

Deploying & Managing distributed apps on YARN

Steve Loughran, Devaraj Das & Ted Yu

{stevel, ddas, tyu} at hortonworks con-

About myself

- HBase committer / PMC member
- Slider committer
- YARN / HDFS contributor

Hadoop as Next-Gen Platform

Single Use System Batch Apps

HADOOP 1.0

MapReduce

(cluster resource management & data processing)

HDFS

(redundant, reliable storage)

Multi Purpose Platform

Batch, Interactive, Online, Streaming, ...

MapReduce (data processing) YARN (cluster resource management) HDFS2 (redundant, reliable storage)

Page 3

Slider

Availability (always-on)

Flexibility (dynamic scaling)

Resource Management (optimization)

Step 1: Hoya: On-demand HBase

JSON config in HDFS drives cluster setup and config

- 1. Small HBase cluster in large YARN cluster
- 2. Dynamic, self-healing
- 3. Freeze / thaw
- 4. Custom versions & configurations
- 5. More efficient utilization/sharing of cluster

YARN manages the cluster

- Servers run YARN Node Managers
- NM's heartbeat to Resource Manager
- RM schedules work over cluster
- RM allocates containers to apps
- NMs start containers
- NMs report container health

YARN Resource Manager

HDFS

Client creates App Master

AM deploys HBase with YARN

Hortonworks

HBase & clients bind via Zookeeper

Hortonworks

YARN notifies AM of failures

JSON Specification

```
"schema" : "http://example.org/specification/v2.0.0",
"metadata" : {
},
"global" : {
 "yarn.vcores" : "1",
 "yarn.memory" : "256",
},
"components" : {
  "rs" : {
    "yarn.memory" : "512",
    "yarn.priority" : "2",
    "yarn.instances" : "4"
  },
  "slider-appmaster" : {
    "yarn.instances" : "1"
  "master" : {
    "yarn.priority" : "1",
    "yarn.instances" : "1"
```

Flexing/failure handling is same code

```
boolean flexCluster(ConfTree updated) {
 appState.updateResourceDefinitions(updated);
 return reviewRequestAndReleaseNodes();
void onContainersCompleted(List<ContainerStatus>
completed) {
 for (ContainerStatus status : completed) {
    appState.onCompletedNode(status);
 reviewRequestAndReleaseNodes();
```


Limitations

- Needs app with built in discovery/binding protocol
- Static configuration no dynamic information
- Kill-without-warning is the sole shutdown mechanism
- Custom Java in client & App Master for each service
- Client code assumed CLI embedded/PaaS use as common.

Slider

"Imagine starting a farm of tomcat servers hooked up to an HBase cluster you just deployed – servers processing requests forwarded by a load-balancing service"

Slider: evolution of & successor to Hoya

- Unified packaging format for deployable applications
- 2. Service registration and discovery
- Propagation of dynamic config information back to clients
- 4. Client API for embedding CLI only one use case.

Goal: no code changes to deploy applications in a YARN cluster

Packaging "RPM for a datacenter"

- Packaging format for deployable applications
- metadata, template configurations
- template logic to go from config to scripts
- simple .py scripts for starting different components in different YARN containers
- future: snapshot, graceful stop

Service Registration and Discovery

- Applications to publish port bindings (URLs...)
- Applications to publish other config data
- Client APIs to find targeted instance, retrieve bindings and other data
- Generation of client configs. Template-driven.
- See also YARN-913

Slider – the tool

- Slider
 - Java tool
 - Completely CLI driven
- Input: cluster description as JSON
 - Specification of cluster: node options, ZK params
 - Configuration generated
 - Entire state persisted
- Actions: create, freeze/thaw, flex, exists <cluster>
- Can change cluster state later
 - Add/remove nodes, started / stopped states

Slider AppMaster

Page 20

Model

Persisted

Rebuilt

Transient

Specification

resources.json appconf.json &c

NodeMap

model of YARN cluster

Event History application history

ComponentHistory

persistent history of component placements

Component Map

container ID -> component instance

Container Queues requested, starting,

releasing

Slider as a Service

YARN-896: long-lived services

- 1. Container reconnect on AM restart
- /
- 2. YARN Token renewal on long-lived apps
- Containers: signalling (YARN-445), >1 process sequence
- 4. AM/RM managed gang scheduling
- 5. Anti-affinity hint in container requests
- 6. Service Registry (YARN-913)
- 7. Logging

SLAs & co-existence with MapReduce

- Make IO bandwidth/IOPs a resource used in scheduling & limits
- Need to monitor what's going on w.r.t IO & net load from containers → apps → queues
- 3. Dynamic adaptation of cgroup HDD, Net, RAM limits
- 4. Could we throttle MR job File & HDFS IO bandwidth?

Status as of April 2014

- Initial agent, REST API, container launch
- Package-based deployments of HBase, Ambari, Storm
- Hierarchical configuration JSON evolving
- Service registry work in progress
- Incubator: proposal submitted

Questions?

hortonworks.com

