Tomcat

34 © Copyright 2014 Pivotal. All rights reserved.

Requirements

 A public/private key-pair

 A certificate
– Public key

– Identity (domain name e.g. www.apache.org)

 A Certificate Authority (CA) to generate the certificate

 The certificates for each CA in the trust chain
– Root CA plus any intermediate CAs

35 © Copyright 2014 Pivotal. All rights reserved.

Formats

 Java keystore
– Keys and certificates

– Only used by Java

– Generally easier insert than extract information

– OpenSSL does not understand this format

 PKCS #12
– Keys and certificates

– OpenSSL does understand this format

36 © Copyright 2014 Pivotal. All rights reserved.

Formats

 DER
– Certificates

– Binary encoding

– OpenSSL does understand this format

 PEM
– Certificates

– ASCII encoding

– OpenSSL does understand this format

37 © Copyright 2014 Pivotal. All rights reserved.

Tools

 Apache Tomcat 8.0.x
– Latest source as at time of presentation

– Works equally well with any 6.0.x, 7.0.x or 8.0.x release

 OpenSSL 1.0.1f
– OSX

– Works on other platforms – adjust paths as necessary

38 © Copyright 2014 Pivotal. All rights reserved.

Configuration

 Initial set up

 $ cd
$ mkdir demo

$ cd demo

$ mkdir certs newcerts private requests

$ echo 1000 > serial

$ touch index.txt

$ cp /opt/local/etc/openssl/openssl.cnf .

39 © Copyright 2014 Pivotal. All rights reserved.

Configuration

 Modify copy of openssl.cnf

 $ vi openssl.cnf

dir = .

default_bits = 2048

countryName_default = US

40 © Copyright 2014 Pivotal. All rights reserved.

Configuration

 Create your own root certificate authority

 $ openssl req -new -x509 -days 3650 -extensions v3_ca \
 -keyout private/cakey.pem -out cacert.pem \

 -config ./openssl.cnf

41 © Copyright 2014 Pivotal. All rights reserved.

Configuration

 Create and sign host certificate request

 $ openssl req -new -nodes \
 -out requests/localhost-req.pem \

 -keyout private/localhost-key.pem \

 -config ./openssl.cnf

$ openssl ca -days 730 -config ./openssl.cnf \

 -out certs/localhost-cert.pem \

 -infiles requests/localhost-req.pem

42 © Copyright 2014 Pivotal. All rights reserved.

Configuration

 Convert the host key and certificate to PKCS #12

 $ openssl pkcs12 -export -out private/localhost.p12 \
 -inkey private/localhost-key.pem \

 -in certs/localhost-cert.pem \

 -certfile cacert.pem

43 © Copyright 2014 Pivotal. All rights reserved.

Configuration

 Configure Tomcat for SSL using the PKCS #12 file

 <Connector port="8443"
 protocol="org.apache.coyote.http11.Http11NioProtocol"

 SSLEnabled="true" scheme="https" secure="true"

 clientAuth="false" sslProtocol="TLS"

 keystoreType="pkcs12"

 keystoreFile="${catalina.base}/conf/localhost.p12"

 keyPass="changeit"

 />

44 © Copyright 2014 Pivotal. All rights reserved.

Configuration

 Similarly using BIO

 <Connector port="8443"
 protocol="org.apache.coyote.http11.Http11Protocol"

 maxThreads="150“

 SSLEnabled="true" scheme="https" secure="true"

 clientAuth="false" sslProtocol="TLS"

 keystoreType="pkcs12"

 keystoreFile="${catalina.base}/conf/localhost.p12"

 keyPass="changeit"

 />

45 © Copyright 2014 Pivotal. All rights reserved.

Configuration

 Configuration for APR/native is significantly different

<Connector port="8443"

 protocol="org.apache.coyote.http11.Http11AprProtocol"

 maxThreads="150"

 SSLEnabled="true" scheme="https" secure="true"

 clientAuth="false" sslProtocol="TLS"

 SSLCertificateFile="${catalina.base}/conf/localhost-cert.pem"

 SSLCertificateKeyFile="${catalina.base}/conf/localhost-key.pem"

 SSLCertificateChainFile="${catalina.base}/conf/cacert.pem"

 />

46 © Copyright 2014 Pivotal. All rights reserved.

Configuration

 There are other options

 Convert *.pem files to Java KeyStore
– Historically painful

– Better now but still requires you to create the *.p12 file

– Since Tomcat can use the *.p12 file why bother with a keystore?

 Easy to move between separate *.pem files and a single

.p12 file

47 © Copyright 2014 Pivotal. All rights reserved.

SSL & Reverse Proxies

48 © Copyright 2014 Pivotal. All rights reserved.

What Is A Reverse Proxy?

H/W Load

Balancer

httpd

instances Tomcat

instances

49 © Copyright 2014 Pivotal. All rights reserved.

Design Considerations

 How will Tomcat differentiate between clients using http and

https?

 Does the proxy <-> Tomcat traffic need to be encrypted?

50 © Copyright 2014 Pivotal. All rights reserved.

Why Does Tomcat Need SSL Information?

 To enforce transport guarantees specified in web.xml

 To determine if session was created over a secure

connection
– In which case session cookie needs to be marked as secure

 To correctly construct links, redirects etc. with http or https

 To obtain the identity of the authenticated user
– When user client certificate authentication

51 © Copyright 2014 Pivotal. All rights reserved.

Protocol Choices

 AJP
– Proxy implementations includes client <-> proxy SSL information

automatically

– Does not support encryption

 HTTP
– Proxy implementations do not include client <-> proxy SSL

information automatically

– Supports encryption (proxy using https)

52 © Copyright 2014 Pivotal. All rights reserved.

Recommended Protocol

 If you do not need to encrypt proxy <-> Tomcat traffic
– AJP

 If you do need to encrypt proxy <-> Tomcat traffic
– HTTPS

 But if you use HTTPS, how do you get the SSL information?

53 © Copyright 2014 Pivotal. All rights reserved.

SSLValve

 In httpd:

 In Tomcat:

<IfModule ssl_module>

 RequestHeader set SSL_CLIENT_CERT "%{SSL_CLIENT_CERT}s"

 RequestHeader set SSL_CIPHER "%{SSL_CIPHER}s"

 RequestHeader set SSL_SESSION_ID "%{SSL_SESSION_ID}s"

 RequestHeader set SSL_CIPHER_USEKEYSIZE "%{SSL_CIPHER_USEKEYSIZE}s"

</IfModule>

<Host … >

 <Valve className="org.apache.catalina.valves.SSLValve"

…

</Host>

54 © Copyright 2014 Pivotal. All rights reserved.

An Alternative Solution

 Create two HTTP connectors in Tomcat

 Configure the first with
– SSLEnabled="false" scheme="http" secure="false" proxyPort="80"

 Configure the second with
– SSLEnabled="false" scheme="https" secure="true“ proxyPort="443"

 Proxy HTTP traffic to the first connector over HTTP

 Proxy HTTPS traffic to the second connector over HTTP

55 © Copyright 2014 Pivotal. All rights reserved.

Questions

A NEW PLATFORM FOR A NEW ERA

