
Connecting Tomcat to the World



What is a Connector?

● Tomcat's interface to the world
● Binds to a port
● Understands a protocol
● Dispatches requests



● Java Blocking I/O (BIO or sometimes JIO)
● Java Non-blocking I/O (NIO)
● Native / Apache Portable Runtime (APR)
● Java NIO.2

Tomcat Connectors



● Polling
○ Straightforward API (peek)
○ CPU-inefficient
○ Thread loops while waiting for data

● Blocking
○ Straightforward API (streams)
○ CPU-efficient (blocking)
○ Thread stalls while waiting for data

Types of I/O



● Non-blocking
○ Complicated API (registration, event callbacks)

■ Channel
■ Buffer
■ Selector

○ CPU-efficient
○ Thread does not block: execution continues
○ When data is ready, the selector notifies observers

Types of I/O



● Support for all protocols
○ HTTP, AJP, Websocket

● Support for all dispatch methods
○ Standard, Comet, Servlet 3.0 async

● Support for HTTPS (SSL/TLS)
● Acceptor thread(s) call accept() and hand-off
● Request processor thread pool

Common Connector Features



● All I/O operations are blocking in processor thread
○ SSL handshake
○ Read request line (e.g. GET, POST, etc.)
○ Read request body
○ Write response
○ Read next request (HTTP keep-alive)

● Simple, stable, mature

Blocking I/O Connector



● Request throughput limited by thread count
● Clients can waste threads

○ Slow request line (mobile)
○ Aborted keep-alive stalls thread (default=20sec!)

● Unfair: accepted connections get priority for keep-alive 
requests

Blocking I/O Connector



● Single thread handles request after accept
● Uses Java Secure Sockets Extension (JSSE) for 

SSL/TLS

Blocking I/O Connector



● Single thread handles request after request-line
● Poller thread(s) manage non-blocking Selector

○ Read SSL handshake
○ Read request line
○ Wait for next keep-alive request

Non-blocking I/O Connector



● Block poller simulates blocking
○ Request header/body reads
○ Response writes
○ Processor thread sleeps during sim-blocking

● Uses JSSE for SSL/TLS
● Supports sendFile

Non-blocking I/O Connector



● Allows huge number of parallel requests
○ Not limited by request-processor threads

● Slow clients do not stall threads
● Aborted keep-alives die in the poller queue
● Simulated blocking adds overhead

Non-blocking I/O Connector



● Single thread handles request after accept()
● Poller thread(s) handle certain I/O reads

○ Wait for next keep-alive request
● Some I/O operations block processor thread

○ SSL handshake
○ Read request line
○ Read request body
○ Write response

Native Connector (APR)



● Uses OpenSSL for SSL/TLS
● Supports sendFile

Native Connector (APR)



● Request throughput limited by thread count
● Slow clients can stall threads
● Aborted keep-alives die in the poller queue
● OpenSSL offers performance advantage
● Native code risks JVM instability

Native Connector (APR)



● like the NIO connector but uses the NIO2 framework.

NIO.2 Connector



● Don’t try bother using non-blocking protocols with 
blocking connectors (BIO+Websocket = bad)

● AJP can be thought of as 100% keep-alive
● AJP doesn’t support HTTP upgrade
● Use of sendFile is highly recommended for any static-

content (all but BIO)

Practical Notes



Performances


