cloudera

Ask Bigger Questions

Feeding the Elephant:
Optimizing the Read Path of the Hadoop Distributed Filesystem

by Colin P. McCabe

AT AT A b
L L7 777
B i T
Yt T L2777 TAIL L
AL T T FAS
’,‘,—4-' FE S

e A s
2 S
i e

About Me

e | work on HDFS and related storage technologies at

Cloudera.
e Committer on the HDFS and Hadoop projects.

® Previously worked on the Ceph distributed
filesystem

cloudera

About Hadoop

The open source
framework for big data

Started by Doug Cutting
and Mike Cafarella in
2005.

cloudera

Big Ideas Behind Hadoop

e Distributed

m Avoid single-node points of failure

m Avoid losing data
® Bring the computation to the data

m Cheaper to move computation than data.
e Commodity hardware, not specialized hardware

cloudera

HDFS Architecture

e HDFS decides where and how to store data in
Hadoop.
e Nodes
m DataNodes: store data
m NameNodes: handle metadata
m JournalNodes: store metadata

cloudera

Shared Namespace

DFSClient DFSClient

‘\\\\\\\\ /user/cmccabe/tpcds 1 ‘///////i
/user/cmccabe/reports

/user/awang/reports

|

DFSClient

cloudera

HDFS Clients

e But... where data is located still matters!

e The HDFS client library is called “the DFSClient.”

e Usually DFSClients are co-located with DataNodes, to
minimize network 1/0O.

e “Move the computation to the data.”

cloudera

Typical HDFS Setup

JournalNode

JournalNode

JournalNode

Primary

NameNode

Standby

Namenode

DataNode

DFSClient

DataNode

DataNode

DFSClient

DFSClient

©2014 Cloudera, Inc. All rights reserved.

cloudera

HDES Storage Stacks

e HDFS “Clients” are often daemons like MapReduce,
Impala, or HBase, not user programs.

e The performance of the DFSClient can be a limiting
factor for the performance of the rest of the stack.

cloudera

HDES Storage Stacks

Web Application MapReduce Job
HBase MapReduce Framework
DFSClient DFSClient

Impala

DFSClient

cloudera

DFSClient Performance

e DFSClient performance is a big part of HDFS
performance, since HDFS files are often large.

e Reads and writes don’t go through the NameNode...
they go through the DFSClient.

e How can we improve DFSClient performance?

e First, we have to quantify it.

cloudera

Quantifying Performance

CPU utilization
Memory bandwidth
Latency

Disk Bandwidth
Scalability

cloudera

Quantifying Performance

e Workload-dependent
o Amdahl’s Law
o What’s the bottleneck?
e C(luster dependent
o 1 gigabit ethernet? 10 gigabit?
o0 How many disks? CPUs?

cloudera

DFSClient Overheads

CPU overhead of checksumming

Copying data from buffer to buffer

The TCP 3-way handshake

Making system calls to the operating system
Stragglers

Garbage collection

cloudera

Saving CPU

The more CPU we use in the
DFSClient and the
DataNode, the less is
available to clients.

How can we save CPU
cycles?

cloudera

Saving CPU

e HDFS-2080: Optimized native checksum
implementation
o Uses Intel’s built-in SSE4.2 CRC32 instruction
© Checksum overhead went from ~50% CPU to
~15%

cloudera

Saving CPU

e HDFS-5276: Thread-Local statistics in FileSystem
o A big improvement for massively multithreaded
programs

cloudera

Avoiding Copies

Can we reduce the
number of times we copy
the data?

(Simplified view ignoring
copies due to readahead,
decompression, etc.)

Hard Drive

Page Cache

v

DataNode

DFSClient

v

App (MR / Impala / etc)

cloudera

Direct Reads

HDFS-2834: Use Java’s ByteBuffer abstraction in
DFSClient to avoid a copy inside DFSClient.

DFSInputStream DFSInputStream
byte([]
| VS
DFSInputStream DFSInputStream v
byte[] ByteBuffer

cloudera

Direct Reads

Now we don’t have to
copy from a byte array to
another byte array in the
DFSClient.

Hard Drive

v

Page Cache

v

DataNode

v

DFSClient

v

App (MR / Impala / etc)

cloudera

Short-Circuit Local Reads

Original read path:

DataTransferProtocol

+ DataNode

|

Data Directories

-
-

v

cloudera

Short-Circuit Local Reads

HDFS-2246 Short-circuit read path:

GetBlockLocalPathinfo
. RequestProto X DataNode
open(), read()
Data Directories

cloudera

Short-Circuit Local Reads

HDFS-347 Secure Short-circuit read path:

OpRequestShortCircuit
) AccessProto ; DataNode
read() open() :
File Descriptor Data Directories

cloudera

Short-Circuit Local Reads

Now we aren’t copying
the data into the
DataNode process any
more, for local blocks.

Hard Drive

v

Page Cache

v

DataNode

v

DFSClient

v

App (MR / Impala / etc)

cloudera

HDFS-347 Performance Improvements

64kb Random Read Test on 1GB file
120

90

60

MB/s

30

[l HDFS-347 M HDFS-2246 |11 TCP

cloudera

HDFS-4953: Zero-copy Reads

e Normal reads copy the data into the OS page
cache, and then copy it again into the process’
memory space

® Zero-copy reads use mmap to directly map the
memory into the process memory space.

e Must be able to skip checksum

cloudera

Zero-Copy Reads

Now the page cache
memory is mapped into
our address space,
avoiding another copy.

