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Ask Bigger Questions

Feeding the Elephant:
Optimizing the Read Path of the Hadoop Distributed Filesystem

by Colin P. McCabe
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About Me

e | work on HDFS and related storage technologies at

Cloudera.
e Committer on the HDFS and Hadoop projects.

® Previously worked on the Ceph distributed
filesystem
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About Hadoop

The open source
framework for big data

Started by Doug Cutting
and Mike Cafarella in
2005.
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Big Ideas Behind Hadoop

e Distributed

m Avoid single-node points of failure

m Avoid losing data
® Bring the computation to the data

m Cheaper to move computation than data.
e Commodity hardware, not specialized hardware
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HDFS Architecture

e HDFS decides where and how to store data in
Hadoop.
e Nodes
m DataNodes: store data
m NameNodes: handle metadata
m JournalNodes: store metadata
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Shared Namespace

DFSClient DFSClient
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/user/cmccabe/reports
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DFSClient

cloudera




HDFS Clients

e But... where data is located still matters!

e The HDFS client library is called “the DFSClient.”

e Usually DFSClients are co-located with DataNodes, to
minimize network 1/0O.

e “Move the computation to the data.”
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Typical HDFS Setup

JournalNode

JournalNode

JournalNode

Primary

NameNode

Standby

Namenode

DataNode

DFSClient

DataNode

DataNode

DFSClient

DFSClient
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HDES Storage Stacks

e HDFS “Clients” are often daemons like MapReduce,
Impala, or HBase, not user programs.

e The performance of the DFSClient can be a limiting
factor for the performance of the rest of the stack.
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HDES Storage Stacks

Web Application MapReduce Job
HBase MapReduce Framework
DFSClient DFSClient

Impala

DFSClient
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DFSClient Performance

e DFSClient performance is a big part of HDFS
performance, since HDFS files are often large.

e Reads and writes don’t go through the NameNode...
they go through the DFSClient.

e How can we improve DFSClient performance?

e First, we have to quantify it.
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Quantifying Performance

CPU utilization
Memory bandwidth
Latency

Disk Bandwidth
Scalability
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Quantifying Performance

e Workload-dependent
o Amdahl’s Law
o What’s the bottleneck?
e C(luster dependent
o 1 gigabit ethernet? 10 gigabit?
o0 How many disks? CPUs?
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DFSClient Overheads

CPU overhead of checksumming

Copying data from buffer to buffer

The TCP 3-way handshake

Making system calls to the operating system
Stragglers

Garbage collection
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Saving CPU

The more CPU we use in the
DFSClient and the
DataNode, the less is
available to clients.

How can we save CPU
cycles?
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Saving CPU

e HDFS-2080: Optimized native checksum
implementation
o Uses Intel’s built-in SSE4.2 CRC32 instruction
© Checksum overhead went from ~50% CPU to
~15%
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Saving CPU

e HDFS-5276: Thread-Local statistics in FileSystem
o A big improvement for massively multithreaded
programs
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Avoiding Copies

Can we reduce the
number of times we copy
the data?

(Simplified view ignoring
copies due to readahead,
decompression, etc.)

Hard Drive

Page Cache

v

DataNode

DFSClient

v

App (MR / Impala / etc)
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Direct Reads

HDFS-2834: Use Java’s ByteBuffer abstraction in
DFSClient to avoid a copy inside DFSClient.

DFSInputStream DFSInputStream
byte([]
| VS
DFSInputStream DFSInputStream v
byte[] ByteBuffer
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Direct Reads

Now we don’t have to
copy from a byte array to
another byte array in the
DFSClient.

Hard Drive

v

Page Cache

v

DataNode

v

DFSClient

v

App (MR / Impala / etc)
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Short-Circuit Local Reads

Original read path:

DataTransferProtocol

+ DataNode

|

Data Directories

-
-

v
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Short-Circuit Local Reads

HDFS-2246 Short-circuit read path:

GetBlockLocalPathinfo
. RequestProto X DataNode
open(), read()
Data Directories
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Short-Circuit Local Reads

HDFS-347 Secure Short-circuit read path:

OpRequestShortCircuit
) AccessProto ; DataNode
read() open() :
File Descriptor Data Directories
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Short-Circuit Local Reads

Now we aren’t copying
the data into the
DataNode process any
more, for local blocks.

Hard Drive

v

Page Cache

v

DataNode

v

DFSClient

v

App (MR / Impala / etc)
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HDFS-347 Performance Improvements

64kb Random Read Test on 1GB file
120

90

60

MB/s

30

[l HDFS-347 M HDFS-2246 |11 TCP
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HDFS-4953: Zero-copy Reads

e Normal reads copy the data into the OS page
cache, and then copy it again into the process’
memory space

® Zero-copy reads use mmap to directly map the
memory into the process memory space.

e Must be able to skip checksum
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Zero-Copy Reads

Now the page cache
memory is mapped into
our address space,
avoiding another copy.

