
Croquet
William R. Speirs, Ph.D. (wspeirs@metrink.com)
Founder & CEO of Metrink



About Me
● BS in CS from Rensselaer; PhD from Purdue
● Founder and CEO of Metrink (www.metrink.com)

○ Simple yet powerful query language
○ Stateful alerting w/easy-to-use configuration
○ Correlation across all metrics
○ Agent-less collection
○ Elastic scaling

Get visibility into all 7 layers of your infrastructure.

http://www.metrink.com


Why Build Croquet?
● Wicket makes it super easy for non-JavaScript devs

○ Web framework used at Metrink
● Jetty provides WebSocket, SPDY, etc
● Hibernate/JPA makes it easy to SQL without SQL
● Guice makes it easier to “do the right thing”

Continually had to write boilerplate code to make it all work.



Why Build Croquet?
● Wicket-IOC isn’t great

○ Cannot use constructor injection; field only
○ Manually need to call inject methods

● Configuring Jetty and Guice is non-trivial
○ Even with GuiceWebApplicationFactory

● Wiring JPA into Jetty/Wicket w/Guice isn’t out-of-the-box
○ Entity Managers don’t serialize nicely

Should be able to use these great components with ease!



What is Croquet?
● Croquet is to Wicket at DropWizard is to Jersey

○ Java framework for developing ops-friendly, high-
performance, RESTful web services

● Combination of 4 frameworks/libraries
○ Apache Wicket: component based web framework
○ Jetty: servlet container with WebSocket support
○ Hibernate: an ORM framework and JPA provider
○ Google’s Guice: dependency injection framework



How Do I Use Croquet?
● Everything driven off configuration

○ Code: things that won’t change
○ File: things that change from env to env

● 3 simple steps:
1) Configure a Croquet object w/CroquetBuilder
2) Add any modules (Guice or Managed)
3) Call run()



CroquetBuilder

● Used to configure a Croquet object
● Parses a configuration file
● Optionally set application class (default usually good)
● Sets the homepage of the application
● Add page mounts to the application
● Adds resources to the application
● Configure a health check page
● Add JPA entities
● Set the SQL dialect



Adding Modules
● 2 types of modules: Guice & Managed

● Guice modules allow you to provide additional bindings
○ These modules are added to the Guice Injector

● Managed modules are started & stopped with Jetty
○ Great for things like HTTP clients, etc
○ You only add classes, dependencies are injected



Call run()
● Creates the Guice injector

● Creates each managed module

● Creates a shutdown hook

● Starts the Jetty server

● Drops a PID file on Linux (complains on Windows)



How Is Wicket Configured?
● Extends AuthenticatedWebApplication

○ Defaults to an unauthenticated site
● In devel mode:

○ Add StatelessChecker 
○ Add DebugBar in devel mode
○ Doesn’t strip Wicket tags

● Minify both JavaScript & CSS
● Uses IPageFactory that creates all pages with Guice



How is Jetty Configured?
● Add the Guice injector and Web Application Factory
● Add a PersistFilter

○ Ensures a new EntityManager for each request
● Add a Jetty9WebSocketFilter
● Prevent JSESSIONID from appearing in query param
● Set idle timeout to 1 hour, and linger time to infinity
● Change by overloading configureJetty method

More settings to come via configuration in the future.



How is JPA Configured?
● Can use either persistence.xml or YAML config file
● Hibernate 4.3.1 is the JPA provider
● EntityManager is constructed by the Servlet Filter

○ Wrapped by a proxy so it can be serialized
○ Transactions must be handled manually

● If YAML file used to configure your DB
○ Leverages the Tomcat JDBC Connection Pool
○ Entities added via code through CroquetBuilder



How is Guice Configured?
● CroquetModule

○ Binds the proper Settings class
○ Binds the WebApplication class
○ Binds the IPageFactory class

● HibernateModule
○ Binds everything required by the PersistFilter
○ Depends upon method used to configure Hibernate

● Child injector to properly bind PageParameters



What About Testing?!?
● Build a CroquetTest instance from CroquetBuilder

○ Setup exactly the same as Croquet instance
○ Simply call the buildTester() method
○ Call getTester() after modules added

● Use mock instances of dependencies
○ Easiest way is to create mock Guice Modules

● Highly consider using an in-memory DB
○ Liquibase is a great tool for keeping DBs in sync



Demo



Where Can I Get Croquet?
● Maven

○ groupId: com.metrink
○ archiveId: croquet-core

● Source: github.com/metrink

● Issues: github.com/metrink/issues

● Documentation: croquet.metrink.com

http://www.github.com/metrink
http://www.github.com/metrink/issues
http://croquet.metrink.com


How can I help?
● Use Croquet!

○ Find & report bugs
○ Will try and release as often as possible

● Built for our use cases, but maybe not yours
○ Provide feedback: wspeirs@metrink.com

● Documentation!
○ Provide additional real-world examples



Roadmap
● Create @Restore annotation for non-serializable fields

○ Non-serializable classes must have default 
constructor (WICKET-1130)

● @Transactional support
● Make Croquet work with Google App Engine

○ Other PaaS providers?
● OSGi integration

○ I know nothing about OSGi :-)

https://issues.apache.org/jira/browse/WICKET-1130
https://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/ch13.html
https://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/ch13.html


Questions? Comments. Concerns!