Hard Drive

Page Cache

DataNode

DFSClient

v

App (MR / Impala / etc)

cloudera

Throughput Using Zero-Copy Reads

vecsum throughput

(=]

vecsum: a highly
optimized libhdfs
program on CDH5

Computes the sum of |
a 1GB file containing
floating point . .
numbers 20 times. SChno csum
i cloudera

Zero-copy

TCP-no-csum

CPU Consumption Using Zero-Copy Reads

1e10 vecsum2 total cycle count

TCP-no-csum SCR-no-csum zero -copy

Total CPU cycles
consumed when
reading 1 GB 20 times

total cycles

cloudera

Avoiding TCP overheads

How can we avoid TCP overheads?

&’
| S —
*’

Client Server

cloudera

Avoiding TCP overheads

e HDFS-347: Avoid TCP entirely via short-circuit
reads
e HDFS-941: Re-use TCP connections to the
DataNode
Jd Avoid paying overhead of 3-way handshake
and connection setup each time
d Requires socket cache and DataXceiver
changes

cloudera

Higher Level Improvements

e More than just optimizing our own code, how do
we let clients make better decisions about where
to schedule and how to cache data?

Jd Impala
Jd MapReduce

cloudera

HDFS-3672: Expose Disk Location Information

Scheduling multiple jobs that
need the same hard disk at the
same time makes things
slower.

DataNode

Disk 1 .
B

1

cloudera

HDFS-3672: Expose Disk Location Information

® Previously: Impala knew that block B was on
DataNodes D1, D2, and D3, but didn’t know
which drives it was on. Had to guess.

® Now: Impala can schedule work across the
cluster so that it reads from every drive on each

DataNode.

cloudera

HDFS-3672: Expose Disk Location Information

With more
information, we
can schedule
smarter.

DataNode

[l [E]

1

cloudera

HDFS-4949: HDFS Caching

® Previously: Operating system decided where to
cache things. Often cached the same thing on
more than one DataNode. Might kick important
information out of cache during a big query or
job.

e Now: can explicitly ask for certain files or
directories to be cached. Can skip checksum
when reading these files (or ZCR)

cloudera

HDFS-4949: HDFS Caching

e Can “move the computation to the cache” to
take advantage of memory speed. Up to an
order of magnitude improvement in Impala
performance.

cloudera

Hardware Trends

e Solid-state disks

d Need more read and write path
improvements to best take advantage of
these.
Need improvements in client software too.
The assumption that I/O is the bottleneck

may not always hold!

L L

cloudera

Fusion I/O vs. Hard Disk Bandwidth

Sequential I/O Benchmarks
Using dd with blocksize=1 MB

1200

1000

800

600

MB/s

400

200

0
FIO write HD write FIO read HD read

©2014 Cloudera, Inc. All rights reserved. C|0Udera

Hardware Trends

e Networks with full bisectional bandwidth
. Rack locality stops being important.
d Cache locality is always important, however.
1 You always want to bring the computation
to the cache.
. Memory is usually at least order of
magnitude faster than network.

cloudera

Limits to Performance Improvements

e Not all clients are bottlenecked on I/O
Jd Many MapReduce jobs do a lot of CPU work.
. Lifting 1/0 bottlenecks may only reveal other
bottlenecks.

cloudera

Limits to Performance Improvements

e Not all clusters are the same.

d Cluster performance can be limited by the
network, or even by something else
unexpected such as DNS resolution.

Jd Benchmark, benchmark, benchmark. Don’t
assume.

cloudera

Word Count MapReduce Flame Graph

g
6
b
(]
-
¢
=
%)
[
a
o
B
6

org.

Bioro...
BEEEN 0 [OE org-ap..

apac.. |or.. (6w org.a.. | |org.- | 80
ErGIEpEea o
|org.apache.. or..

(SIS @ 00
org .. | |

163

security.UserGroupInformat..

|l org.apache.hadoop.mapred.YarnChild.main

[Org:) (orgsas org.apache-hado.

cloudera

©2014 Cloudera, Inc. All rights reserved.

/O

ame Graph

Word Count MapReduce

org.apache..
org.apache

org.apache.hadooj
org.apache.hadooj

cloudera

°
@
s
=
]
&
o
a
&
ie
o0
<
%)
=
o
@
°
S
o
O
<
=
o
&
©

Limits to Performance Improvements

e HDFS performance is most important when the
higher layers are also optimized.

® Impala can get 10x gains out of HDFS caching or
using flash, but MR struggles to get 2x

e Newer frameworks like Apache Spark will help

cloudera

Benchmarking Old Versus New Read Path

Read Speed with 75 threads

® CDH3 versus CDH4 e
e Simultaneous] A
sequential reads

from 75 different g o
threads. g
. O @
® 10 hard drive 200 —
. . A CDH3 HD read 2
configuration vs. : ° COH FIO e :
. 0 — 1 ; CDH4FIOr;ead
high-speed flash (.) T T m)

cloudera

Single Hard Drive Seeks and Throughput

® Average seeks:
12/s

® Average
throughput
around 50
MB/s

Disk offset (MB)

Seeks / sec
=
()]

N
T T

0 55 110 165 220 275 330 385 440

Time (seconds)

cloudera

Benchmarking Old Versus New Write Path

Write Speed with 75 threads

e The write path o
needs more e
Improvement. s B
e Harder to optimize §4oo— P
because of needto 7 -
use network (3x a comiwic @
writes) 0_- commre @
———
0 1000 MB/s 2000 3000

cloudera

Future Work

e Make HDFS caching useful in more scenarios
Jd Sub-block caching
. Automatic caching via LRU, LFU, etc.
e HDFS on flash
J HDFS-2832: Heterogeneous Storage
Jd Allow HDFS to manage different pools of
storage (e.g. hard drives versus flash)

cloudera

Future Work

e Write path efficiency improvements
Jd Native checksums for write path
e \Write-side caching
Jd Avoid flushing temporary files to disk if it’s
not needed.

cloudera

