Data Munging and Analysis for Scientific Applications

Raminder Singh

Science Gateways Group Indiana University, Bloomington raminder@apache.org

Overview

- Evaluate the Apache Big data tools
- Understand the execution patterns of Analysis applications
- Solutions using Airavata
- Build a gateways solution with HPC and Big Data requirements

Hadoop 2 Ecosystem

Motivation to explore

- Heterogeneous data
- Data Munging (parsing, scraping, formatting data)
- Visualization or Analyze
- Preservation of data

Analysis Applications

- Behavior Tracking medical
- Situational Awareness weather
- Time Series Data -Patient monitoring, weather data to help farmers
- Resource consumption Monitoring Smart grid
- Process optimization

Scientific applications Data Types

Observational Data – uncontrolled events happen and we record data about them.

Examples include astronomy, earth observation, geophysics, medicine, commerce, social data, the internet of things.

Experimental Data – we design controlled events for the purpose of recording data about them.

Examples include particle physics, photon sources, neutron sources, bioinformatics, product development.

Simulation Data – we create a model, simulate something, and record the resulting data.

Examples include weather & climate, nuclear & fusion energy, high-energy physics, materials, chemistry, biology, fluid dynamics.

What is Science Gateway?

- Community portal or desktop tools
- Common science theme
- Collaborative environment

BioVLAB

Airavata

Value of using Airavata

- Enable collection of resources
- Application centric not compute centric
- Meta workflow to enable set of applications

Use-case for Data Analysis

 TextRWeb: Large Scale Text Analytics with R on the web

Collaborator: Hui Zhang, Data Scientist at Indiana University

Goals for R on the web project

- Run large scale text analysis using parallel R.
- Hide computational complexity with user interfaces
- Support interactive text analysis
- Support iterative text mining

TextR Solution Diagram

Current Hadoop Integration

Future Work

- Integrate TextRWeb with Apache Spark
- Explore SparkR [1]
- Develop Apache Thrift interfaces for TextRWeb server
- Integrate with Apache Airavata for HPC job.
- Explore workflow DAGs for Text Analysis
- Keep updated with product offering like Stratosphere

1. https://github.com/amplab-extras/SparkR-pkg

Apache Spark

- In Memory computations
- Machine learning library (<u>MLLib</u>)
- graph engine (GraphX)
- Streaming analytics engine (Spark Streaming)
- Fast interactive query tool (Shark).
- Use Lineage data for fault tolerance
 - Tracking the data path

Conclusion

- Value added for the scientific communities
- Value for Apache Big Data Suite

Q & A

airavata.apache.org

Subscribe: users-subscribe@airavata.apache.org

Subscribe: dev-subscribe@airavata.apache.org

Subscribe: architecture-subscribe@airavata.apache.org

Thanks You!