Hard Drive

Page Cache

DataNode

DFSClient

v

App (MR / Impala / etc)
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Throughput Using Zero-Copy Reads

vecsum throughput

(=]

vecsum: a highly
optimized libhdfs
program on CDH5

Computes the sum of |
a 1GB file containing
floating point . .
numbers 20 times. SChno csum
i cloudera
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CPU Consumption Using Zero-Copy Reads

1e10 vecsum2 total cycle count

TCP-no-csum SCR-no-csum zero -copy

Total CPU cycles
consumed when
reading 1 GB 20 times

total cycles
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Avoiding TCP overheads

How can we avoid TCP overheads?

&’
| S —
*’

Client Server
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Avoiding TCP overheads

e HDFS-347: Avoid TCP entirely via short-circuit
reads
e HDFS-941: Re-use TCP connections to the
DataNode
Jd Avoid paying overhead of 3-way handshake
and connection setup each time
d Requires socket cache and DataXceiver
changes
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Higher Level Improvements

e More than just optimizing our own code, how do
we let clients make better decisions about where
to schedule and how to cache data?

Jd Impala
Jd MapReduce
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HDFS-3672: Expose Disk Location Information

Scheduling multiple jobs that
need the same hard disk at the
same time makes things
slower.

DataNode

Disk 1 .
B

1
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HDFS-3672: Expose Disk Location Information

® Previously: Impala knew that block B was on
DataNodes D1, D2, and D3, but didn’t know
which drives it was on. Had to guess.

® Now: Impala can schedule work across the
cluster so that it reads from every drive on each

DataNode.
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HDFS-3672: Expose Disk Location Information

With more
information, we
can schedule
smarter.

DataNode

[l [E]

1
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HDFS-4949: HDFS Caching

® Previously: Operating system decided where to
cache things. Often cached the same thing on
more than one DataNode. Might kick important
information out of cache during a big query or
job.

e Now: can explicitly ask for certain files or
directories to be cached. Can skip checksum
when reading these files (or ZCR)
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HDFS-4949: HDFS Caching

e Can “move the computation to the cache” to
take advantage of memory speed. Up to an
order of magnitude improvement in Impala
performance.
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Hardware Trends

e Solid-state disks

d Need more read and write path
improvements to best take advantage of
these.
Need improvements in client software too.
The assumption that I/O is the bottleneck

may not always hold!

L L
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Fusion I/O vs. Hard Disk Bandwidth

Sequential I/O Benchmarks
Using dd with blocksize=1 MB
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1000
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MB/s
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0
FIO write HD write FIO read HD read
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Hardware Trends

e Networks with full bisectional bandwidth
. Rack locality stops being important.
d Cache locality is always important, however.
1 You always want to bring the computation
to the cache.
. Memory is usually at least order of
magnitude faster than network.
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Limits to Performance Improvements

e Not all clients are bottlenecked on I/O
Jd Many MapReduce jobs do a lot of CPU work.
. Lifting 1/0 bottlenecks may only reveal other
bottlenecks.
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Limits to Performance Improvements

e Not all clusters are the same.

d Cluster performance can be limited by the
network, or even by something else
unexpected such as DNS resolution.

Jd Benchmark, benchmark, benchmark. Don’t
assume.
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Word Count MapReduce Flame Graph
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Limits to Performance Improvements

e HDFS performance is most important when the
higher layers are also optimized.

® Impala can get 10x gains out of HDFS caching or
using flash, but MR struggles to get 2x

e Newer frameworks like Apache Spark will help
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Benchmarking Old Versus New Read Path

Read Speed with 75 threads

® CDH3 versus CDH4 e
e Simultaneous ] A
sequential reads

from 75 different g o
threads. g
. O @
® 10 hard drive 200 —
. . A CDH3 HD read 2
configuration vs. : ° COH FIO e :
. 0 — 1 ; CDH4FIOr;ead
high-speed flash (.) T T m)
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Single Hard Drive Seeks and Throughput

® Average seeks:
12/s

® Average
throughput
around 50
MB/s

Disk offset (MB)

Seeks / sec
=
()]

N
T T

0 55 110 165 220 275 330 385 440

Time (seconds)
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Benchmarking Old Versus New Write Path

Write Speed with 75 threads

e The write path o
needs more e
Improvement. s B
e Harder to optimize §4oo— P
because of needto 7 -
use network (3x a comiwic @
writes) 0_- commre @
———
0 1000 MB/s 2000 3000

cloudera




Future Work

e Make HDFS caching useful in more scenarios
Jd Sub-block caching
. Automatic caching via LRU, LFU, etc.
e HDFS on flash
J HDFS-2832: Heterogeneous Storage
Jd Allow HDFS to manage different pools of
storage (e.g. hard drives versus flash)
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Future Work

e Write path efficiency improvements
Jd Native checksums for write path
e \Write-side caching
Jd Avoid flushing temporary files to disk if it’s
not needed.
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